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Assuming only statistical mechanics and general relativity, we calculate the maximal temperature of gas
of particles placed in anti–de Sitter (AdS) spacetime. If two particles with a given center of mass energy
come close enough, according to classical gravity, they will form a black hole. We focus only on the black
holes with a Hawking temperature lower than the environment, because they do not disappear. The number
density of such black holes grows with the temperature in the system. At a certain finite temperature, the
thermodynamical system will be dominated by black holes. This critical temperature is lower than the
Planck temperature for the values of the AdS vacuum energy density below the Planck density. This result
might be interesting from the AdS/CFT correspondence point of view, since it is different from the
Hawking-Page phase transition, and it is not immediately clear what effect dynamically limits the maximal
temperature of the thermal state on the CFT side of the correspondence.
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I. INTRODUCTION

In simple thermodynamics based on classical mechanics,
there is no maximal temperature that a system cannot
surpass. This fact does not change even with the inclusion
of special relativity. When gravity is included, it is usually
believed that the maximal temperature that makes sense
talking about is the Planck temperature [1]. However, this is
an arbitrary cutoff, and it does not follow from dynamics.
Then in [2], it was demonstrated that there exists a maximal
achievable temperature in a system where particles obey the
laws of (quantum) statistical mechanics and classical grav-
ity. Namely, if two particles with a given center of mass
energy come at a distance shorter than the Schwarzschild
diameter apart, according to classical gravity, they will form
a black hole. It is possible to calculate that a simple
thermodynamical system will be dominated by classical
black holes at a critical temperature, which is about 3 times
lower than the Planck temperature. That represents the
maximal achievable temperature in a simple thermodynam-
ical system.
Calculations in [2] were performed for the gas in the flat

spacetime. The aimof this paper is to study a related question
in anti–de Sitter (AdS) spacetime. There are two crucial
differences between the situations in flat and AdS space-
times. First, the energy density of a gas of particles in AdS
space depends on the energy spectrum of particles placed in
the curved AdS background, which depends on the solution
to the equation of motion in this background. Second, the
metric for a black hole in an asymptotically AdS space is
different from the metric in the flat space. Both of these
properties crucially depend on the AdS radius. Thus, we
expect the maximally achievable temperature to be AdS

radius dependent too. In the following sections, we first
discuss the thermodynamics of the gas and the black hole
solution in AdS spacetime. We then give a condition for the
production of a black hole in a collision of two particles in an
AdS background. We define the critical temperature at
which the number density of created black holes (colder
than the temperature of the gas) is greater than the number
density of the particles. We finally numerically calculate the
critical temperature as a function of the AdS radius.
We emphasize the difference between the effect we

present here and the well-known Hawking-Page first order
phase transition for thermal gravity in AdS space [3]. The
Hawking-Page effect is a transition between the thermal
gas and a single black hole placed in AdS space which,
from the AdS/CFT correspondence point of view, can be
interpreted as the confinement-deconfinement phase tran-
sition in the gauge theory [4]. Hawking and Page found the
limiting temperature below which the black hole cannot
exist and the system is dominated by the gas, and the
temperature above which the black hole is strongly favored
and the gas is prone to gravitational collapse. To calculate
these temperatures, they considered equilibrium configu-
rations between the gas and a single black hole in AdS
space using global macroscopic quantities like entropy and
free energy. In contrast, our black holes are produced in
microscopic collisions of two particles. As a consequence,
they could be produced even if they are not thermody-
namically favorable. Our definition of the critical temper-
ature is also different. Our system breaks down when we
have more microscopic black holes than particles per unit
volume, while the Hawking-Page critical temperature is
dictated by the equilibrium between the gas and a single
large black hole. Finally, our effect is present even in flat
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spacetime [2], while the Hawking-Page effect crucially
relies on the natural box that AdS space provides and
allows for the black hole-gas equilibrium. Thus, in this
paper, we are describing related, but substantially different
phenomenon.

