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Color symmetry is spontaneously broken in quark matter at high density as a consequence of di-quark
condensations with exhibiting color superconductivity. Non-Abelian vortices or color magnetic flux tubes
stably exist in the color-flavor locked phase at asymptotically high density. The effective worldsheet theory
of a single non-Abelian vortex was previously calculated in the singular gauge to obtain the CP2 model
[1,2]. Here, we reconstruct the effective theory in a regular gauge without taking a singular gauge,
confirming the previous results in the singular gauge. As a byproduct of our analysis, we find that
non-Abelian vortices in high-density QCD do not suffer from any obstruction for the global definition of a
symmetry breaking.
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I. INTRODUCTION

Quark matter at high temperature and/or high density is
one of the important subjects in both the theoretical and
experimental points of view. At high density, quark matter
are expected to condensate by constituting Cooper pairs.
Then, color symmetry is spontaneously broken, with
exhibiting color superconductivity [3,4]; see Refs. [5,6]
as a review. The two-flavor pairing may occur in the two-
SC phase in which up and down quarks participate in
condensations at intermediate density. At asymptotically
high densities, if we can neglect the strange quark mass, the
system possesses an SUð3Þ global flavor symmetry. In that
region, it may be possible to have a three-flavor pairing
state, which is known as the “color-flavor locked (CFL)”
phase, in which up, down, and strange quarks participate in
condensations. The Ginzburg-Landau (GL) free energy
[7–9] shows that in the CFL ground state the baryon
number Uð1ÞB, color SUð3ÞC, and flavor SUð3ÞF sym-
metries are spontaneously broken down to the diagonal
subgroup SUð3ÞCþF. In particular, Uð1ÞB and color sym-
metry breakings lead to superfluidity and color super-
conductivity, respectively. Therefore, when the CFL
medium rotates, Uð1ÞB superfluid vortices with the quan-
tized circulations are created along the rotation axis
[7,8,10] as in the case of helium superfluids and ultracold
atomic gases. Compared to the quantized unit circulation of
Uð1ÞB superfluid vortices, vortices with smaller circula-
tions (1=3 quantized circulations) exist, which also carry
color magnetic fluxes. They are non-Abelian vortices or
color magnetic flux tubes [11–14]; see Ref. [15] for a
review. It was conjectured that oneUð1ÞB superfluid vortex
is energetically split into a set of three color flux tubes with

total color cancelled out [12], which has been recently
confirmed numerically [16].
One non-Abelian vortex breaks the color-flavor sym-

metry SUð3ÞCþF further into its subgroup in the vicinity of
the core, generating Nambu-Goldstone modes (or collective
coordinates) which parametrize a complex projective space
CP2 ≃ SUð3ÞCþF=½SUð2Þ × Uð1Þ�. These CP2 modes are
localized around the vortex core and propagate along the
vortex line as gapless excitations [1,2]. A lot of rich physics
were obtained from theseCP2 modes.When the coupling of
the CP2 target space to electromagnetic fields is introduced
[17], it implies that a vortex lattice system behaves as a
polarizer [18]. It also shows the Aharanov-Bohm scattering
of charged particles such as electrons and muons [19]. The
quantum mechanically induced gap shows the confinement
of monopoles in the CFL phase; that is, quark condensations
lead monopole confinement [20,21], which gives evidence
of hadron-quark duality to the confinement phase in which
quark confinement is expected to occur due to monopole
condensations. Vortices interact with gluons by a topologi-
cal interaction [22], implying that in the system of multiple
vortices such as a vortex lattice, CP2 modes in individual
vortices are aligned by the interaction, exhibiting color
ferromagnetism [23]. Even with such discoveries of rich
physics, there remains one technical problem in the deri-
vation of the effective Lagrangian in Refs. [1,2]; in these
references, a singular gauge was taken to construct the
effective CP2 model. It is well known that, in general, one
needs a careful treatment in the singular gauge. For instance,
in the Abelian-Higgs model relevant for conventional
metallic superconductors, a magnetic flux of a vortex is
unphysically removed by taking the singular gauge.
Therefore, one needs carefully to check whether the results
in Refs. [1,2] for the effective action are correct and whether
or not any additional term exists.
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In this paper, we construct the effective Lagrangian of a
single non-Abelian vortex in a regular gauge without taking
a singular gauge and confirm that the result of the effective
Lagrangian calculated in the singular gauge in Refs. [1,2] is
correct and no further term exists. To do this, we generalize
the ansatz for the gauge field used in the singular gauge
because it does not solve the Gauss-law constraint in the
regular gauge. We introduce two different profile functions
that depend on both the radial coordinate r and the
azimuthal angle θ, in contrast to the singular gauge for
which the profile function depends only on r. The profile
functions of the zero modes are expanded in terms of partial
waves, and we check the asymptotic behaviors of all the
partial wave modes. By inserting the solutions of the partial
wave modes into the original GL action, we derive the
effective action of the vortex as the CP2 action living on
the vortex worldsheet. The mode previously found in the
singular gauge comes out as a normalizable mode among
the partial wave modes discussed in this paper. By showing
that the rest of the partial modes are all non-normalizable,
we prove that the previous result on the effective theory on
the vortex is correct.
This paper is organized as follows. In Sec. II, we review

the GL effective theory, a non-Abelian vortex solution and
its properties. In Sec. III, we construct the effective theory
of a single vortex in a regular gauge. Section IV is devoted
to a summary and discussion.

