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Tunneling in quantum field theory is worth understanding properly, not least because it controls the long-
term fate of our Universe. There are, however, a number of features of tunneling rate calculations which
lack a desirable transparency, such as the necessity of analytic continuation, the appropriateness of using an
effective instead of classical potential, and the sensitivity to short-distance physics. This paper attempts to
review in pedagogical detail the physical origin of tunneling and its connection to the path integral. Both
the traditional potential-deformation method and a recent, more direct, propagator-based method are
discussed. Some new insights from using approximate semiclassical solutions are presented. In addition,
we explore the sensitivity of the lifetime of our Universe to short-distance physics, such as quantum gravity,
emphasizing a number of important subtleties.

DOI: 10.1103/PhysRevD.95.085011

I. INTRODUCTION

Whether the long-term future of the Universe is con-
trolled by the slow freezing and rarefaction of cosmic
acceleration or the sudden formation and growth of
negative-energy bubbles is a question of visceral appeal
even to nonscientists. There are also practical aspects
(from a particle-physics point of view) to vacuum stability,
such as eliminating models of new physics or motivating
new colliders to measure the top mass. Thus, it would
be good to know whether the question of stability can
even be answered confidently assuming no new physics.
This paper provides a survey of some impediments to
establishing that confidence. We provide a new pers-
pective on some old methods, such as the connection
between the path integral and tunneling, and bring clarity
to some recent debates, such as the UV sensitivity of the
Universe’s lifetime.
One challenge to computing the rate for tunneling out of

our metastable vacuum is establishing a systematically
improvable framework for computing this rate in the first
place. In quantum mechanics, in the absence of any
approximate methods, the decay of a given initial wave
function can always be calculated by numerically solving
Schrödinger’s equation. In quantum field theory, one does
not have this crutch: Not only is Schrödinger’s equation
infinite dimensional, but the wave functional (the field-
theory analog of the wave function) inspires little physical
intuition.
The first few sections of this paper are devoted to

reviewing how decay rates are defined, the relevant time
scales, and the derivation of various formulas used to

compute them. The traditional method, pioneered by
Coleman and Callan [1] (see also [2]), focuses on comput-
ing the imaginary part of the matrix element haje−HT jai,
where in quantum mechanics, jai is a position eigenstate.
Because this matrix element is real, one cannot simply take
its imaginary part. Rather, one must analytically continue
the potential so that the false vacuum is stable, compute the
matrix element, then analytically continue back. There are
some excellent reviews of this potential-deformation
method [3–7]. The method seems to give the right answer,
in cases where it can be checked. Nevertheless, some
elements of its derivation seem to us in need of further
clarification. For example, for physical potentials, which
are bounded from below, analytic continuation gives the
wrong answer. Instead, the steepest-descent contour pass-
ing through the saddle point associated with the false
vacuum plays an essential role. We provide our own
perspective on this method, which we hope the reader will
find illuminating.
Having digested the Callan-Coleman potential-

deformation approach, one suspects that there should
somehow be a more direct way to connect tunneling rates
to the path integral. Such a connection was presented in [8]
and is expounded on in Sec. IV. The method introduced in
[8] is based on a direct computation of the probability for a
particle to propagate through a barrier. It has the advantage
of maintaining a closer connection between the underlying
physical assumptions, such as the hierarchy of time scales
required for the tunneling rate to be well defined, than the
potential-deformation method. A summary comparison of
the potential deformation and the direct methods is given in
Sec. IV D.
To compute a decay rate in the saddle-point approxi-

mation, one must find bounces: solutions to the Euclidean
equations of motion with some particular boundary con-
ditions. These bounces are functions ϕð~x; τÞ, where
Euclidean time τ parametrizes a path through field space.
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This path is analogous to the most-probable path that a
particle passes through a barrier in the WKB approximation
[9]. In Sec. V B, we discuss how to think about the
functional U½ϕ� so that it provides a close analogy with
the potential energy barrier in quantum mechanics. Finding
exact bounces can be challenging, even numerically.
Fortuitously, many features of the exact bounces are well
described by approximate bounces which can be studied
analytically, as we discuss in Sec. V C.
In quantum field theory, metastability can arise from

radiative corrections. The famous example of this is the
Coleman-Weinberg model, where a stable potential V ¼
λϕ4 turns over and runs negative due to photon loops in
scalar QED [10]. It is natural to anticipate that one should
therefore use the effective potential, which demonstrates
the instability, to compute the tunneling rate. We argue that
this is not correct. First of all, corrections to the effective
action which vanish for constant fields may contribute
equally to a rate as potential terms. Second, using the
effective potential double counts the radiative corrections:
Particle loops contribute both to Veff and again to the rate.
Although these observations are not deep, it is not
uncommon to see Veff used as a classical potential to find
bounce solutions. The appropriate use of effective actions is
discussed in Sec. VI.
Finally, we reduce this to the Standard Model. The

lifetime of our Universe has been intensively studied since
the tunneling calculations in quantum field theory were first
understood [11–17]. Even if we assume the Standard
Model is valid up to the Planck scale, one must be sure
that quantum gravity cannot invalidate the perturbative
decay rate calculation. Current precision measurements and
calculations imply that, in the absence of new physics, our
Universe will decay through the formation of ultra-tiny
bubbles, with radii R ∼ ð1017 GeVÞ−1 ∼ 10−31 cm. This
bubble size is essentially determined by the scale where the
β function for the Higgs quartic vanishes (we provide a new
derivation of this result in Sec. V C). Although 1017 GeV is
close to the Planck scale, it has been argued that it is far
enough below MPl that quantum gravitational effects on
Veff can be ignored [15–18]. It has also been argued that
these effects cannot be ignored since the bubble takes trans-
Planckian field values at its center [19–22]. The latter
conclusion has been verified by other groups, and we
agree that the gravitational contributions to the decay rate
can have important effects. However, as we explain in
Sec. VII C, the problem of UV sensitivity is not just the
coincidence between MPl and the flat point of the Higgs
quartic: The Standard Model would be Planck sensitive
even if MPl were 10100 GeV. Moreover, it is not correct to
just use the effective potential to determine the bubble size;
one really needs the full effective action, as we emphasize
in Sec. VI.
A summary of some of the new perspectives provided in

this paper is given in our conclusions, Sec. VIII.

II. TUNNELING IN QUANTUM MECHANICS

Much of our intuition for tunneling comes from one-
dimensional quantum mechanics. Indeed, Gamow’s 1928
calculation of the relation between half-life and the energy
E of emitted α particles was seminal in establishing the
validity of quantum mechanics [23]. So it is natural to start
our discussion with this case. Gamow modeled the nuclear
potential VðxÞ as having a 1

x Coulomb tail and some kind of
well for x < a, where the α particle is trapped. In 1D, the
wave function of a state with energy E falls off exponen-
tially between a and b by an amount given approximately
by the WKB formula:

TðEÞ≡ ψEðbÞ
ψEðaÞ

≡ e−W ≈ exp

�
−
Z

b

a
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðVðxÞ − EÞ

p �
:

ð2:1Þ
Here, a and b are the turning points where VðaÞ¼VðbÞ¼E.
It is of course quite logical that the decay rate should be
proportional to howmuch of the wave function gets through
the barrier, Γ ∼ jTðEÞj2. However, if the particle is in an
energy eigenstate, there is no time dependence, so it cannot
decay. To go from TðEÞ to Γ, a step often skipped, requires
considerably more thought.
A simple picture often used to convert TðEÞ to a decay

rate depicts a particle with momentum p ¼ ffiffiffiffiffiffiffiffiffiffi
2mE

p
and

velocity v ¼ p
m in the well hitting the barrier with a rate v

2a,
each time tunneling through with probability given by the
transmission coefficient, jTðEÞj2 (see e.g. [24]). With this
logic, the decay rate is

Γ ∼
p

2am

����ψEðbÞ
ψEðaÞ

����2 ≈ p
2am

e−2W: ð2:2Þ

Indeed, if one solves the Schrödinger equation numerically,
one can see the wave function oscillate back and forth in the
well; the largest flux leaks out during the times when the
wave function is closest to the barrier. Figure 1 shows this
exponential decay with time and the small oscillations.
Snapshots of the wave function oscillating in the well are
shown in Fig. 2.

