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In this paper we will revisit the large N solution of the CPN sigma model on a finite interval of length L.
We will find a family of boundary conditions for which the large N saddle point can be found analytically.
For a certain choice of the boundary conditions the theory has only one phase for all values of L. Also, we
will provide an example when there are two phases: for large L there is a standard phase with an unbroken
Uð1Þ gauge symmetry and for small L there is a Higgs phase with a broken gauge symmetry.
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I. INTRODUCTION

The two-dimensional CPN sigma model in the large N
limit was first solved in [1,2]. The theory exhibits a plethora
of nontrivial properties: asymptotic freedom, confinement,
and dynamical scale Λ generation via the dimensional
transmutation:

Λ2 ¼ Λ2
uv exp

�
−
4π

g2

�
ð1Þ

where g is the coupling constant.
Physically, the 2D CPN model naturally arises as a low-

energy effective action of non-Abelian strings in QCD-like
models; see [3] for a review. Therefore, a finite interval
geometry corresponds to a string stretched between two
branes or a monopole-antimonopole pair. Such configura-
tion was studied in [4].
Recently the CPN sigma model on a finite interval of

length L with Dirichlet boundary conditions (BC) was
investigated in [5] and [6] using large N expansion. In the
earlier work [5] the large N saddle-point equations were
solved only approximately and two distinct phases were
found. In [6] saddle-point equations were solved numeri-
cally and it was argued that there is only one phase. In this
paper we will find a set of boundary conditions for which
the saddle-point equations can be solved analytically.
Strictly speaking, we will study the CP2N sigma model.
We will consider two different boundary conditions:

(i) Mixed Dirichlet-Neumann(D-N) boundary condi-
tions which will break global SUð2N þ 1Þ to
SUðNÞ × SUðNÞ. We will show that the system
has at least two phases: for L > π=4Λ there is a
standard “Coulomb” phase with an unbroken Uð1Þ
gauge symmetry. This phase takes place for the CPN

model on usual R2. For L < π=4Λ there is the
“Higgs” phase with broken Uð1Þ. Global SUðNÞ ×
SUðNÞ stays unbroken in both phases.

(ii) Dirichlet-Dirichlet and Neumann-Neumann (D-D
and N-N) boundary conditions which will break
SUð2N þ 1Þ to SUðNÞ × SUðN þ 1Þ. In this case,
for all values of L there is a standard phase with an
unbrokenUð1Þ gauge symmetry. The Higgs phase is
prohibited in this case, because it will break global
SUðNÞ × SUðN þ 1Þ to SUðNÞ × SUðNÞ.

Themainmotivation of the present paper was to demonstrate
that the phase structure is very sensitive to the amount of
symmetries preserved by the boundary conditions. Since in
two dimensions spontaneous symmetry breaking cannot
occur, we can have more than one phase only if the
corresponding symmetry which distinguishes these two
phases is already broken at the boundary. Two exactly
soluble examples considered in this paper support this claim.
As was mentioned before, simple Dirichlet-Dirichlet

boundary conditions have been already studied in [5,6]
and the conclusions obtained in these two papers were
contradictory. In [6], the CPN sigma model on a finite
interval was studied numerically, and the result is quite
surprising: authors claim that they see no difference
between the Dirichlet-Dirichlet and Neumann-Neumann
boundary conditions [7]. It seems strange, since the N-N
boundary conditions do not break SUðN þ 1Þ global
symmetry, whereas D-D boundary conditions do break
it. Although the solution found in the original paper [5] was
only an approximate solution, we expect that the conclu-
sion obtained there is correct, and the CPN sigma model
with D-D [8] boundary conditions does have a phase
transition, contrary to the results of [6]. Finally, let us note
that the large N CPN model on a cylinder also possesses
multiple phases [9].

II. GENERALIZED SADDLE-POINT EQUATIONS

Let us study the CP2N model in the large N limit. The
field content consists of 2N þ 1 fields ni; i ¼ 0;…; 2N,
real vector field Aμ and real scalar λ. In the Euclidean space
the Lagrangian reads as*milekhin@princeton.edu
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L ¼ ðDμniÞ�ðDμniÞ þ λðn�ini − rÞ ð2Þ

where Dμ ¼ ∂μ − iAμ, μ ¼ t, x, and r ¼ 2N=g2. The time
coordinate t takes values from −∞ to þ∞ and x ∈ ½0; L�.
Nondynamical Lagrangian multipliers Aμ and λ force ni

to lie on CP2N space: integration over λ yields
P

in
�ini ¼ r

and Aμ is responsible for Uð1Þ invariance ni ∼ eiϕni.
We will proceed in a standard fashion: we will integrate

out 2N fields ni; i ¼ 1;…; 2N fields and then find the large
N saddle-point values of λ, Aμ and the remaining n0 which
we will denote by σ ¼ n0. After integrating out 2N ni,
fields we have