II. THE GINZBURG-LANDAU DESCRIPTION
OF DENSE QCD AND A NON-ABELIAN

VORTEX

A. Ginzburg-Landau effective theory

We start with the time-dependent GL Lagrangian for the
CFL order parameters ΦL and ΦR which are defined as
di-quark condensates,

ΦL
A
a ∼ ϵabcϵ

ABCqLBbCqL
C
c ; ΦR

A
a ∼ ϵabcϵ

ABCqRBbCqR
C
c ;

ð1Þ

where qL=R stand for left- and right-handed quarks with
a, b, c as fundamental color (SUð3ÞC), A, B, C as
fundamental flavor (SUð3ÞL=R) indices and C is the charge
conjugation operator. Since at a high-density region a
perturbative calculation shows mixing terms between ΦL
and ΦR are negligible, we simply assume ΦL ¼ −ΦR ¼ Φ
and fix their relative phase to unity. The transformation
properties of the field Φ can be written as

Φ0 ¼ eiθBUCΦU−1
F ; eiθB ∈ Uð1ÞB;

UC ∈ SUð3ÞC; UF ∈ SUð3ÞF: ð2Þ

Here SUð3ÞF is defined as the diagonal subgroup
(SUð3ÞLþR) of the full flavor group SUð3ÞL × SUð3ÞR.

There is a redundancy of the discrete symmetries, and the
actual symmetry group is given by

G ¼ SUð3ÞC × SUð3ÞF ×Uð1ÞB
Z3 × Z3

: ð3Þ

The Lagrangian has been obtained as a low-energy
effective theory of the high-density QCD in the CFL phase
[7–9,24]1

LGL ¼ Tr

�
−ϵ3F0iF0i −

1

2λ3
FijFij þ K0∇0Φ†∇0Φ

− K3∇iΦ†∇iΦ − VðΦÞ
�
;

VðϕÞ ¼ −m2Φ†Φþ β½ðTr½Φ†Φ�Þ2 þ TrfðΦ†ΦÞ2g�

þ 3m4

16β
; ð4Þ

where Fμν ¼ ∂μAν − ∂νAμ − igs½Aμ; Aν�, ∇μ ¼ ∂μ − igsAμ,
μ ¼ 0, 1, 2, 3 is the space-time index, fi; jg ¼ f1; 2; 3g are
spatial indices, λ3 is a magnetic permeability and ϵ3 is a
dielectric constant for gluons. Here we ignore the strange
quark mass. The static GL free energy functional can be
defined as

EGL ¼ Tr

�
1

2λ3
FijFij þ K3∇iΦ†∇iΦþ VðΦÞ

�
: ð5Þ

The coefficients in the expression above may be calculated
directly from the QCD Lagrangian using perturbative
techniques. We quote here the standard results obtained
in the literature [7–9] through perturbative calculations in

QCD as β ¼ 7ζð3Þ
8ðπTcÞ2 NðμÞ, K3 ¼ 2

3
β, K0 ¼ 3K3, m2 ¼

−4NðμÞ log T
Tc
, NðμÞ ¼ μ2

2π2
, gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24π2λ

27 log μ=Λ

q
, Tc∼

μ exp ð− 3π2ffiffi
2

p
gs
Þ, where μ is the chemical potential, Λ the

QCD scale and Tc the critical temperature.
The vacuum expectation value of Φ can be computed by

minimizing the potential defined at Eq. (4) as

hΦi ¼ ΔCFL13; Δ2
CFL ≡m2

8β
: ð6Þ

In the ground state [Eq. (6)], the full symmetry group G is

spontaneously broken down to H ¼ SUð3ÞCþF
Z3

and the order
parameter space becomes

G=H ≃ SUð3Þ ×Uð1Þ
Z3

¼ Uð3Þ: ð7Þ

1In this paper, we are ignoring the first-order time derivative
term for simplicity since it makes the vortex dyonic.
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Masses of gauge bosons and scalars are given by the

following [14],m2
g ¼ g2sΔ2

CFLK3λ3,m2
ζ ¼ 2m2

K3
,m2

χ ¼ 4λ2Δ2
CFL

K3
,

m2
φ ¼ 0, where φ is the massless Nambu-Goldstone boson

related to the breaking ofUð1ÞB symmetry, and ζ and χ are,
respectively, the trace and traceless part of Φ.
The static equations of motion can also be directly found

from the free energy in Eq. (5), and they read as

∇iFij ¼ igsK3λ3

�
∇jΦΦ† −Φð∇jΦÞ† − 1

3
Trð∇jΦΦ†

−Φð∇jΦÞ†Þ
�
;