A. Precise definition of the decay rate

To make the above formula more precise, we need an
exact definition of the decay rate to which we can then look
for approximations. A reasonable, physical definition of the
decay rate of a system comes from PFVðtÞ, the probability
of finding a state ψ initially confined to a false-vacuum
region (FV) in that same region after a time T:

PFVðTÞ≡
Z
FV

dxjψðx; TÞj2: ð2:3Þ

We expect that for a decaying system the probability should
fall exponentially:
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PFVðTÞ ∼ e−ΓT: ð2:4Þ

So we might define

Γ ¼ −
1

PFV

d
dT

PFV: ð2:5Þ

Equation (2.4) is of course not strictly true for all times
T, and hence Γ defined in Eq. (2.5) is time dependent. For a
1D system, we can calculate PFVðTÞ numerically, as shown
in Fig. 1. The plot of PFV makes it clear what we mean
physically by the “decay rate”; the probability falls expo-
nentially for some particular time regime, and it is in this
regime that Γ is meaningful.
To get a time-independent rate, we can average over the

oscillations which occur with frequency ∼ p
am. For this to

make sense, T cannot be too short: T ≫ Tslosh ¼ ω−1
a ,

where ωa characterizes the frequency of oscillation within
the false vacuum.1 Moreover, T should also not be too long,
for then the exponential decay will have significantly
depleted the wave function and nonlinearities set in. One
source of nonlinearities is from the decaying wave bounc-
ing off the potential in the true-vacuum region and

FIG. 1. Left panel: An example of a physical potential with a metastable region FV, a destination region R, and a barrier. We label the
local minimum inside the FV region by a and the turning point by b [defined by VðbÞ ¼ VðaÞ]. Right panel: The probability PFVðTÞ
[see Eq. (2.3)] for this system (beginning in a Gaussian wavepacket centered at a) computed by numerically solving Schrödinger’s
equation. We see that the probability to find the particle in the false vacuum decays exponentially for intermediate times between the
short time scale of sloshing inside the false vacuum and the long time scale on which the wave function begins to flow back into the false
vacuum.

FIG. 2. The numerical evolution of a particle initially localized in the false vacuum. At each time step, the potential is shown (black),
along with the probability jψðx; tÞj2 (red), and we also show the probability magnified by 50 (purple) so that we can see the small amount
leaking through the barrier. By looking at the evolution of the wave function, we see the sloshing behavior near the false vacuum,
associated with the initial Gaussian state not being an exact resonance. In the first two rows the central value of the wave function can be
seen moving back and forth within the false-vacuum well. When it hits the right wall around times 3 and 4, the most wave-function
amplitude escapes through the barrier. In the third row we have jumped ahead to see the nonlinear behavior when there is enough wave-
function density in the outside region such that it is no longer simply flowing out.

1For a parabolic well, the sloshing time is just the inverse of the

classical oscillation frequency ωa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mV

00ðaÞ
q

. This is also the
energy difference between excitations in the quantum system. For
a square well, there is no classical oscillation, but Tslosh does not
go to infinity. Because of the hard walls in the square well, there is
still a finite Tslosh, related again to the energy difference of the two
lowest modes.

PRECISION DECAY RATE CALCULATIONS IN QUANTUM … PHYSICAL REVIEW D 95, 085011 (2017)

085011-3



returning to the false vacuum. Pooling these effects into a
characteristic scale TNL, we also require T ≪ TNL.
Thus, the physical decay rate is a phenomenon that

happens on time scales Tslosh ≪ T ≪ TNL; for these time
scales we expect an exponential fall of PFVðTÞ. Hence, Γ
extracted from Eq. (2.5) is independent of T to the extent
that Tslosh ≪ T ≪ TNL is satisfied. These two time limits
are built into what is meant by a time-independent decay
rate Γ; they are not approximations we make to calculate Γ
but rather limits under which Γ is even worth talking about.
An “all-orders” formula for Γ must use these limits. Thus, a
precise definition of the decay rate is

Γ≡ − lim
T=TNL→0

T=Tslosh→∞

1

PFVðTÞ
d
dT

PFVðTÞ: ð2:6Þ

Finally, for systems that can decay in multiple different
directions (e.g. a one-dimensional particle that can escape
to the left or the right, or in multiple dimensions), we might
want to know the decay rate to a particular region R (for
instance, the region to the right of the barrier). Then we
should define the partial decay width from the linear growth
of the probability to find the particle in the region R, PRðTÞ:

ΓR ¼ lim
T=TNL→0

T=Tslosh→∞

1

PFVðTÞ
dPRðTÞ
dT

ð2:7Þ

Another way we could have intuitively derived the decay
rate to any region R would be as the probability flux
through the boundary of R. (If R is everything outside the
false vacuum, then this would be the total flux into R, i.e.
out through the boundary of the false-vacuum region.) The
quantum mechanical flux is defined by

Jiðx; tÞ ¼
1

2im
ðψ⋆ðx; tÞ∂iψðx; tÞ − ψðx; tÞ∂iψ

⋆ðx; tÞÞ:
ð2:8Þ

Then we could define the decay rate as the fraction of
probability flowing through the outward-pointing boundary
∂R, in the same time limits as above:

ΓR ≡ − lim
T=TNL→0

T=Tslosh→∞

1

PFVðTÞ
Z
∂R

dxiJiðx; TÞ: ð2:9Þ

Because of the conservation equation (∂iJi ¼ −∂tjψ j2),
this is exactly equivalent to Eq. (2.7).
Next, we need to be able to compute Γ in Eq. (2.7), either

using the WKB approximation or with some other method.

