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The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calcu-
lation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-
loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary
conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of
“regular” and “irregular” one-loop energies in the one-brane Randall-Sundrum model. The approach
developed in the paper also allows us to get “in one line” the one-loop quantum energies in the two-brane
Randall-Sundrum model. The relationship between “one-loop” expressions corresponding to the mixed
Robin and to double-trace asymptotic boundary conditions is traced.
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I. INTRODUCTION

In 2001, Witten [1] showed that in frames of the AdS/
CFT correspondence, multi-trace deformationWðÔÞ of the
boundary quantum field theory may be equivalent to the
boundary condition,

α ¼ ∂WðβÞ
∂β ; ð1Þ

imposed upon the regular (α) and irregular (β) asymptotics
at the anti-de Sitter (AdS) horizon (z → 0) of the bulk scalar
field ϕ:

ϕ ¼ αz
d
2
þν þ βz

d
2
−ν; ð2Þ

where α corresponds to the source of single-trace operator
Ô whereas β corresponds to its quantum average.
In case of the double-trace deformation W ¼ ð1=2ÞfÔ2

(1) comes to

α ¼ fβ: ð3Þ
Here, the Euclidean metric of (dþ 1)-dimensional AdS

space of the Randall-Sundrum (RS) model is taken in a
form

ds2 ¼ dz2 þ ημνdxμdxν

ðkzÞ2 ; ð4Þ

and ϵ < z < L (z ¼ ϵ, L are positions of UV and
IR branes), μ; ν ¼ 0; 1;…ðd − 1Þ, ημν ¼ δμν in the
Euclidean signature, k is the AdS curvature scale, and ϕ ¼
ϕð~p; zÞ satisfies the equation (~p is momentum in Euclidean
d-space, p ¼ j~pj):

D̂ðpÞϕ ¼
�
−z2

∂2

∂z2 þ ðd − 1Þz ∂
∂zþ

�
ν2 −

d2

4

�
þ z2p2

�
ϕ

¼ 0; ð5Þ

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=4þm2=k2

p
for minimal action of the bulk scalar

field of mass m.
Gubser and Mitra showed in [2] (see also [3] and [4]) that

the difference of bulk Green functions satisfying asymp-
totic boundary condition (3) for two values of double-trace
parameter f is UV finite at coinciding arguments:Z

½Gf2ðp; z; zÞ −Gf1ðp; z; zÞ�ddp < ∞; ð6Þ

where the Green function Gfðp; z; z0Þ is taken in the
Euclidean signature and is given by formula (32) of [2]:

Gfðp;z;z0Þ ¼−
kd−1ðzz0Þd=2Kνðpz0Þ

1þ f̄

×f½I−νðpzÞþ f̄IνðpzÞ�θðz0− zÞþðz↔ z0Þg

f̄¼ f

�
2

p

�
2νΓð1þνÞ
Γð1−νÞ ; ð7Þ

I�ν, Kν are Bessel functions of the imaginary argument,
here L ¼ ∞, and an expression for f̄ is obtained from a
comparison of the asymptotic of ðI−ν þ f̄IνÞ at z → 0 with
(2) and (3) [2].
However, as it was pointed out in [2], it is hard to calculate

for general values of f the one-loop vacuum energy
corresponding to a difference of Green functions in (6).
In the present paper, which is development of [5],

calculation of this one-loop energy is performed with a
simple “boundary operator” formula, proposed byBarvinsky
and Nesterov (BN) [6–9] for ratio of determinants of one
and the same differential operator in the one-dimensional*baltshuler@yandex.ru; altshul@lpi.ru
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problem for twodifferent boundary conditions imposedupon
eigenfunctions of D̂. It will be shown also that, in this case,
the BN approach is equivalent to the Gelfand-Yaglom (GY)
method [10–13].
Let us describe in short BN and GY approaches which

application is crucial for this paper.
As it was demonstrated in [6–9] the ratio of determinants