∇2
jΦ ¼ 1

K3

½−m2 þ 2βfΦΦ† þ TrðΦ†ΦÞg�Φ: ð8Þ

B. Non-Abelian vortex or color magnetic flux tube

Let us first briefly review a few primary features of the
non-Abelian vortices in the CFL phase in the absence of the
electromagnetic interaction. It can be easily noticed from
Eq. (7) that π1ðG=HÞ ¼ Z. This nonzero fundamental
group implies the existing vortices. Since the broken
Uð1ÞB is a global symmetry, the vortices are global vortices
or superfluid vortices [11]. The structure of these vortices
can be understood by the orientation and winding of the
configuration of the condensed scalar field Φ in the far
away from vortex core. We place a vortex along the z
direction and use the cylindrical coordinates in this paper.
One can write down the ansatz as [11–14]

Φðr; θÞ ¼ ΔCFL

0
B@

eiθf1ðrÞ 0 0

0 f2ðrÞ 0

0 0 f2ðrÞ

1
CA;

AiðrÞ ¼ −
1

3gs

ϵijxj
r2

AðrÞ

0
B@

2 0 0

0 −1 0

0 0 −1

1
CA; i ¼ f1; 2g;

ð9Þ

where f1, f2, and AðrÞ are the profile functions. The GL
free energy can be written by inserting the ansatz into
Eq. (4) as

EGL ¼ 2π

Z
rdr

�
2

3g2sλ3r2
ð∂rAÞ2

þ K3Δ2
CFL

�
ð∂rf1Þ2 þ 2ð∂rf2Þ2 þ

f21
9r2

ð3 − 2AÞ2

þ 2
f22
9r2

A2 þ Δ2
CFL½f21 − f22�2

þ 2Δ2
CFL½f21 þ 2f22 − 3�2

��
: ð10Þ

The form of the profiles f1, f2, and AðrÞ can be calculated
numerically with the boundary condition,

f1ð0Þ ¼ 0; ∂rf2ðrÞj0 ¼ 0; Að0Þ ¼ 0;

f1ð∞Þ ¼ f2ð∞Þ ¼ 1; Að∞Þ ¼ 1: ð11Þ

The vortex configuration in Eq. (9) breaks the unbroken
color-flavor diagonal SUð3ÞCþF symmetry as

SUð3ÞCþF → SUð2Þ ×Uð1Þ; ð12Þ

showing the existence of degenerate solutions. This degen-
eracy is due to the existence of Nambu-Goldstone modes

parametrizing a coset space SUð3Þ
SUð2Þ×Uð1Þ ≃ CP2 [12]. The low-

energy excitation and interaction of these zero modes can be
calculated by the effective CP2 sigma model action [1].
Generic solutions on the CP2 space can be found by just
applying a global transformation by a reducing matrix [25],

UðϕÞ ¼ 1ffiffiffiffi
X

p
�
1 −ϕ†

ϕ X
1
2Y−1

2

�
;

X ¼ 1þ ϕ†ϕ; Y ¼ 13 þ ϕϕ†; ð13Þ

where ϕ ¼ fϕ1;ϕ2g are inhomogeneous coordinates of the
CP2. The vortex solutionwith a generic orientation takes the
form

Φðr; θÞ ¼ ΔCFLUðϕÞ

0
B@

eiθf1ðrÞ 0 0

0 f2ðrÞ 0

0 0 f2ðrÞ

1
CAU†ðϕÞ;

AiðrÞ ¼ −
ϵijxj
3gsr2

AðrÞUðϕÞ

0
B@

2 0 0

0 −1 0

0 0 −1

1
CAU†ðϕÞ:

ð14Þ

III. THE CONSTRUCTION OF THE EFFECTIVE
ACTION OF A NON-ABELIAN VORTEX

The effective action can be computed by prompting the
moduli parameter ϕ to fields fluctuating on the vortex
worldsheet in the t-z plane, which is known as the moduli
approximation [26] (see also Refs. [27,28]). So when one
inserts the rotated solution in Eq. (14) into the free energy,
the static energy part is separated out from the rest. The
other terms which would be relevant for small fluctuations
can be written as

Leff ¼
X
α

cαTr½FiαFα
i þ καjDαΦj2�; ð15Þ

where α ¼ f0; 3g is the worldsheet index, i ¼ f1; 2g,
c0 ¼ ϵ3, c3 ¼ 1

λ3
and κα ¼ Kα

cα
. The raising and lowering
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of the index α are done by the Minkowski signature ðþ;−Þ
for f0; 3g. So the equations of motion for zero (the Gauss’s
law) and the third component can be expressed as

DiFiα ¼ −igsκαTaTr½Φ†TaDαΦ − ðDαΦÞ†TaΦ�: ð16Þ

These equations are generated due to the fluctuation of the
zero mode along the vortex. The ansatz for the generated
gauge fields which solve the above Eq. (16) can be
expressed as [29]

Aα ¼ ραðr; θÞWα þ ηαðr; θÞVα; α ¼ 0; 3; ð17Þ

where ρα and ηα are profile functions which are to be
determined by minimizing the action or by solving Eq. (16)
and

Wα ¼ i∂α
~T ~T; Vα ¼ ∂α

~T;

