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We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic
regions. This theory is to be formulated in a holographic space. When a semiclassical description is
applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is
capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured
relationships between gravitational spacetime and quantum entanglement in the holographic description.
To understand basic features of this picture, we catalog predictions for the holographic entanglement
structure of cosmological spacetimes. We find that qualitative features of holographic entanglement
entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the
appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a
direct-sum and “spacetime-equals-entanglement” structure. The former preserves a naive relationship
between linear operators and observable quantities, while the latter respects a more direct connection
between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum
gravity, in particular how the state of the multiverse may be selected in the landscape.
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I. INTRODUCTION

As with any other classical object, spacetime is expected
to consist of a large number of quantum degrees of
freedom. The first explicit hint of this came from the
discovery that empty spacetime can carry entropy [1–6].
What theory describes these degrees of freedom as well as
the excitations on them, i.e. matter?
Part of the difficulty in finding such a theory is the large

redundancies present in the description of gravitational
spacetime. The holographic principle [7–9] suggests that
the natural space in which the microscopic degrees of
freedom for spacetime (and matter) live is a nondynamical
spacetime whose dimension is one less than that in the
original description (as demonstrated in the special case of
the AdS/CFT correspondence [10]). This represents a huge
redundancy in the original gravitational description beyond
that associated with general coordinate transformations.
For general spacetimes, causality plays a central role in
fixing this redundancy [11,12]. A similar idea also plays an
important role in addressing problems in the semiclassical
descriptions of black holes [13] and cosmology [14,15].
In this paper, we explore a holographic theory for general

spacetimes. We follow a “bottom-up” approach given the
lack of a useful description in known frameworks, such as
AdS/CFT and string theory in asymptotically Minkowski
space. We assume that our holographic theory is formulated
on a holographic screen [16], a codimension-1 surface on
which the information about the original spacetime can be
encoded. This construction can be extended beyond the

semiclassical regime by considering all possible states on all
possible slices—called “leaves”—of holographic screens
[14,17], where the nonuniqueness of erecting a holographic
screen is interpreted as the freedom in fixing the redundancy
associated with holography. The resulting picture is con-
sistent with the recently discovered area theorem applicable
to the holographic screens [18–20].
To study the structure of the theory, we use conjectured

relationships between spacetime in the gravitational
description and quantum entanglement in the holographic
theory. Recently, it has become increasingly clear that
quantum entanglement among holographic degrees of free-
dom plays an important role in the emergence of classical
spacetime [21–32]. In particular, Ref. [28] showed that the
areas of the extremal surfaces anchored to the boundaries of
regions on a leaf of a holographic screen satisfy relations
obeyed by entanglement entropies, so that they can indeed
be identified as the entanglement entropies associated with
the corresponding regions in the holographic space. We
analyze properties of these surfaces and discuss their
implications for a holographic theory of general spacetimes.
We lay down our general framework in Sec. II. We then

study the behavior of extremal surfaces in cosmological
Friedmann-Robertson-Walker (FRW) spacetimes in Sec. III.
Here we focus on initially expanding flat and open uni-
verses, in which the area of the leaves monotonically
increases. We first consider universes dominated by a single
component in the Friedmann equation, and we identify
how screen entanglement entropies—the entanglement
entropies among the degrees of freedom in the holographic
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space—encode information about the spacetimes. We dis-
cuss next how the screen entanglement entropies behave in a
transition period in which the dominant component of the
universe changes. We find an interesting theorem when the
holographic screen is spacelike: the change of a screen
entanglement entropy is always monotonic. The proof of
this theorem is given in Appendix A. If the holographic
screen is timelike, no such theorem holds.
In Sec. IV, we study the structure of the holographic

theory for general spacetimes, building on the results
obtained earlier. In particular, we discuss how the holo-
graphic entanglement entropies for general spacetimes
differ from those in AdS/CFT and how, nevertheless, the
former reduce to the latter in an appropriate limit. We
emphasize that the holographic entanglement entropies for
cosmological spacetimes obey a volume law, rather than an
area law, implying that the relevant holographic states are
not ground states of local field theories. This is the case
despite the fact that the dynamics of the holographic theory
respects some sense of locality, indicated by the fact that the
area of a leaf increases in a local manner on a holographic
screen.
The Hilbert space of the theory is analyzed in Sec. IV B

under two assumptions:
(i) The holographic theory has (effectively) a qubit

degree of freedom per each volume of 4 ln 2 in
Planck units. These degrees of freedom appear local
at length scales larger than a microscopic cutoff lc.

(ii) If a holographic state represents a semiclassical
spacetime, the area of an extremal surface anchored
to the boundary of a regionΓ on a leaf σ and contained
in the causal region associated with σ represents the
entanglement entropy of Γ in the holographic theory.

We find that these two assumptions strongly constrain the
structure of the Hilbert space, although they do not deter-
mine it uniquely. There are essentially two possibilities:
Direct-sum structure—Holographic states representing

different semiclassical spacetimes M live in different
Hilbert spaces HM even if these spacetimes have the
same boundary space (or leaf) B

HB ¼ ⨁
M
HM: ð1Þ

In each Hilbert space HM, the states representing the
semiclassical spacetime comprise only a tiny subset of
all the states—the vast majority of the states inHM do
not allow for a semiclassical interpretation, which we
call “firewall” states, borrowing the terminology in
Refs. [33–35]. In fact, the states allowing for a
semiclassical spacetime interpretation do not even
form a vector space—their superposition may lead
to a firewall state if it involves a large number of terms,
of order a positive power of dimHM. This is because a
superposition involving such a large number of terms
significantly alters the entanglement entropy structure,

so under assumption (ii) above we cannot interpret the
resulting state as a semiclassical state representingM.
In this picture, small excitations over spacetime M
can be represented by standard linear operators acting
on the (suitably extended) Hilbert space HM, which
can be trivially promoted to linear operators in HB.

Spacetime equals entanglement—Holographic states that
represent different semiclassical spacetimes but have
same boundary space B are all elements of a single
Hilbert spaceHB. And yet, the number of independent
microstates representing each of these spacetimes,
M;M0;M00;…, is the dimension of HB:

jΨM
i i; jΨM0

i0 i; jΨM00
i00 i; � � � ∈ HB;

i; i0; i00; � � � ¼ 1;…; dimHB; ð2Þ

which implies that the microstates representing differ-
ent spacetimes are not independent. This picture arises
if we require the converse of assumption (ii) and is
called “spacetime equals entanglement” [31]: if a
holographic state has the form of entanglement en-
tropies corresponding to a certain spacetime, then the
state indeed represents that spacetime. The structure of
Eq. (2) is then obtained because arbitrary unitary
transformations acting in each cutoff size cell in B do
not change the entanglement entropies, implying that
the number of microstates for any geometry is dimHB
(so they span a basis of HB). Despite the intricate
structure of the states, this picture admits the standard
many-worlds interpretation for classical spacetimes, as
shown in Ref. [31]. Small excitations over spacetime
are represented by nonlinear/state-dependent opera-
tors, along the lines of Ref. [36] (see also [37–39]),
since a superposition of background spacetimes may
lead to another spacetime, so that operators represent-
ing excitations must know the entire quantum state
they act on.

We note that a dichotomy similar to the one described
above was discussed earlier in Ref. [36], but the interpre-
tation and the context in which it appears here are distinct.
First, the state dependence of the operators representing
excitations in the second scenario (as well as that of the
time evolution operator) becomes relevant when the boun-
dary space is involved in the dynamics as in the case of
cosmological spacetimes. Hence, this particular state
dependence need not persist in the AdS/CFT limit. This
does not imply anything about the description of the
interior of a black hole in the CFT. It is possible that
the CFT does not provide a semiclassical description of the
black hole interior; i.e. it gives only a distant description.
Alternatively, there may be a way of obtaining a state-
dependent semiclassical description of the black hole
interior within a CFT, as envisioned in Ref. [36]. We are
agnostic about this issue.
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Second, Ref. [36] describes the dichotomy as state
dependence vs firewalls. Our picture, on the other hand,
does not have a relation with firewalls because the
following two statements apply to both the direct-sum
and spacetime-equals-entanglement pictures:

(i) Most of the states in the Hilbert space, e.g. in the
Haar measure, are firewalls in the sense that they do
not represent smooth semiclassical spacetimes,
which require special entanglement structures
among the holographic degrees of freedom.

(ii) The fact that most of the states are firewalls does not
mean that these states are realized as a result of
standard time evolution, in which the volume of the
boundary space increases in time. In fact, the direct-
sum picture even has a built-in mechanism of
eliminating firewalls through time evolution, as
we will see in Sec. IV E.1

Rather, the real tension is between the linearity/state
independence of operators representing observables
(including the time evolution operator) and the space-
time-equals-entanglement hypothesis, i.e. the hypothesis
that if a holographic state has entanglement entropies
corresponding to a semiclassical spacetime, then the state
indeed represents that spacetime. If we insist on the linearity
of observables, we are forced to take the direct-sum picture;
if we adopt the spacetime-equals-entanglement hypothesis,
then we must give up linearity.
Our analysis in Sec. IV also includes the following. In

Sec. IV C, we discuss bulk reconstruction from a holo-
graphic state, which suggests that the framework provides a
distant description for a dynamical black hole. In Sec. IV D,
we consider how the theory encodes information about
spacetime outside the causal region of a leaf, which is
needed for autonomous time evolution. Our analysis
suggests a strengthened covariant entropy bound: the
entropy on the union of two light sheets (future-directed
ingoing and past-directed outgoing) of a leaf is bounded by
the area of the leaf divided by 4. This bound is stronger than
the original bound in Ref. [12], which says that the entropy
on each of the two light sheets is bounded by the area
divided by 4. In Sec. IV E, we analyze properties of time
evolution, in particular a built-in mechanics of eliminating
firewalls in the direct-sum picture and the required non-
linearity of the time evolution operator in the spacetime-
equals-entanglement picture. In Secs. IV D and IV E, we
discuss how our framework may reduce to AdS/CFT and
string theory in an asymptotically Minkowski background
in the appropriate limits. We argue that the dynamics of
these theories (in which the boundaries are sent to infinity)

describes that of the general holographic theory modded
out by “vacuum degeneracies” relevant for the dynamics of
the boundaries and the exteriors.
In Sec. V, we devote our final discussion to the issue of

selecting a state. In general, specifying a system requires
selection conditions on a state in addition to determining
the theory. To address this issue in quantum gravity, we
need to study the problem of time [40,41]. We discuss
possible signals from a past singularity or past null infinity,
closed universes and “fine-tuning” of states, and selection
conditions for the string theory landscape [42–45], espe-
cially the scenario called the “static quantum multiverse”
[46]. While our discussion in this section is schematic, it
allows us to develop intuition about how quantum gravity
might work at the fundamental level when applied to the
real world.
Throughout the paper, we adopt the Schrödinger picture

of quantum mechanics and take the Planck length to be
unity, lP ¼ 1. When the semiclassical picture is applicable,
we assume the null and causal energy conditions to be
satisfied. These impose the conditions ρ ≥ −p and jρj ≥ jpj,
respectively, on the energy density ρ and pressure p of an
ideal fluid component. The equation of state parameter
w ¼ p=ρ, therefore, takes a value in the range jwj ≤ 1.

II. HOLOGRAPHY AND QUANTUM GRAVITY

The holographic principle states that quantummechanics
of a system with gravity can be formulated as a non-
gravitational theory in spacetime with dimension one less
than that in the gravitational description. The covariant
entropy bound, or Bousso bound [12], suggests that this
holographically reduced—or “boundary”—spacetime may
be identified as a hypersurface in the original gravitational
spacetime determined by a collection of light rays.
Specifically, it implies that the entropy on a null hyper-
surface generated by a congruence of light rays terminating
at a caustic or singularity is bounded by its largest cross-
sectional area A; in particular, the entropy on each side of
the largest cross-sectional surface is bounded by A=4 in
Planck units.2 It is therefore natural to consider that, for a
fixed gravitational spacetime, the holographic theory lives
on a hypersurface—called the holographic screen—on
which null hypersurfaces foliating the spacetime have
the largest cross-sectional areas [16].
This procedure of erecting a holographic screen has a

large ambiguity, presumably reflecting a large freedom in
fixing the redundancy of the gravitational description
associated with the holographic principle. A particularly
useful choice advocated in Refs. [14,17,47] is to adopt an
“observer centric reference frame.” Let the origin of the
reference frame follow a timelike curve pðτÞ which passes
through a fixed spacetime point p0 at τ ¼ 0, and consider

1This is natural because any dynamics leading to classicaliza-
tion selects only a very special set of states as the result of time
evolution: states interpreted as a superposition of a small number
of classical worlds, where small means a number (exponentially)
smaller than the dimension of the full microscopic Hilbert space. 2We will conjecture a stronger bound in Sec. IV D.
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the congruence of past-directed light rays emanating from
p0.