of the differential operator for two different boundary
conditions is equal to the ratio of determinants of certain
“boundary operators” given by the corresponding Green
functions with their arguments taken at the boundary. The
idea behind it is seemingly simple although proves to be
very effective: the Gauss functional integral, which gives
the desired determinant, is a product of the functional
integral over the bulk field with fixed values at the
boundaries (that is when Dirichlet boundary conditions
are imposed) and of the functional integral over the
boundary values of the field weighted by the boundary
operator depending on boundary conditions under consid-
eration; thus, in the ratio of determinants the bulk func-
tional integrals reduce. In the one-dimensional problem, the
boundary is a dot and boundary operator is just a number
equal, as is shown in [6–9], to the value of the correspond-
ing Green function at the boundary. Finally, the ratio of
determinants comes to the product of ratios of boundary
operators of the one-dimensional problem over the quantity
parametrizing one-dimensional problem (momentum ~p in
transverse d-space in this paper).
The GY approach [10–13] says that the product of

eigenvalues (determinant) of a differential operator of the
one-dimensional problem D̂ϕnðzÞ ¼ λnϕnðzÞ defined on
interval a < z < b and determined by boundary conditions
A½ϕðaÞ� ¼ 0 and B½ϕðbÞ� ¼ 0 (A½ϕ�, B½ϕ� are some linear
combinations of ϕ and its derivative ϕ0 taken at correspond-
ing points) may be expressed through solution vðzÞ of the
homogeneous equation D̂vðzÞ ¼ 0 which obeys a given
boundary condition at one boundary, say at z ¼ a, that is
A½vðaÞ� ¼ 0; then the GY method gives DetD̂ ∼ B½vðbÞ�.
The logic of the proof of this quite effective formula is
double step: (1) for solution ϕðzjλÞ of the following
equation: D̂ϕ ¼ λϕ, which obeys boundary condition
A½ϕðajλÞ� ¼ 0 and which is considered as a function of λ;
function BðλÞ≡ B½ϕðbjλÞ� has zeroes at λ ¼ λn. (2) Since
the logarithmic derivative ofBðλÞ [d lnBðλÞ=dλ] has poles in
a complex λ plane exactly at λ ¼ λn it is possible to express
the ζ function [ζðsÞ ¼ P

λn
−s] with a contour integral over

this logarithmic derivative and finally, after a number of
rather conventional steps, to get the looked for GY formula
e−ζ

0ð0Þ ¼ DetD̂ ∼ Bðλ ¼ 0Þ ¼ B½ϕðbj0Þ� ¼ B½vðbÞ� [since
ϕðzj0Þ is nothing but a homogeneous solution vðzÞ intro-
duced above in this paragraph].
As to our knowledge, the correspondence of BN and GY

methods was not considered in the literature so far. The
bulk of the paper consists of the examples of the application
of the BN method with certain parallels with the GY

approach. In the Appendix, the power of the GY method is
demonstrated by a number of physical problems where GY
formulas immediately give well-known values of Casimir
potential calculated conventionally in a rather complex
way.
In the standard approach applied in [2–5], the calculation

of one-loop energy VðdÞ in the (dþ 1)-dimensional RS
model is performed with three integrations: over p like in
(6), over z between its endpoints, and over mass squared
parameter α according to the well-known identity:

V ¼ 1

2
ln DetD̂ ¼

Z
d ~α

∂V
∂ ~α ¼ 1

2

Z
α
d ~αTrGðx; z; x; z; ~αÞ:

ð8Þ
The BN or GY methods permit us to “jump over”

integrations over z and α, and immediately give an answer
for the ratio of determinants of the differential operator of the
one-dimensional problemparametrized in our case by ~p [see
(5)]. Then corresponding difference of one-loop quantum
energies in d dimensions is given by an integral over ~p:

VðdÞ
2 − VðdÞ

1 ¼ 1

2

Z
ddp
ð2πÞd ln

�
Det2D̂ðpÞ
Det1D̂ðpÞ

�
: ð9Þ

It is shown in the paper that the integral in (9) is
UV-convergent if indexes 2,1 in (9) refer to two values
f2, f1 of the double-trace parameter in asymptotic boundary
condition (3).And on the other hand, the integral in (9) isUV
divergent if these indexes refer to two fixed Robin param-
eters of the mixed boundary condition imposed at z ¼ ϵ.
The “strange discrepancy” (see Sec. III in [5]) of

expressions for the difference of “regular” and “irregular”
one-loop energies ðVþ − V− ¼ Vf¼∞ − Vf¼0Þ calculated
with a different choice of parameter α in (8) (

ffiffiffi
α

p ¼ m in
[2–4], and

ffiffiffi
α

p
is auxiliary mass introduced in [5]) perhaps

is resolved in this paper. In any case, the formula for VðdÞ
þ −

VðdÞ
− obtained in Sec. III differs from both competing

expressions of [2] and [5].
The structure of the paper is as follows. In Sec. II the

work of BN and GY methods, their equivalence, and the
correspondence of Robin boundary conditions and asymp-
totic boundary conditions are demonstrated by an elemen-
tary dynamical example. Section III presents the results
of the calculation of UV-finite one-loop quantum energy
for the double-trace asymptotic boundary condition in
one-brane (L ¼ ∞) and two-brane (L < ∞) RS models.
The Conclusion outlines the possible ways of future work.
The Appendix presents a number of striking examples
of the power of the GY method.