B. Real-energy eigenstates and complex energy poles

The type of potentials under consideration, such as the
one in Fig. 1, comprise a well region labeled FV, where the

particle is initially a barrier region B, between points a and
b (to be specified precisely later), and an approximately
free destination region R. For now, let us assume that the
potential is constant in R and extends infinitely to the right,
as VðxÞ in Fig. 3.
A concrete example illustrating the points of this section

is given in Appendix A. More details and alternative
derivations can be found in [3,25–31].
Since the system extends infinitely to the right, there will

be energy eigenstates ϕEðxÞ for any E. Most of these are
approximately free (plane waves) confined to region R,
with little support in the FV region. Some, however, do
have large support in the FV region. These are the
resonances. To be specific, we can define the resonant
energies E as those whose probability in the FV region has
a local maximum: ∂EPFV½ϕE� ¼ 0 [now the probability
PFV defined in Eq. (2.3) is viewed as depending on ϕE
instead of on T, since energy eigenstates have time-
independent probabilities]. In general, there will be a finite
number of such resonance energies, E1 < E2 < � � � <
En < Vmax. Up to exponential corrections, these are the
bound-state energies for a modified potential where FV is
made absolutely stable by deforming the potential VðxÞ
[e.g., by setting VðxÞ ¼ VðcÞ for x ≥ c, where x ¼ c is the
location of the maximum height of the barrier].
Now, our initial state ψ cannot be an energy eigenstate,

or else there would be no time dependence and Γ ¼ 0.
However, since the initial state is, by assumption, localized
in the FV region, it can be written as a linear combination of
bands of energy eigenstates close to each of the resonant
energies Ei. Each of these bands will have a different
characteristic decay rate Γi. We must assume Γi ≪ Ei so
that the widths are narrow and the decay is exponential. As
we will confirm, the higher energy states will decay much
faster than the lower energy states since they have less
barrier to penetrate: Γ1 ≪ Γ2 ≪ � � � ≪ Γn.
As we said, we want to average over the sloshing times,

T ∼ Ti
slosh ¼ ω−1

a . By the time T ∼ Γ−1
n ≫ Tn

slosh, the high-
est energy components (around En) will have significantly
leaked out of the well. Then, at each Γi threshold, another

FIG. 3. Example of a potential that has a well region labeled FV
and a barrier region B, and is constant in the region R which
extends indefinitely to the right.
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band of the original probability will have leaked out.
Depending on the structure of the region R, these leaked
components may even leak back in on the time scale
T ∼ TNL. We can treat each band separately, so let us
assume for simplicity that our original wave function only
had support from the modes close to energy E0 and write Γ
for the width of this band.
The modes in the band near E0 basically have the same

form. They have the shape of the E ¼ E0 (approximate)
bound state in the well region, decay exponentially through
the barrier, and become free (plane waves) in region R.
In the FV region, they take the form

ϕEðxÞ ¼
1

NðEÞ fðE; xÞ ð2:10Þ

where fðE; xÞ is a well-behaved function in E and x, and
NðEÞ has zeros exponentially close to the resonant energies
En. We are focusing on the lowest resonant energy, which
has corresponding zeros E0 � i

2
Γ0.

To connect Γ in Eq. (2.6) to this pole, let us decompose
our decaying wave function ψðx; tÞ, initially localized in
the well, into energy eigenstates. We define

ρðEÞ ¼
Z

∞

0

dyϕ⋆
EðyÞψðyÞ; ð2:11Þ

where ψðyÞ≡ ψðy; t ¼ 0Þ. The time dependence of our
wave function ψðx; tÞ is given by

ψðx; tÞ ¼
Z

dEρðEÞϕEðxÞe−iEt

¼
Z

dyψðyÞ
Z

dE
fðE; xÞf⋆ðE; yÞ

jNðEÞj2 e−iEt: ð2:12Þ

Closing the E contour in the fourth quadrant (for con-
vergence), and looking at times E−1

0 ≪ t ≪ Γ−1
0 , we have

ψðx; tÞ ≈
Z

dyψðyÞ2πiRes
�
fðE; xÞf⋆ðE; yÞ

jNðEÞj2 e−iEt;

E ¼ E0 −
i
2
Γ0

�

¼ g

�
E0 −

i
2
Γ0; x

�
e−iE0te−

Γ0
2
t ð2:13Þ

for some well-behaved function gðE; xÞ. Corrections to this
formula are all suppressed by Γ0t ≪ 1. Applying the
definition of the decay rate, Eq. (2.6) gives

−
d
dT

logPFVðTÞ ¼ −
d
dT

log
Z
FV

dxjψ j2

¼ −
d
dT

log½const × e−Γ0T � ¼ Γ0: ð2:14Þ

Thus Γ0, defined by the first pole of NðEÞ, E ¼ E0 − i
2
Γ0,

is indeed the decay rate Γ. That is, the decay rate, defined

physically in Eq. (2.6), is given by twice the imaginary part
of the complex pole. For potentials of this form, this leads
us to a shortcut; we can simply calculate the poles of 1

NðEÞ
directly, without ever explicitly time-evolving any states.
To be clear, real-energy eigenstates never blow up.

However, nothing stops us from finding solutions to the
Schrödinger equation with complex energies. In doing so,
we find that for certain complex energies, the wave function
does blow up. These poles should be close to real energy
E0, with a small excursion of size Γ ≪ E0 into the complex
plane. Actually, there will be two poles for each E0, one for
positive and one for negative Γ. Since the Hamiltonian is
Hermitian on bound states, these states cannot have the
same boundary conditions as for real-energy eigenstates.
Normally, energy eigenstates with real energies have a
probability around each point which does not change with
time, so there can be no outgoing or incoming flux. Thus,
nonzero flux corresponds to complex energies. The Γ < 0
case corresponds to incoming boundary conditions: Flux
goes from region R into the FV region, and correspond-
ingly, PFVðTÞ will grow with time. For Γ > 0, the flux goes
from FV into R. These are outgoing radiating (Gamow-
Siegert) boundary conditions, the situation we are inter-
ested in. The example in Appendix A shows more directly
the connection between radiating boundary conditions and
the complex zeros of the normalization.
Note that the outgoing-only wave approximation is

equivalent to removing the backreaction, or equivalently
taking T=TNL → 0. This is the same limit required in
Eq. (2.7) to make the decay rate well defined (time
independent). It is reassuring that the relevant time scale
plays a role in the analysis.
With outgoing boundary conditions, the energy is E ¼

E0 − i
2
Γ with Γ > 0, and the momentum in the region

where V ¼ 0 is p ¼ p0 − i
2
γ, with γ ¼ mΓ

p0
and p0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi

2mE0

p ½1þOðΓ=E0Þ�. Writing ϕEðx; tÞ ¼ 1
N e

−iEtþipx in
the region R (where we are assuming V ¼ 0), the rate can
be computed by flux conservation,

∂tðψ⋆ψÞ ¼ i
2m

∂xðψ⋆∂xψ − ψ∂xψ
⋆Þ; ð2:15Þ

which holds for any solution ψ to the Schrödinger equation.
Integrating this from 0 to an arbitrary point b for the energy
eigenstate ϕE with outgoing boundary conditions, we
then get

Γ ¼ pb

m
jϕEðbÞj2R

b
0 dxjϕEðxÞj2

ð2:16Þ

where pb ¼ −i ∂xϕEðbÞ
ϕEðbÞ for a plane wave, and more gen-

erally pb ¼ − i
2

ϕ⋆
E∂xϕE−ϕE∂xϕ⋆

E
ϕ⋆
EϕE

jx¼b.
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The expression for the decay rate in Eq. (2.16) is accurate
up to exponentially small corrections. In it, b can be any
point at all. Indeed, Eq. (2.16) is independent of the choice
of b, as can be seen by taking the derivative and applying
Schrödinger’s equation, and it is independent of the choice
of t because it is written in terms of spatial wave
functions alone.
For Eq. (2.16) to be useful, we would like to be able to

use it for solutions with real energies for normalizable
resonance modes rather than complex energy eigenstates
with outgoing boundary conditions. After all, if we already
know the complex energy, then we know the rate. Since the
complex energy solution is exponentially close to the real-
energy solution in the FV region and for most of the barrier
region (except near x ≈ b), the integral

R
b
0 jϕEðxÞj2 in the

denominator should be about the same if ϕE is the real or
complex energy solution. The numerator, on the other
hand, involves the value of the wave function at b. Its value
for the real and complex-energy solutions may differ by a
factor of order one. This is because the complex energy
solution has an exponentially growing component in the
barrier, which can become of the same order as the
exponentially decaying one at x ¼ b. Thus, while one
can certainly use Eq. (2.16) with a real eigenfunction to
approximate the exact answer, some precision will unfortu-
nately be lost in doing so. We discuss using the WKB
approximation to the energy eigenstates next and defer an
explicit example to Appendix A.

