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Analysis of the wave equations for the near horizon static isotropic metric
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We find that, for the near horizon static isotropic metric, all of the massless field equations of the spin < 2
have the same characteristic: they can be reduced to the Fuchsian-type equation with three regular singular
points. Three general solutions, corresponding to different parameter values, are obtained. Two of the
solutions have discrete imaginary frequencies. Based on the results above, we obtain exact formulas for
the quasinormal modes of the Rindler-type spacetime. We also derive an elegant wave equation, which is
the fundamental formula of the perturbation theory for general static spherically symmetric spacetime.
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I. INTRODUCTION

Black hole perturbation theory is one of the most
important fields of black hole physics. It began to develop
in 1957 under the influence of Regge and Wheeler’s work
[1]. Now the study of black hole perturbation involves the
quasinormal modes [2—4], stability [5,6], scattering [7,8],
gravitational waves [9,10], the Hawking effect [11,12],
statistical entropy [13—16], etc. An exhaustive review of the
methods and results of this stage of the theory can be found
in the well-known literature by Chandrasekhar [17], Nollert
[18], Kokkotas and Schmidt [19], Berti et al. [20], and
Konoplya and Zhidenko [21].

As already mentioned, the content of black hole pertur-
bation theory is very rich. No matter what people want to do,
they have to start with wave equations. Hence, wave
equations are fundamental for perturbations. In 1973,
Teukolsky [22] provided an elegant and very useful master
equation for the massless scalar, the Weyl neutrino, electro-
magnetic, and gravitational fields in the Kerr spacetime. The
discovery of Teukolsky is a milestone in black hole pertur-
bation theory; since, not only can the equation separate
variables, but it can also have very close relations with special
equations. The method of Teukolsky has been extended to
various spacetime backgrounds [17,21] through the years.

On the other hand, quasinormal modes have played a
central role in black hole perturbation theory for over
50 years. Various arguments were given that a black hole
has the characteristic oscillations. However, despite exten-
sive discussion, the experimental investigation of the phe-
nomenon would seem to be virtually impossible. There is a
window of observation for analogue black holes in labo-
ratories, such as acoustic, or “dumb,” black holes [23,24]
and condensed-matter analogue black holes [25,26].
Therefore, a fundamental physical issue is how to establish
arelation between real black holes and analogue black holes.

It is obvious that some properties of the acoustic black
hole and Rindler spacetime may be observable in
laboratories on Earth. Of special interest is that the metrics
effectively have the same form as that near the event
horizon of static spherically symmetric black holes.
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This means that the properties of the physics near the
event horizon of the black hole may be simulated via
acoustic black holes or Rindler spacetime. Hence, the wave
equation and its solutions near the horizon are of founda-
tional interest in both black hole perturbations and exper-
imental observation. In this paper we investigate these
equations and solutions using analytical methods.

The paper is organized as follows. In Sec. II we derive
the wave equation governing massless fields of all spins
(s=0,1,1/2,1,3/2, and 2) in a general static spherically
symmetric spacetime. In Sec. III we find the solutions of
the wave equation near the event horizon, and discuss the
asymptotic behavior of the wave function. In Sec. IV we
show that the results can be applied to Rindler-type
spacetime, and obtain exact formulas for the frequencies
of the quasinormal modes. Finally, Sec. V contains a further
discussion and some concluding remarks.

II. GENERAL WAVE EQUATION
A general ansatz for static isotropic metric is given by
ds> = B(r)dt*> — A(r)dr* — C(r)(d6* + sin? 0dgp?). (2.1)

Which can describe various static spherically symmetric
spacetimes, for instance, the Schwarzschild, Reissner-
Nordstrom, Barriola-Vilenkin [27], quintessence [28],
Rindler [29], and (anti-) de Sitter spacetime backgrounds
or any combination of these.