3 The expansion of the light rays θ satisfies

∂θ
∂λ þ

1

2
θ2 ≤ 0; ð3Þ

where λ is the affine parameter associated with the light
rays. This implies that the light rays emitted from p0 focus
toward the past (starting from θ ¼ þ∞ at λ ¼ 0þ), and we
may identify the apparent horizon, i.e. the codimension-2
surface with

θ ¼ 0; ð4Þ

to be an equal-time hypersurface—called a “leaf"—of a
holographic screen. Repeating the procedure for all τ, we
obtain a specific holographic screen, with the leaves para-
metrized by τ, corresponding to foliating the spacetime
region accessible to the observer at pðτÞ; see Fig. 1. Such a
foliation is consonant with the complementarity hypothesis
[13], which asserts that a complete description of a system
is obtained by referring only to the spacetime region that
can be accessed by a single observer.
With this construction, we can view a quantum state of

the holographic theory as living on a leaf of the holographic
screen obtained in the above observer centric manner. We

can then consider the collection of all possible quantum
states on all possible leaves, obtained by considering all
timelike curves in all spacetimes. We take the view that a
state of quantum gravity lives in the Hilbert space spanned
by all of these states (together with other states that do not
admit a full spacetime interpretation) [14,17]. It is often
convenient to consider a Hilbert space HB spanned by the
holographic states that live on the “same” boundary space
B.4 The relevant Hilbert space can then be written as

H ¼
X
B

HB; ð5Þ

where the sum of Hilbert spaces is defined by5

H1 þH2 ¼ fv1 þ v2jv1 ∈ H1; v2 ∈ H2g: ð6Þ

This formulation is not restricted to descriptions based on
fixed semiclassical spacetime backgrounds. For example,
we may consider a state in which macroscopically different
spacetimes are superposed; in particular, this picture
describes the eternally inflating multiverse as a state in
which macroscopically different universes are superposed
[14,46]. The space in Eq. (5) is called the covariant Hilbert
space with observer centric gauge fixing.
Recently, Bousso and Engelhardt identified two special

classes of holographic screens [18,19]: if a portion of a
holographic screen is foliated by marginally antitrapped
(trapped) surfaces, then that portion is called a past (future)
holographic screen. Specifically, they denoted the two
future-directed null vector fields orthogonal to a portion
of a leaf by ka and la, with ka being tangent to light rays
emanating from pðτÞ, such that the expansion of the null
geodesic congruence generated by la satisfies θl > 0 and
< 0 for past and future holographic screens, respectively.
They proved, building on earlier works [48–51], that the
area of leavesAðτÞmonotonically increases (decreases) for
a past (future) holographic screen:

�
θk ¼ 0

θl≷0
⇔ d

dτAðτÞ≷0; ð7Þ

FIG. 1. For a fixed semiclassical spacetime, the holographic
screen is a hypersurface obtained as the collection of codimen-
sion-2 surfaces (labeled by τ) on which the expansion of the light
rays emanating from a timelike curve pðτÞ vanishes, θ ¼ 0. This
way of erecting the holographic screen automatically deals with
the redundancy associated with complementarity. The ambiguity
of choosing pðτÞ reflects a large freedom in fixing the redun-
dancy associated with holography.

3In Refs. [14,17,47], pðτÞwas chosen to be a timelike geodesic
with τ being the proper time measured at pðτÞ. We suspect that
this simplifies the time evolution operator in the holographic
theory.

4The exact way in which the boundary spaces are grouped into
different B’s is unimportant. For example, one can regard the
boundary spaces having the same area A within some precision
δA to be in the same B, or one can discriminate them further by
their induced metrics. This ambiguity does not affect any of the
results, unless one takes δA to be exponentially small in A or
discriminates induced metrics with the accuracy of order the
Planck length (which corresponds to resolving microstates of the
spacetime).

5Unlike Ref. [17], here we do not assume specific relations
between HB’s; for example, HB1

and HB2
for different boundary

spaces B1 and B2 may not be orthogonal. Also, we have included
in the sum over B the cases in which B is outside the semiclassical
regime, i.e. the cases in which the holographic space does not
correspond to a leaf of a holographic screen in a semiclassical
regime. These issues will be discussed in Sec. IV.
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see Fig. 2. In many regular circumstances, including
expanding FRW universes, the holographic screen is a
past holographic screen, so that the area of the leaves
monotonically increases, dAðτÞ=dτ > 0. In this paper we
mostly focus on this case, and we interpret the area theorem
in terms of the second law of thermodynamics applied to
the Hilbert space of Eq. (5). Moreover, in Ref. [20] it was
proved that this area theorem holds locally on the holo-
graphic screen: the area of any fixed spatial portion of the
holographic screen, determined by a vector field tangent to
the holographic screen and normal to its leaves, increases
monotonically in time. This implies that the dynamics of
the holographic theory respects some notion of locality.
What is the structure of the holographic theory and how

can we explore it? Recently, a conjecture has been made in
Ref. [28] which relates geometries of general spacetimes in
the gravitational description to the entanglement entropies
of states in the holographic theory. This extends the
analogous theorem/conjecture in the AdS/CFT context
[21–23] to more general cases, allowing us to probe the
holographic description of general spacetimes, including
those that do not have an obvious spacetime boundary on
which the holographic theory can live. In particular,
Ref. [28] proved that for a given region Γ of a leaf σ, a
codimension-2 extremal surface EðΓÞ anchored to the
boundary ∂Γ of Γ is fully contained in the causal region
Dσ of σ:

Dσ∶ the domain of dependence of an interior achronal

hypersurface whose only boundary is σ; ð8Þ

where the concept of the interior is defined so that a vector
on σ pointing toward the interior takes the form c1ka − c2la

with c1; c2 > 0 (see Fig. 2). This implies that the normal-
ized area of the extremal surface EðΓÞ,

SðΓÞ ¼ 1

4
kEðΓÞk; ð9Þ

satisfies expected properties of entanglement entropy, such
as strong subadditivity, so that it can be identified with the
entanglement entropy of the region Γ in the holographic
theory. Here, kxk represents the area of x. If there are
multiple extremal surfaces in Dσ for a given Γ, then we
must take the one with the minimal area.
In the rest of the paper, we study the holographic theory

of quantum gravity for general spacetimes, adopting the
framework described in this section. We first analyze FRW
spacetimes and then discuss lessons learned from that
analysis later.

III. HOLOGRAPHIC DESCRIPTION
OF FRW UNIVERSES

In this section, we study the putative holographic descrip-
tion of (3þ 1)-dimensional FRW cosmological spacetimes:

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − κr2
þ r2ðdψ2 þ sin2ψdϕ2Þ

�
;

ð10Þ

where aðtÞ is the scale factor, and κ < 0, ¼ 0 and > 0 for
open, flat and closed universes, respectively. The Friedmann
equation is given by�

_a
a

�
2

þ κ

a2
¼ 8π

3
ρ; ð11Þ

where the dot represents t derivative. Here, we include the
energy density from the cosmological constant as a compo-
nent in ρ having the equation of state parameter w ¼ −1.
As discussed in the previous section, we describe the

system as viewed from a reference frame whose origin
follows a timelike curve pðτÞ, which we choose to be at
r ¼ 0. The holographic theory then lives on the holographic
screen, an equal-time slice of which is an apparent horizon: a
codimension-2 surface on which the expansion of the light
rays emanating from pðτÞ for a fixed τ vanishes. Under
generic conditions, this horizon is always at a finite distance

r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2ðt�Þ þ κ

p ≡ rAHðt�Þ < ∞; ð12Þ

where t� is the FRW time on the horizon. Note that the
symmetry of the setup makes the FRW time the same
everywhere on the apparent horizon, and for an open
universe, _aðt�Þ >

ffiffiffiffiffiffi
−κ

p
is satisfied for values of τ before

pðτÞ hits the big crunch. For flat and open universes, we find
that this surface is always marginally antitrapped, i.e. a leaf

FIG. 2. The congruence of past-directed light rays emanating
from p0 (the origin of the reference frame) has the largest cross-
sectional area on a leaf σ, where the holographic theory lives. At
any point on σ, there are two future-directed null vectors
orthogonal to the leaf: ka and la. For a given region Γ of the
leaf, we can find a codimension-2 extremal surface EðΓÞ
anchored to the boundary ∂Γ of Γ, which is fully contained in
the causal region Dσ associated with σ.
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of a past holographic screen, as long as the universe is
initially expanding. On the other hand, for a closed universe
the surface can change from marginally antitrapped to
marginally trapped as τ increases, implying that the holo-
graphic screen may be a past holographic screen only until a
certain time τ. In this section, we focus our attention on
initially expanding flat and openuniverses. Closed universes
will be discussed in Sec. V.
Below,we study entanglement entropies for subregions in

the holographic theory—screen entanglement entropies—
adopting the conjecture of Ref. [28]. Here we focus on
studying the properties of these entropies, leaving their
detailed interpretation for later. We first discuss “stationary”
aspects of screen entanglement entropies, concentrating
on states representing spacetime in which the expansion
of the universe is dominated by a single component in the
Friedmann equation. We study how screen entanglement
entropies encode the information about the spacetime the
state represents. We then analyze dynamics of screen
entanglement entropies during a transition period in which
the dominant component changes. Implications of these
results in the broader context of the holographic description
of quantum gravity will be discussed in the next section.

A. Holographic dictionary for FRW universes

Consider a Hilbert space HB spanned by a set of
quantum states living in the same codimension-2 boundary
surface B. As mentioned in footnote 4, the definition of the
boundary surface being the same has an ambiguity. For our
analysis of states representing FRW spacetimes, we take
the boundary B to be specified by its area AB (within some
precision δAB that is not exponentially small inAB). In this
subsection, we focus on a single Hilbert spaceH� ∈ fHBg
specified by a fixed (though arbitrary) boundary area A�.
Consider FRW universes with κ ≤ 0 having vacuum

energy ρΛ and filled with varying ideal fluid components.6

For every universe with

ρΛ <
3

2A�
; ð13Þ

there is a FRW time t� at which the area of the leaf of the
past holographic screen is A�; see Fig. 3. This is because
the area of the leaf of the past holographic screen is
monotonically increasing [18], and the final (asymptotic)
value of the area is given by

A∞ ¼
� 3

2ρΛ
; for ρΛ > 0;

þ∞; for ρΛ ≤ 0.
ð14Þ

Any quantum state representing the system at any such
moment is an element ofH�. A question is what features of
the holographic state encode information about the universe
it represents.
To study this problem, we perform the following analysis.

First, given a FRW universe specified by the history of the
energy density of the universe, ρðtÞ, we determine the FRW
time t� at which the apparent horizon σ�, identified as a leaf
of the past holographic screen, has the area A�:�

ρðtÞ
A�

→ t�; ð15Þ

wherewe assume Eq. (13). We then consider a spherical cap
region of the leaf σ� specified by an angle γ (0 ≤ γ ≤ π):

LðγÞ∶ t ¼ t�; r ¼ rAHðt�Þ; 0 ≤ ψ ≤ γ; ð16Þ

FIG. 3. Various FRW universes, I; II; III;…, have the same
boundary area A� at different times, t�ðIÞ; t�ðIIÞ; t�ðIIIÞ; � � �.
Quantum states representing universes at these moments belong
to Hilbert space H�, specified by the value of the boundary area.

FIG. 4. A region LðγÞ of the leaf σ� is parametrized by an angle
γ∶½0; π�. The extremal surface EðγÞ anchored to its boundary,
∂LðγÞ, is also depicted schematically. [In fact, EðγÞ bulges into
the time direction.]

6The ρΛ here represents the energy density of a (local)
minimum of the potential near which fields in the FRW universe
in question take values. In fact, string theory suggests that there is
no absolutely stable de Sitter vacuum in full quantum gravity; it
must decay, at least, before the Poincaré recurrence time [43].
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where rAHðt�Þ is given by Eq. (12) (see Fig. 4), and
determine the extremal surface EðγÞ which is codimen-
sion-2 in spacetime, anchored on the boundary of LðγÞ, and
fully contained inside the causal regionDσ� associated with
σ�. According to Ref. [28], we interpret the quantity

SðγÞ ¼ 1

4
kEðγÞk ð17Þ

to represent von Neumann entropy of the holographic state
representing the region LðγÞ, obtained after tracing out the
complementary region on σ�.
To determine the extremal surface EðγÞ, it is useful to

introduce cylindrical coordinates

ξ ¼ r sinψ ; z ¼ r cosψ : ð18Þ

We find that the isometry of the FRW metric, Eq. (10),
allows us to move the boundary on which the extremal
surface is anchored, ∂LðγÞ, on the z ¼ 0 plane:

∂LðγÞ∶ t¼ t�; ξ¼ rAHðt�Þsinγ≡ξAH; z¼ 0: ð19Þ

The surface to be extremized is then parametrized by
functions tðξÞ and zðξÞ with the boundary conditions

tðξAHÞ ¼ t�; zðξAHÞ ¼ 0; ð20Þ

and the area functional to be extremized is given by

2π

Z
ξAH

0

aðtÞξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
dt
dξ

�
2

þ a2ðtÞ
1 − κðξ2 þ z2Þ

�
ð1 − κz2Þ þ ð1 − κξ2Þ

�
dz
dξ

�
2

þ 2κξz
dz
dξ

�s
dξ: ð21Þ

In all the examples we study (in this and next subsections),
we find that the extremal surface does not bulge into the z
direction. In this case, we can set z ¼ 0 in Eq. (21) and find

kEðγÞk¼ext
tðξÞ

"
2π

Z
rAHðt�Þsinγ

0

aðtÞξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
dt
dξ

�
2

þ a2ðtÞ
1−κξ2

s
dξ

#
:

ð22Þ

The analysis described above is greatly simplified if the
expansion of the universe is determined by a single
component in the Friedmann equation, i.e. a single fluid
component with the equation of state parameter w or
negative spacetime curvature. We thus focus on the case
in which the expansion is dominated by a single component
in (most of) the region probed by the extremal surfaces. In
realistic FRWuniverses this holds for almost all t, except for
a few Hubble times around when the dominant component
changes from one to another. Discussion about a transition
period in which the dominant component changes will be
given in the next subsection.