C. WKB approximation

Once we have a formula like Eq. (2.16) which depends
on the values of a wave function, we need to solve
Schrödinger’s equation. If an analytic solution is not
available, we may want to approximate Eq. (2.16) with
the WKB expansion. The WKB approximation tells us that

ϕEðxÞ ¼ A
1ffiffiffiffiffiffiffiffiffiffiffiffijpðxÞjp exp

�
i
ℏ

Z
x

a
pðyÞdy

�
ð1þOðℏÞÞ;

ð2:17Þ

where pðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE0 − VðxÞÞp

and A is an x-independent
normalization constant that will drop out of Eq. (2.16). The
lower limit of integration is chosen to be a for convenience;
changing it to something else will only change the
normalization, which can then be absorbed into A.
At leading order we ignore the p prefactor and keep only

the exponential. Then Eq. (2.16) gives

ΓLO ¼ const × e−2
R

jpðxÞjdx; ð2:18Þ

where the integral is taken over the region where VðxÞ >
E0 [so that pðxÞ is imaginary]. At NLO we keep the
prefactor also, giving

ΓNLO ¼ 1

m

exp ½− 2
ℏ

R
b
a jpðxÞjdx�R

a
0

dx
pðxÞ þ

R
b
a

dx
pðxÞ exp ½− 2

ℏ

R
x
a jpðyÞjdy�

ð2:19Þ

where a and b are the classical turning points.
The first factor in the denominator is exactly the classical

period of oscillation around the false vacuum: TFV ¼R
m
p dx. For a roughly constant potential in the region from

0 to a, this is just TFV ¼ a
v where v ¼ p

m is the velocity. The
second factor in the denominator is exponentially smaller in
the limit ℏ → 0, so we can drop it even at NLO. Thus,

ΓNLO ¼ p
am

exp

�
−
2

ℏ

Z
b

a
jpðxÞjdx

�
: ð2:20Þ

This is close to Eq. (2.2), but differs by a factor of 2.
Of course we had no right to expect the two formulas to

agree exactly: First, Eq. (2.2) is based on an imprecise
semiclassical argument, and second, Eq. (2.20) uses the
WKB approximation, neglecting a careful treatment of
turning points, and approximates Eq. (2.16) with real-
energy eigenstates, which is also not a controlled approxi-
mation. In [4], theWKB approximation is used in a formula
like Eq. (2.20) for a cubic potential. They find that at NLO
the prefactor differs from a presumably more accurate
result using the potential-deformation method (see Sec. III
below), by a factor of e

2
≈ 1.4.

This is not to say that WKB cannot be used to compute
tunneling rates precisely. It can. For example, in [32] the
WKB method was used to compute the rate from the
complex resonant energies for the quartic potential to
N4LO. The same rate was computed to NLO using the
potential-deformation method in [33]. The two results
agree exactly to the order at which they can be compared
(NLO).

D. WKB in multiple dimensions

One might wonder what happens to the above
Schrödinger equations, especially Eqs. (2.16) and (2.20),
in multiple dimensions. The all-orders formula Eq. (2.16)
generalizes naturally enough to

Γ ¼ 1

m

R
Σ db · pbjϕEðbÞj2R
FV dxjϕEðxÞj2

: ð2:21Þ

TheWKB approximation in multiple dimensions is more
complicated, unfortunately. At an intuitive level, one would
very much like to simply integrate over all paths through
configuration space, and for each path apply the 1D WKB.
In other words, this simply says that the system can decay
along any path through the barrier; for each path we apply
the 1D WKB formula and then we integrate over all
the paths.
This intuitive picture is unfortunately difficult to prove

precisely (an extended discussion is provided by Banks,
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Bender, and Wu [9]). The problem is that WKB is
attempting to approximate the wave function, which takes
only a single value at each position; there is no sense in
summing over all possible values it would take if we follow
all possible paths to each point. Altogether, when we want
to be precise, it is easier to apply the semiclassical
approximation (which is the approximation WKB per-
forms) in the path integral rather than trying to use
multidimensional WKB.
However, the intuition from WKB is not useless.

Because the trouble has to do with the sum over paths,
one might expect the leading exponential behavior pre-
dicted by WKB—that which is determined solely by the
dominant path through the barrier and knows nothing of the
other paths—to be correct. Keeping only the leading
exponentials, this says

Γ ∼
Z

~Dxe−2
R

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðxðsÞÞ

p
; ð2:22Þ

where the path integral here integrates over paths but not
over parametrizations of those paths; in other words, we
only include in ~Dx paths xðsÞ with a path-length normali-
zation j dxids j2 ¼ 1.
For any path xðsÞ, the WKB exponential is exactly the

same as the minimal classical Euclidean action over all
parametrizations sðtÞ:Z

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðxðsÞÞ

p
¼ min

sðtÞ

Z
dt

�
1

2
_x2 − VðxÞ

�
: ð2:23Þ

This can be seen because the minimum action path
conserves energy; E ¼ 1

2
_x2 þ VðxÞ is constant. Assuming

V ¼ 0 at the end point, this means _x ¼ ffiffiffiffiffiffi
2V

p
, and the

minimum action is equal to
R
dt2VðxÞ. Changing variables

from dt to ds gives
R
ds

ffiffiffiffiffiffi
2V

p
. Note that both sides of

Eq. (2.23) only integrate over the path from the false
vacuum to the barrier; to include the return journey, one
adds a factor of 2.
This means that (again keeping only the dominant

exponentials) integrating over the parametrizations of the
Euclidean action along a single path gives the WKB factor
along that path:

Z
DsðtÞe−SE½xðsðtÞÞ� ∼ e−2

R
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðxðsÞÞ

p
; ð2:24Þ

where the left side is integrated over all paths from false
vacuum back to false vacuum which cross the barrier, and
the right side integrates from the false vacuum to the
turning point. Now we can remove the awkward restriction
on the path measure in Eq. (2.22):

Γ ∼
Z

Dxe−SE½x�; ð2:25Þ

which is indeed the correct equation at leading exponential
order according to the more precise path-integral deriva-
tions (see Secs. III and IV below), as long as one allows
the ∼ to suppress some sort of restriction to the bounce
saddle point only.
Thus, the picture of using WKB and simply integrating

over paths through the barrier (or simply taking the least-
resistance path) does indeed give the correct leading-order
decay rate. This “through the barrier” restriction causes the
integral in Eq. (2.25) to be dominated by the bounce and
not the constant false-vacuum solution (see Sec. III).
This intuition is useful since it says that for a given

multidimensional potential, one can get a physical intuition
for the size of the barrier by studying the potential along the
least-resistance path V1DðsÞ≡ VðxðsÞÞ, where xðsÞ is the
least-resistance path which is the same as the Euclidean
bounce. The leading exponential decay rate for the multi-
dimensional problem will then be the same as it would be
for the 1D problem VðsÞ.
As a side note, it is important that the integration variable

s in WKB be a path-length parametrization. In field theory
(cf. Sec. V below), we usually parametrize the path through
field space with the Euclidean time τ. But if we use τ as is,
then the WKB factor

R
dτ

ffiffiffiffiffiffi
2V

p
has the wrong measure. So

we must first convert to a path-length parametrization:

ds
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
dxi
dτ

�
2

s
: ð2:26Þ

This is discussed further in Sec. V B.