II. PARTICLE ENERGY IN ADS SPACE

The metric of the anti–de Sitter (AdS) space can be
written in a static form as

ds2 ¼ −VðrÞdt2 þ VðrÞ−1dr2 þ r2dΩ2 ð1Þ

VðrÞ ¼
�
1þ r2

b2

�
ð2Þ

dΩ2 ¼ dθ2 þ sin2 θdϕ2 ð3Þ

b ¼
�
−
3

Λ

�
1=2

: ð4Þ

Λ is the absolute value of the cosmological constant (or
vacuum energy density) in the AdS space. All the relevant
quantities are expressed in units of Planck mass, mpl. One
peculiar feature of AdS space is that the gravitational
potential relative to any origin increases with the distance
from the origin, as can be seen from Eq. (2).
A thermal state in AdS space can be constructed

by periodically identifying the imaginary time coordinate
with period β. The corresponding temperature is then
T ¼ β−1 [3]. The locally measured temperature at any
given point r is

Tr ¼
Tffiffiffiffiffiffiffiffiffiffi
VðrÞp : ð5Þ

This means that the local temperature is redshifted by the
gravitational potential and decreases like 1=r for r ≫ b.
Thus, we expect that the energy of massless particles will
fall of as 1=r4, and the total energy of the thermal state will
be finite. The fact that the locally measured temperature
(and energy) gets infinitely redshifted as r → ∞ can be
interpreted as an infinite potential wall that AdS space has
at asymptotic infinity.
For our purpose, we need to calculate the energy

distribution function for particles in AdS space. For
simplicity, we consider a conformally coupled massless
scalar filed. According to [3], we can take a thermal state
from the AdS space to the Einstein’s static universe and
perform calculations there. The AdS metric (1) can be
transformed into

ds2 ¼ 1

cos2 χ
ð−dτ2 þ b2ðdχ2 þ sin2 χdΩÞÞ: ð6Þ

We omit the cumbersome expressions for coordinate
transforms, which can be found in many textbooks anyway.
The metric inside the parentheses represents the Einstein
universe with the fixed radius b.

d~s2 ¼ −dτ2 þ b2ðdχ2 þ sin2 χdΩ2Þ: ð7Þ

This metric has the same thermal states as the original AdS
space, since the theory of conformally coupled massless
particles is conformally invariant.
To determine the energy density of gas of particles in

Einstein’s universe, we have to find a solution for the
particle’s wave function in the background of Eq. (7).
Several different possibilities have been studied in [5–8]. In
our case, we have a massless scalar field, ϕ, which satisfies
the conformally invariant covariant Klein-Gordon equation

ϕ;α
;α −

1

6
Rϕ ¼ 0; ð8Þ

where R is the scalar curvature of the metric (7).
The particle energy eigenvalues [6] are

ϵN ¼ N þ 1

b
; N ¼ 0; 1; 2…; ð9Þ

where the discrete index N labels the energy eigenvalues.
The degeneracy number is given by dN ¼ ðN þ 1Þ2.
For massless bosons, the energy distribution function at a

given temperature, T, is given by

FðE; TÞ ¼ 1

e
E
T − 1

: ð10Þ

The energy density of massless scalar particles in Einstein’s
universe is therefore

ρðr ¼ 0Þ ¼ 1

2π2b3
X∞
N¼0

ϵNðN þ 1Þ2FðϵN; TÞ: ð11Þ

To obtain the corresponding energy distribution in AdS
space, we have to account for the redshift effect which
depends on the location, r, of the particle in AdS space.
After including the redshift, the local energy of a scalar
particle in AdS space is

ϵNðrÞ ¼
ϵNffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

b2

q ; ð12Þ

where the redshift factor is just the gtt component of the
AdS metric in Eq. (1). The local energy density is

ρðrÞ ¼ 1

2π2b3ð1þ r2

b2Þ2
X∞
N¼0

ϵNðN þ 1Þ2FðϵNðrÞ; TrÞ; ð13Þ
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where the expression for the local temperature, Tr, is
defined in Eq. (5). The local number density of particles
with energy ϵNðrÞ is

nðr; ϵNÞ ¼
1

2π2b3ð1þ r2

b2Þ3=2
ðN þ 1Þ2FðϵN; TrÞ: ð14Þ

Note that these quantities are functions of a location r,
since the metric (1) is r dependent. For illustration, we plot
the particle number density as a function of the temper-
ature, T, at r ¼ 0 in Fig. 1. For temperatures higher than the
inverse AdS radius, i.e., T ≫ b−1, the number density
reduces to the flat space case. For example, we can see that
the number density curves corresponding to b ¼ 1000,
b ¼ 100, and b ¼ 10 are indistinguishable from the flat
space case. This is expected since that case corresponds to
the temperatures much higher than the vacuum energy
density of AdS space, Λ. The difference is more pro-
nounced for lower values of b, i.e., higher values of Λ,
while the general behavior stays the same. For example, the
number densities corresponding to b ¼ 1 or b ¼ 0.5 are
lower than the number density in the flat space for
temperatures T ⪅ b−1, while they become very close to
the number density in the flat space for T ⪆ b−1. The
reason for this behavior is that the AdS space is compact, as
opposed to the flat space.