1. A flat FRW universe filled with a
single fluid component

Suppose the expansion of the universe is determined
dominantly by a single ideal fluid component with w. The
scale factor is then given by

aðtÞ ¼ ct
2

3ð1þwÞ; ð23Þ

where c is a constant, and the metric in the region r ≤ rAH
takes the form

ds2 ¼ −dt2 þ c2t
4

3ð1þwÞ½dr2 þ r2ðdψ2 þ sin2 ψdϕ2Þ�; ð24Þ

where we have used the fact that jκr2AHj ≪ 1. In this case,
we find that the A� dependence of screen entanglement
entropy SΓ for an arbitrarily shaped region Γ on σ�—
specified as a region on the ψ-ϕ plane—is given by

SΓ ¼ ~SΓA�; ð25Þ

where ~SΓ does not depend on A�. This can be seen in the
following way.
Consider the causal region Dσ� associated with σ�. For

certain values of w (i.e. w ≥ 1=3), Dσ� hits the big bang
singularity. It is thus more convenient to discuss the “upper
half” of the region:

Dþ
σ� ¼ fp ∈ Dσ� jtðpÞ ≥ t�g: ð26Þ

In an expanding universe, the extremal surface anchored on
the boundary of a region Γ on σ� is fully contained in this
region. Now, by performing the t�-dependent coordinate
transformation

ρ ¼ 2

3ð1þ wÞ ct
− 1þ3w
3ð1þwÞ� r; ð27Þ

η ¼ 2

3ð1þ wÞ
��

t
t�

� 1þ3w
3ð1þwÞ

− 1

�
; ð28Þ

the region Dþ
σ� is mapped onto

0 ≤ η ≤ 1; 0 ≤ ρ ≤ 1 − η; ð29Þ
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and the metric in Dþ
σ� is given by

ds2jDþ
σ�
¼ A�

4π

�
1þ 3w

2
ηþ 1

� 4
1þ3w½−dη2 þ dρ2 þ ρ2ðdψ2

þ sin2 ψdϕ2Þ�; ð30Þ
where

A� ¼ 9πð1þ wÞ2t2�: ð31Þ

Since A� appears only as an overall factor of the metric in
Eqs. (29)–(30), we conclude that the A� dependence of
SΓ ∝ kEΓk is only through an overall proportionality factor,
as in Eq. (25).
Due to the scaling in Eq. (25), it is useful to consider an

object obtained by dividing SΓ by a quantity that is also
proportional to A�. We find it convenient to define the
quantity

QΓ ≡ SΓ
VΓ=4

; ð32Þ

whereVΓ is the (two-dimensional) “volume” of the region Γ
or its complement Γ̄ on the boundary surface σ�, whichever
is smaller. This quantity is independent ofA�, and hence t�.
For the spherical region of Eq. (16), we find

QðγÞ ¼ SðγÞ
VðγÞ=4 ¼ kEðγÞk

VðγÞ ; ð33Þ

where

VðγÞ ¼ 1

2

�
1 − sgn

�
π

2
− γ

�
cos γ

�
A�: ð34Þ

An explicit expression for QðγÞ is given by

QðγÞ ¼ 1

1 − sgnðπ
2
− γÞ cos γ

× ext
fðxÞ

"Z
sin γ

0

xf
4

1þ3w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2

1þ 3w

�
2
�
df
dx

�
2

s
dx

#
;

ð35Þ

where the extremization with respect to function fðxÞ is
performed with the boundary condition

fðsin γÞ ¼ 1; ð36Þ

and we have used the fact that the extremal surface does not
bulge into the z direction in the cylindrical coordinates of
Eq. (18). From the point of view of the holographic theory,
QΓ represents the amount of entanglement entropy per
degree of freedom as viewed from the smaller of Γ and
Γ̄. As we will discuss in Sec. IVA, the fact that this is a

physically significant quantity has important implications
for the structure of the holographic theory.
In Fig. 5, we plot QðγÞ as a function of γ (0 ≤ γ ≤ π=2)

for various values of w: −1 (vacuum energy), −0.98, −0.8,
0 (matter), 1=3 (radiation), and 1. The value of QðγÞ for
π=2 ≤ γ ≤ π is given by QðγÞ ¼ Qðπ − γÞ. We find the
following features:

(i) In the limit of a small boundary region, γ ≪ 1, the
value of QðγÞ approaches unity regardless of the
value of w:

QwðγÞ!γ≪1
1: ð37Þ

This implies that for a small boundary region, the
entanglement entropy of the region is given by its
volume in the holographic theory in Planck units:

SwðγÞ!γ≪1 1

4
VðγÞ: ð38Þ

For larger γ (≤ π=2), QðγÞ becomes monotonically
small as γ increases:

d
dγ

QwðγÞ < 0: ð39Þ

The deviation of QðγÞ from 1 near γ ¼ 0 is given by

QwðγÞ ¼γ≪1
1 − cð1þ wÞγ4 þ � � � ; ð40Þ

where c > 0 is a constant that does not depend on w.
(ii) For any fixed boundary region, γ, the value of QðγÞ

decreases monotonically in w:

d
dw

QwðγÞ < 0: ð41Þ

FIG. 5. The value of QðγÞ as a function of γ (0 ≤ γ ≤ π=2)
for w ¼ −1 (vacuum energy), −0.98, −0.8, 0 (matter), 1=3
(radiation), and 1. The dotted line indicates the lower bound
given by the flat space geometry, which can be realized in a
curvature dominated open FRW universe.
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In particular, when w approaches −1 (from above),
QðγÞ becomes unity:

lim
w→−1

QwðγÞ ¼ 1: ð42Þ

This implies that in the limit of de Sitter FRW
(w → −1), the state in the holographic theory
becomes “randomly entangled” (i.e. saturates the
Page curve [52])7:

lim
w→−1

SwðγÞ ¼
1

4
VðγÞ: ð43Þ

Note that VðγÞ is the smaller of the volume of LðγÞ
and that of its complement on the leaf. The value of
Qðπ=2Þ [the case in which LðγÞ is a half of the leaf]
is plotted as a function of w in Fig. 6.

We will discuss further implications of these findings
in Sec. IV.
We note that there are simple geometric bounds on the

values ofQwðγÞ. This can be seen by adopting the maximin
construction [28,53]: the extremal surface is the one having
the maximal area among all possible codimension-2
surfaces, each of which is anchored on ∂LðγÞ and has
minimal area on some interior achronal hypersurface
bounded by σ. This implies that the area of the extremal
surface, kEðγÞk, cannot be larger than the boundary volume
VðγÞ, giving QðγÞ ≤ 1. Also, the extremal surface cannot
have a smaller area than the codimension-2 surface that has
the minimal area on a constant time hypersurface t ¼ t�:
kEðγÞk ≥ πfaðt�ÞrAHðt�Þ sin γg2. Together, we obtain

sin2 γ
2f1 − sgnðπ

2
− γÞ cos γg ≤ QwðγÞ ≤ 1: ð44Þ

The lower edge of this range is depicted by the dashed
line in Fig. 5. We find that the upper bound of Eq. (44) can
be saturated with w → −1, while the lower bound cannot
with jwj ≤ 1. If we formally take w → þ∞, the lower
bound can be reached. A fluid with w > 1, however, does
not satisfy the causal energy condition (although it satisfies
the null energy condition), so we do not consider such a
component.
As a final remark, we show in Fig. 7 the shape of the

extremal surface for γ ¼ π=2 for the same values of w as in
Fig. 5: −1, −0.98, −0.8, 0, 1=3, and 1. The horizontal axis
is the cylindrical radial coordinate normalized by the
apparent horizon radius, ξ=ξAH, and the vertical axis is
taken to be the Hubble time defined by

tH ¼
Z

t

t�

_aðtÞ
aðtÞ dt ¼

2

3ð1þ wÞ ln
t
t�
; ð45Þ

which reduces in the w → −1 limit to the usual Hubble time
tH ¼ Hðt − t�Þ, where H ¼ _a=a. We find that the extremal
surface bulges into the future direction for anyw. In fact, this
occurs generally in an expanding universe and can be
understood from the maximin construction: the scale factor
increases toward the future, so that the area of the minimal
area surface on an achronal hypersurface increases when the
hypersurface bulges into the future direction in time. The
amount of the bulge is tH ≈Oð1Þ, except when w ≈ −1. For
w→−1, the extremal surface probes tH→þ∞ as
ξ=ξAH→þ0, but its area is still finite, kEðπ=2Þk → A�=2,
as the surface becomes almost null in this limit.

2. An open FRW universe dominated by curvature

We now consider an open FRW universe dominated by
curvature, i.e. the case inwhich the expansion of the universe

FIG. 6. The value of Qðπ=2Þ as a function of w.

FIG. 7. The shape of the extremal surfaces Eðπ=2Þ for w ¼ −1,
−0.98, −0.8, 0, 1=3, and 1. The horizontal axis is the cylindrical
radial coordinate normalized by the apparent horizon radius,
ξ=ξAH, and the vertical axis is the Hubble time, tH.

7In the case of an exactly single component with w ¼ −1, the
expansion of light rays emanating from p0, i.e. θk, becomes 0
only at infinite affine parameter λ. We view this as a result of
mathematical idealization. A realistic de Sitter FRW universe is
obtained by introducing an infinitesimally small amount of matter
in addition to the w ¼ −1 component, which avoids the above
issue. The results obtained in this way agree with those by first
taking w > −1 and then the limit w → −1.
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is determined by the second term in the left-hand side of
Eq. (11). This implies that the distance to the apparent
horizon is much larger than the curvature length scale

−κ
a2ðtÞ ≫

8π

3
ρðtÞ⇔rAHðtÞ ≫

1ffiffiffiffiffiffi
−κ

p ≡ rcurv: ð46Þ

(Note that κ < 0 for an open universe.) As seen in Eqs. (11)–
(12), the value of rAHðtÞ is determined by ρðtÞ, which gives
only a minor contribution to the expansion of the universe.
The scale factor is given by

aðtÞ ¼ ffiffiffiffiffiffi
−κ

p
t: ð47Þ

The extremal surface can be found easily by noticing
that the universe in this limit is a hyperbolic foliation
of a portion of the Minkowski space: the coordinate
transformation

~t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð ffiffiffiffiffiffi

−κ
p

rÞ2
q

; ð48Þ
~r ¼ ffiffiffiffiffiffi

−κ
p

tr ð49Þ
leads to the Minkowski metric ds2 ¼ −d~t2 þ d~r2þ
~r2ðdψ2 þ sin2 ψdϕ2Þ. The extremal surface is thus a
plane on a constant ~t hypersurface, which in the FRW
(cylindrical) coordinates is given by

tH ≈ ln
1

ξ=ξAH
ð0 ≤ ξ=ξAH ≤ 1Þ; ð50Þ

where ξAH ¼ rAHðt�Þ sin γ, and tH is the Hubble time,

tH ¼
Z

t

t�

_aðtÞ
aðtÞ dt ¼ ln

t
t�
: ð51Þ

The resulting QðγÞ is

QðγÞ ≈ sin2 γ
2f1 − sgnðπ

2
− γÞ cos γg : ð52Þ

This, in fact, saturates the lower bound in Eq. (44), plotted
as the dashed line in Fig. 5.

B. Dynamics of screen entanglement
entropies in a transition

Let us consider the evolution of a FRW universe. From
the holographic theory point of view, it is described by a
time-dependent state jΨðτÞi living on σðτÞ. Because of the
area theorem of Refs. [18,19], we can take τ to be a
monotonic function of the leaf area, leading to

d
dτ

AðτÞ > 0; ð53Þ

where AðτÞ≡ kσðτÞk. This evolution involves a change in
the number of (effective) degrees of freedom, AðτÞ=4, as
well as that of the structure of entanglement on the
boundary, QΓðτÞ. For the latter, we mostly consider

Qðγ; τÞ associated with a spherical cap region Γ ¼ LðγÞ.
A natural question is if a statement similar to Eq. (53)
applies for screen entanglement entropies:

d
dτ

Sðγ; τÞ>? 0: ð54Þ
Here,

Sðγ; τÞ ¼ Qðγ; τÞVðγ; τÞ
4

; ð55Þ
with

Vðγ; τÞ ¼ 1

2

�
1 − sgn

�
π

2
− γ

�
cos γ

�
AðτÞ; ð56Þ

being the smaller of the boundary volumes of LðγÞ and its
complement.
There are some cases in which we can show that the

relation in Eq. (54) is indeed satisfied. Consider, for
example, a flat FRW universe filled with various fluid
components having differing equations of states: wi
(i ¼ 1; 2;…). As time passes, the dominant component of
the universe changes from one having largerw to one having
smaller w successively. This implies that Qðγ; τÞ monoton-
ically increases in time, so that Eq. (53) indeed implies
Eq. (54) in this case. Another interesting case is when the
holographic screen is spacelike. In this case, we can prove
that the time dependence of Sðγ; τÞ is monotonic; see
Appendix A. In particular, if we have a spacelike past
holographic screen (which occurs for w > 1=3 in a single-
component dominated flat FRW universe), then the screen
entanglement entropy for an arbitrary region increases in
time: dSΓðτÞ=dτ > 0.
What happens if the holographic screen is timelike? One

might think that there is an obvious argument against the
inequality in Eq. (54). Suppose the expansion of the early
universe is dominated by a fluid component with w.
Suppose at some FRW time t0 this component is converted
into another fluid component having a different equation of
state parameter w0, e.g. by reheating associated with the
decay of a scalar condensate. If w0 > w, then the Q value
after the transition is smaller than that before:

Qw0 ðγÞ −QwðγÞ < 0: ð57Þ
Onemay think that this can easily overpower the increase of
Sðγ; τÞ from the increase of the area: dAðγ; τÞ=dτ > 0 [20].
In particular, if w is close to−1, then the increase of the area
before the transition is very slow, so that the effect of Eq. (57)
would win over that of the area increase. However, as
depicted in Fig. 7, whenw ≈ −1 the extremal surface bulges
into larger t by many Hubble times. Hence the time between
the moments in which Eq. (55) can be used before and after
the transition becomes long, opening the possibility that the
relevant area increase is non-negligible.
To make the above discussion more explicit, let us

compare the values of the screen entanglement entropy
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SðγÞ corresponding to two extremal surfaces depicted in
Fig. 8: the “latest” extremal surface that is fully contained
in the w region and the “earliest” extremal surface fully
contained in the w0 region, each anchored to the leaves at
FRW times t� and t0. This provides the most stringent test
of the inequality in Eq. (54) that can be performed using the
expression of Eq. (55) for fixed w’s. The ratio of the
entanglement entropies is given by

Rw0wðγÞ≡ SafterðγÞ
SbeforeðγÞ

¼Qw0 ðγÞ
QwðγÞ

t20
t2�
¼Qw0 ðγÞ

QwðγÞ
e3ð1þwÞtH;w ; ð58Þ

where tH;w is the Hubble time between t� and t0, given by
Eq. (45) with t → t0. In Fig. 9, we plot Rw ≡ R1wðπ=2Þ;
setting w0 ¼ 1 minimizes the ratio. We find that this ratio
can be smaller than 1 for w ≈ −1. In fact, for w → −1 we
find the value obtained naively by assuming that the area
does not change before the transition:

R−1 ¼
Q1ðπ2Þ
Q−1ðπ2Þ

¼ Q1

�
π

2

�
; ð59Þ

although for w ¼ −1 there is no such thing as the latest
extremal surface that is fully contained in the region before
the transition (since tH;−1 ¼ þ∞).
This analysis suggests that screen entanglement entropies

can in fact drop if the system experiences a rapid transition
induced by some dynamics,8 although the instantaneous
transition approximation adopted above is not fully realistic.
Of course, such a drop is expected to be only a temporary
phenomenon—because of the area increase after the tran-
sition, the entropy generally returns back to the value before
the transition in a characteristic dynamical time scale and
then continues to increase afterward. We expect that the
relation in Eq. (54) is valid in a coarse-grained sense

d
dτ

S̄ðγ; τÞ > 0; S̄ðγ; τÞ ¼ 1

τc

Z
τþτc

τ
Sðγ; τ0Þdτ0; ð60Þ

but not “microscopically” in general. Here, τc must be taken
sufficiently larger than the characteristic dynamical time
scale, the Hubble time for a FRW universe.
For further illustration, we perform numerical calcula-

tions for how the area of a leaf hemisphere, kLðπ=2; tÞk,
and the associated screen entanglement entropy, calculated
using Sðπ=2; tÞ ¼ kEðπ=2; tÞk=4, evolve in time during
transitions from a w ¼ −1 to a w0 ¼ 0 flat FRW universe.
Here, we take the FRW time t as the time parameter. For
this purpose, we consider a scalar field ϕ having a potential
VðϕÞ that has a flat portion and a well, with the initial value
of ϕ being in the flat portion. We first note that a
transformation of the potential of the form

VðϕÞ → V 0ðϕÞ ¼ ϵ2VðϕÞ; ð61Þ
leads to rescalings of the scalar field, ϕðtÞ, and the scale
factor, aðtÞ, obtained as the solutions to the equations of
motion:

ϕ0ðtÞ ¼ ϕðϵtÞ; a0ðtÞ ¼ aðϵtÞ: ð62Þ
Plugging these in Eq. (22), we find that the area functionals
before and after the transformation Eq. (61) are related by
simple rescaling, t → t=ϵ and ξ → ξ=ϵ, so that				E0

�
π

2
; t

�				 ¼ 1

ϵ2

				E
�
π

2
;
t
ϵ

�				: ð63Þ

These scaling properties imply that the leaf hemisphere
area and the screen entanglement entropy for the trans-
formed potential are read off from those for the untrans-
formed one by

FIG. 8. A FRW universe whose dominant component changes
from w to w0 at time t0. Two surfaces depicted by orange lines are
the latest extremal surface fully contained in the w region
(bottom) and the earliest extremal surface fully contained in
the w0 region (top), each anchored to the leaves at t� and t0.

FIG. 9. The ratio of the screen entanglement entropies,
Rw ¼ R1wðπ=2Þ, before and after the transition from a universe
with the equation of state parameter w to that with w0 ¼ 1,
obtained from Figs. 6 and 7 using Eq. (58). The dot at w ¼ −1
represents R−1 ¼ R1−1ðπ=2Þ obtained in Eq. (59).

8This does not mean that the second law of thermodynamics is
violated. The entropy discussed here is the von Neumann entropy
of a significant portion (half) of the whole system, which can
deviate from the thermodynamic entropy of the region when the
system experiences a rapid change.
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FIG. 10. A steep potential (a) leading to the time evolution of the scalar field (b), the area of a leaf hemisphere (c), and the screen
entanglement entropy (d). The same for a broad potential (e)–(h).
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				L0
�
π

2
; t

�				 ¼ 1

ϵ2

				L
�
π

2
;
t
ϵ

�				;				S0
�
π

2
; t

�				 ¼ 1

ϵ2

				S
�
π

2
;
t
ϵ

�				: ð64Þ

We therefore need to be concerned only with the shape of
the potential, not its overall scale. In particular, we can
always be in the semiclassical regime by performing a
transformation with ϵ ≪ 1.
In Fig. 10, we show the results of our calculations for

“steep” and “broad” potentials. The explicit forms of the
potentials are given by

VðϕÞ¼ 1−e−kðϕ−ϕ0Þ2 þ sðϕ−ϕ0Þ tanhðpðϕ−ϕ0ÞÞ; ð65Þ

with

Steep∶ k¼ 5000; s¼ 0.01; p¼ 20; ϕ0 ¼ 0.045; ð66Þ

Broad∶ k¼ 25; s¼ 0.01; p¼ 2; ϕ0¼ 0.5; ð67Þ

although their detailed forms are unimportant. For the steep
potential, plotted in Fig. 10(a), we show the time evolutions
of ϕðtÞ, kLðπ=2; tÞk, and Sðπ=2; tÞ in Figs. 10(b)–(d) for
the initial conditions of ϕð0Þ ¼ _ϕð0Þ ¼ 0 and að0Þ ¼ 0.01.
The same are shown for the broad potential, Fig. 10(e),
in Figs. 10(f)–(h) for the initial conditions ofϕð0Þ¼ _ϕð0Þ¼0

and að0Þ ¼ 10−11. In either case, the leaf hemisphere area
increases monotonically while the screen entanglement
entropy experiences drops as the field oscillates around
the minimum. The fractional drops from the first, second,
and third peaks are ≃1.3%, 0.9%, and 0.6%, respectively,
for the steep potential and ≃2.5%, 1.6%, and 1.2%,
respectively, for the broad potential.
We thus find that screen entanglement entropies may

decrease in a transition period. The interpretation of this
result, however, needs care. Since the system is far from
being in a “vacuum” during a transition, true entanglement
entropies for subregions in the holographic theory may
have contributions beyond that captured by the simple
formula of Eq. (17). This would require corrections to the
formula, possibly along the lines of Refs. [54–56], and with
such corrections the drop of the entanglement entropy we
have found here might disappear. We leave a detailed study
of this issue to future work.

IV. INTERPRETATION: BEYOND AdS/CFT

The entanglement entropies in the holographic theory of
FRW universes seen so far show features different from
those in CFTs of the AdS/CFT correspondence. Here we
highlight these differences and see how properties charac-
teristic to local CFTs are reproduced when bulk spacetime
becomes asymptotically AdS. We also discuss implications
of our findings for the structure of the holographic theory.

In particular, we discuss the structure of the Hilbert space
for quantum gravity applicable to general spacetimes.
While we cannot determine the structure uniquely, we
can classify possibilities under certain general assumptions.
The issues discussed include bulk reconstruction, the
interior and exterior regions of the leaf, and time evolution
in the holographic theory.

A. Volume/area law for screen entanglement entropies

One can immediately see that holographic entanglement
entropies for FRW universes have two features that are
distinct from those in AdS/CFT. First, unlike entanglement
entropies in CFTs, the holographic entanglement entropies
for FRW universes are finite for a finite value of A�.
Second, as seen in Sec. III A, e.g. Eq. (25), these entropies
obey a volume law, rather than an area law.9 (Note that A�
is a volume from the viewpoint of the holographic theory.)
In particular, in the limit that the region Γ in the holographic
theory becomes small, the entanglement entropy SΓ
becomes proportional to the volume VΓ with a universal
coefficient, which we identified as 1=4 to match the
conventional results in Refs. [1–6]. (For a small enough
subsystem, we expect that the entanglement entropy agrees
with the thermal entropy.) From the bulk point of view, this
is because the extremal surface EΓ approaches Γ itself, so
that kEΓk → VΓ.
What do these features mean for the holographic theory?

The finiteness of the entanglement entropies implies that
the cutoff length of the holographic theory is finite, i.e. the
number of degrees of freedom in the holographic theory is
finite, at least effectively. In particular, our identification
implies that the holographic theory effectively has a qubit
degree of freedom per volume of 4 ln 2 (in Planck units),
although it does not mean that the cutoff length of the
theory is necessarily ≃ ffiffiffiffiffiffiffiffiffiffiffi

4 ln 2
p

. It is possible that the cutoff
length is lc >

ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2

p
and that each cutoff size cell has

N ¼ l2c=4 ln 2 (> 1) degrees of freedom. In fact, since the
string length ls and the Planck length are related as l2s ∼ n,
where n is the number of species in the low energy theory
(including the moduli fields parametrizing the extra dimen-
sions) [58], it seems natural to identify lc and N as ls and n,
respectively.
The volume law of the entangled entropies implies that a

holographic state corresponding to a FRW universe is not a
ground state of local field theory, which is known to satisfy
an area law [59,60]. This does not necessarily mean that the
holographic theory for FRW universes must be nonlocal at
length scales larger than the cutoff lc; it might simply be
that the relevant states are highly excited ones. In fact, the
dynamics of the holographic theory is expected to respect
some aspects of locality as suggested by the fact that the

9A similar property was argued for holographic entropies for
Euclidean flat spacetime in Ref. [57].
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area theorem applies locally on a holographic screen [20].
Of course, it is also possible that the holographic states for
FRW universes are states of some special class of nonlocal
theories.
The features of screen entangled entropies described here

are not specific to FRWuniverses but appear inmore general
“cosmological” spacetimes, spacetimes in which the holo-
graphic screen is at finite distances and the gravitational
dynamics is not frozen there. If the interior region of the
holographic screen is (asymptotically) AdS, these features
change. In this case, the same procedure as in Sec. II puts the
holographic screen at spatial infinity (the AdS boundary),
and theAdSgeometrymakes the area of the extremal surface
anchored to the boundary ∂Γ of a small region Γ on a leaf
proportional to the area of ∂Γ with a diverging coefficient:
kEΓk ∼ k∂Γk=ϵ (ϵ → 0). This makes the screen entangle-
ment entropies obey an area law, so that the holographic
theory can now be a ground state of a local field theory. In
fact, the theory is a CFT [10,61,62], consistent with the fact
that we could take the cutoff length to zero, lc ∼ ϵ → 0.

B. The structure of holographic Hilbert space

We now discuss implications of our analysis for the
structure of the Hilbert space of quantum gravity for general
spacetimes. We work in the framework of Sec. II; in
particular, we assume that when a holographic state repre-
sents a semiclassical spacetime, the area of the extremal
surface contained in Dσ and anchored to the boundary of a
regionΓ on a leaf represents the entanglement entropy of the
region Γ in the holographic theory, Eq. (9). Note that this
does not necessarily mean that the converse is true; there
may be a holographic state in which entanglement entropies
for subregions do not correspond to the areas of extremal
surfaces in a semiclassical spacetime.
Consider a holographic state representing a FRW space-

time. The fact that for a small enough region Γ the area of
the extremal surface anchored to its boundary approaches
the volume of the region on the leaf, kEΓk → VΓ, implies
that the degrees of freedom in the holographic theory are
localized and that their density is, at least effectively, one
qubit per 4 ln 2 (although the cutoff length of the theory
may be larger than

ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2

p
). We take these for granted as

anticipated in the original holographic picture [7,8]. This
suggests that the number of holographic degrees of freedom
which comprise FRW states on the leaf σ� with area A� is
A�=4 for any value of w.
Given these assumptions, there are still a few possibil-

ities for the structure of the Hilbert space of the holographic
theory. Below we enumerate these possibilities and discuss
their salient features.

1. Direct-sum structure

Let us first assume that state vectors representing FRW
universes with different w’s are independent of each other,

as indicated in the left portion of Fig. 11. This implies that
the Hilbert space H� ∈ fHBg, which contains holographic
states for FRW universes at times when the leaf area is A�,
has a direct-sum structure:

H� ¼ ⨁
w
H�;w: ð68Þ

Here, we regard universes with the equation of state
parameters falling in a range δw ≪ 1 to be macroscopically
identical,where δw is a small number that does not scalewith
A�.

10 This is the structure envisioned originally in Ref. [17].
What is the structure ofH�;w? A natural possibility is that

each of these subspaces has dimension

ln dimH�;w ¼ A�
4

: ð69Þ

This is motivated by the fact that arbitrary unitary trans-
formations acting in each cutoff size cell do not change the
structure of screen entanglement entropies, and they can
lead to eA�=4 independent holographic states that have the
screen entanglement entropies corresponding to the FRW
universe with the equation of state parameter w. If we
regard all of these states as microstates for the FRW
universe with w, then we obtain Eq. (69). This, however,
does not mean that the holographic states representing the
FRW universe with w comprise the Hilbert space H�;w.
Since these states form a basis of H�;w, their superposition
can lead to a state which has entanglement entropies far
from those corresponding to the FRW universe with w. In
fact, we can even form a state in which degrees of freedom

FIG. 11. Possible structures of the Hilbert space H� for a fixed
boundary space B. In the direct-sum structure (left), each semi-
classical spacetime in Dσ� has its own Hilbert space H�;w. The
Russian-doll structure (right) corresponds to the scenario of
spacetime equals entanglement; i.e. the entanglement entropies
of the holographic degrees of freedom determine spacetime in
Dσ� . This implies that a superposition of exponentially many
semiclassical spacetimes can lead to a different semiclassical
spacetime.

10If we consider FRW universes with multiple fluid compo-
nents, the corresponding spaces must be added in the right-hand
side of Eq. (68).
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in different cells are not entangled at all. This is a
manifestation of the fact that entanglement cannot be
represented by a linear operator.
This implies that states representing the semiclassical

FRWuniverse are “preferred basis states” inH�;w, and their
arbitrary linear combinations may lead to states that do not
admit a semiclassical interpretation. We expect that these
preferred axes are “fat”: we have to superpose a large
number of basis states, in fact exponentially many inA�, to
obtain a state that is not semiclassical (because we need that
many states to appreciably change the entanglement struc-
ture, as illustrated in a toy qubit model in Appendix B). It
is, however, true that most of the states in H�;w, including
those having the entanglement entropy structure corre-
sponding to a universe with another w, are states that do not
admit a semiclassical spacetime interpretation. Drawing an
analogy with the work in Refs. [33–35], we may call them
“firewall” states. In Sec. IV E, we argue that these states are
unlikely to be produced by the standard semiclassical time
evolution.
The dimension of H� is given by

ln dimH� ¼ ln
X
w

e
A�
4 ≈

A�
4

− ln δw≃A�
4

; ð70Þ

as expected from the covariant entropy bound (unless δw is
exponentially small in A�, which we assume not to be the
case). Small excitations over the FRW universes may be
represented in suitably extended spaces H�;w. Since entro-
pies associated with the excitations are typically subdomi-
nant in A� [7,63], they have only minor effects on the
overall picture, e.g. Eq. (70). [Note that the excitations here
do not contain the degrees of freedom attributed to gravi-
tational, e.g. Gibbons-Hawking, radiation. These degrees of
freedom are identified as the microscopic degrees of free-
dom of spacetimes, i.e. the vacuum degrees of freedom
[64–66], which are already included in Eq. (69).] The
operators representing the excitations can be standard linear
operators acting on theHilbert spaceH�, at least in principle.
We also mention the possibility that the logarithm of the

number of independent states Nw representing the FRW
universe with w is smaller thanA�=4. For example, it might
be given approximately by twice the entanglement entropy
for a leaf hemisphere Swðπ=2Þ ¼ Qwðπ=2ÞA�=8:

lnNw ≈Qw

�
π

2

�
A�
4

: ð71Þ

The basic picture in this case is not much different from that
discussed above; for example, the difference of the values
of ln dimH� is higher order in 1=A� (although this
possibility makes the issue of the equivalence condition
for the boundary space label B nontrivial). We will not
consider this case separately below.