E. Summary

The first goal was to give a precise definition of the
decay rate and to isolate the conditions under which Γ is
well defined. We did this in Sec. II A. The next goal was to
show how the transmission coefficient, which is what the
WKB can be used to compute, is related to Γ. To do that, we
needed to discuss the time evolution of a wave function ψ .
We found, from decomposing ψ into energy eigenstates,
that the rate is encoded in the zeros of the normalization of
modes near resonant energies E0. This normalization has a
pole at complex energies. The pole whose imaginary part
gives the rate is associated with outgoing-radiation boun-
dary conditions. Using flux conservation, this imaginary
part can be related to the energy eigenstate wave function
which is then approximated with WKB. Although all these
steps are presumably well known, and included in various
forms in various treatments, we nevertheless thought it
could be helpful to have this whole story in one place.
Appendix A explains a concrete example, where the

(real) energy eigenstates are solved explicitly, and the
connection between complex energies, poles in the nor-
malization of the wave functions, and outgoing boundary
conditions can be seen explicitly.
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III. POTENTIAL-DEFORMATION METHOD

The methods of the previous section rely on solving
Schrödinger’s equation, which is not practical in a many-
dimensional case (such as field theory). An alternative
approach to calculating tunneling rates, which generalizes
more easily to higher dimensions, works with the path
integral directly [1]. We first review this approach and
point out some of its more curious aspects. Then in
Secs. III B–III B 3 we provide more details of particularly
subtle points. More details of the mathematics of this
method can be found in [5,6,34–36].

A. Overview

The starting point of the calculation in [1] is the relation

Z≡ hxfje−HT jxii ¼
Z

xðT Þ¼xf

xð0Þ¼xi

Dxe−SE½x�; ð3:1Þ

where the right-hand side is the path integral using the
Euclidean action SE½x�. By inserting a complete set of
energy eigenstates, the matrix element can be written as

Z ¼
X
E

e−ET ϕEðxiÞϕ⋆
EðxfÞ: ð3:2Þ

Then we see that the lowest energy can be deduced from

E0 ¼ − lim
T →∞

1

T
lnZ: ð3:3Þ

Roughly speaking, we expect that when there is a decay,
E0 will have an imaginary part corresponding to the decay
rate, so2

Γ
2
¼ Im lim

T →∞

1

T
lnZ: ð3:4Þ

There are many ways to connect the imaginary part of an
energy to a decay rate, but the connection is not automatic.
For example, in Sec. II B we found the decay rate for a
metastable system to be the imaginary part of an eigenstate
of the Hamiltonian with (unphysical) Gamow-Siegert
radiative boundary conditions. For normalizable modes
of a Hermitian Hamiltonian, all the energies including E0

are real. For physical potentials, which are bounded from
below, the energies and Euclidean action are bounded from
below as well. Correspondingly, Z is manifestly real.
Hence, Eq. (3.4) must be defined in a much more careful
manner.
Consider the asymmetric double-well potential in Fig. 4.

One might hope that by taking particular boundary con-
ditions (choice of xi and xf) we can extract a metastable or
resonance energy whose imaginary part gives the decay
rate. However, the points xi and xf only contribute through
the wave-function factors ϕEðxiÞ and ϕ⋆

EðxfÞ in Eq. (3.2),
which do not contribute to E0. In order to get an imaginary
part, then, we must do something more tortuous.
Since the path integral is complicated, let us simplify

things by first approximating it using the saddle-point
approximation. The path integral can be approximated by
summing over stationary points of the Euclidean action.
For each stationary point, that is, for each solution x̄ðτÞ to
the Euclidean equations of motion, the saddle-point
approximation of the path integral around x̄ evaluates to

I x̄ ≡ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½−∂2

t þ V 00ðx̄Þ�
p e−

1
ℏSEðx̄Þð1þOðℏÞÞ ð3:5Þ

where we have put the ℏ back in for clarity, and N is some
constant related to the normalization of the path integral.
The stationary paths x̄ðτÞ are solutions to the equations of
motions for a ball rolling down a hill described by the

FIG. 4. Left panel: Generic potential with a false and true vacuum. Right panel: The inverted potential. The stationary path x̄ðτÞ is the
solution to the equations of motion of a ball rolling down the inverted potential with boundary conditions xð0Þ ¼ xi and xðT Þ ¼ xf.

2Note that there will be a sign ambiguity in the evaluation of
Eq. (3.4), as we will see later in this section. The calculation
should always be done so that Γ > 0, which corresponds to the
physical decay rate.
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inverted potential −VðxÞ with the boundary conditions
from the path integral: xð0Þ ¼ xi and xðT Þ ¼ xf
(see Fig. 4).
There are a range of stationary paths for this system

dependent on what we choose the boundary conditions to
be. For xi ¼ xf ¼ c there is a solution to the Euclidean
equations of motion with x̄ðτÞ ¼ c. This is the path labeled
“TV static” in Fig. 5. This has an action given by
SE½x̄� ¼ VðcÞT . The integral over Gaussian fluctuations
around this solution produces I ∼ expð−EcT Þ, as
explained in [1], where Ec ¼ VðcÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðcÞp

is the
ground-state energy of a harmonic oscillator using the
quadratic approximation to the potential near x ¼ c. Thus,
the T → ∞ limit produces the correct approximate ground-
state energy E0 ¼ Ec for xi ¼ xf ¼ c, as expected.
Now say we take xi and xf to be arbitrary (not at c). The

Euclidean equations of motion with boundary conditions
xð0Þ ¼ xi and xðT Þ ¼ xf can always be solved by a
solution starting at xi with exactly enough initial velocity
to get to the top of the hill and stay there for nearly time T ,
and then roll to xf. This path is shown as the path labeled
“generic shot” in Fig. 5. This path has nearly the same
Euclidean action as the TV static path, and matches it
exactly as T → ∞. Thus, we can indeed choose any points
xi and xf, and the true ground-state energy E0 results from
the T → ∞ limit.
Now consider xi ¼ xf ¼ a. There is still a solution to the

Euclidean equations of motion which stays at x ¼ c for
most of the time (the path labeled the “shot” in Fig. 5) with
I ∼ expð−EcT Þ. With xi ¼ xf ¼ a there are actually more
solutions. The one labeled “FV static” stays at x ¼ a for all
times. It has Euclidean action VðaÞT and saddle-point
approximation I ∼ expð−EaT Þ, where just like for Ec, Ea
has correcttions due to oscillations around the x ¼ a
minima. In addition, when xi ¼ xf ¼ a there is also an
exact instanton solution. This solution starts very slowly
from a. Since the potential is flat at a, it stays near a for a
long time, then rather quickly rolls up to b and back, and
then stays near a again for a long time. This is the “bounce”
in Fig. 5. Because it spends most of the time near a, its

saddle point differs from the FV saddle by a finite
(T -independent) amount: I ¼ K expð−EaT − SbounceÞ,
for some imaginary coefficient K. The finite action is
Sbounce ¼