III. ADS-SCHWARZSCHILD BLACK HOLES

We now study black holes placed in AdS space. The
metric of a static black hole of massM, in a space which is
asymptotically AdS with the AdS radius b, is given by

ds2 ¼ −AðrÞdt2 þ AðrÞ−1dr2 þ r2dΩ2 ð15Þ

AðrÞ ¼
�
1 −

2M
r

þ r2

b2

�
: ð16Þ

The black hole gravitational radius can be found by solving
the equation AðrÞ ¼ 0. This gives

rþðMÞ ¼ b
2
3

3
2
3

ð9M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81M2 þ 3b2

p
Þ23 − 3

1
3b

2
3

ð9M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81M2 þ 3b2

p
Þ13 : ð17Þ

The temperature of this black hole is given as

T−1
b ¼ 4πb2rþ

3r2þ þ b2
: ð18Þ

In flat space, if two particles with the center of mass
energy M come to a distance r which is shorter than twice
the gravitational radius for the given mass (like in Fig. 2),
then according to the hoop conjecture a black hole will be
formed [9,10]. This however must be modified in AdS
space, because of the existence of the cosmological con-
stant which changes the geometry of the spacetime.
Consider a black hole with the gravitational radius rþ

which is created in AdS space at the coordinate center
r ¼ 0, as shown in the upper part of the Fig. 3. In that
system, the particles that produced this black hole were
located at most at �~rþ (at two opposite sides from the

FIG. 1. The particle number density, n, in AdS space as a
function of the temperature, T, is plotted for several different
values of an AdS radius, b. The three curves for b ¼ 1000,
b ¼ 100, and b ¼ 10 almost overlap with the flat space case. This
is expected since since the vacuum energy density of AdS space,
Λ, is inversely proportional to b. The number densities corre-
sponding to lower values of b, (i.e., b ¼ 1 or b ¼ 0.5) are also
lower than the number density in the flat space for temperatures
T ⪅ b−1, but they become very close to the flat space value for
T ⪆ b−1. The number density is given in units of m−3

pl .

FIG. 2. In the flat spacetime, if two particles with the center of
mass energyM come to a distance rwhich is shorter than 2rþðMÞ
(rþ is the gravitational radius for the given mass), then according
to the hoop conjecture, a black hole will be formed.
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origin). To simplify the calculations, we now go to the
referent system where one of the colliding particles is
located at r ¼ 0. In flat spacetime, the position of the
second particle which results in the black hole formation
would be simply 2~rþ, like in Fig. 2. However, in curved
spacetime, we cannot simply add two vectors, so we have to
solve the following problem. During the collision that
produced the black hole, one of the particles was located at
the coordinate center, r ¼ 0, while the other one was at the
coordinate distance r (lower part of the Fig. 3). An observer
located at the center sees that the energy of the particle at r
is blueshifted by a factor

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

b2

s
; ð19Þ

which follows straight from the AdS metric in Eq. (1). This
is equivalent to the second particle moving toward the
center with velocity, v, which satisfies

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

b2

s
: ð20Þ

Accordingly, the particle located at rþ has the correspond-
ing velocity, vþ, which satisfies

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2þ

b2

s
: ð21Þ

Since in this process we boosted the system in which the
black hole is in the center by velocity vþ, then v and vþ
must satisfy

v ¼ 2vþ
1þ v2þ

; ð22Þ

which is just the relativistic addition of velocities. From
Eqs. (20), (21), and (22), one finds

r ¼ 2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2þ

b2

s
: ð23Þ

This implies that if a particle is located at the center of
the AdS space, the other particle must be within the
coordinate distance r, where

r < RðMÞ ¼ 2rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
rþ
b

�
2

s
; ð24Þ

in order to form a black hole. This value is always larger
than the flat space value, even for black holes with rþ < b
(most of the black holes produced in collisions of particles
will be in that regime). As a consequence, the probability
for two particles to form a black hole in collisions in AdS
space will be larger than that in flat space.