II. ELEMENTARY EXAMPLE: IDENTITY OF
BN AND GY METHODS

In this section we demonstrate the identity of BN and GY
methods of the calculation of the ratio of quantum
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determinants determined by different Robin or asymptotic
boundary conditions by an elementary example of the
differential operator D̂0 of the massless scalar field ϕ in flat
(dþ 1) dimensions:

D̂0ðpÞϕðp; zÞ ¼
�
−

∂2

∂z2 þ p2

�
ϕðp; zÞ: ð10Þ

D̂0 is defined on interval ϵ < z < L (here notations of the
Introduction are used).
We consider two spectra of eigenvalues λð1Þn , λð2Þn of the

following equation: D̂0ϕ1;2ðzÞ ¼ λϕ1;2ðzÞ, determined by
the one and the same Neumann boundary condition at
z ¼ L and two mixed Robin boundary conditions at z ¼ ϵ
(prime means derivative over z throughout the paper):

ϕ0
1;2ðLÞ ¼ 0; ϕ0

1;2ðϵÞ þ r1;2ϕ1;2ðϵÞ ¼ 0: ð11Þ
Then, according to the BN boundary operator approach, the
ratio of corresponding determinants of D̂0 is given by the
ratio of corresponding Green functions with both argu-
ments taken at the boundary where different boundary
conditions are imposed (that is at z ¼ ϵ in our example):

Q
nλ

ð2Þ
nQ

nλ
ð1Þ
n

¼ Detr2−ND̂0ðpÞ
Detr1−ND̂0ðpÞ

¼ Gð0Þ
r1−Nðp; z; z0Þ

Gð0Þ
r2−Nðp; z; z0Þ

����
z¼z0¼ϵ

≡Q0ðpÞ:

ð12Þ
Green functions in (12) obeying equation D̂0ðpÞGð0Þ

ðp; z; z0Þ ¼ δðz − z0Þ and boundary conditions (11) are
given by the following standard expression:

Gð0Þ
r−Nðp; z; z0Þ ¼

urðzÞvðz0Þθðz0 − zÞ þ ðz ↔ z0Þ
u0rv − urv0

; ð13Þ

where vðzÞ¼coshpðz−LÞ and ur1;2ðzÞ¼pcoshpðz−ϵÞ−
r1;2sinhpðz−ϵÞ obey the following boundary conditions
(11):

v0ðLÞ ¼ 0; u0r1ðϵÞ þ r1ur1ðϵÞ ¼ 0;

u0r2ðϵÞ þ r2ur2ðϵÞ ¼ 0: ð14Þ
Thus, for the ratio of determinantsQ0ðpÞ (12) it is obtained
from (13) and from the explicit expressions for vðzÞ and
ur1;2ðzÞ:

Q0ðpÞ ¼
ur1ðϵÞ
ur2ðϵÞ

·
u0r2v − ur2v

0

u0r1v − ur1v
0

¼ p sinhpðL − ϵÞ − r2 coshpðL − ϵÞ
p sinhpðL − ϵÞ − r1 coshpðL − ϵÞ : ð15Þ

Let us demonstrate now the identity of BN expressions
(12) and (15) with the GY formula for the ratio of
determinants:

Q0ðpÞ ¼
Detr2−ND̂0ðpÞ
Detr1−ND̂0ðpÞ

¼ v0ðϵÞ þ r2vðϵÞ
v0ðϵÞ þ r1vðϵÞ

; ð16Þ

where vðzÞ ¼ coshpðz − LÞ is the introduced above sol-
ution of homogeneous equation D̂ovðzÞ ¼ 0 obeying the
Neumann boundary condition at z ¼ L.
The identity of expressions (15) and (16) is immediately

seen from the explicit expression for vðzÞ and also, in
general, if we substitute in (15) u0r1;2ðϵÞ ¼ −r1;2ur1;2ðϵÞ
from boundary conditions in (14). This simple observation
proves to be quite useful in subsequent analysis.
The difference of one-loop energies corresponding to the

ratio of determinants (12)