Seff ¼ tr logð−D2
x −D2

t þ λÞ þ
Z

d2xððDσÞ2

þ λðjσj2 − rÞÞ: ð3Þ
So far we do not have a factor of 2N in front of the
determinant because we will impose different boundary
conditions for these 2N fields.
We will study this model on a finite interval of length L

with various boundary conditions. Note that the transla-
tional symmetry in the x direction is explicitly broken.
However, we still have the time translations so we will
consider only time translation invariant saddle points. By
the choice of gauge we can always set At ¼ 0. This allows
us to rewrite Eq. (3) as

Seff ¼
X
n

En þ
Z

d2xððDxσÞ2 þ λðjσj2 − rÞÞ: ð4Þ

Note that we have already integrated out time frequencies,
so we have energies En instead of of the usual log det.
The sum over n is the sum over the eigenvalues E2

n of the
following equation:

ð−D2
x þ λðxÞÞψn ¼ E2

nψnðxÞ ð5Þ

ψn are required to be normalized.
Varying effective action (4) with respect to λ we get the

first saddle-point equation:

1

2

X
n

jψnðxÞj2
En

þ jσðxÞj2 − r ¼ 0: ð6Þ

To obtain this equation we have used the standard quantum
mechanical first order perturbation theory for (5).
The second saddle-point equation coincides with the σ

equation of motion:

D2
xσ − λðxÞσ ¼ 0: ð7Þ

Finally, we have to vary with respect to Ax:

i
2

X
n

ψnðDxψnÞ� − ψ�
nDxψn

En
¼ iσðDxσÞ� − iσ�nDxσn ð8Þ

Below wewill study the case Ax ¼ 0with real ψn and σ and
so this equation will be trivially satisfied.

III. D-N BOUNDARY CONDITIONS:
TWO PHASES

Now it is time to choose boundary conditions. Let us
consider the following: ForN fields ni; i ¼ 1;…; N wewill
use Dirichlet-Neumann:

nið0Þ ¼ 0; DxniðLÞ ¼ 0: ð9Þ

And for N fields ni; i ¼ N þ 1;…; 2N we will use
Neumann-Dirichlet:

Dxnið0Þ ¼ 0; niðLÞ ¼ 0: ð10Þ

And for σ we will impose Neumann-Neumann:

Dxσð0Þ ¼ DxσðLÞ ¼ 0: ð11Þ

This choice breaks global SUð2N þ 1Þ to SUðNÞ × SUðNÞ.
Then in the D-N sector we have

ψnðxÞ ¼
ffiffiffiffi
2

L

r
sin

�
πxðn − 1=2Þ

L

�
;

E2
n ¼

�
πðn − 1=2Þ

L

�
2

þ λ; n ¼ 1;… ð12Þ

In the N-D sector:

~ψnðxÞ ¼
ffiffiffiffi
2

L

r
cos

�
πxðn − 1=2Þ

L

�
;

E2
n ¼

�
πðn − 1=2Þ

L

�
2

þ λ; n ¼ 1;… ð13Þ

If we plug this into the first-saddle point equation (6) we
will notice that sin2 and cos2 will sum up to 1 and the x
dependence will disappear.. So we can consider σ to be
constant. Let us first study the phase with nonzero λ. From
the second saddle-point equation (7) we see that we have to
put σ ¼ 0. We will call this phase “Coulomb” phase
because ni has zero vacuum expectation value (vev) leaves
the Uð1Þ unbroken.
The first saddle-point equation now reads as

N
π

X∞
n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1=2Þ2 þ ðλL=πÞ2

p − r ¼ 0: ð14Þ
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We need to separate the divergent part:

N
π

X∞
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 1=2Þ2 þ ðλL=πÞ2
p −

1

n

�

þ N
π

X∞
n¼1

1

n
− r ¼ 0: ð15Þ

Introducing the cutoff,

X∞
n¼1

expð−nπ=LΛuvÞ
n

¼ − logð1 − expð−π=LΛuvÞÞ ≈ − logðπ=LΛuvÞ ð16Þ

Renormalizing r using Eq. (1) we will have

X∞
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn − 1=2Þ2 þ ðλL=πÞ2
p −

1

n

�
¼ logðπ=ΛLÞ: ð17Þ

Now it is easy to see the presence of two phases: the
maximum of the left-hand side is reached when λ ¼ 0, the
corresponding value is