To study the nature of spacetime, for the metric (2.1), we
introduce a null tetrad of basis vectors, l#, n,, m, , and m,
as follows:

)
o).
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The tetrad consists of two real null vectors, [, and n,,, and a
pair of complex null vectors, m, and my, which satisfies the
orthonormal conditions, [,n* = —m,m" =1, and [, I* =
n,n* = m,m" = m,m" = 0. Using the metric (2.1) and
null tetrad (2.2), the spin coefficients [for definition see
Eq. (Al)] can be written as

k=oc=v=A=n=17=0,

_ VABC' 1 C
2 ¢ MTTaavaBcC
VAB <A’ n B’) 1 A’
e=—|—+—, = — -,
2 \4 ' B = T 4AVABA
1
a=—f =———cotd, 2.3
f WeTe (2.3)

where the prime denotes the derivative with respect
to r.

According to the geometrical interpretation of spin
coefficients [17], the vanishing of x is the condition for
the integral curves of /# to be geodesic, while, if ¢ is also
zero, this congruence of geodesics is shear free. The same
role is played by v and A for the n*-congruence. From the
shear-free character of these congruences, we can conclude
on the basis of the Goldberg-Sachs theorem [30] that the
general static spherically symmetric spacetime is of
Petrov type D. The Weyl scalars [for a definition see
Eq. (A2)], wo, w1, w3, and w4 must, therefore, vanish in the
chosen basis. The Weyl scalar y, does not, however,
vanish. From which, by satisfying the spin-coefficient
equations [31], we calculate the Weyl scalar y, and the
Ricci scalar R as follows:

| [A'B AC BC (B2
%__m[AB ~"ac T BC +<E>

C/ 2 B// C// 1
—2(=) —2=—42=—| -——. 2.4
(&) 2%+ o
Ro L[L(BY L(ABN 1(C\ aC
T A2\B 2 \ AB 2\ C AC
B/c/ BII CII 2
2|42, (2.5)
BC B C c

Now we will consider the perturbation equation for
fields of various spin for s <2 on the general static
spherically symmetric background. In general, the field
equations of spin 1/2, 1, 3/2, and 2 are not accurately
separable, but in all of the type-D metrics, the massless field
equations of spin 1/2, 1,3/2, and 2 can be decoupled in the
case of perturbations [32-34], and the equations for the
source free case can also be combined into [14,33] (see
Appendix B)
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{[D-(2s=1)e+&—2sp—p|(A—2sy+ )
—[6+7m—a—(2s—1)p—2s7](6 + 7 —2sa)
25— 1)(s - D2}, =0,
{[A+ (2s=1)y =7+ 2su+ a)(D + 2se — p)
—[6=74+p+ (25 = Da+ 2s7](8 — 7 + 2sp)
—2s=1)(s=1yr}®_ =0, (2.6)

where D, A, and 6 are the directional derivatives defined by

D =10

2 A = n”a/,“ 5 - mﬂaﬂ. (2.7)

In Eq. (2.6) the first equation is for the spin states of p = s,
while the other one is for p = —s.

A straightforward computation, using the spin coeffi-
cients, Weyl scalar, Ricci scalar, and directional derivatives
is written down in Egs. (2.3)—(2.5) and (2.7), and makes the
transformations

O, = CP=)2y | (2.8)
Eq. (2.6) has the compact form
1
{(w + pI*)(V, + pT,) — 4p2y, + ER} ¥Y,=0, (29
where
)
2VAB\B C
1 A B C
[M=—(2—4+—=—-——
2A < A * B C)’
Y =0,
1 icos@

This general result [Eq. (2.9)] is consistent with the
conventional theory of Dirac particles, as of course it had to
be. In particular, when the metric of Eq. (2.1) respectively
describes the Schwarzschild, Reissner-Nordstrom, and
Reissner-Nordstrom-de Sitter spacetime, Eq. (2.9) reduces
to the results of Refs. [14,16,22] in the case of a = 0.
Evidently, when p = 0, Eq. (2.9) is just the (conformally
invariant) massless scalar field equation. Therefore,
Eq. (2.9) governs not only the massless fields of spin
1/2,1,3/2, and 2, but also the scalar field. Equation (2.9) is
the fundamental formula of the perturbation theory for
arbitrary static spherically symmetric spacetime.
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III. ANALYTICAL SOLUTIONS OF THE GENERAL
WAVE EQUATION NEAR THE HORIZON

The exact solution of Eq. (2.9) has the form

¥, = e 'S(0,¢)R(r). (3.1)
Notice that the angular part of the wave function, S(6, ¢), is
the same for all spherically symmetric metrics, which is a
spin-weighted spherical harmonic [35]; the actual shape of
the metric functions affects only the radial part of the wave
function R(r).