VðdÞ
r2 − Vd

r1 ¼
1

2

Z
ddp
ð2πÞd lnQ0ðpÞ ð17Þ

is UV divergent if Robin coefficients r1, r2 are fixed
constants, as is seen from the explicit dependence Q0ðpÞ
given in (15). We shall show, however, that application of
this logic to asymptotic boundary condition (3) makes r1,
r2 in (15) dependent on f1, f2 and on momentum p in a
way that makes Q0ðpÞ → 1 at p → ∞; hence, the integral
in (17) is UV finite in this case.
An analogy of asymptotic, at z → 0, expression (2) for

elementary differential operator (10) is ϕ ¼ αzþ β [this
formally corresponds to d ¼ 1, ν ¼ 1=2 in (2)]. And an
analogy of Gubser-Mitra Euclidean Green function (7)
(althoughherewe takeL < ∞) obeyingNeumannboundary
condition at z ¼ L and double-trace asymptotic boundary
condition α ¼ fβ at z → 0 is the following Green function:

Gð0Þ
f−Nðp;z;z0Þ¼

ufðzÞvðz0Þθðz0−zÞþðz↔z0Þ
u0fv−ufv0

¼ ½coshpzþ f̄sinhpz�coshpðz0−LÞθðz0−zÞþðz↔z0Þ
pðsinhpLþ f̄coshpLÞ ;

f̄¼ f
p
: ð18Þ

Now, according to the BN prescription, we take the ratio
of two Green functions (18) for two double-trace param-
eters f1, f2 at z ¼ z0 ¼ ϵ and, following (12), define with
this ratio the ratio of corresponding determinants:

Gð0Þ
f1−Nðp; z; z0Þ

Gð0Þ
f2−Nðp; z; z0Þ

����
z¼z0¼ϵ

¼ coshpϵþ f̄1 sinhpϵ
sinhpLþ f̄1 coshpL

·
sinhpLþ f̄2 coshpL
coshpϵþ f̄2 sinhpϵ

¼ Detf2−ND̂0ðpÞ
Detf1−ND̂0ðpÞ

¼
Q

n
~λð2ÞnQ

n
~λð1Þn

≡ ~Q0ðpÞ: ð19Þ

Ratio (19) depends on ϵ which is not present in the
definition of Green function (18), as well as it is not present
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in (7). As it was noted, formula (19) is actually a definition
of the ratio of determinants, that is, a definition of corre-
sponding eigenvalues ~λð1Þ;ð2Þn —just like authors of paper [2]

defined the UV-finite one-loop energy VðdÞ
þ − VðdÞ

− with
integral over z from ϵ to ∞ although the asymptotic
boundary condition (3) is imposed at z → 0 and the
integrand (which is the difference of regular and irregular
Green functions) does not know anything about z ¼ ϵ.
The difference of vacuum energies corresponding to the

ratio of determinants (19) and given by
R
ddp ln ~Q0ðpÞ

[cf. (9) or (17)] is UV finite since for f̄ weakly depending on
p [like in (18) (c.f. also (7)] ~Q0ðpÞ in (19) → 1 at p → ∞.
There is the question: what Robin boundary condition at

z ¼ ϵ characterized by parameter r [like in (11)] corresponds
to asymptotic condition (3) characterized by double-trace
parameter f? Or in other words: what are the conditions of
identity of Q0ðpÞ and ~Q0ðpÞ in the rhs of (12) and (19),
correspondingly? The function ufðzÞ¼ coshpzþ f̄ sinhpz
in the expression for the Green function (18) formally obeys
at z ¼ ϵ the Robin boundary condition u0ðϵÞ þ rϵuðϵÞ ¼ 0
for the Robin parameter:

rϵ ¼ −
u0ðϵÞ
uðϵÞ ¼ −

pðsinhpϵþ f̄ðpÞ coshpϵÞ
coshpϵþ f̄ðpÞ sinhpϵ ; ð20Þ

and it is easy to check that a substitution of (20) in BN ratio
(15) gives BN ratio (19) identically.
Also, knowledge of rϵ ¼ rϵðf̄Þ (20) permits us to put

down the equations for spectra ~λð1Þ;ð2Þn defined in (19):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~λn − p2

q
tan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~λn − p2

q
ðL − ϵÞ

�

¼ −rϵ ¼
pðtanhpϵþ f̄ðpÞÞ
1þ f̄ðpÞ tanhpϵ ; ð21Þ

f̄ðpÞ see in (18). This equation is obtained from spectral
equation D̂ϕn ¼ λnϕn, and boundary conditions (11) where
rϵ is taken from (20). At ϵ ¼ 0, (21) simplifies and also
makes sense, as well as the ratio of determinants (19)
makes sense in the limit ϵ → 0. However, in this case one-
loop energy given by