X∞
n¼1

�
1

n − 1=2
−
1

n

�
¼ logð4Þ: ð18Þ

It means that if logðπ=ΛLÞ > logð4Þ the saddle-point
equations do not have a solution with nonzero λ.
Let us consider the limit L → 0. We can expand the left-

hand side in power series in λL:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1=2Þ2 þ ðλL=πÞ2

p

¼ 1

n − 1=2
− 4

�
λL
π

�
2 1

ð2n − 1Þ3 þ… ð19Þ

Using the following identity,

X∞
n¼1

4

ð2n − 1Þ3 ¼
7

2
ζð3Þ ð20Þ

we have

7ζð3Þ
2

�
λL
π

�
2

¼ logð4ΛL=πÞ: ð21Þ

We see that the Coulomb phase does not exist for
L < π=4Λ.
Let us now show that the Higgs phase σ ¼ const, λ ¼ 0

exists only for L < π=4Λ. We call this phase Higgsbecause
nonzero σ breaks Uð1Þ gauge symmetry. In this case the
second saddle-point equation is satisfied. The first one
reads as

N
π

X∞
n¼1

�
1

n − 1=2
−
1

n

�
þ σ2 ¼ N

π
logðπ=ΛLÞ: ð22Þ

Again using Eq. (20) we have

σ2 ¼ N
π
logðπ=4ΛLÞ: ð23Þ

IV. D-D AND N-N BOUNDARY CONDITIONS:
ONE PHASE

Instead of the D-N and N-D boundary conditions let us
investigate the case with Dirichlet-Dirichlet and Neumann-
Neumann boundary conditions. As we will see shortly, the
Coulomb phase is possible for all values of L. For the D-D
case we have the following set of eigenfunctions:

ψnðxÞ ¼
ffiffiffiffi
2

L

r
sin

�
πxn
L

�
;

E2
n ¼

�
πn
L

�
2

þ λ; n ¼ 1;… ð24Þ

And for N-N,

ψnðxÞ ¼
ffiffiffiffi
2

L

r
cos

�
πxn
L

�
;

E2
n ¼

�
πn
L

�
2

þ λ; n ¼ 0;… ð25Þ

Note that now we can have n ¼ 0 which corresponds to a
constant mode. Moreover if λ ¼ 0 we have a genuine zero
mode. It means that the Higgs phase with λ ¼ 0 cannot
exist for this choice of boundary conditions. In the saddle-
point equations cos2 and sin2 again sum to 1, so we can
have a saddle point with constant σ and λ. From now on, we
will assume that λ ¼ const ≠ 0. Then from the second
saddle-point equation it follows that σ ¼ 0. The first
saddle-point equation now reads as

N
π

X∞
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ ðλL=πÞ2
p −

1

n

�
þ N
λL

þ N
π

X∞
n¼1

1

n
− r ¼ 0:

ð26Þ

After r renormalization we have

N
π

X∞
n¼1

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ ðλL=πÞ2
p −

1

n

�
þ N
λL

¼ N
π
logðπ=ΛLÞ:

ð27Þ

Unlike the D-N and N-D case now the left-hand side is
not bounded from above because of the N

λL term, which is
essentially the contribution from the N-N constant mode.
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It easy to show that for a fixed Λ and L we can always find
the corresponding value of λ (for example one can plot the
left-hand side as a function of λ and see that it takes values
from −∞ to þ∞).

V. CONCLUSION

In this paper we studied the large N CPN model on a
finite interval. We have shown that for a specific choice of
boundary conditions the saddle-point equations admit a
simple analytical solution. Under the Dirichlet-Dirichlet
and Neumann-Neumann boundary condition the system
possesses a Coulomb phase with the uniform λ vev, usual
for the CPN in the infinite space. This phase exists for all
values of the interval length L. However, under the mixed
Dirichlet-Neumann boundary conditions the system has

two phases: the Coulomb phase which exists for L > π=4Λ
and the unusual Higgs phase for L < π=4Λ with the
uniform n0 vev. Strictly speaking, it is possible to have
additional phases with nonconstant vev’s, similar to the
FFLO [10,11] phase in superconductivity. It is even
possible that the Coulomb and Higgs phases in the N-D
case are not adjacent on the phase diagram because of the
presence of additional phases. We will postpone this
analysis for future work.
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