~T ¼ UTU†; T ¼ diagð1;−1;−1Þ; ð18Þ

where UðϕÞ is defined in the last section Eq. (13). These
satisfy the commutation relations: ½Wα; ~T�¼2iVα, ½Vα; ~T�¼
−2iWα, TrWαWα ¼ TrVαVα, TrWαVα ¼ 0. Here, we can
see thatWα and Vα are orthogonal to each other.Wα and Vα

are also orthogonal to the direction of Ai defined in
Eq. (14). We can see this if we expand all three matrices as

UðϕÞ 1
3

0
B@

2 0 0

0 −1 0

0 0 −1

1
CAU†ðϕÞ ¼ 1

6
1þ 1

2
~T;

Wα ¼ i½∂αUU† − ~T∂αUU† ~T�;
Vα ¼ −i½i∂αUU†; ~T�: ð19Þ

Wα is the Delduc-Valent projection on CP2 [25] and was
used in singular gauge computation. Here we introduce Vα

as a new component in the ansatz (17) to solve Gauss’s law,
getting Aα orthogonal to the Ai direction indicating the
fluctuation of the Nambu-Goldstone mode in the orthogo-
nal direction of the background field, which is true because
the Nambu-Goldstone bosons are generated by broken
generators.
To compute the effective action, we have to insert the

ansatz in Eq. (17) into the action in Eq. (15). Before we do
so, let us compute the field strength of the gauge field and
matter coupling separately. The first term of the field
strength(Fiα ¼ ∂iAα −DαAi) can be written as

∂iAα ¼
�
xi
r
∂rραðr; θÞ −

ϵijxj

r2
∂θραðr; θÞ

�
Wα

þ
�
xi
r
∂rηαðr; θÞ −

ϵijxj

r2
∂θηαðr; θÞ

�
Vα: ð20Þ

The second term becomes

DαAi ¼ ∂αAi − igs½Aα; Ai�
¼ ϵijxj

r2
AðrÞfηαðr; θÞWα − σαðr; θÞVαg; ð21Þ

where we have defined 2gsσα ¼ 1þ 2gsρα. So, we can
insert the field strength,

Fiα ¼ ∂iAα −DαAi

¼
�
xi
r
∂rρα −

ϵijxj

r2
ð∂θρα þ AηαÞ

�
Wα

þ
�
xi
r
∂rηα −

ϵijxj

r2
ð∂θηα − AσÞ

�
Vα; ð22Þ

into the kinetic term of the gauge field in Eq. (15) to yield

TrFiαFα
i ¼

�
ð∂rραÞ2 þ ð∂rηαÞ2 þ

1

r2
ð∂θρα þ AηαÞ2

þ 1

r2
ð∂θηα − AσαÞ2

�
TrVαVα: ð23Þ

From the covariant derivative of the matter field Φ,

DαΦ¼ ∂αΦ− igsAαΦ

¼ ΔCFL

�
f1eiθ − f2

2
ð1þ gsραÞ− igsηα

f1eiθ þ f2
2

�
Vα

− gsΔCFL

�
ηα

f1eiθ − f2
2

þ iρα
f1eiθ þ f2

2

�
Wα;

ð24Þ

we compute the jDαΦj2 as

jDαΦj2
Δ2

CFL
¼ 1

4
½ð1þ 2gsρα þ 2g2sρ2αÞðf21 þ f22Þ

þ 2g2sη2αðf21 þ f22Þ − ð1þ 2gsραÞ2f1f2 cos θ
− 4gsf1f2ηα sin θ�TrVαVα: ð25Þ

By changing the variables from ρα to σα ¼ 1þ2gsρα
2gs

, Eq. (25)
can be simplified as

4jDαΦj2
Δ2

CFL
¼

�
1

2
ðf21 þ f22Þ þ 2g2sðσ2α þ η2αÞðf21 þ f22Þ

− 4gsf1f2ðσα cos θ þ ηα sin θÞ
�
TrVαVα: ð26Þ

Let us define here a complex scalar field as

Ψαðr; θÞ ¼ σαðr; θÞ þ iηαðr; θÞ; ð27Þ
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and we can rewrite the action in terms of these fields.
Equation (23) becomes