2. Russian-doll structure: Spacetime equals entanglement

In the picture described above, the structures of H�;w ’s
are all very similar. Each of these spaces has the dimension
of A�=4 and has eA�=4 independent states that represent the
FRW universe with a fixed value of w. An arbitrary linear
combination of these states, however, is not necessarily a
state representing the FRWuniverse with w. In the previous
picture, we identified all such states as the firewall
(or unphysical) states, but is it possible that some of these
states, in fact, represent other FRWuniverses? In particular,
is it possible that all the H�;w spaces are actually the same
space, i.e. H�;w1

¼ H�;w2
for all w1 ≠ w2?

A motivation to consider this possibility comes from the
fact that if w does not by itself provide an independent
label for states, then the eA�=4 independent microstates for
the FRW universe with a fixed w can form a basis for the
configuration space of the A�=4 holographic degrees of
freedom. This implies that we can superpose these states
to obtain many—in fact eA�=4—independent states that
have the entanglement entropies corresponding to the
FRW universe with any w0 ≠ w, which we can identify
as the states representing the FRW universe with w0.11

In essence, this amounts to saying that the converse of
the statement made at the beginning of this subsection is
true: when a holographic state has the form of entangle-
ment entropies corresponding to a certain spacetime,
then the state indeed represents that spacetime. This
scenario was proposed in Ref. [31] and called “spacetime
equals entanglement.” It is depicted in the right portion
of Fig. 11.
One might think that the scenario does not make

sense, since it implies that a superposition of classical
universes can lead to a different classical universe. Would
it not make any reasonable many-worlds interpretation
of spacetime impossible? In Ref. [31], it was argued that
this is not the case. First, for a given FRW universe,
we expect that the space of its microstates is fat; namely,
a superposition of less than eOðδwA�Þ microstates repre-
senting a classical universe leads only to another micro-
state representing the same universe. This implies that the
eA�=4 microstates of a classical universe generate an
“effective vector space,” unless we consider a super-
position of an exponentially large, ≳eOðδwA�Þ, number of
states.
What about a superposition of different classical uni-

verses? In particular, if states representing universes with
w1 and w2 (≠ w1) are superposed, then how does the theory
know that the resulting state represents a superposition of
two classical universes, and not another—perhaps even
nonclassical—universe? A key point is that the Hilbert

11The same argument applies to the FRW universes with
multiple fluid components, so that the states representing these
universes also live in the same Hilbert space as the single
component universes.
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space we consider has a special basis, determined by the
A�=4 local degrees of freedom in the holographic space12:

H� ¼ ðC2Þ⊗A�
4 : ð72Þ

From the result in Sec. III A, we know that a state
representing the FRW universe with w1 is more entangled
than that representing the FRW universe with w2 (> w1).
This implies that when it is expanded in the natural
basis fjΨiig for the structure of Eq. (72), i.e. the product
state basis for the A�=4 local holographic degrees of
freedom, then a state jΨw1

i representing the universe
with w1 effectively has exponentially more terms than a
state jΨw2

i representing the universe with w2. Namely, we
expect that

jΨwi ≈
XefðwÞA�

4

i¼1

aijΨii; ð73Þ

where fðwÞ is a monotonically decreasing function of w
taking values ofOð1Þ, and ai are coefficients taking generic
random values. The normalization condition for jΨwi then
implies

jaij ≈Oðe−fðwÞA�
8 Þ; ð74Þ

i.e. the sizes of the coefficients in the product basis
expansion are exponentially different for states with differ-
ent w’s. This, in particular, leads to

hΨw1
jΨw2

i≲Oðe−ffðw1Þ−fðw2ÞgA�
8 Þ; ð75Þ

i.e. microstates for different universes are orthogonal up to
exponentially suppressed corrections.
Now consider a superposition state

jΨi ¼ c1jΨw1
i þ c2jΨw2

i; ð76Þ

where jc1j2 þ jc2j2 ¼ 1 up to the correction from an
exponentially small overlap hΨw1

jΨw2
i. We are interested

in the reduced density matrix for a subregion Γ in the
holographic theory,

ρΓ ¼ TrΓ̄jΨihΨj; ð77Þ
where Γ occupies less than half of the leaf volume. The
property of Eq. (75) then ensures that

ρΓ ¼ jc1j2ρð1ÞΓ þ jc2j2ρð2ÞΓ ; ð78Þ

up to corrections exponentially suppressed inA�. Here, ρ
ð1Þ
Γ

[ρð2ÞΓ ] are the reduced density matrices we would obtain if
the state were genuinely jΨw1

i (jΨw2
i). The matrix ρΓ thus

takes the form of an incoherent classical mixture for the two
universes. Similarly, the entanglement entropy for the
region Γ is also incoherently added,

SΓ ¼ jc1j2Sð1ÞΓ þ jc2j2Sð2ÞΓ þ SΓ;mix; ð79Þ

where Sð1;2ÞΓ are the entanglement entropies obtained if the
state were jΨw1;2

i, and
SΓ;mix ¼ −jc1j2 ln jc1j2 − jc2j2 ln jc2j2 ð80Þ

is the entropy of mixing (classical Shannon entropy),

suppressed by factors of OðA�Þ compared with Sð1;2ÞΓ .
The features in Eqs. (78)–(79) indicate that unless jc1j
or jc2j is suppressed exponentially in A�, the state jΨi
admits the usual interpretation of a superposition of
macroscopically different universes with w1;2.
In fact, unless a superposition involves exponentially

many microstates, we find

jΨi ¼
X
i

cijΨwi
i ⇒ ρΓ ¼ P

ijcij2ρðiÞΓ ;
SΓ ¼ P

ijcij2SðiÞΓ þ SΓ;mix;
ð81Þ

with exponential accuracy. Here, SΓ;mix ¼ −
P

ijcij2 ln jcij2
and is suppressed by a factor of OðA�Þ compared with the
first term in SΓ. This indicates that the standardmany-worlds
interpretation applies to classical spacetimes under any
reasonable measurements (only) in the limit that e−A� is
regarded as zero, i.e. unless a superposition involves
exponentially many terms or an exponentially small coef-
ficient. This is consonant with the observation that classical
spacetime has an intrinsically thermodynamic nature [67],
supporting the idea that it consists of a large number of
degrees of freedom. In Ref. [31], the features described
abovewere discussed using a qubitmodel inwhich the states
representing the FRW universes exhibit a “Russian-doll”
structure as illustrated in Fig. 11. We summarize this model
in Appendix B for completeness.
We conclude that the states representing FRW universes

with a leaf area A� can all be elements of a single Hilbert
space H� with dimension

ln dimH� ¼
A�
4

: ð82Þ

Any such universe has eA�=4 independent microstates,
which form a basis of H�. This implies that matter and
spacetime must have a sort of unified origin in this picture,
since a superposition that changes the spacetime geometry
must also change the matter content filling the universe.
How could this be the case?
Consider, as discussed in Sec. IVA, that the cutoff length

of the holographic theory is of order ls ∼
ffiffiffi
n

p
, where n (> 1)

12For simplicity, here we have assumed that the degrees of
freedom are qubits, but the subsequent argument persists as long
as the number of independent states for each degree of freedom
does not scale with A�. In particular, it persists if the correct
structure of H� appears as ðCNÞ⊗A�=l2c as discussed in Sec. IVA.
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is the number of species at energies below 1=ls. This
implies that the A�=4 degrees of freedom can be decom-
posed as

A�
4

∼ n
A�
l2s

; ð83Þ

representing n fields living in the holographic space of
cutoff length ls. Now, to obtain the eA�=4 microstates for a
FRW universe we need to consider rotations for all the n
degrees of freedom in each cutoff size cell. This may
suggest that the identity of a matter species at the
fundamental level may not be as adamant as in low energy
semiclassical field theories. The reason why all the n
degrees of freedom can be involved could be because
the “local effective temperature,” defined analogously to de
Sitter space, diverges at the holographic screen.
Finally, we expect that small excitations over FRW

universes in this picture are represented by nonlinear/
state-dependent operators in the (suitably extended) H�
space, along the lines of Ref. [36] (see Refs. [37–39] for
earlier work). This is because a superposition of back-
ground spacetimes may lead to another background space-
time, so that operators representing excitations should
know the entire quantum state they are acting on.

C. Bulk reconstruction from holographic states

We have seen that the entanglement entropies of the
A�=4 local holographic degrees of freedom in the holo-
graphic space σ� encode information about spacetime in the
causal region Dσ� . Here we discuss in more detail how this
encoding may work in general.
While we have focused on the case in which the future-

directed ingoing light rays emanating orthogonally from σ�
(i.e. in the ka directions in Fig. 2) meet at a point p0, our
discussion can be naturally extended to the case in which
the light rays encounter a spacetime singularity before
reaching a caustic. This may occur, for example, if a black
hole forms in a universe as depicted in Fig. 12, where we
have assumed spherical symmetry for collapsing matter and
taken pðτÞ to follow its center. We see that at intermediate
times, the future-directed ingoing light rays emanating
from leaves encounter the black hole singularity before
reaching a caustic.13 Our interpretation in this case is
similar to the case without a singularity. The entanglement
entropies of the holographic degrees of freedom encode
information about Dσ� .
In what sense does a holographic state on σ� contain

information about Dσ�? We assume that the theory allows

for the reconstruction of Dσ� from the data in the state on
σ�. On the other hand, it is not the case that the collection of
extremal surfaces for all possible subregions on σ� probes
the entire Dσ� . This suggests that the full reconstruction of
Dσ� may need bulk time evolution.
There is, however, no a priori guarantee that the

operation corresponding to bulk time evolution is complete
withinH�. This means that there may be no arrangement of
operators defined in H� that represents certain operators in
Dσ� . For these subsets of Dσ� , bulk reconstruction would
involve operators defined on other boundary spaces.
In other words, the operators supported purely in H�
may allow for a direct spacetime interpretation only for
a portion of Dσ� , e.g. the outside of the black hole horizon
in the example of Fig. 12 (in which case some of the
operators would represent the stretched horizon degrees of
freedom). Our assumption merely says that the operators in
H� acting on the state contain data equivalent to specifying
the system on a Cauchy surface for Dσ�.
The consideration above implies that the information in a

holographic state on σ�, when interpreted through operators
inH�, may only be partly semiclassical. We expect that this
becomes important when the spacetime has a horizon. In
particular, for the w ¼ −1 FRW universe, the leaf σ� is
formally beyond the stretched de Sitter horizon as viewed
from pðτÞ. This may mean that some of the degrees of
freedom represented by operators defined inH� can only be
viewed as nonsemiclassical stretched horizon degrees of
freedom.

D. Information about the “exterior” region

The information about Dσ� , contained in the screen
entanglement entropies, is not sufficient to determine future
states obtained by time evolution. This information

FIG. 12. If a black hole forms inside the holographic screen,
future-directed ingoing light rays emanating orthogonally from
the leaf σ� at an intermediate time may hit the singularity before
reaching a caustic. While the diagram here assumes spherical
symmetry for simplicity, the phenomenon can occur more
generally.

13At these times, the specific construction of the holographic
screen in Sec. II cannot be applied exactly. This is not a problem
as the fundamental object is the state in the holographic space,
and not pðτÞ. The purpose of the discussion in Sec. II is to
illustrate our observer centric choice of fixing the holographic
redundancy in formulating the holographic theory.
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corresponds to that on the “interior” light sheet, i.e. the light
sheet generated by light rays emanating in the þka

directions from σ�.
14 However, even barring the possibility

of information sent into the system from a past singularity
or past null infinity (which we will discuss in Sec. V),
determining a future state requires information about the
“exterior” light sheet, i.e. the one generated by light rays
emanating in the −ka directions; see Fig. 13.15 How is this
information encoded in the holographic state? Does it
require additional holographic degrees of freedom beyond
the A�=4 degrees of freedom considered so far?
The simplest possibility is that the eA�=4 microstates for

each interior geometry (i.e. a fixed screen entanglement
entropy structure) contain all the information associated
with both the interior and exterior light sheets. If this is
indeed the case, then we do not need any other degrees of
freedom in the holographic space σ� beyond theA�=4 ones
discussed earlier. It also implies the following properties for
the holographic theory:

(i) Autonomous time evolution—Assuming the absence
of a signal sent in from a past singularity or past null
infinity (see Sec. V), the evolution of the state is
autonomous. In particular, an initial pure state
evolves into a pure state.

(ii) S-matrix description for a dynamical black hole—
As a special case, a pure state representing initial
collapsing matter to form a black hole will evolve
into a pure state representing final Hawking radia-
tion, even if pðτÞ hits the singularity at an inter-
mediate stage (at least if the leaf stays outside the
black hole); see Fig. 12.

(iii) Strengthened covariant entropy bound—According
to the original proposal of the covariant entropy
bound [9,12], the entropy on each of the interior and
exterior light sheets is bounded by A�=4, implying
that

ln dimH� ¼ 2 ×
A�
4

¼ A�
2

; ð84Þ
where H� is the Hilbert space associated with σ�.
The present picture instead says

ln dimH� ¼
A�
4

; ð85Þ
implying that the entropy on the union of the interior
and exterior light sheets is bounded byA�=4.