R
b
a dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mVðxÞp

, where the integral is between a
and the turning point b on the other side of the barrier. This
action is positive and therefore larger than the action for the
shot, which also starts and ends at a in time T . The bounce
only moves for a finite time, which is why it is called an
instanton.
So when xi ¼ xf ¼ a, there are contributions to the path

integral from the shot, the FV static, and the unique bounce
which is an exact solution to the Euclidean equations of
motion. There are also approximate solutions where the
bounce is translated or multiple bounces are sewn together.
These have actions which are exponentially close to the
bounce action and therefore contribute a large amount to
the path integral even if they are not exact stationary points.
Summing all the saddle points and approximate saddle
points, the result is

Z ¼ hAje−HT jAi ∼ expð−EcT Þ þ expð−EaT Þ
þ expð−EaT þ Ke−SbounceT Þ þ � � � ð3:6Þ

where K is a NLO constant arising from Gaussian
integrations around the bounce [1].
One might then argue (see Coleman’s discussion in [11])

that the bounces are the only thing with an imaginary part,
so we can keep them when computing the imaginary part in
Eq. (3.4), giving us

Γ
2
¼ ImKe−Sbounce : ð3:7Þ

But this argument is very precarious; we know for a fact
that when computed exactly, Z is real and the imaginary
part is exactly 0. The imaginary bounce contribution is
exactly canceled by subdominant corrections to the true-
vacuum saddle point. This cancellation can be seen in the
toy examples discussed in Sec. III B.
In the following sections we will discuss some subtle

points about saddle-point approximations, analytic con-
tinuation, and deformation of the contour of integration
that will lead us to an expression like Eq. (3.7). Briefly,
the decay rate is actually calculated by modifying the
path integral to be along a different contour of integra-
tion, the contour of steepest descent through the FV.
Integrating along this contour misses the shot solution,
allowing the FV path to dominate. The imaginary part
along this contour is the same as 1

2
of the imaginary part

along the steepest-descent contour passing through the
bounce saddle point. This tells us that the decay rate
associated with the false vacuum of the potential in
Fig. 4 is given by

FIG. 5. Different solutions to the Euclidean equations of motion
for the asymmetric double well.
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Γ
2
¼ 1

2
ImKe−Sbounce ð3:8Þ

which is 1
2
of the naive result given in Eq. (3.7).

We now turn to a careful explanation of how the contour
deformation and saddle-point approximation is done, and
to what extent the result is the same as the one given by the
analytic continuation of the path integral associated with
deforming the potential.

B. Analytic continuation, steepest-descent contours,
saddle points, and imaginary parts

The main goal of this section is to explain a mathemati-
cally consistent procedure for getting an imaginary part,
presumably connected to the decay rate of a metastable
state, out of a real path integral. This section is based, to a
large extent, on [36] with insights from [5,6,34,35]. In
contrast to these references, we also consider tunneling in
physical bounded potentials, which leads to a more
nuanced picture of the origin of the imaginary part.
The final result, which we are trying to justify, is that the

imaginary part wewant comes from applying the method of
steepest descent to the Euclidean action along a family of
paths passing through the FV saddle point. Much of the
relevant mathematics can be understood most clearly by
reducing the calculation to a one-dimensional integral
along only this family of paths. Parametrizing the family
by a parameter z, with z ¼ 0 corresponding to the false
vacuum, z ¼ 1 the bounce, and z > 1 going towards the
shot, we can compute directly SðzÞ for a given potential
(see Fig. 6). The part of the path integral of interest is then a
1D integral,

ZC ¼
Z
C
dze−

1
ℏSðzÞ; ð3:9Þ

withC some integration contour, in this case simply the real
line. Eventually, we will deform C to some other contour in
order to calculate the decay rate.

First, in Sec. III B 1, we discuss the saddle-point
approximation, in general, and explain why only a subset
of the stationary points of the action contribute to the decay
rate. Then we explain in a concrete example how the
integral as a whole can be real even though a subdominant
saddle point is imaginary [this is what happened in the path
integral in Eq. (3.6)].
We unravel the origin of the imaginary parts by con-

sidering different types of potentials. One can have poten-
tials in which the destination region of tunneling is
unbounded from below, like VðxÞ ¼ x2

2
− x4

4
. These exam-

ples are discussed in most textbook treatments [5–7]. For
such cases, the energy spectrum is unbounded from below,
and the path integral is formally infinite. One can produce
the tunneling rate by deforming the potential through a
parameter g to the potential where g ¼ 1 is the original case
of interest and g < 0 makes the path-integral convergent.
As we will see, analytically continuing back to g ¼ 1
corresponds to changing the integration contour into the
complex z plane, giving Z a well-defined imaginary part.
Potentials in actual physical systems are necessarily

bounded from below. One would naively expect that the
same logic from the unbounded potentials should apply.
However, as we will see, analytic continuation of the
potential cannot produce an imaginary part in the path
integral because Z is convergent along the real axis for
any g. In particular, for physical potentials, applying
Eq. (3.3) necessarily gives the real ground-state energy
of the system.
The correct procedure, which applies for all types of

potentials exhibiting tunneling, is to compute the path
integral along the steepest-descent contour through the FV
saddle. Along this contour, Z is complex, and its imaginary
part is equal to 1

2
the sum over the bounces, just as in the

standard formula. However, this understanding gives little
explanation for why this procedure should always give the
decay rate or how to calculate the rate outside of the saddle-
point approximation. Those questions are answered by the
alternative method presented in Sec. IV.

FIG. 6. It is helpful to study the path integral along a one-parameter family of paths passing from the static FV through the bounce and
to the shot. These paths xzðτÞ are illustrated on the left (found numerically using the method in Appendix C) for the potential
VðxÞ ¼ − x

12
− x2

2
þ x4

4
, and their actions SðzÞ are computed numerically and shown on the right. For the examples we consider, along

families of paths like this, the action S½z� ¼ R
dτ½1

2
ð∂τxzÞ2 þ VðxzÞ� looks qualitatively like VðzÞ.
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1. Dominant and subdominant saddle points

The saddle-point approximation is used for arbitrary
complex exponential integrals, like that in Eq. (3.9). To
apply the approximation, we first ignore the actual contour
C and instead focus on the complex saddle points of S,
which we label s1; s2;…; sn. Through each of these points,
we draw the steepest-descent contour Ci, which is defined
intuitively by simply moving away from si in the direction
which increases the real part of S as quickly as possible.
These contours are called “steepest descent” because the
magnitude of the integrand is rapidly diminishing along the
contour away from the saddle point, and thus the value of
the integral can be approximated by its behavior near the
maximum at si.
Along a given steepest-descent contour, we can approxi-

mate the integral by expanding S around si:

J i ≡
Z
Ci

dze−
1
ℏSðzÞ ∼

Z
Ci

dze−
1
ℏSðsiÞ− 1

2ℏS
00ðsiÞðz−siÞ2þ��� ð3:10Þ

∼

ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ
S00ðsiÞ

s
e−

1
ℏSðsiÞð1þOðℏÞÞ≡ I i:

ð3:11Þ

Here, I i is an approximation to J i, approaching it exactly
in the ℏ → 0 limit. The subleading corrections in “OðℏÞ”
can be calculated in an asymptotic series in ℏ. Because the
series is asymptotic, summing the series will not reproduce
J i exactly. It will only produce J i up to terms exponen-
tially suppressed in 1

ℏ.
We can then make a plot of the complex z plane, marking

the saddle points of S as well as their steepest-descent
contours, as shown in Fig. 7. Suppose the integral we want
to compute is along the original contour C. We can deform
the contour C into a sum of steepest-descent contours Ci; in
the example of Fig. 7, this would be

C ¼ C1 þ C2: ð3:12Þ

There are no poles, so the deformation is allowed as long as
the end points remain the convergent regions indicated by
the arcs in Fig. 7. Note that although there are three saddle
points in this example, only two contribute because of the
contour.
The integral along C is the sum of the integrals along

these steepest-descent contours, yielding

Z ¼ J 1 þ J 2: ð3:13Þ

Note that the fact that some or all of the si are complex does
not matter; one still includes those si whose contours are
involved in the sum, regardless of whether the saddle point
itself is real or not [37].