TrFiαFα
i ¼

X
α

�
j∂rΨαj2 þ

1

r2
jDθΨαj2

�
TrWαWα; ð28Þ

where Dθ ¼ ∂θ − iAðrÞ. Equation (26) can also be rewrit-
ten as

jDαΦj2
Δ2

CFL
¼ 1

4

�
1

2
ðf21 þ f22Þ þ 2g2s jΨαj2ðf21 þ f22Þ

− 2gsf1f2ðΨαe−iθ þ Ψ�
αeiθÞ

�
TrWαWα: ð29Þ

The effective Lagrangian in Eq. (15) can be written as

Leff ¼
X
α

cα

Z
d2xTr½FiαFα

i þ καjDαΦj2�

¼
X
α

IαTrWαWα; ð30Þ

where Iα are the coefficients of the CP2 action, defined by

Iα ¼ cα

Z
rdrdθ

�
j∂rΨαj2 þ

1

r2
jDθΨαj2

þ Δ2
CFLκα
4

�
1

2
ðf21 þ f22Þ þ 2g2s jΨαj2ðf21 þ f22Þ

− 2gsf1f2ðΨαe−iθ þ Ψ�
αeiθÞ

��
: ð31Þ

The effective Lagrangian can be written explicitly as the
form of the CP2 model,

Leff ¼ I0f _n† _nþ ðn† _nÞðn† _nÞg
− I3f∂zn†∂znþ ðn†∂znÞðn†∂znÞg; ð32Þ

where n are the homogeneous coordinates of the CP2

space, which can be written in terms of the inhomogeneous
coordinates as

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ†ϕ

p �
1

ϕ

�
: ð33Þ

If we rescale the z coordinate as

z0 ¼
ffiffiffiffiffi
I0

I3

s
z; ð34Þ

then the effective Lagrangian becomes

Leff ¼ I0½∂αn†∂αnþ ðn†∂αnÞðn†∂αnÞ�: ð35Þ

By expanding the field Ψ0 in terms of partial waves as

Ψ0 ¼
X
m

ΨmðrÞeimθ; ð36Þ

I0 can be written in terms of the partial wave modes as

I0 ¼ c0
X
m

Z
rdrdθ

�
ð∂rΨmÞ2 þ

ðm − AðrÞÞ2
r2

Ψ2
m

þ Δ2
CFLκ0
4

�
1

2
ðf21 þ f22Þ þ 2g2sΨ2

mðf21 þ f22Þ

− 4gsf1f2Ψm cosðm − 1Þθ
��

: ð37Þ

It is easy to check that the last term of Eq. (37) vanishes
after the theta integration unless m ¼ 1. So we write I0 as

I0 ¼
X
m

2πc0

Z
rdr

�
ð∂rΨmÞ2 þ

ðm − AðrÞÞ2
r2

Ψ2
m

þ Δ2
CFLκ0
4

�
1

2
ðf21 þ f22Þ þ 2g2sΨ2

mðf21 þ f22Þ

− 4gsf1f2Ψmδm1

��
: ð38Þ

We minimize the above integral by solving the equations
for the modes,

1

r
∂rr∂rΨ1 −

ð1 − AðrÞÞ2
r2

Ψ1

¼ Δ2
CFLκ0gs
2

½ðf21 þ f22ÞgsΨ1 − f1f2�; ð39Þ

1

r
∂rr∂rΨm −

ðm − AðrÞÞ2
r2

Ψm

¼ Δ2
CFLκ0g

2
s

2
ðf21 þ f22ÞΨm; m ≠ 1: ð40Þ

These equations can also be derived directly from the
equations of motion in Eq. (16).
One should notice that Eq. (39) form ¼ 1was derived in

the singular gauge in Ref. [1] (for K0 ¼ K3) but the rest,
where m ≠ 1, were absent in the singular gauge. The
solution of Eq. (39) is normalizable (m ¼ 1) and can be
solved [1] numerically with the boundary condition
Ψ1ð0Þ ¼ 0 and Ψ1ð∞Þ ¼ 1

2gs
. Large distance behavior of

the solution can be expressed as

Ψ1→r→∞
1

2gs
−

1ffiffiffi
ξ

p e−ξ; ð41Þ

and it is easy to show that the large distance value of
Ψ1 ¼ 1

2gs
transforms the ansatz Aα in Eq. (17) into a pure

gauge form as
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Aα ¼
i
gs
g†∂αg; where g ¼ e−iθT

�
8 ;

T�
8 ¼

1

3
UðϕÞ

0
B@

2 0 0

0 −1 0

0 0 −1

1
CAU†ðϕÞ: ð42Þ

The coefficient I0ðm ¼ 1Þ can be written in terms of
the solution of the equations of motion derived in the
above,

Iðm ¼ 1Þ ¼ 2πm2
0c0

8g2s

Z
rdr½f21 þ f22 − 4f1f2gsΨ1�; ð43Þ

where m2
0 ¼ g2sΔ2

CFLκ0. The integrand vanishes at large
distances, so the integral is finite.
All other modes (m ≠ 1) are non-normalizable divergent

modes. In this work, we do not solve these equations
numerically. However, one can understand the behavior
of the solutions once we analyze the asymptotic forms
of the solutions. For the case m ≠ 1, Eq. (40) can be
expressed as

1

r
∂rr∂rΨm ¼

�ðm − AðrÞÞ2
r2

þ Δ2
CFLκ0g

2
s

2
ðf21 þ f22Þ

�
Ψm:

ð44Þ

The right-hand side of the above equation is positive
definite (by assuming Ψm is positive). So the solution
cannot have a local maximum. At large distances, the
equation becomes the modified Bessel equation,

ξ2Ψ00
m þ ξΨ0

m − ½ðm − 1Þ2 þ ξ2�Ψm ¼ 0 ð45Þ

where ξ ¼ m0r. The solution is Ψm ∼ 1ffiffi
ξ

p e�ξ.