R
ddp ln ~Q0ðpÞ is UV divergent.

Thus, ϵ > 0 really serves the UV regulator of quantum
loops in d space; is not it curious to see this well-know,
fact of AdS/CFT correspondence in the simplest example
of this section.
Transcendental equation (21) for ~λn is valid, in particular,

for regular (f̄ ¼ ∞) and irregular (f̄ ¼ 0) asymptotics. It is
also seen that (21) comes to spectral conditions for
NeumannðϵÞ-NeumannðLÞ or DirichletðϵÞ-NeumannðLÞ
boundary conditions for negative values of f̄: f̄ ¼
− tanhpϵ (rϵ ¼ 0) and f̄ ¼ −1=tanhpϵ (rϵ ¼ ∞), corre-
spondingly. Surely it is a sort of miracle that the BN
approach gives a simple expression (19) for the ratio of

infinite products of rather complex eigenvalues—solutions
of Eq. (21).

III. ONE-LOOP QUANTUM ENERGY FOR
ASYMPTOTIC BOUNDARY CONDITIONS IN

ONE-BRANE (L=∞) AND TWO-BRANE
(L < ∞) RS MODELS

A. One-brane RS model

In parallel with the elementary example of Sec. II we
apply the BN prescription [6–9] for the calculation of the
ratio of determinants of operator D̂ðpÞ (5) defined like in
[2] for the zero boundary condition at IR infinity (L ¼ ∞)
and for two double-trace asymptotics (3). Like in (12) the
ratio of determinants is equal to the ratio of Green functions
(7) taken at z ¼ z0 ¼ ϵ:

Detf2D̂ðpÞ
Detf1D̂ðpÞ¼

Gf1ðp;ϵ;ϵÞ
Gf2ðp;ϵ;ϵÞ

¼ I−νðpϵÞþ f̄1ðpÞIνðpϵÞ
I−νðpϵÞþ f̄2ðpÞIνðpϵÞ

·
1þ f̄2ðpÞ
1þ f̄1ðpÞ

≡Qðp;ϵÞ:

ð22Þ

f̄1;2 are defined in (7). For regular (f2 ¼ ∞) and irregular
(f1 ¼ 0) the asymptotics (3) ratio of corresponding deter-
minants (22) is equal to I−νðpϵÞ=IνðpϵÞ. This was the result
of “Remark B” in the Conclusion of [5].
For f̄1ð2Þ given in (7) Qðp; ϵÞ → 1 at p → ∞ [like ~Q0 in

(19)]. Then, the one-loop energy corresponding to the ratio
of determinants (22) is UV finite:

VðdÞ
f2

− VðdÞ
f1

¼ 1

2

Z
ddp
ð2πÞd lnQðp; ϵÞ < ∞: ð23Þ

This conclusion is not valid for ϵ ¼ 0 in (22), which is in
absence of the UV-brane screening AdS horizon. Thus here
again—like in a simple example of Sec. II [cf. (19)]—ϵ
plays a role of the UV regulator of UV divergencies of the
one-loop vacuum energy (23).
In paper [2] f2 ¼ f and f1 ¼ 0 (irregular asymptotic

boundary condition denoted by index “-”) were considered.
And from (22) and (23) it follows that

~VðdÞðfÞ≡VðdÞ
f −VðdÞ

−

¼−
Ωd−1

2ð2πÞdϵd
Z

∞

0

yd−1dyln

�
I−νðyÞþf̄ðy;ϵÞIνðyÞ
I−νðyÞð1þf̄ðy;ϵÞÞ

�
;