Now we can use the saddle-point approximation along
each contour. We write the saddle-point approximation to
J i as I i, so that

Z ∼ I1 þ I2; ð3:14Þ

where ∼ indicates that corrections are exponentially
small.
However, note that each I i approximates an exact

contour integral J i up to exponentially suppressed
terms, and the I i can be exponentially different.
In other words, one of the terms in Eq. (3.13) (say
J 1) is exponentially larger than the rest. So if we are
going to perform an expansion which is accurate up to
exponentially small corrections, we cannot keep the
subdominant terms. At the level of Eq. (3.13), we write
this as

Z ¼ J 1 þ J 2 ð3:15Þ

to indicate that while the equation is exact at this level, the
boxed term is exponentially dominant so, when approxi-
mating, the second term is meaningless. Unfortunately, it
may be J 2 that has the imaginary part.
The problem of subdominant imaginary contributions is

perhaps easiest to appreciate through an example. Suppose
we have the following function S:

SðzÞ ¼ −
z2

2
þ z4

4
; ð3:16Þ

and we want to integrate as in Eq. (3.9) along the real line.
This function has saddle points at z ¼ −1, 0, 1, with
approximations

FIG. 7. An example of the complex z plane with the critical
points of S marked as dots. Each saddle point si has a steepest-
descent contour Ci passing through it. Black arcs around the
edges note the directions in the x plane in which the exponent −S
goes to −∞; the integral only converges along contours which
start and end in these directions.
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I−1 ¼
ffiffiffiffiffiffi
πℏ

p
exp

�
1

4ℏ

�
I0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−2πℏ

p

I1 ¼
ffiffiffiffiffiffi
πℏ

p
exp

�
1

4ℏ

�
: ð3:17Þ

Around z ¼ 0, the quadratic action SðzÞ ¼ − z2
2
has an

increasing real part along the imaginary axis. Around
z ¼ 1, SðzÞ ¼ − 1

4
þ ðz − 1Þ2, which has an increasing real

part along the real axis. Thus, going from z ¼ 1, the

steepest-descent contour moves along the real axis, until
it hits z ¼ 0, where it must turn to either the positive or
negative imaginary direction. This ambiguity (this action is
said to be on a Stokes line) is easily resolved by giving the
action a small imaginary part. For one choice, the steepest-
descent contours are sketched in Fig. 8. The steepest-
descent contours are sometimes called Lefschetz thimbles.
For the other choice, the thimbles would be the complex
conjugates of those in Fig. 8 (see Fig. 9 below for another
example which shows the conjugate contours).

FIG. 8. The saddle points f−1; 0; 1g and associated steepest-descent contours for SðzÞ ¼ − z2
2
þ z4

4
. Left panel: The real line (dotted)

can be written as a sum of all three contours R ¼ C−1 þ C0 þ C1. Actually, there is an ambiguity for this action (it is on a Stokes line);
the complex conjugate contours are equally valid. Right panel: A plot of ReðS½z�Þ in the complex plane where we can clearly see the lines
of steepest descent through each saddle point.

FIG. 9. The saddle points and steepest-descent contours for SgðzÞ ¼ z2
2
− g z4

4
in Eq. (3.20). For g ¼ 1, integrating along the real axis is

divergent (as indicated by the lack of arcs at z ¼ �∞). For g ¼ −1, the FV contour (green line) falls along the real axis. Rotating g back from
−1 to 1, the FV contour remains convergent but depends on whether one rotates g clockwise or counterclockwise in the complex plane.
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We see from Fig. 8 that in this case, the original contour
deforms to a sum of all three contours (R ¼ C−1 þ C0 þ
C1), and all three saddle points contribute. So we have

Z ¼ J −1 þ J 0 þ J 1 : ð3:18Þ

We have boxed both J −1 and J 1 because they are exactly
degenerate and exponentially larger than J 0. If we perform
the naive saddle-point approximation, we would obtain

Z ∼ I−1 þ I0 þ I1: ð3:19Þ

Now we see a confusion; since I0 is imaginary, it seems
that Z might have an imaginary part in the approximation,
even though it is a convergent real integral and thus is
clearly actually real. What is happening?
As one can see in Fig. 8, if we really computeJ 1 exactly,

integrating along C1, it will have a real part from the real-
line part of the contour and an imaginary part from the
imaginary-line part. The sum of the imaginary parts of J 1

and J −1 is exactly the negative of the imaginary part of
J 0—they are simply integrating along the same contour in
opposite directions. However, when we use the saddle-
point approximation, I1 and I−1 are both real; their
imaginary parts are (rightfully) discarded as they are
exponentially small. As we discussed before, in the
saddle-point approximation, like Eq. (3.19), exponentially
subdominant terms are meaningless. Thus, to be consistent,
we should also drop I0 since J 0 is exponentially sup-
pressed, as indicated in Eq. (3.18). The integral is in fact
real at any order in any expansion, if all the pieces of the
same order are consistently kept.
Thus, although the saddle-point approximation can seem

to produce an imaginary part in a real quantity, this is an
illusion. Within a consistent expansion, real integrals are
real. To get an imaginary part, we really do need to change
the original contour of integration, as we explain next.

2. Unstable potentials and analytic continuation

To understand the imaginary part and factor of 1
2
, a

standard example [5,6] is the following action function:

SgðzÞ ¼
z2

2
− g

z4

4
: ð3:20Þ

Although this action is unbounded from below and
unphysical, we will see in Sec. III B 3 how stabilizing it
by adding a term z6

60
to the action will lead to a similar result.

As above, we would like to study the imaginary part of

Zg ≡
Z

∞

−∞
dze−

1
ℏSgðzÞ ð3:21Þ

for g ¼ 1.