At small distances near the origin (r ¼ 0), where
f1ðrÞ ¼ 0, Eq. (44) reduces to

�
∂2
ξ þ

1

ξ
∂ξ

�
Ψm ¼ m2

ξ2
Ψm: ð46Þ

The solution is Ψm ∼ ξ�m for m ≠ 0, 1. So Ψmð0Þ ¼ 0 for
m ≠ 0, 1 and we may conclude that the solution diverges as
1ffiffi
ξ

p eξ at large distances since it does not have any local

maximum. For m ¼ 0, near the origin the solution could be
written as either log ξ or C0 þ ξ2C2, where C0 and C2 are
constants and C2 is found to be positive. So the solution
diverges at large distances even if we set the value as
constant at the origin.

IV. SUMMARY AND DISCUSSION

In this paper, we have analyzed the orientational CP2

zero modes of a single non-Abelian vortex in high-density

QCD. To do so, we have followed the standard procedure of
zero-mode analysis and have written the effective action, as
was done in the singular gauge case. In order to solve the
Gauss’s law constraint in the regular gauge, we have
generalized the ansatz of the gauge field (used in the
singular gauge) to Aα ¼ ρðr; θÞWα þ ηðr; θÞVα by intro-
ducing a profile function η together with a matrix Vα

orthogonal to Wα, neither of which exists in the singular
gauge. In the regular gauge, the two profile functions (ρ, η)
do not only depend on the radial coordinate r but also on
the azimuthal angle θ. These two profile functions can be
combined to the real and imaginary components of a single
complex profile function Ψðr; θÞ. The insertion of Aα

together with vortex profile functions into the action gives
the CP2 effective action on the t-z plane with a front
coefficient depending on the complex profile function
Ψðr; θÞ. The front coefficient has been determined by
inserting Ψðr; θÞ after solving the equations of motion.
We have expanded the complex profile function Ψ in the
partial wave basis as Ψ ¼ P

mΨmðrÞeimθ and have ana-
lyzed the asymptotic behaviors of all the modes. We have
found that only one mode Ψ1 is normalizable, which is
identical to what was found in the singular gauge analysis.
We have shown that all the other modes diverge exponen-
tially at large distances. Finally, we have concluded that our
regular gauge analysis established the previously known
result of the existence of normalizable zero mode derived in
singular gauge and that the previously constructed effective
CP2 Lagrangian of the single vortex is correct.
Here let us discuss some points which may shed light on

the interesting features of the regular gauge. In this
analysis, we have introduced a complex profile function
which does not depend only on r but also on the azimuthal
angle θ. This azimuthal angle dependence of a zero mode
makes the system complicated. The CP2 Nambu-
Goldstone zero modes arise as a consequence of the
unbroken color-flavor group SUð3ÞCþF in the bulk, further
broken as SUð3ÞCþF → Uð1Þ × SUð2Þ inside the vortex
core. The system restores SUð3ÞCþF symmetry at large
distances from the vortex core, where the unbroken
SUð3ÞCþF group elements commute with the order param-
eter. However, the presence of vortex makes the order-
parameter position dependent at large distances. So the
embedding of color-flavor diagonal group SUð3ÞCþF inside
the original symmetry group becomes space dependent.
The generators of the SUð3ÞCþF changes along a path
around the vortex by the action of holonomy. The space
dependence is true only for the few generators which
belong to the CP2 subspace of SUð3Þ and others remain
unaffected. The azimuthal angle dependence of CP2 gen-
erators actually makes the zero-mode analysis complicated.
So when we fluctuate the zero modes, the generated gauge
field Aα depends on the angle in a complicated way.
In general, the generators may not return back to their
own after a complete rotation along an encircled path
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around the vortex. In this case, it is said that there is the so-
called obstruction, for which the profile functions in
general diverges as rc at large distances with a constant
c [29–32]. In our case, after expanding our complex profile
function in the partial wave basis, we have found that the
profile functions corresponding to different partial wave
modes diverge exponentially except for one normalizable
mode (m ¼ 1). Therefore, as a byproduct of our analysis,
we have shown that non-Abelian vortices in high-density
QCD do not suffer from any obstruction.
There is an alternative way to show the absence of

normalizable modes other than the CP2 modes and trans-
lational modes, that is, the index theorem. Fermionic zero
modes around a single non-Abelian vortex [33,34] were
studied by the index theorem applied to the Bogoliubov–de
Gennes equation [35]. The index theorem applied to
bosonic modes should be studied in the framework of
the GL theory.

ACKNOWLEDGMENTS

We would like to thank Mark Alford for bringing our
attention to a possible problem of the singular gauge in
constructing the effective action. This work is supported
by the Ministry of Education, Culture, Sports, Science
(MEXT)-Supported Program for the Strategic Research
Foundation at Private Universities “Topological Science”
(Grant No. S1511006). C. C. acknowledges support as an
International Research Fellow of the Japan Society for the
Promotion of Science (JSPS). Thework ofM. N. is supported
in part by a JSPS Grant-in-Aid for Scientific Research
(KAKENHI Grant No. 16H03984) and by a Grant-in-Aid
for Scientific Research on Innovative Areas “Topological
Materials Science” (KAKENHI Grant No. 15H05855) and
“Nuclear Matter in Neutron Stars Investigated by
Experiments and Astronomical Observations” (KAKENHI
Grant No. 15H00841) from the Ministry of Education,
Culture, Sports, Science (MEXT) of Japan.