ð24Þ

wherey ¼ pϵ,Ωd−1 is thevolume of the (d − 1) sphere of the
unit radius, and the function f̄ðy; ϵÞ in (24) is easily seen from
the definition of f̄ðpÞ in (7): f̄ðy; ϵÞ ¼ fð2ϵÞ2νΓð1þ νÞ=
y2νΓð1 − νÞ. Thus, potential (24) is actually a function of
dimensionless double-trace parameter fϵ2ν.
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The formula for the difference of regular and irregular
one-loop energies VðdÞ

þ − VðdÞ
− follows from (24) when

f ¼ ∞:

VðdÞ
þ − VðdÞ

− ¼ Ωd−1

2ð2πÞdϵd
Z

∞

0

yd−1dy ln

�
I−νðyÞ
IνðyÞ

�

¼ 2 sinðπνÞΩd−1

ð2πÞdþ1dϵd

Z
∞

0

yd−1dy
IνðyÞI−νðyÞ

: ð25Þ

This expression differs from the ones, also different,
received for Vþ − V− with the standard procedure (8) in
[2–4] and in [5]. The visible drawback of formulas (23)–
(25) is in their zero value for integer ν. However, this is the
difficulty of the approach of papers [2–5] based upon
different asymptotics at z → 0 of Iν and I−ν coinciding at
the ν integer.
Again, in parallel with the simple example of Sec. II, it is

worthwhile to note that the nice GY formula (16) for the
ratio of determinants now takes the following form:

Detf2D̂ðpÞ
Detf1D̂ðpÞ ¼

ϵv0ðpϵÞ þ r2vðpϵÞ
ϵv0ðpϵÞ þ r1vðpϵÞ

; ð26Þ

and it exactly coincides with ratio (22) if we use in (26)
solutions of Eq. (5) determining Green functions (7), that is
if it is taken vðpzÞ ¼ zd=2KνðpzÞ and r1ð2Þ are built from
uf ¼ zd=2½I−ν þ f̄Iν� in a way similar to (20):

rϵ1ð2Þ ¼ −
ϵu0f1ð2Þ ðpϵÞ
uf1ð2Þ ðpϵÞ

¼ −
d
2
−
ϵI0−νðpϵÞ þ f̄1ð2ÞϵI0νðpϵÞ
I−νðpϵÞ þ f̄1ð2ÞIνðpϵÞ

:

ð27Þ

B. Two-brane RS model

The introduction of the IR brane at finite z ¼ L < ∞
does not make the task of the calculation of the one-loop
quantum energy too much more complicated than in the
case of the one-brane RS model considered above. The

Green function GðLÞ
f−rðp; z; z0Þ satisfying asymptotic boun-

dary condition (3) at z → 0 and a certain Robin boundary
condition zG0 þ rG ¼ 0 at z ¼ L is given by the expression
similar to (7) where zd=2KνðpzÞ must be changed to
function vrðpzÞ obeying the Robin boundary condition
zv0 þ rv ¼ 0 at z ¼ L:

vrðpzÞ ¼
π

2 sin πν
zd=2½I−νðpzÞ − γrðpLÞIνðpzÞ�;

γrðpLÞ ¼
Ar½I−νðpLÞ�
Ar½IνðpLÞ�

;

Ar½ψðpzÞ� ¼
�
d
2
þ r

�
ψðpzÞ þ zψ 0ðpzÞ: ð28Þ

Here for any value of the Robin parameter r: γrðpLÞ → 1,
vrðpzÞ → zd=2KνðpzÞ at L → ∞. Finally, the Green func-

tion GðLÞ
f−r is built from solutions of Eq. (5) vrðpzÞ (28)

and ufðpzÞ ¼ zd=2½I−νðpzÞ þ f̄IνðpzÞ� [like in (7)]:

GðLÞ
f−rðp; z; z0Þ ¼ −kd−1

ufðzÞvrðz0Þθðz0 − zÞ þ ðz ↔ z0Þ
u0fvr − ufv0r

¼ −
πkd−1ðzz0Þd=2

2 sin πν
·
½I−νðpzÞ þ f̄IνðpzÞ�½I−νðpz0Þ − γrðpLÞIνðpz0Þ�θðz0 − zÞ þ ðz ↔ z0Þ

γrðpLÞ þ f̄ðpÞ ; ð29Þ

where f̄ðpÞ and γrðpLÞ are defined in (7) and (28).
Thus, for L < ∞ the looked for ratio of one-loop

determinants of differential operator (5) determined by
two values of parameter f in the double-trace asymptotic
condition (3) is givenby a slightlymodifiedBNformula (22):