IV. BLACK HOLE DOMINATION OVER
PARTICLES AND MAXIMAL

TEMPERATURE IN ADS

The number of particles, ΔNp, in the region of space
labeled by ðΔr;Δθ;ΔϕÞ, is

ΔNpðϵNÞ ¼ nðr; ϵÞr2 sin θΔrΔθΔϕ: ð25Þ
We now single out two particles which can interact and

make a black hole. A particle with energy and momentum

ðE1; ~k1Þ located at the origin can interact with a particle

with energy and momentum ðE2; ~k2Þ located at some
distant point r. Their center of mass energy is

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1E2 − 2~k1 · ~k2

q
ð26Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1E2 − 2E1E2 cos α

p
; ð27Þ

where α is the angle between ~k1 and ~k2. We assume α is
isotropic in the solid angle distribution. The black hole
number density is therefore

r+ r+

boost

r

center

center

v+

FIG. 3. Collision of two particles in AdS spacetime, which
creates a black hole located at the coordinate center. The
gravitational radius of the AdS black hole is rþ (upper part of
the figure). To find the coordinate distance, r, between these two
particles, which will result in the black hole formation, we have to
take into account that the particle energy as seen by an observer
located at the center appears blueshifted due to the presence of the
cosmological constant which modifies the geometry. This results
in a somewhat larger distance that yields the black hole formation
than what is naively expected.” In other words, the distance
between two particles (that yields a black hole in the collision) is
now larger than naively expected.
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nbh¼
1

2

Z X
N1;N2

nð0;ϵN1
Þnðr;ϵN2

Þ4πr2drsinαdα
2

����
r<RðMÞ

:

ð28Þ

The black hole mass, M, is defined in Eq. (26). The term
sin αdα

2
represents the flat distribution of the angle α. The

summation in discrete energy eigenvalues N1 and N2 is
performed numerically up to E=T < 15, which gives an
accuracy of e−15. Black holes, which are hotter than the
background temperature, i.e., Tb > T, will evaporate and
disappear. Therefore, we count only black holes with
temperature Tb < T, where the temperature of the black
hole is given by Eq. (18). For such black holes, accretion of
particles dominates, and they will not disappear. Therefore,
the numerical code that integrates Eq. (28) checks that a
black hole has a temperature lower than the gas, i.e.,
Tb < T, and if this is not true, the code discards that
black hole.
The plots for the created black holes number density,

nbh, are shown in Fig. 4. For large values of the AdS radius
b (i.e., small values of the cosmological constant), nbh is the
same as in the flat space. For lower values of b, the creation
of black holes is suppressed, so nbh is lower than in the flat
space. We can see that even at high temperatures, the effect
of a low b still affects the black hole production. This is
because the energy redshift effect in Eq. (12) is stronger for
lower values of b. For large distances, r, the black hole
production suppression is also stronger.
We are now ready to extract the maximal temperature of

the gas in AdS space. We can define a critical temperature
Tc at which the black hole number density, nbh, becomes
higher than the particle number density, n. Beyond that
point, one cannot heat up the gas anymore since the space is
dominated by black holes.

We note that this is a conservative approach, which
yields a conservative upper limit on the temperature. At any
given temperature of the gas, we count only those black
holes whose Hawking temperature is lower than the
environment. Such black holes will not evaporate and will
remain in the system. We do not take accretion into
account, but this is a conservative treatment, since a black
hole is more likely to accrete particles than other black
holes as long as there are more particles than black holes in
the system. Above the crossover temperature, when there
are more black holes, a single black hole is more likely to
accrete (merge with) other black holes, but at that time, the
system is already dominated by black holes so redistrib-
ution of energy between the individual black holes will not
reverse domination. Also at that point, pumping more
energy into the system goes primarily into the black holes,
not the particles. Therefore, our estimate will yield a
conservative upper limit on the temperature.
We show the crossover between the particles and black

holes domination in Fig. 5. For example, if we set
b ¼ 1000, we find the critical temperature Tc ≈ 0.34mpl.
It is also interesting to see how the critical temperature
changes with b. This trend is shown in Fig. 6. Clearly, the
critical temperature, Tc, is increasing as the value of b is
decreasing. So large values of the AdS vacuum energy
density allow a higher maximal temperature of the gas.
As it can be seen in Fig. 6, for values of b larger than

approximately one (in Planck units), the critical temper-
ature is lower than the Planck temperature, and asymp-
totically matches the value in flat spacetime [2]. In the
opposite case where b is larger than one in Planck units
(which implies the vacuum energy density of AdS space
higher than the Planck energy density), the critical temper-
ature goes above the Planck value. This is, however, the

FIG. 4. For large values of b (e.g., b ¼ 1000, solid line) the
created black hole number density, nbh, is the same as in the flat
space. For lower values of b, the creation of black holes is
suppressed, so nbh is lower than in the flat space. Even at high
temperatures, low values of b still affect the black hole density
because of the energy redshift effect in Eq. (12).