If only considering a nonextremal case, in the vicinity of
the horizon, the metric functions should have the form

B(r)~ (B),,(r=ru),

1
O

C(r) =~ Cyr?, (3.2)

where ry is the horizon radius, and C, is constant. If we
introduce the dimensionless variable

z—1—r7H, (3.3)

in terms of z, the radial wave equation in the vicinity of the
horizon takes the form

< r L row|Re =0 (4)
= e z 7) =0, :
where
A A
P(7) =L
(2) e
B, B, ¢ G
= —+ , 3.5
06 =T+t L 69
with
A =p+1, Ay =-CBp+1),
o\ (o
5= (5) - (5)
2p+1 NEAR
B, =(2p+1)(p+ )<ﬂ> +1P<2—)’
w2 c
Ci=-C, 2,<> +((p+12p+ )<3 6Kr)
cA?
ot (3.6)

Here, c is a constant, x (in Secs. IIT and IV) is the surface
gravity of the horizon, A (in Secs. III and IV) is the
separation constant, given by
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F A)/VH
_1
2 r”
I +p+1 (3.7)

where [ is a positive integer satisfying the inequalities
of [ >s.

Equation (3.4) is of the Fuchsian type, which has three
regular singular points, located at z =0, 1, and oo. Note
that z = oo is unphysical. The local exponents at these
points are respectively

w

;=i ﬂl——P—lz—Ks (3.8)
[ w
:2 1—.— — 1 | — 3
129) p+ l2K" ﬂZ p+ +Z2K’ ( 9)

R

~ (4@ 1) (35 ) -

R

—(p+D)(2p+1) <;+6KCrH> -

Note that the sum of the exponents is equal to the
number of regular singular points minus 2, namely,

(ay + 1) + (@ + Bo) + (a3 + p3) = 1.
The set of all solutions of Eq. (3.4) is denoted

0 1 o
R(z)EPL oy ay a3, 2

b B P

(3.11)

This notion is called the Riemann’s P symbol.
In a neighbourhood of z = 0, the general solution has the
form

R(z) =Dz (1 = 2)2F(a; + ap + a3, + ar + 53, 1

+ay = f1,2) + Dot (1 = 2)F(ay + a3 + fr,
+p+ P31 —a + B, 2), (3.12)
where F(a,f,y,z) is the hypergeometric function and
D, and D, are arbitrary constants. It is assumed that the

1 4+ a; — f; is not an integer. If in which case it is a positive
integer, the general solution takes the form
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R(z) =z"(1—2)®[DF(oy + &y +a3,a1 + ap + f3, 1
+a;—1.2) + D:G(ay + oy + a3, 01+ + f3, 1
+ay = p1.2)], (3.13)

while when the 1 + a; — f#; is zero or a negative integer, it
becomes

R(z) = 2P1(1 - 2)%[D F(ay + a3 + fr.ap + 1 + f5. 1
—ay; +$1,2) + DG + a3 + fr.ap + fi + P, 1
—ay + f1,2)]. (3.14)

Here the function G is defined by

G(a,f.y.z) = F(a.p,y.z)Inz

3 Oyt 4y 0

k
—y(y + k) —w(l + k)2, (3.15)
where y(a) is the Euler psi function.

It should be noted that the integer values of 1 4+ a; — 3,
lead directly to an exact determination of the frequencies as
follows

w=1i(l+p—-mkx, m=0,+£1,£2,..., (3.16)
which shows that, in this case, w takes only discrete
imaginary values.

When the value of 1 + a; — f#; is not an integer, adopting
the Eddington-Finkelstein null coordinates v, u is conven-
ient in discussing the asymptotic behavior of the wave
functions, which take the form

v=1+r,, u=t-—r,

(3.17)
and satisfy
(3.18)

dHvd,v =0, Hud,u = 0.