Detf2−rD̂ðpÞ
Detf1−rD̂ðpÞ ¼

GðLÞ
f1−rðp; ϵ; ϵÞ

GðLÞ
f2−rðp; ϵ; ϵÞ

¼ I−νðpϵÞ þ f̄1ðpÞIνðpϵÞ
I−νðpϵÞ þ f̄2ðpÞIνðpϵÞ

·
γrðpLÞ þ f̄2ðpÞ
γrðpLÞ þ f̄1ðpÞ

:

ð30Þ
Surely this expression for ratio of determinants is also given
by the rhs of GY formula (26) if vrðpϵÞ from (28) and rϵ1;2
from (27) are used in (26).
The visible feature of expression (30) is that its rhs

includes two factors: one depending only on ϵ and the other

one depending only on L. Therefore, one-loop vacuum

energy VðdÞ
f2−r − VðdÞ

f1−r corresponding to ratio (30) and given
by standard expression (9) consists of two terms depending
on ϵ and on L. In particular, taking in (30) f2 ¼ ∞ and
f1 ¼ 0 the following formula for the difference of regular
and irregular one-loop quantum energies is obtained in the
two-brane RS model:

VðdÞ
þðLÞ−VðdÞ

−ðLÞ

¼ Ωd−1

2ð2πÞd
1

ϵd

Z
∞

0

yd−1dy ln

�
I−νðyÞ
IνðyÞ

�

−
Ωd−1

2ð2πÞd
1

Ld

Z
∞

0

yd−1dy ln

�ðd
2
þ rÞI−νðyÞþyI−ν0ðyÞ
ðd
2
þ rÞIνðyÞþyI0νðyÞ

�
:

ð31Þ
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In receiving (31) from general formula (30) the definition of
γrðpLÞ given in (28) was used.
It is instructive to compare this result with the one-

loop quantum energy in the RS model calculated in [14]
and [15] where, not the asymptotic boundary condition
(3) but rather the Robin boundary condition with a fixed
Robin coefficient is imposed at z ¼ ϵ. Then, as it is
shown in [14] and [15], a UV-finite nonlocal term of the
one-loop quantum potential calculated for integer ν
includes dependence on lnðL=ϵÞ; hence, it gives hope
for the dynamical explanation of the large mass hier-
archy. There is nothing like this in expression (31). That
is, the one-loop potential calculated for an asymptotic
boundary condition cannot serve as a tool of stabilization
of the IR brane.

IV. CONCLUSION: SOME TASKS
FOR THE FUTURE

The main message of this paper perhaps may be
expressed in one word “simplicity.” The surprising
simplicity of the BN and GY methods of calculation
of quantum determinants hopefully opens new possibil-
ities in studying quantum effects in higher dimensional
models.
In particular, one-loop potential (24) as a function of

double-trace parameter fmay be of the Coleman-Weinberg-
type in certain Schwinger-Dyson gap equations determining
f self-consistently.
However, interesting results in this direction of thought

may be expected for integer ν when formulas of the paper
cannot be applied directly because Iν ¼ I−ν in this case. For
the ν integer Green function of differential operator D̂ðpÞ,
(5) may be easily constructed from solutions zd=2IνðpzÞ
and zd=2KνðpzÞ in direct analogy with (7). Correspondingly
the ratio of determinants of D̂ðpÞ (5) may be put down for
any boundary conditions at z ¼ L and at z ¼ ϵ using the
Barvinsky-Nesterov formula. Here the problem is in the
lack of a physically motivated analogy of an asymptotic
expression (2) when ν is the integer. Hence it is not clear in
case of integer ν what may be the analogy of function f̄ðpÞ
in (7) introduced in [2] in the case of noninteger ν.
Meanwhile, function f̄ðpÞ essentially determines the form
of the physically important potential (24) of the double-
trace parameter f.
Another possible field of future study is the construction

of the Schwinger-DeWitt expansion in the RS model on the
basis of BN or GY methods applied in this paper. In [5] it
was shown that in the one-brane RS model, the Schwinger-
DeWitt expansion for curvature in d space is plagued by
IR divergencies in higher terms of the expansion, and that
these divergencies are regularized in the two-brane RS
model, that is, when L < ∞. The same role of the term
depending on L in expression (31) may be expected. This is
the question for future research.
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APPENDIX: GY FORMULA AND CASIMIR
EFFECT IN ONE LINE