[1] M. Eto, E. Nakano, and M. Nitta, Effective world-sheet
theory of color magnetic flux tubes in dense QCD, Phys.
Rev. D 80, 125011 (2009).

[2] M. Eto, M. Nitta, and N. Yamamoto, Instabilities of Non-
Abelian Vortices in Dense QCD, Phys. Rev. Lett. 104,
161601 (2010).

[3] M. G. Alford, K. Rajagopal, and F. Wilczek, QCD at finite
baryon density: Nucleon droplets and color superconduc-
tivity, Phys. Lett. B 422, 247 (1998).

[4] M. G. Alford, K. Rajagopal, and F. Wilczek, Color flavor
locking and chiral symmetry breaking in high density QCD,
Nucl. Phys. B537, 443 (1999).

[5] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
Color superconductivity in dense quark matter, Rev. Mod.
Phys. 80, 1455 (2008).

[6] K. Rajagopal and F. Wilczek, The condensed matter physics
of QCD, in At the Frontier of Particle Physics, vol. 3, edited
by M. Shifman (World Scientific, Singapore, 2001),
p. 2061.

[7] K. Iida and G. Baym, The Superfluid phases of quark matter:
Ginzburg-Landau theory and color neutrality, Phys. Rev. D
63, 074018 (2001); Erratum, Phys. Rev. D 66, 059903 (2002).

[8] K. Iida and G. Baym, Superfluid phases of quark matter. 2:
Phenomenology and sum rules, Phys. Rev. D 65, 014022
(2001).

[9] I. Giannakis and H. C. Ren, The Ginzburg-Landau free
energy functional of color superconductivity at weak cou-
pling, Phys. Rev. D 65, 054017 (2002).

[10] M.M. Forbes and A. R. Zhitnitsky, Global strings in high
density QCD, Phys. Rev. D 65, 085009 (2002).

[11] A. P. Balachandran, S. Digal, and T. Matsuura, Semi-
superfluid strings in high density QCD, Phys. Rev. D 73,
074009 (2006).

[12] E. Nakano, M. Nitta, and T. Matsuura, Non-Abelian strings
in high density QCD: Zero modes and interactions, Phys.
Rev. D 78, 045002 (2008).

[13] E. Nakano, M. Nitta, and T. Matsuura, Non-Abelian strings
in hot or dense QCD, Prog. Theor. Phys. Suppl. 174, 254
(2008).

[14] M. Eto and M. Nitta, Color magnetic flux tubes in dense
QCD, Phys. Rev. D 80, 125007 (2009).

[15] M. Eto, Y. Hirono, M. Nitta, and S. Yasui, Vortices and other
topological solitons in dense quark matter, Prog. Theor.
Exp. Phys. 2014, 012D01 (2014).

[16] M. G. Alford, S. K. Mallavarapu, T. Vachaspati, and A.
Windisch, Stability of superfluid vortices in dense quark
matter, Phys. Rev. C 93, 045801 (2016).

[17] W. Vinci, M. Cipriani, and M. Nitta, Spontaneous mag-
netization through non-Abelian vortex formation in rotating
dense quark matter, Phys. Rev. D 86, 085018 (2012).

[18] Y. Hirono and M. Nitta, Anisotropic Optical Response of
Dense Quark Matter under Rotation: Compact Stars as
Cosmic Polarizers, Phys. Rev. Lett. 109, 062501 (2012).

[19] C. Chatterjee and M. Nitta, Aharonov-Bohm phase in high
density quark matter, Phys. Rev. D 93, 065050 (2016).

[20] A. Gorsky, M. Shifman, and A. Yung, Confined magnetic
monopoles in dense QCD, Phys. Rev. D 83, 085027 (2011).

[21] M. Eto, M. Nitta, and N. Yamamoto, Confined monopoles
induced by quantum effects in dense QCD, Phys. Rev. D 83,
085005 (2011).

[22] Y. Hirono, T. Kanazawa, and M. Nitta, Topological inter-
actions of non-Abelian vortices with quasi-particles in high
density QCD, Phys. Rev. D 83, 085018 (2011).

[23] M. Kobayashi, E. Nakano, and M. Nitta, Color magnetism
in non-Abelian vortex matter, J. High Energy Phys. 06
(2014) 130.