Here r, is called the tortoise coordinate. Its exact form
depends on the metric functions near the horizon, but with

suitable choices for the integration constants, we find that

r—ry

(3.19)

ry = —

'y

The solution of Eq. (3.12) can easily be seen in terms of
the tortoise coordinate r, when z — 0 takes the form

R(r,) = Dye'®" 4 Dye~(Gkptio)r. (3.20)
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Therefore, in the Eddington-Finkelstein null coordinates,
the time-dependent radial wave function can be written
R(v,r,) = D¢~V 4 D, e 2Pk g=i0v, (3.21)
In Eq. (3.21), the first term is the outgoing wave, and the
second term is the ingoing wave. From the outgoing wave,
one can easily obtain the Hawking radiation spectrum [12].

Of special interest is that the amplitude of the ingoing wave
is obviously dependent on the spin state.

IV. EXACT QUASINORMAL MODES
FOR RINDLER-TYPE SPACETIMES

In terms of the metric functions in the vicinity of the
horizon, given by Eq. (3.2), the metric is of the form

ds®> = Q| 2k (r—ry)ds® dr’ r2(d92+sin29d 2)
B H 2k(r—ry) c |
(4.1)
where Q = ,/(B'),, /(%) which does not affect wave
equation.

When the metric of Eq. (4.1) describes the near horizon
various static spherically symmetric spacetimes, we have
tacitly assumed that ry > 0. If ry is an arbitrary real
constant (except ry = 0), the metric not only describes the
special quintessence [28], conformal gravity [36], and
Rindler [29] spacetimes, but also the acoustic black hole
for the scalar field. In this paper, they are collectively called
Rindler-type spacetimes.

Note that, for Rindler-type spacetimes, the solutions of
Egs. (3.12)—(3.14) are exact without any approximation at
all. In other words, the wave functions, described by
Egs. (3.12)—(3.14), are valid in the total space. From which
one can discuss various problems of the spin fields on the
backgrounds. However, here, we focus our attention on the
quasinormal modes.

Quasinormal modes are solutions of the wave equation,
satisfying specific boundary conditions at the horizon and
at spatial infinity. Similar to asymptotically flat and de
Sitter spacetimes, for Rindler-type spacetimes we naturally
suppose that

R(r,) ~e* @ (r, - +o0), (4.2)

Therefore, we must select a solution that is ingoing near

the event horizon z = 0. This corresponds to

R(z) = Dy’ (1 = 2)2F(ay + a3 + f1. ap + fy

+ps. 1 —ay + pi.2). (4.3)

At a large r, the solution behaves like:
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T(1—a; + )T (B — )
F(l-—a —a-—a)l'(1 —a; —ay — p3)
U(1—a; + )0 (0, — f>)
L(ay +as + )y + By + B3)
(4.4)

R(z) ~ (1 -2)®

+ (1 =2

If requiring R(z) to match the boundary at infinity, we
must set

(l2+(l3 +ﬁ] = —n,

or o +ﬁ1 —|—ﬂ3:—n, n:O,l,Z,..., (45)

which leads directly to the frequencies of quasinormal
modes as

w = —ik<n+%> irc[(p+ )2p + 1)<%+6KCI”H>
+c(l—p)(l+p—|— 1) <p+1)2}%‘

2kry 2

(4.6)

The wave function is therefore not a pure oscillation,
for @ is complex. It is seen from Eq. (4.6) that the
imaginary part of @ leads to an exponentially decreasing
function of time. The damping factor is only the function
of the surface gravity. The real part of Eq. (4.6) corre-
sponds to the oscillatory factor in the wave function. The
oscillation frequency not only depends on the character-
istics of the metric, but also the characteristics of the
particle.

V. DISCUSSION AND CONCLUSION

We have derived the wave equation governing massless
fields of arbitrary spin of s <2, from which, one can
investigate the perturbations of all static spherically sym-
metric spacetimes.