16 Note

that the bound does not say that the entropy on each
of the interior and exterior light sheets is separately
bounded byA�=8, and so is profoundly holographic.
This bound is consistent with the fact that in any
known realistic example the covariant entropy
bound is saturated only in one side of a leaf [69].

The picture described here is, of course, a conjecture, which
needs to be tested. For example, if a realistic case is found
in which the A�=4 bound is violated by the contributions
from both the interior and exterior light sheets, then we
would have to modify the framework, e.g., by adding an
extraA�=4 degrees of freedom on the holographic space. It
is interesting that there is no known system that requires
such a modification.
We finally discuss the connection with AdS/CFT. In the

limit that the spacetime becomes asymptotically AdS, the
location of the holographic screen is sent to spatial infinity,
so that A� → ∞. This implies that there are N� ¼ eA�=4 →
∞ microstates for any spacetime configuration in Dσ� for a
leaf σ�, including the case that it is a portion of the empty
AdS space. Would this not contradict the statement that the
vacuum of a CFT is unique?
As we will discuss in Sec. V, the degrees of freedom

associated with N� correspond to a freedom of sending
information into the system at a later stage of time evolution,
i.e. that of inserting operators at locations other than the
point x−∞ corresponding to τ ¼ −∞ on the conformally
compactified AdS boundary. It is with this freedom that the
CFTcorresponds to theAdS limit of our theory including the
N� degrees of freedom:

CFT⇔ lim
M→asymptotic AdS

T ; ð86Þ

whereM is the spacetime inside the holographic screen, and
T represents the theory under consideration. Here, we have

FIG. 13. To determine a state in the future, we need information
on the “exterior” light sheet, the light sheet generated by light
rays emanating from σ� in the −ka directions, in addition to that
on the “interior” light sheet, i.e. the one generated by light rays
emanating in the þka directions.

14If the light sheet encounters a singularity before reaching a
caustic, then the information about the singularity may also be
contained.

15This light sheet is terminated at a singularity or a caustic.
Note that the information beyond a caustic is not needed to
specify the state [47], since it is timelike related with the
information on the interior light sheet [68] so that the two do
not provide independent information.

16This bound was anticipated earlier [63] based on more
phenomenological considerations.
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taken the holographic screen to stay outside the cutoff
surface (corresponding to the ultraviolet cutoff of the CFT)
which is also sent to infinity.
This implies that if we want to consider a setup in which

the evolution of the state is “autonomous” within the bulk,
then we need to fix a configuration of operators at x ≠ x−∞;
i.e. we need to fully fix a boundary condition at the AdS
boundary. The correspondence to our theory in this case is
written as

autonomous CFT⇔ lim
M→asymptotic AdS

T =N�: ð87Þ

The conventional vacuum state of the CFT corresponds to a
special configuration of the N� degrees of freedom that
does not send in any signal to the system at later times (the
simple reflective boundary conditions at the AdS boun-
dary). Given the correspondence between theN� degrees of
freedom and boundary operators, we expect that this
configuration is unique. The state corresponding to the
CFT vacuum in our theory is then unique: the vacuum state
of the theory T =N� with the configuration of the N�
degrees of freedom chosen uniquely as discussed above.

E. Time evolution

Another feature of the holographic theory of general
spacetimes beyond AdS/CFT is that the boundary space
changes in time. This implies that we need to consider the
theory in a large Hilbert space containing states living in
different boundary spaces, Eq. (5). For states representing
FRW universes, the relevant space can be written as

H ¼
X
A

HA; ð88Þ

where A is the area of the leaf, and the sum of the Hilbert
spaces is defined by Eq. (6).17 While the microscopic
theory involving time evolution is not yet available, we can
derive its salient features by assuming that it reproduces the
semiclassical time evolution in appropriate regimes. Here
we discuss this issue for both direct-sum and Russian-doll
structures. In particular, we consider a semiclassical time
evolution in which a state having the leaf area A1 evolves
into that having the leaf area A2 (> A1).

1. Direct-sum structure

In this case there is a priori no need to introduce
nonlinearity in the algebra of observables, so we may
assume that time evolution is described by a standard
unitary operator acting on H. In particular, time evolution

of a state in HA1
into that in HA2

is given by a linear map
from elements of HA1

to those in HA2
.

Consider microstates jΨw
i i (i ¼ 1;…; eA1=4) represent-

ing the FRW universe with w when the leaf area is A1,
jΨw

i i ∈ HA1;w ⊂ HA1
; see Eq. (68). Assuming that all these

states follow the standard semiclassical time evolution,18

their evolution is given by

jΨw
i i → jΦw

i i; ð89Þ
where fjΦw

i ig is a subset of the microstates jΦw
j i

(j ¼ 1;…; eA2=4) representing the FRW universe with w
when the leaf area isA2, jΦw

j i ∈ HA2;w ⊂ HA2
. This has an

important implication. Suppose that the initial state of the
universe is given by

jΨi ¼
X
i

aijΨw
i i: ð90Þ

As we discussed before, if the effective number of terms in
the sum is of order eA1=4, namely if there are eA1=4 nonzero
ai’s with size jaij ∼ e−A1=8, then the state jΨi is not
semiclassical, i.e. a firewall state (because a superposition
of that many microstates changes the structure of the
entanglement entropies). After the time evolution, however,
this state becomes

jΨi → jΦi ¼
X
i

aijΦw
i i; ð91Þ

where the number of terms in the sum is eA1=4 because of
the linearity of the map. This implies that the state jΦi is
not a firewall state, since the number of terms is much
(exponentially) smaller than the dimensionality of HA2;w:
eA1=4 ≪ eA2=4. In particular, the state jΦi represents the
standard semiclassical FRW universe with the equation of
state parameter w.
This shows that this picture has a “built-in” mechanism

of eliminating firewalls through time evolution, at least
when the leaf area increases in time as we focus on here.
This process happens very quickly—any macroscopic
increase of the leaf area makes the state semiclassical
regardless of the initial state.

2. Spacetime equals entanglement

In this case, time evolution from states inHA1
to those in

HA2
is expected to be nonlinear. Consider microstates jΨw

i i
(i ¼ 1;…; eA1=4) representing the FRW universe with w
when the leaf area is A1, jΨw

i i ∈ HA1
. As before, requiring

the standard semiclassical evolution for all the microstates,
we obtain17More precisely, HA contains states whose leaf areas fall into

the range between A and Aþ δA. The precise choice of δA is
unimportant unless it is exponentially small in A. For example,
the dimension of HA is eA=4δA, so that the entropy associated
with it is A=4þ ln δA, which is A=4 at the leading order in the
1=A expansion.

18Here we ignore the possibility that the equation of state
changes between the two times, e.g., by a conversion of the
matter content or vacuum decay. This does not affect our
discussion below.
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jΨw
i i → jΦw

i i; ð92Þ
where fjΦw

i ig is a subset of the microstates jΦw
j i

(j ¼ 1;…; eA2=4) representing the FRW universe with w
when the leaf area is A2, jΦw

j i ∈ HA2
. Suppose the initial

state

jΨi ¼
X
i

aijΨw
i i≡ jΨw0 i; ð93Þ

represents the FRW universe with w0 < w. This is possible
if the effective number of terms in the sum is of order eA1=4,
i.e. if there are eA1=4 nonzero ai’s with size jaij ∼ e−A1=8.
Now, if the time evolution map were linear, then this state
would evolve into

jΨw0 i → jΦi ¼
X
i

aijΦw
i i: ð94Þ

This state, however, is not a state representing the FRW
universe with w0, since the effective number of terms in the
sum, eA1=4, is exponentially smaller than eA2=4, the required
number to obtain a state with w0 from the microstates jΦw

i i.
To avoid this problem, the map fromHA1

intoHA2
must be

nonlinear so that jΨw0 i evolves into jΦw0 i containing eA2=4

terms when expanded in terms of jΦw
i i.

Here we make two comments. First, the nonlinearity of
the map described above does not necessarily mean that the
time evolution of semiclassical degrees of freedom (given
as excitations on the background states considered here) is
nonlinear, since the definition of these degrees of freedom
would also be nonlinear at the fundamental level. In fact,
from observation this evolution must be linear, at least with
high accuracy. This requirement gives a strong constraint
on the structure of the theory. Second, the nonlinearity seen
above arises when the area of the boundary space changes,
A1 → A2 ≠ A1. Since the area of the boundary is fixed in
the AdS/CFT limit (with the standard regularization and
renormalization procedure), this nonlinearity does not show
up in the CFT time evolution, generated by the dilatation
operator with respect to the t ¼ −∞ point in the compac-
tified Euclidean space.19

We finally discuss relations between different HB’s.
While we do not know how they are related, for example
they could simply exist as a direct sum in the full Hilbert
space H ¼ ⨁

B
HB, an interesting possibility is that their

structure is analogous to the Russian-doll structure within a
single HB. Specifically, let us introduce the notation to
represent the Russian-doll structure as

fjΨwig≺fjΨw0 ig for w0 < w; ð95Þ

meaning that the left-hand side is a measure zero subset of
the closure of the right-hand side. We may imagine that
states jΨBi representing spacetimes with boundary B and
states jΨB0 i representing those with boundary B0 are related
similarly as

fjΨBig≺fjΨB0 ig for kBk < kB0k: ð96Þ
(The relation may be more complicated; for example, some
of the jΨBi’s are related with jΨB0 i’s and some with jΨB00 i’s
with B00 ≠ B0.) Ultimately, all states in realistic (cosmo-
logical) spacetimes may be related with those in asymp-
totically Minkowski space as

fjΨBig≺fjΨB0 ig � � �≺fjΨMinkowskiig; ð97Þ
since the boundary area for asymptoticallyMinkowski space
is infinity,AMinkowski ¼ ∞. Does string theory formulated in
an asymptotically Minkowski background (using S-matrix
elements) correspond to the present theory as

String theory⇔ lim
M→asymptotic Minkowski

T ? ð98Þ

Here, the T =NMinkowski portion is described by the scattering
dynamics, and the NMinkowski degrees of freedom are
responsible for the initial conditions, where NMinkowski ¼
eAMinkowski=4; see the next section. If this is indeed the case,
then it would be difficult to obtain a useful description of
cosmological spacetimes directly in that formulation, since
they would correspond to a special measure zero subset of
the possible asymptotic states.

V. DISCUSSION

In this final section,wediscuss someof the issues that have
not been addressed in the construction so far. This includes
the possibility of sending signals from a past singularity or
past null infinity (in the course of time evolution) and the
interpretationof a closed universe inwhich the area of the leaf
changes from increasing to decreasing once the scale factor at
the leaf starts decreasing. We argue that these issues are
related to that of “selecting a state”—even if the theory is
specified we still need to provide selection conditions on a
state, usually given in the form of boundary conditions (e.g.
initial conditions). Our discussion here is schematic, but it
allows us to develop intuition about how quantum gravity in
general spacetimes might work at the fundamental level.

A. Signals from a past singularity or past null infinity

As mentioned in Sec. IV D, the evolution of a state in the
present framework is not fully autonomous. Consistent
with the covariant entropy bound, we may view a holo-
graphic state to carry the information on the two (future-
directed ingoing and past-directed outgoing) light sheets
associated with the leaf it represents. However, this is not
enough to determine a future state because there may be

19This does not mean that the interior of a black hole is
described by state-independent operators in the CFT. It is possible
that the CFT does not provide a description of the black hole
interior; see discussion in Sec. IV C.
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signals sent into the system from a past singularity or past
null infinity (signals originating from the lower right
direction between the two 45° lines in Fig. 13).
To be specific, let us consider a (not necessarily FRW)

universe beginning with a big bang. As shown in Fig. 14,
obtaining a future state (represented by the upper 45° line)
in general requires a specification of signals from the big
bang singularity, in addition to the information contained in
the original state (the lower 45° line). We usually avoid this
issue by requiring the “cosmological principle,” i.e. spatial
homogeneity and isotropy, which determines what con-
ditions one must put at the singularity—with this require-
ment, the state of the universe is determined by the energy
density content in the universe at that time. Imposing this
principle, however, corresponds to choosing a very special
state. This is because there is no reason to expect that
signals sent from the singularity at different times τ
(defined holographically) are correlated in such a way that
the system appears as homogeneous and isotropic in some
time slicing. In fact, this was one of the original motivations
for inflationary cosmology [70–72].
In some cases, appropriate conditions can be obtained by

assuming that the spacetime under consideration is a
portion of larger spacetime. For example, if the universe
is dominated by negative curvature at an early stage, it may
arise from bubble nucleation [73], in which case the
homogeneity and isotropy would result from the dynamics
of the bubble nucleation [74]. Even in this case, however,
we would still need to specify similar conditions in the
ambient space in which our bubble forms, and so on. More
generally, the analysis here says that to obtain a future
state, we need to specify the information coming from
the directions tangent to the past-directed light rays.
This, however, is morally the same as the usual situa-
tion in physics in which we need to specify boundary
(e.g. initial) conditions beyond the dynamical laws the
system obeys.

The situation is essentially the same in the limit of AdS/
CFT; we only need to consider the AdS boundary instead of
the big bang singularity. To obtain future states, it is not
enough to specify the initial state, given by a local operator
inserted at the point x−∞ corresponding to τ ¼ −∞ on the
conformally compactified AdS boundary. We also have to
specify other (possible) boundary operators inserted at
points other than x−∞.
String theory formulated in terms of the S-matrix deals

with this issue by adopting an asymptotically Minkowski
time slice in which all the necessary information is viewed
as being in the initial state. This, however, does not change
the amount of information needed to specify the state,
which is infinite in asymptotically Minkowski space
(because one can in principle send an infinite amount of
information into the system from past null infinity).