LOW-ENERGY EFFECTIVE WORLDSHEET THEORY OF A … PHYSICAL REVIEW D 95, 085013 (2017)

085013-7

https://doi.org/10.1103/PhysRevD.80.125011
https://doi.org/10.1103/PhysRevD.80.125011
https://doi.org/10.1103/PhysRevLett.104.161601
https://doi.org/10.1103/PhysRevLett.104.161601
https://doi.org/10.1016/S0370-2693(98)00051-3
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/PhysRevD.63.074018
https://doi.org/10.1103/PhysRevD.63.074018
https://doi.org/10.1103/PhysRevD.66.059903
https://doi.org/10.1103/PhysRevD.65.014022
https://doi.org/10.1103/PhysRevD.65.014022
https://doi.org/10.1103/PhysRevD.65.054017
https://doi.org/10.1103/PhysRevD.65.085009
https://doi.org/10.1103/PhysRevD.73.074009
https://doi.org/10.1103/PhysRevD.73.074009
https://doi.org/10.1103/PhysRevD.78.045002
https://doi.org/10.1103/PhysRevD.78.045002
https://doi.org/10.1143/PTPS.174.254
https://doi.org/10.1143/PTPS.174.254
https://doi.org/10.1103/PhysRevD.80.125007
https://doi.org/10.1093/ptep/ptt095
https://doi.org/10.1093/ptep/ptt095
https://doi.org/10.1103/PhysRevC.93.045801
https://doi.org/10.1103/PhysRevD.86.085018
https://doi.org/10.1103/PhysRevLett.109.062501
https://doi.org/10.1103/PhysRevD.93.065050
https://doi.org/10.1103/PhysRevD.83.085027
https://doi.org/10.1103/PhysRevD.83.085005
https://doi.org/10.1103/PhysRevD.83.085005
https://doi.org/10.1103/PhysRevD.83.085018
https://doi.org/10.1007/JHEP06(2014)130
https://doi.org/10.1007/JHEP06(2014)130


[24] H. Abuki, BCS/BEC crossover in Quark Matter and
Evolution of its Static and Dynamic properties: From the
atomic unitary gas to color superconductivity, Nucl. Phys.
A791, 117 (2007).

[25] F. Delduc and G. Valent, Classical and quantum structure of
the compact kählerian sigma models, Nucl. Phys. B253, 494
(1985).

[26] N. S. Manton, A remark on the scattering of BPS monop-
oles, Phys. Lett. 110B, 54 (1982).

[27] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai,
Manifestly supersymmetric effective Lagrangians on BPS
solitons, Phys. Rev. D 73, 125008 (2006).

[28] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, and N. Sakai,
Solitons in the Higgs phase: The Moduli matrix approach, J.
Phys. A 39, R315 (2006).

[29] S. Bolognesi, C. Chatterjee, J. Evslin, K. Konishi, K. Ohashi,
and L. Seveso, Geometry and dynamics of a coupled 4D-2D
quantum field theory, J. High Energy Phys. 01 (2016) 075.

[30] M. G. Alford, K. Benson, S. R. Coleman, J. March-Russell,
andF.Wilczek,The Interactions andExcitations ofNonabelian

Vortices, Phys. Rev. Lett. 64, 1632 (1990); Erratum, Phys. Rev.
Lett. 65, 668(E) (1990).

[31] M. G. Alford, K. Benson, S. R. Coleman, J. March-Russell,
and F. Wilczek, Zero modes of non-Abelian vortices, Nucl.
Phys. B349, 414 (1991).

[32] M. G. Alford, K. M. Lee, J. March-Russell, and J. Preskill,
Quantum field theory of non-Abelian strings and vortices,
Nucl. Phys. B384, 251 (1992).

[33] S. Yasui, K. Itakura, and M. Nitta, Fermion structure of non-
Abelian vortices in high density QCD, Phys. Rev. D 81,
105003 (2010).

[34] C. Chatterjee, M. Cipriani, and M. Nitta, Coupling between
Majorana fermions and Nambu-Goldstone bosons inside a
non-Abelian vortex in dense QCD, Phys. Rev. D 93, 065046
(2016).

[35] T. Fujiwara, T. Fukui, M. Nitta, and S. Yasui, Index
theorem and Majorana zero modes along a non-Abelian
vortex in a color superconductor, Phys. Rev. D 84, 076002
(2011).

CHANDRASEKHAR CHATTERJEE and MUNETO NITTA PHYSICAL REVIEW D 95, 085013 (2017)

085013-8

https://doi.org/10.1016/j.nuclphysa.2007.03.134
https://doi.org/10.1016/j.nuclphysa.2007.03.134
https://doi.org/10.1016/0550-3213(85)90544-9
https://doi.org/10.1016/0550-3213(85)90544-9
https://doi.org/10.1016/0370-2693(82)90950-9
https://doi.org/10.1103/PhysRevD.73.125008
https://doi.org/10.1088/0305-4470/39/26/R01
https://doi.org/10.1088/0305-4470/39/26/R01
https://doi.org/10.1007/JHEP01(2016)075
https://doi.org/10.1103/PhysRevLett.64.1632
https://doi.org/10.1103/PhysRevLett.65.668.2
https://doi.org/10.1103/PhysRevLett.65.668.2
https://doi.org/10.1016/0550-3213(91)90331-Q
https://doi.org/10.1016/0550-3213(91)90331-Q
https://doi.org/10.1016/0550-3213(92)90468-Q
https://doi.org/10.1103/PhysRevD.81.105003
https://doi.org/10.1103/PhysRevD.81.105003
https://doi.org/10.1103/PhysRevD.93.065046
https://doi.org/10.1103/PhysRevD.93.065046
https://doi.org/10.1103/PhysRevD.84.076002
https://doi.org/10.1103/PhysRevD.84.076002