We have found that, in the vicinity of the horizon, the
wave equation can be reduced to the Fuchsian-type
equation with three regular singular points. There are three
different solutions that correspond to the three kinds of
1 + a; — f;: the non-integer, positive integer, and zero or
negative integer. The integer values of 14 a; — f; lead
directly to the discrete imaginary frequencies of Eq. (3.16).
This is a very interesting result, because in general, the
discrete values of the frequency emerged as a rather
technical consequence of the boundary conditions on the
solutions to the wave equation. However, in this special
case it is not necessary to introduce the boundary con-
ditions. Remembering that ¥, ~ e~™! hence negative m
means an instability.

Using the solutions near the horizon, we have obtained
exact frequencies of the quasinormal modes for the
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Rindler-type spacetimes, which are two complex conjugate
values. The real part is the oscillation frequency of the
mode, and the imaginary part is proportional to its damping
rate. In Eq. (4.6), the negative imaginary part means that the
wave function is damped.
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APPENDIX A: SPIN COEFFICIENTS
AND WEYL SCALARS

The 12 spin coefficients are defined by [17,37]

— v j— Y U
k= V,l[,m'l, A==V, n,m'm",

c= Vyl”m“m”, V= —Vun”rh”n”,
p = V,l,m'n", =V, l,m'n",

u= —Vbn”n"a”m”, = —V,,n”m"l",

a=~(V,Ln'm" =V, m,m'm"),

p=

(V[ ntm* =V, m, mtm"),

y =5V n'n" =V, m,m'n"),

= M) = D] = N =

€= (A1)

3 (Vin'l¥ =V, m,mtl").

The five Weyl scalars are defined by [17,37]

Yo = _C;wpﬁlﬂmylpmgv
Vi = _Cﬂv/mlﬂnylpmo—v
1
Wy = —ECﬂypg(l“n”l/’n" — Fn*m’m?),
w3 = —Cpppem'n"ln?,

(A2)

w3 = —Cpppem'n"m’n’,

where C

wpo 18 the Weyl tensor, which satisfies

R

1
uvpe — C/w/)a + 5 (g/,tpRmr - g/wRyp - gzpr/w + gl/O'Rﬂ/)>

1
+ 6 (gpmguﬂ - gu/)gmr)R' (A3)

APPENDIX B: SPIN FIELD EQUATIONS

The Weyl neutrino satisfies the wave equation [38]

VauPA =0, (B1)
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where P4 is the two-component spinor, V 4, is the symbol
for the covariant spinor differentiation. Equation (B1)
can be written in the Newman-Penrose formalism in the
form

(D+e—p)P° + (6+7—a)P' =0,
(6+p—7)P°+ (A+pu—y)P' =0. (B2)

In type-D spacetime, the equation can be decoupled
into [37]

(D+e-p=p)(A-y+u)
—(f-—a—-t+a)(6—a+x)|P,, =0,

[(A=7+u+a)(D+e-p)
—G+p+r-7)(5+p—1)]P_1 =0, (B3)

with q)+1/2 = P1 and q)—l/Z = —PO.

Similarly, the equations of the electromagnetic (s = 1),
the massless Rarita-Schwinger (s = 3/2), and the gravita-
tional (s = 2) fields on any type-D spacetime background
can also be decoupled. For the source free case, they are
given by [34,37]

PHYSICAL REVIEW D 95, 085017 (2017)
(D-e+&=2p—p)(A=2y+p)
—(+r—a—-p-27)(0+7r—2a)® =0,
[(A+y=7+2u+p)(D+2e—p)
~[6=7+B+a+2n)(6—7+2p)D_ =0. (B4)

[D—-2e+&-3p—p)(A—=3y+u)
—(+m—a—2p-37)(6+x—3a) —y,]P,3, =0,
[(A+2y —7+3u+pa)(D+3e-p)
—(6-7+p+2a+37)(5 -7+ 38) —wa® 3, = 0.
(B5)
[(D—3e+e—4p—p)(A—4y+u)
—(6+ma—a—-3B-47)(6+ 7 —4a) = 3y, )P, =0,
[(A+3y =7 +4u+p)(D+4e-p)
—[6—=7+p+3a+4x](6— 7 +4p) = 3y, )0, = 0.
(B6)

In fact, we can combine Eqgs. (B3)-(B6) into a single
statement: Eq. (2.6).
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