B. Closed universes: Time in quantum gravity

Consider a closed universe in which the vacuum energy is
negligible throughout its history. In suchauniverse, the areaof
the leaf changes from increasing to decreasing in the middle
of its evolution. On the other hand, we expect that the area of
the leaf for a “generic” state increasesmonotonically, since the
number of independent states representing spacetime with
the leaf area A goes as eA=4. What does this imply?
We interpret that states representing universes like these

are “fine-tuned,” so that they donot obey the usual second law
of thermodynamics as applied to theHilbert spaceofquantum
gravity. This does notmean that they aremeaningless states to
consider. Rather, it means that we need to scrutinize carefully
the concept of time in quantum gravity.
There are at least three different views of time in

quantum gravity; see, e.g., Ref. [75]. First, since time
parametrization in quantum gravity is nothing other than a
gauge choice, the state j ~Ψi of the full system—whatever its
interpretation—satisfies the constraint [40,41]

Hj ~Ψi ¼ 0; ð99Þ
where H is the time evolution operator, in our context the
generator of a shift in τ. In this sense, the concept of time
evolution does not apply to the full state j ~Ψi.20 However, this
of course does not mean that the physical timewe perceive is
nonexistent. Timewe observe can be defined as correlations
between subsystems (e.g. between an object playing the role

FIG. 14. In a universe beginning with a big bang, obtaining a
future state requires a specification of signals from the big bang
singularity, in addition to the information contained in the
original state. In a FRW universe this is done by imposing
spatial homogeneity and isotropy, which corresponds to selecting
a fine-tuned state from the viewpoint of the big bang universe.

20Reference [40] states that Eq. (99) need not apply in an
infinite world; for example, the state of the system jΨ∞i may
depend on time in asymptotically Minkowski space. We view that
Eq. (99) still applies in this case by interpreting j ~Ψi to represent
the full system, including the “exterior” degrees of freedom
discussed in Sec. IV D [the degrees of freedom corresponding to
NMinkowski below Eq. (98)] as well as the “interior” degrees of
freedom represented by jΨ∞i. The time evolution of jΨ∞i is then
understood as correlations between the interior and exterior
degrees of freedom, as described below.
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of a clock and the rest) [40,76], at least in some branch of
j ~Ψi. Another way to define time is through probability flow
in j ~Ψi. Suppose j ~Ψi is expanded in a set of states jΨii, each
of which represents a well-defined semiclassical spacetime
when such an interpretation is applicable:

j ~Ψi ¼
X
i

cijΨii: ð100Þ

According to the discussion in Sec. IV, jΨii’s are approx-
imately orthogonal in the appropriate limit, and the con-
straint in Eq. (99) impliesX

j

cjUij ¼ ci; Uij ≡ hΨije−iHδτjΨji; ð101Þ

where Uij is (effectively) unitary:X
j

UijU�
kj ¼

X
j

UjiU�
jk ¼ δik: ð102Þ

Multiplying Eq. (101) with its conjugate and using
Eq. (102), we obtain

0 ¼ −jcij2
X
j≠i

jUjij2 þ
X
j≠i

jcjj2jUijj2

þ
X
j≠i

cic�jUiiU�
ij þ

X
j≠i

cjc�i UijU�
ii þ

X
j;k≠i
j≠k

cjc�kUijU�
ik:

ð103Þ
In the regime where the WKB approximation is applicable,
the terms in the second line are negligible compared with
those in the first line because of a rapid oscillation of the
phases of cj;k ’s, so that

jcij2
X
j≠i

jUjij2 ¼
X
j≠i

jcjj2jUijj2; ð104Þ

implying that the “current of probability” is conserved. We
may regard this current as time flow. The time defined in this
way—which we call “current time"—need not be the same
as the physical time defined through correlations, although
in many cases the former agrees approximately with the
latter or the negative of it (up to a trivial shift and rescaling).
In a closed universe (with a negligible vacuum energy), it

is customary to impose the boundary condition

ci ¼ 0 for fjΨiija ¼ 0g; ð105Þ
i.e. the wave function vanishes when the scale factor goes to
zero [40]. With this boundary condition, current time τ
flows in a closed circuit. The direction of the flow agrees
with that of physical time in the branches where
da=dτ > 0, while the two are exactly the opposite in the
branches where da=dτ < 0. (The latter statement follows,
e.g., from the analysis in Ref. [77], which shows that given
a lower entropy final condition the most likely history of a

system is the CPT conjugate of the standard time evolu-
tion.) Our time evolution in earlier sections concerns the
flow of current time. The (apparent) violation of the second
law of thermodynamics then arises because the condition of
Eq. (105) selects a special, “standing wave” solution from
the viewpoint of the current time flow. This is, however, not
a fine-tuning from the point of view of the quantum theory
in a similar way as the electron energy levels of the
hydrogen atom are not regarded as fine-tuned states.
The fact that current time flows toward lower entropy states

doesnotmean that aphysicalobserver living in theda=dτ < 0
phase sees a violation of the second law of thermodynamics.
Since thewhole systemevolves as a time reversal of a standard
entropy increasing process, including memory states of the
observer, a physical observer always finds the evolution of
the system to be the standard one [17,77]; in particular,
he/she always finds that the universe is expanding.

C. Static quantum multiverse: Selecting the
state in the landscape

The analysis of string theory suggests that the theory has
a multitude of metastable vacua, each of which leads to a
distinct low energy effective theory [42–45]. Combining
this with the fact that many of these vacua lead to inflation
(which is future eternal at the semiclassical level) leads to
the picture of the inflationary multiverse [78–81]. The
picture suggests that our universe is one of many bubble
universes, and it cannot be a closed universe that will
eventually collapse as the one discussed above. How is the
state of the multiverse selected then?
A naive semiclassical picture implies that the state of the

multiverse evolves asymptotically into a superposition of
supersymmetric Minkowski worlds and (possibly) “singu-
larity worlds” resulting from the big crunches of AdS
bubble universes [17]. This is because any other universe is
expected to decay eventually. There are basically two
possibilities for the situation in a full quantum theory.
The first possibility is that themultiverse is in a “scattering

state.” This essentially preserves the semiclassical intuition.
From the viewpoint of the current time flow, the multiverse
begins as an asymptotic state, experiences nontrivial cos-
mology at an intermediate stage, and then dissipates again
into the asymptotic Minkowski and singularity worlds. In
the earlier stage of the evolution in which the coarse-grained
entropy decreases in τ, the directions of current and physical
time flows are opposite, while in the later stage of increasing
entropy, the flows of the two times are in the same direction.
The resulting picture is similar to that of Ref. [82]: the
multiverse evolves asymptotically both forward and back-
ward in (current) time. This, however, does not mean that a
physical observer, who is a part of the system, sees an
entropy decreasing universe; the observer always finds that
his/her world obeys the second law of thermodynamics.
A problemwith this possibility is that specifying the theory

of quantum gravity, e.g. the structure of the Hilbert space and
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Hamiltonian, is not enough to obtain the state of the multi-
verse and hence make predictions. Wewould need a separate
theory to specify initial conditions. Furthermore, having a
lower coarse-grained entropy at the turn-around point (the
point at which the coarse-grained entropy changes from
decreasing to increasing in the current time evolution)
requires a more carefully chosen initial condition. This leads
to the issue of understanding why we are “ordinary observ-
ers,” carrying coarse-grained entropies (much) smaller than
that needed to have any consciousness—a variant of thewell-
known Boltzmann brain problem [83–85] (the argument
applied to the space of initial conditions, rather than to a
thermal system).
The alternative, and perhaps more attractive, possibility

is that the multiverse is in a “bound state” [46]. Specifically,
the multiverse is in a normalizable state satisfying the
constraint of Eq. (99) (as well as any other constraints):

j ~Ψi ¼
X
i

cijΨii;
X
i

jcij2 < ∞: ð106Þ

This is a normalization condition in spacetime, rather than
in space as in usual quantum mechanics, and it allows us to
determine, in principle, the state of the multiverse once the
theory is given.21 As in the case of a collapsing closed
universe, current time flows in a closed circuit(s) to the
extent that this concept is applicable. This suggests that the
multiverse does not probe an asymptotic supersymmetric
Minkowski region or the big crunch singularity of an AdS
bubble. The origin of this phenomenon must be intrinsi-
cally quantum mechanical as it contradicts the naive
semiclassical picture. In fact, such a situation is not new
in physics. As is well known, the hydrogen atom cannot be
correctly described using classical mechanics: any orbit of
the electron is unstable with respect to the emission of
synchrotron radiation. The situation in the quantum multi-
verse may be similar—quantum mechanics is responsible
for the very existence of the system.
Once the state of the multiverse is determined, we should

be able to use it to give predictions or explanations. This
requires us to develop a prescription for extracting answers
to physical questions about the state. The prescriptionwould
certainly involve coarse-graining (as one cannot even store
the information of all possible microstates of the multiverse
within the multiverse), and it should reproduce the standard
Born rule giving probabilistic predictions in the appropriate
regime. Perhaps the normalization condition of Eq. (106) is
required in order for this prescription to be well defined.
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APPENDIX A: SPACELIKE
MONOTONICITY THEOREM

Let H be a past holographic screen, foliated by compact
marginally antitrapped surfaces i.e. leaves, fσrg. Here, r is
a (nonunique) real parameter taken to be a monotonically
increasing function of the leaf area. For each leaf we can
construct the two future-directed null vector fields (up to
overall normalization) and denote them ka and la, which
satisfy

θk ¼ 0; θl > 0: ðA1Þ
Now let ha be a leaf-orthogonal vector field tangent to H
and normalized by the condition ha∂ar ¼ 1. Note that ha

must point in the direction of increasing area. We can
always put ha ¼ αla þ βka for some smooth real-valued
functions α and β on H. The Bousso-Engelhardt area
theorem implies that α > 0 everywhere. There is no
restriction on the sign of β: it can even have indefinite
sign on a single leaf.
Let Ar be a d − 2 dimensional region in a leaf σr and let

∂Ar denote its boundary, where d is the spacetime
dimension. This region can be transported to a region
Ar0 in a nearby leaf σr0 by following the integral curves of
the leaf-orthogonal vector field ha. While Ref. [20] pointed
out that kArk is an increasing function of r, this by itself
does not guarantee that SðArÞ monotonically increases.
Nonetheless, we now show that SðArÞ indeed monotoni-
cally increases if ha is spacelike.
Theorem 1. Suppose thatH is a past holographic screen

foliated by leaves fσrg and assume that the parameter r is
oriented to increase as leaf area increases. Assume thatH is
spacelike on some particular leaf which we take to be σ0 by
shifting r if necessary. Let A0 be a subregion of σ0 and
define Ar ⊂ σr by transporting points in A0 along the

21If there are multiple solutions j ~ΨIi, it is natural to assume
that the multiverse is in the maximally mixed state ρ ¼
1
N

P
N
I¼1 j ~ΨIih ~ΨIj (in the absence of more information). Here,

we have taken j ~ΨIi’s to be orthonormal.
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integral curves of the leaf-orthogonal vector field in H.
Then, SðArÞ is a monotonically increasing function of r.
Proof.—Let ha be the leaf-orthogonal vector field

tangent to H with ha∂ar ¼ 1 and note that hajσ0 is space-
like. The compactness of σ0 now allows us to find r0 > 0
such that hajH½−r0;r0� is spacelike. Here we have introduced
the convenient notation

H½r1; r2� ¼ ⋃
r1≤r≤r2

σr: ðA2Þ

In what follows, we will assume that the extremal surface
EðArÞ anchored to ∂Ar deforms smoothly as a function of r
at r ¼ 0. If this is not the case, a phase transition occurs at
r ¼ 0whichwill give rise to a discontinuity in the derivative
of SðArÞ. However, we can then note that our theorem
applies at r slightly greater than zero (where H is still
spacelike andwhere no phase transition occurs) and also at r
slightly smaller than zero. This implies that SðArÞ is
monotonically increasing at r ¼ 0 even if EðArÞ “jumps”
at r ¼ 0 so that the derivative of kEðArÞk has a discontinuity.
The maximin construction of EðA0Þ ensures that there

exists Σ0 ∈ Cσ0 such that EðA0Þ ¼ minðA0;Σ0Þ. Here, Cσ
denotes the collection of all complete codimension-1 ach-
ronal surfaces lying in Dσ that are anchored to σ, and
minðA;ΣÞ denotes the d − 2 dimensional surface ofminimal
area lying in Σ that is homologous to A. If 0 < ϵ < r0, let

Σϵ ¼ Σ0∪H½0; ϵ�: ðA3Þ
We claim that Σϵ ∈ Cσϵ for small ϵ. First we check that Σϵ is
achronal. Since Σ0 and H½0; ϵ� are achronal independently,
we focus on their intersection at σ0. The definition of Cσ0
requires that Σ0 lies inDσ0 so that a vector pointing from σ0
toΣ0 has the form c1ka − c2lawith c1; c2 > 0.Meanwhile, a
vector pointing from σ0 to H½0; ϵ� is proportional to
hajσ0 ¼ jαjla − jβjka. Here we have made use of the fact
thatα > 0 and β < 0 for a spacelike past holographic screen.
We see now that Σ0 lies “inside” σ0 while ha points toward
the “outside.”This ensures thatΣϵ is achronal for sufficiently
small ϵ. All that is left to check is that Σϵ lies inside of Dσϵ .
But this is clear because a vector pointing from σϵ toward Σϵ

is proportional to −hajσϵ ¼ −jαjla þ jβjka which is indeed
directed into Dσϵ . That Σϵ ∈ Cσϵ is now clear for small ϵ.
We now construct an ϵ-dependent family of d − 2

dimensional surfaces lying on Σ0 that are anchored to
∂A0, which we will denote by Ξϵ. We begin by fixing a
small ϵ with 0 < ϵ < r0 and defining a projection function
πϵ∶H½0; ϵ� → σ0 in the natural way: if p ∈ H½0; ϵ�, follow
the integral curves of ha, starting from p, until a point in σ0
is reached. The result is πϵðpÞ. We can now define Ξϵ:

Ξϵ ¼ ðminðAϵ;ΣϵÞ∩Σ0Þ⋃πϵðminðAϵ;ΣϵÞ∩H½0; ϵ�Þ: ðA4Þ
If ϵ is sufficiently small, the fact that H½0; ϵ� has a positive
definite metric, along with the fact that EðA0Þ is not

tangent to σ0 anywhere, ensures that kπϵðminðAϵ;ΣϵÞ∩
H½0; ϵ�Þk < kminðAϵ;ΣϵÞ∩H½0; ϵ�k. From this it follows
that

kΞϵk < kminðAϵ;ΣϵÞk: ðA5Þ
On the other hand, because πϵð∂AϵÞ ¼ ∂A0, we know that
Ξϵ is a codimension-2 surface anchored to ∂A0 that lies
only on Σ0. Thus,