A short explanation of the Gelfand-Yaglom approach
was given in the Introduction. Here we demonstrate on
some examples that the GY method immediately gives
familiar results obtained conventionally in a rather lengthy
way. The examples considered below refer to flat
(dþ 1)-dimensional space and to an elementary differential
operator D̂0ðpÞ (10).
(1) Classical Dirichlet-Dirichlet problem (0 < z < L):

ϕð0Þ ¼ 0, ϕðLÞ ¼ 0. v ¼ C · sinhðpzÞ is a solution
of the following equation D̂0ϕ ¼ 0, satisfying the
boundary condition at z ¼ 0. Then, according to the
GY method, the “Dirichlet-Dirichlet” determinant
DetD−DD̂0 ∼ sinhðpLÞ. This yields an expression for
the quantum potential in d dimensions:

VðdÞ
D−D ¼ 1

2

Z
ddp
ð2πÞd ln½sinhðpLÞ�

¼ Aþ BL −
1

Ld

Ωd−1

ð2πÞd2dþ1d

Z
∞

0

yddy
ey − 1

;

ðA1Þ
where the volume of the sphere of the unit radius of
dimension zero must be taken equal to 2 (Ω1−1 ¼ 2);
A, B are irrelevant divergent constants. The last
term in (A1) which is UV finite and tends to zero

at L→∞ is the Casimir potential VðdÞ
CasD−D. It is easy

to check that (A1) gives its well-known [16] values

in (1þ1) and in (3þ1) dimensions: Vð1Þ
CasD−DL ¼

−π=24,Vð3Þ
CasD−DL

3¼−π2=1440 (for the electromag-
netic field this result must be multiplied by 2—the
number of polarizations of the electromagnetic
field).

(2) In the same way, the Casimir potential may be
calculated in the Dirichlet-Neumann problem
[DetD−ND̂0ðpÞ ∼ coshpL] and in many other prob-
lems. One of the striking examples of the power of the
GY method is the calculation of Casimir potential in
Md × S1 when z is a circle of length L ¼ 2πρ. In this
case, spectra of periodic (untwisted) or antiperiodic
(twisted) modes are found from the following equa-
tions: cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λn − p2

p
LÞ ¼ �1. Then according toGY,
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in the untwisted case, for example, DetuntwD̂ðpÞ∼
ðcoshpL−1Þ [DettwD̂ðpÞ∼ðcoshpLþ1Þ for twisted
modes]. The UV-finite term of vacuum energy,

VðdÞ
untw ¼ 1

2

Z
ddp
ð2πÞd ln½coshðpLÞ − 1�

¼ Aþ BL −
1

Ld

Ωd−1

ð2πÞdd
Z

∞

0

yddy
ey − 1

; ðA2Þ

gives, in particular, well-known results for d ¼ 1:
VCasuntw ¼ 4VCasD−D—cf. (A2) and (A1), and, for
the Casimir effect on torus in 5 dimensions, i.e., for

d ¼ 4: Vð4Þ
Cas untw · ρ4 ¼ −3ζð5Þ=ð2πÞ6, received in

[16] and [17] with rather complex calculations. It is
easy to get in the same way, well-known values of
the Casimir potential for twisted modes.

(3) The GY method also gives at once, the final formula
for the Casimir potential in the case of the general
mixed Robin boundary conditions imposed on

solutions of the following equation: D̂0ϕ ¼ λϕ, on
both borders z ¼ a and z ¼ b (prime means deriva-
tive over z):

ϕ0ðaÞ þ raϕðaÞ ¼ 0;

ϕ0ðbÞ þ rbϕðbÞ ¼ 0; ðA3Þ

where ra;b are Robin “masses.” vðzÞ ¼
ra sinh pðz − aÞ − p cosh pðz − aÞ is a solu-
tion of homogeneous equation D̂0v ¼ 0 obeying
Robin boundary condition at z ¼ a. Then, the
GY method says that DetD̂0 ∼ ðv0ðbÞ þ rbvðbÞÞ.
This gives straightaway for the Casimir
potential (which is a UV-finite term of
V¼ 1=2

R
ddp ln½v0ðbÞþ rbvðbÞ�) expression iden-

tically coinciding with the massless version of
formula (22) of paper [18] (after substitutions
p → x, b − a → a, ra → β−12 , rb → β−11 ).

The generalization of the above formulas for the case of
the massive scalar field is obvious.
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