FIG. 5. We can define a critical temperature Tc at which the
black hole number density, nbh, becomes higher than the particle
number density, n. At low temperatures, the black hole density is
lower than the particle number density. At high temperatures, this
is reversed. The crossover defines the critical temperature. If we
set b ¼ 1000, we find the critical temperature Tc ≈ 0.34mpl.
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regime where quantum gravity effects become very impor-
tant, and we do not have an explicit control over our
calculations.

V. CONCLUSIONS

In this paper, we investigated the question of a maximal
temperature of gas of particles that AdS spacetime can
allow. In the context of string theory, it is well-known that
at very high temperatures, the density of states grows
exponentially indicating a phase transition at which
very long strings are copiously produced [11–14]. This
Hagedron temperature (which explicitly depends on the
stringy parameters in the model) could represent a maximal
achievable temperature because any increase in energy of
the system would go into creating new stringy states rather
than increasing the temperature (for an alternative point of
view, see [15]). In our approach, however, we do not rely on
string theory, we assume only statistical mechanics and
general relativity. At any given nonzero temperature, there
is a finite probability that two particles will collide and form
a mini black hole. This probability grows as the temper-
ature increases, which in turn can have interesting conse-
quences (see, e.g., [2,16]). In our context, there is a critical
temperature where the number density of the created black
holes (colder than the gas) becomes higher than the number
density of particles in the gas. This critical temperature
represents a maximal achievable temperature in AdS
spacetime. We show that this temperature crucially depends
on the AdS radius b. For large values of b (e.g., b ⪆ 1 in the
Planck units), the critical temperature is lower than
the Planck temperature, while for small values (e.g., b ⪅
1 in the Planck units, which implies the vacuum energy
density of AdS space is higher than the Planck energy
density), the critical temperature goes above the Planck
value. In that regime, however, quantum gravity effects
become very important, and in the absence of the full

theory of quantum gravity, we do not know what happens
there. Of course, if some new physics enters below the
Planck scale, one would have to do the calculations in that
new framework. In the concrete case of the string theory,
one would have to calculate the probability of black holes
(or string balls or other nonperturbative states) creation by
highly excited string states.
This result might be interesting from the AdS/CFT

correspondence point of view. On the CFT side, there is
no gravity, and black holes are not included. It would be
therefore interesting to see what effect dynamically limits
themaximal temperature of the thermal state on theCFT side
of the correspondence (perhaps creation of some nonper-
turbative states?). This is different from the Hawking-Page
effect, which is a transition between the thermal gas and a
single black hole placed in AdS space. That effect can be
interpreted from theAdS/CFT correspondence point of view
as the confinement-deconfinement phase transition in the
gauge theory. However, the Hawking-Page effect follows
from examinations of the global macroscopic quantities like
entropy and free energy. In contrast, our black holes are
produced in microscopic collisions of two particles. As a
consequence, they could be produced even if they are not
thermodynamically favorable. Our definition of the critical
temperature is also different. Our system breaks down when
we havemoremicroscopic black holes than particles per unit
volume, while the Hawking-Page critical temperature is
dictated by the equilibrium between the gas and a single
large black hole. In a sense, the Hawking-Page effect is
kinematic in its nature, while ours is dynamical. Thus, these
two effects might be somewhat related, but the details are
certainly different.
From Eq. (3.3) in [3], we see that the Hawking-Page

phase transition happens at T ∼ 1=
ffiffiffi
b

p
. Above that temper-

ature, the gas cannot support itself and eventually collapses
into a single large black hole. From our Fig. 6, we see
that T ∼ 1=

ffiffiffi
b

p
is lower than our critical temperature, Tc,

(at least for b ⪆ 1), which implies that our effect happens
after the Hawking-Page transition (going from low to high
temperatures). From the geometric point of view, the
formation of a large black hole in the gravitational collapse
of some distribution of matter in AdS space is no different
from the formation of an apparent horizon in any other
isotropic universe. An outside observer will see an AdS-
Schwarzschild black hole, but an observer inside the
horizon will witness all the time evolution of the gravita-
tional collapse in which the collapsing gas goes through
stages of increasing densities and temperature. From the
analysis we performed here, it appears that our effect is
mostly relevant for an observer inside the horizon.
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