4SðA0Þ ¼ kminðA0;Σ0Þk ≤ kΞϵk: ðA6Þ
Noting that the maximin construction of EðAϵÞ requires

kminðAϵ;ΣϵÞk ≤ 4SðAϵÞ; ðA7Þ
we find SðA0Þ < SðAϵÞ. □

APPENDIX B: QUBIT MODEL

1. Model and applications to quantum gravity

Here we describe a toy model for holographic states
representing FRW universes, presented originally in
Ref. [31]. We consider a Hilbert space for N (≫ 1) qubits
H ¼ ðC2Þ⊗N . Let Δ (≤ N) be a non-negative integer and
consider a typical superposition of 2Δ product states,

jΨi ¼
X2Δ
i¼1

aijxi1xi2 � � � xiNi; ðB1Þ

where faig is a normalized complex vector, and
xi1;…;N ∈ f0; 1g. Given an integer n with 1 ≤ n < N, we
can break the Hilbert space into a subsystem Γ for the first n
qubits and its complement Γ̄. We are interested in comput-
ing the entanglement entropy SΓ of Γ.
Suppose n ≤ N=2. If Δ ≥ n, then i in Eq. (B1) runs over

an index that takes many more values than the dimension of
the Hilbert space for Γ, so that Page’s argument [52] tells us
that Γ has maximal entanglement entropy: SΓ ¼ n ln 2. On
the other hand, if Δ < n then the number of terms in
Eq. (B1) is much less than both the dimension of the Hilbert
space of Γ and that of Γ̄, which limits the entanglement
entropy: SΓ ¼ Δ ln 2. We therefore obtain

SΓ ¼
�
n n ≤ Δ;
Δ n > Δ;

ðB2Þ

for Δ < N=2, while

SΓ ¼ n; ðB3Þ
for Δ ≥ N=2. Here and below, we drop the irrelevant factor
of ln 2. The value of SΓ for n > N=2 is obtained from SΓ ¼
SΓ̄ since jΨi is pure.
The behavior of SΓ in Eqs. (B2)–(B3) models that of SðγÞ

in Sec. III A. The correspondence is given by
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n
N

↔
kΓk
A�

; ðB4Þ

Δ
N

↔
1

2
Qw

�
π

2

�
; ðB5Þ

forΔ ≤ N=2.22 The identification of Eq. (B4) is natural if we
regard the N ¼ A�=4 qubits as distributed over a leaf σ�,
with each qubit occupying a volumeof 4 in Planck units. The
quantity Δ controls what universe a state represents. For
fixed Δ, different choices of the product states jxi1xi2 � � � xiNi
and the coefficients ai give eN independent microstates for
the FRW universe with w ¼ fðΔ=NÞ. The function f is
determined by Eq. (B5); in particular, f ¼ −1 (> −1) for
Δ=N ¼ 1=2 (< 1=2).
This model can be used to argue for features of the

holographic theories discussed in Sec. IV B. We consider
two cases:
Direct-sum structure—In this case, each of the subspaces
H�;w is modeled by the N qubit system described here.
ConsiderH�;w with a fixed w. States representing the FRW
universe with w then encompass eN independent micro-
states in this space. These microstates form an “effective
vector space” in that a superposition involving less than
eOðδwNÞ of them leads only to another microstate represent-
ing the same FRW universe with w. (We say that these
states comprise fat preferred axes.) Most of the states in
H�;w, containing more than eOðδwNÞ of the w microstates,
are regarded as nonsemiclassical, i.e. firewall or unphys-
ical, states.
Russian-doll structure—In this case, the entire H� space is
modeled by the N qubits, and the states representing
various FRW universes are all elements of this single
Hilbert space of dimension eN . An important point is that
the set of states with any fixed Δw provides a complete
basis for the whole Hilbert space, where Δw ≡ Nf−1ðwÞ.
This implies that we can obtain a state with any w0 < w by
superposing eΔw0−Δw states with Δw, and we can also obtain
a state with w0 > w as a superposition of carefully chosen
eΔw states with Δw. We call this the Russian-doll structure,
which is depicted schematically in Fig. 11.

2. Effective incoherence of superpositions

We now focus on the latter case and consider a
normalized superposition

jΨi ¼ c1jΨ1i þ c2jΨ2i ðB6Þ

of two states

jΨ1i ¼
X2Δ1
i¼1

aijxi1xi2 � � � xiNi
�X2Δ1

i¼1

jaij2 ¼ 1

�
; ðB7Þ

jΨ2i ¼
X2Δ2
i¼1

bijyi1yi2 � � � yiNi
�X2Δ2

i¼1

jbij2 ¼ 1

�
; ðB8Þ

with Δ1 ≠ Δ2 and

Δ1;Δ2 ≤
N
2
: ðB9Þ

Here, the coefficients ai and bi are random, as are the
binary values xi1;…;N and yi1;…;N , and jc1j2 þ jc2j2 ¼ 1 up to
an exponentially suppressed correction arising from
hΨ1jΨ2i ≠ 0≲Oð2−jΔ1−Δ2j=2Þ. We are interested in the
reduced density matrix

ρ1���n ¼ Trnþ1���N ρ; ðB10Þ
obtained by performing a partial trace on

ρ ¼ jΨihΨj ¼ jc1j2jΨ1ihΨ1j þ jc2j2jΨ2ihΨ2j
þ c1c�2jΨ1ihΨ2j þ c2c�1jΨ2ihΨ1j; ðB11Þ

over the subsystem consisting of the first n qubits. We will
only consider the case where n < N=2.
We begin our analysis by considering Trnþ1���N jΨ1ihΨ1j.

It is convenient to write

jΨ1ihΨ1j ¼
X2Δ1
i¼1

jaij2jxi1 � � � xiNihxi1 � � � xiN j

þ
X2Δ1
i;j¼1
i≠j

aia�j jxi1 � � � xiNihxj1 � � � xjN j: ðB12Þ

Upon performing the partial trace over jΨ1ihΨ1j, the first
sum gives a diagonal contribution to the reduced density
matrix,

D11 ¼
X2Δ1
i¼1

jaij2jxi1 � � � xinihxi1 � � � xinj: ðB13Þ

The second sum gives a correction

~D11 ¼
X2Δ1
i;j¼1
i≠j

aia�j jxi1 � � � xinihxj1 � � � xjnjδxinþ1
;xjnþ1

� � � δxiN;xjN :

ðB14Þ

We now consider two cases:
(i) Δ1 > n.

Because 2Δ1 ≫ 2n, it is clear that D11 is a 2n × 2n

diagonal matrix with every diagonal entry approx-
imately given by

22States with Δ > N=2 cannot be discriminated from those
with Δ ¼ N=2 using SΓ alone. Below, we only consider the states
with N=4 ≤ Δ ≤ N=2.
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2Δ1

2n
hjaij2i ¼ 2−n: ðB15Þ

(Note that hjaij2i ¼ 2−Δ1 because jΨ1i is normalized
and random.) Thus, D11 is a fully mixed state. Now
observe that ~D11 consists of almost all zeros. In fact,
looking at Eq. (B14) we see that there are 22Δ1−Nþn

nonzero entries of average absolute value 2−Δ1 .
Given that Δ1 ≤ N=2, we conclude that ~D11 has
exponentially fewer nonzero entries than D11, and
that each nonzero entry has exponentially smaller
size than the entries of D11.

(ii) Δ1 ≤ n.
In this case, D11 is a diagonal matrix having 2Δ1

nonzero entries of order 2−Δ1. The number of non-
zero entries in ~D11 is, again, 22Δ1−Nþn, each having
the average absolute value 2−Δ1 . The effect of ~D11 is
highly suppressed because its number of nonzero
entries is exponentially smaller than that of D11. In
fact, for the number of nonzero entries in ~D11 to
compete with that in D11, we would need
2Δ1 − N þ n ≥ Δ1, which, however, means

Δ1 ≥ N − n >
N
2
; ðB16Þ

a contradiction.
In summary, Trnþ1���N jΨ1ihΨ1j ¼ D11 þ ~D11 is a diagonal
matrix having 2minfΔ1;ng nonzero entries of order 2−minfΔ1;ng,
up to exponentially suppressed effects. The same analysis
obviously applies to Trnþ1���N jΨ2ihΨ2j ¼ D22 þ ~D22 with
Δ1 → Δ2.
We now turn our attention to the matrix

Trnþ1���N jΨ1ihΨ2j, which we denote as ~D12:

~D12 ¼
X2Δ1
i¼1

X2Δ2
j¼1

aib�j jxi1 � � � xinihyj1 � � � yjnjδxinþ1
;yjnþ1

� � � δxiN;yjN :

ðB17Þ

We argue, along similar lines to the above, that ~D12 is
exponentially smaller than jc1j2D11 þ jc2j2D22, unless jc1j
or jc2j is exponentially suppressed. Once again, we have
several cases:

(i) Δ1;Δ2 ≤ n.
In this case, jc1j2D11 þ jc2j2D22 is a diagonal

matrix having 2Δ1 nonzero entries of order 2−Δ1 and
2Δ2 nonzero entries of order 2−Δ2. Considering
Eq. (B17), ~D12 consists of zeros except for
2Δ1þΔ2−Nþn nonzero entrieswith the average absolute
value hjaib�j ji ¼ 2−ðΔ1þΔ2Þ=2. The number of these
entries, however, is exponentially smaller than 2Δ1 ,
since having Δ1 þ Δ2 − N þ n ≥ Δ1 would require
Δ2 ≥ N − n > N=2; similarly, it is also exponen-
tially smaller than 2Δ2 . Moreover the changes of the

exponentially rare eigenvalues affected are at most of
Oð1Þ. We conclude that the effect of ~D12 is exponen-
tially suppressed.

(ii) Δ1;Δ2 > n.
In this case, the condition that jc1j2 þ jc2j2 ¼ 1

ensures that jc1j2D11 þ jc2j2D22 is a 2n × 2n unit
matrix multiplied by 2−n. Meanwhile, ~D12 consists
of zeros except for 2Δ1þΔ2−Nþn ≪ 2n nonzero entries
of size 2−ðΔ1þΔ2Þ=2 ≪ 2−n.

(iii) Δ1 ≤ n < Δ2.
In this case, D22 is a 2n × 2n unit matrix multi-

plied by 2−n while D11 is a diagonal matrix having
2Δ1 nonzero entries of order 2−Δ1. Once again, the
number of nonzero entries in ~D12 is exponentially
smaller than 2Δ1 , since Δ1 þ Δ2 − N þ n ≥ Δ1

would require Δ2 ≥ N − n > N=2, and the frac-
tional corrections to eigenvalues from these entries
are of order 2−ðΔ2−nÞ. This implies that the effect of
~D12 is negligible. The same argument also applies to
the case that Δ2 ≤ n < Δ1.

We conclude that for n < N=2, we find

ρ1���n ¼ jc1j2D11 þ jc2j2D22

¼
X2Δ1
i¼1

jaij2jxi1 � � � xinihxi1 � � � xinj

þ
X2Δ2
i¼1

jbij2jyi1 � � � yinihyi1 � � � yinj; ðB18Þ

up to effects exponentially suppressed in N ≈OðA�Þ.
This implies that the reduced density matrix for the
state jΨi takes the form of an incoherent classical
mixture,

ρ1���n ¼ jc1j2ρð1Þ1���n þ jc2j2ρð2Þ1���n; ðB19Þ

where ρðkÞ1���n ¼ Trnþ1���N jΨkihΨkj (k ¼ 1, 2) are the
reduced density matrices we would obtain if the state
were jΨki.
The form of Eq. (B18) also implies that the entanglement

entropy,

S1���n ¼ −Tr1���nðρ1���n ln ρ1���nÞ; ðB20Þ

obeys a similar linear relation

S1���n ¼ jc1j2Sð1Þ1���n þ jc2j2Sð2Þ1���n þOð1Þ; ðB21Þ

unless jc1j or jc2j is exponentially small. Here, SðkÞ1���n ¼
−Tr1���nðρðkÞ1���n ln ρ

ðkÞ
1���nÞ. This can be seen by considering the

same three cases as above. If Δ1;Δ2 ≤ n, ρ1���n is a diagonal
matrix having 2Δ1 nonzero entries with average value
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jc1j22−Δ1 and 2Δ2 nonzero entries with average value
jc2j22−Δ2 . In this case,

S1���n ¼ −jc1j2 ln
jc1j2
2Δ1

− jc2j2 ln
jc2j2
2Δ2

¼ jc1j2Δ1 ln 2þ jc2j2Δ2 ln 2þOð1Þ; ðB22Þ

while we have SðkÞ1���n ¼ Δk ln 2. The Oð1Þ correction from
linearity is the entropy of mixing, given by

S1���n;mix ¼ −jc1j2 ln jc1j2 − jc2j2 ln jc2j2: ðB23Þ

If Δ1;Δ2 > n, then ρ1���n is a unit matrix multiplied by 2−n.
From this it follows that S1���n ¼ n ln 2 ¼ jc1j2n ln 2þ
jc2j2n ln 2, which is desirable given that SðkÞ1���n¼nln2 for

Δk>n.23 Finally, ifΔ1<n<Δ2, ρ
ð1Þ
1���n has 2

Δ1 nonzero entries

of mean value 2−Δ1 while ρð2Þ1���n is a unit matrix multiplied by
2−n. Because 2−Δ1 ≫ 2−n the total densitymatrix ρ1���n given
by Eq. (B18) is diagonal; it has 2Δ1 entries of size jc1j22−Δ1

and 2n entries of size jc2j22−n. We thus find that S1���n¼
jc1j2Δ1 ln2þjc2j2nln2þS1���n;mix¼jc1j2Sð1Þ1���nþjc2j2Sð2Þ1���nþ
Oð1Þ. (This expression is valid for Δ1 ¼ n < Δ2 as well.)
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