For any g ≠ 0 the action has three saddle points:

sj ¼
n
−

ffiffi
1
g

q
; 0;

ffiffi
1
g

q o
for j ¼ −1, 0, 1, respectively. The z ¼

s0 ¼ 0 saddle point plays the role of the false-vacuum

solution, and the z ¼ s�1 ¼ �
ffiffi
1
g

q
saddle points play the

role of the bounce. Applying the saddle approximation,

I−1 ¼
ffiffiffiffiffiffiffiffiffi
−πℏ

p
exp

�
−

1

4gℏ

�
I0 ¼

ffiffiffiffiffiffiffiffi
2πℏ

p

I1 ¼
ffiffiffiffiffiffiffiffiffi
−πℏ

p
exp

�
−

1

4gℏ

�
; ð3:22Þ

we find that I0 is real and I�1 are imaginary.
As explained in the previous section, we cannot trust the

saddle-point approximation because exponentially small
imaginary contributions from the I0 have been dropped.
Even worse in this case, Z itself does not converge at
z ¼ �∞, so we cannot integrate Z along the real axis.
However, Zg can be integrated along the real axis for g < 0.
The steepest-descent contours are shown for g ¼ 1 and
g ¼ −1 in Fig. 9, with the black arcs indicating regions of
convergence. So one thing we can do is calculate Zg for
g < 0 along the real axis and analytically continue that back
to g ¼ 1. We call that result Zcont

g .
The convergent regions in the complex z plane of Zcont

g

change as a function of g. The analytic extension away
from g < 0 is unique if we fix the end points of the
contour to the convergent regions as we change g. For
example, we can parametrize the analytic continuation
from g ¼ −1 to g ¼ 1 by varying g ¼ −eiθ from θ ¼ 0 to
θ ¼ π. For θ ¼ 0 the integration contour is given by the
real line. As we change θ we can have the end points of
the contour following the convergent region by rotating
the contour of integration by an angle θ

4
when we rotate

g ¼ −1 to g ¼ −eiθ (see Fig. 10). Note that rotating by
θ ¼ −π gives the conjugate result to rotating by θ ¼ π,
and thus there is a branch cut along the positive real axis
if we restrict the Riemann surface to a single sheet. In
Fig. 9 the steepest descents are given for g slightly above
and below the positive real axis to break the degeneracy
of steepest-descent curves.
Fixing the end points of the contour, the rest of the

contour can safely be deformed since SgðzÞ contains no
poles. We can deform the θ ¼ π contour of integration to
the contour of steepest descent through the false-vacuum
saddle point, Cþ. This can easily be seen by comparing
Figs. 9 and 10. Similarly, rotating by θ ¼ −π gives the
contour C−.
We therefore find

Zcont�
g¼1 ¼

Z
C�

dz exp

�
−
z2

2
þ z4

4

�
ð3:23Þ

where ðZcontþ
g Þ⋆ ¼ Zcont−

g .
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Next, we want to approximate this integral using a
saddle-point approximation. Unfortunately, the saddle
approximation along the contour Cþ (or C−) around
the FV saddle point is purely real, to all orders in the
expansion. The saddle-point approximation probes the
function only in an asymptotically small region close to
the saddle point. This is completely insensitive to the part of
the contour Cþ (or C−) which passes into the complex
plane. However, it is precisely this part of the contour we
are interested in, since that is where the imaginary part will
come from. Away around this is to use the fact that Zcont�

g

are complex conjugates of each other to write

ImZcontþ
g¼1 ¼ Zcontþ

g¼1 − Zcont−
g¼1

2i
¼ discðZcont

g¼1Þ
2i

: ð3:24Þ

As can be seen in Fig. 11, integrating along Cþ − C− is
equivalent to integrating along C−1 þ C1, that is, along the
contours of steepest descent passing through the bounces.

Now that we have directly related the imaginary part of
Zcontþ
g¼1 to an integral along paths which are complex at the

saddle points, we can safely take the saddle-point approxi-
mation. Thus,

disc Zcont
g¼1 ¼ J −1 þ J 1 ∼ I−1 þ I1 ð3:25Þ

and therefore

Im Zcontþ
g¼1 ∼

1

2
ImðI−1 þ I1Þ: ð3:26Þ

That is, the desired imaginary part is given by half the sum
over the relevant bounces.

3. Bounded potentials and steepest-descent contours

One concern with the procedure described above is that
the action we used in Sec. III B 2, Sg½z� ¼ 1

2
z2 − g z4

4
, was

unbounded from below, and therefore unphysical. One
might worry that the justification for analytic continuation
and changing the integration contour from the real axis was
to make the integral well defined; for a physical potential,
perhaps the imaginary part remains zero. With that moti-
vation, consider the action function

SgðzÞ ¼
z2

2
− g

z4

4
þ z6

60
: ð3:27Þ

This is similar to the action from Sec. III B 3, but now the
integral Z over the real axis is convergent.
Now the action is sixth order, so S0ðzÞ ¼ 0 has five

solutions for five saddle points. For g ¼ 1, these are around
z ≈ f−3.0;−1.0; 0; 1.0; 3.0g, all along the real axis. There
are six convergent regions, including the region at z ¼ �∞
for any g. So in this case, the original contour of the real line
is perfectly fine for any g. Indeed, the function Zg ¼R∞
−∞ dz expð−SgðzÞÞ is an analytic function of g; it is real for
real g and has no discontinuity near g ¼ 1. Thus, whatever
we do, we are certainly not analytically continuing Zg.

FIG. 10. The contour (red) used for analytic continuation as a function of θ compared to the original real axis contour (dashed line).
Because there are no poles in SðzÞ, we can deform the contours however we like as long as they end in the same convergent regions
[black arcs are where Reðgz4Þ < 0].

FIG. 11. The difference between the two FV contours (green
lines, Cþ and C−) is equivalent to the sum of the two bounce
contours (C−1 and C1). (Computing the discontinuity disc Zcont

g¼1

rather than just Zcont
g¼1 involves subtracting two integration con-

tours, yielding the combined contour which can be deformed into
a sum of the red and blue steepest-descent curves, with no
presence of the green curve.
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So what can we do? We saw in the previous section that
for unbounded potentials, analytic continuation is equiv-
alent to integrating along the steepest-descent contour
through the false-vacuum saddle point. In the case of a
bounded potential like we have here, analytic continuation
and integrating along the contour of steepest descent are
necessarily different; the steepest descent will always move
off the real axis and will end in a different region of
convergence. We therefore introduce the path integral along
the steepest-descent contour through the FV saddle point,

ZC� ¼
Z
C�

dze−SgðzÞ ð3:28Þ

where C� are the steepest-descent contours for g ¼ 1� iϵ.
In Fig. 12 we see how the contours and saddle points move
about as we rotate g.
By using Eq. (3.28) for both bounded and unbounded

potentials, we will always find that the imaginary part of
ZCþ

is given by

Im ZCþ ¼ 1

2i
discðZCþÞ ð3:29Þ

which in the saddle-point approximation is equal to 1
2
times

the sum over the relevant bounce saddle points. With this
method, modifying the action far away from the region
relevant to the false vacuum and the bounce does not seem
to affect the prediction for the tunneling rate by very much,
which is reassuring.

4. Dependence on the choice of contour

We have intimated that the key to finding the decay rate
is to integrate not along the real axis but along a steepest-
descent contour passing through the false vacuum. If the
potential is deformed to be convex with the FV at the true
minimum, the real axis will coincide with this contour. To
clarify the importance of the FV saddle, let us now look at
how different results arise when different saddle points are
stabilized.

To explore how different steepest-descent contours may
affect the result, consider the following two-parameter
family of actions:

SgðzÞ ¼ h
z
12

− g
z2

2
þ z4

4
: ð3:30Þ

The case of interest is g ¼ h ¼ 1. There are three saddle
points: a FV at z ≈ −1.0, a bounce at z ≈ 0.0, and a shot at
z ≈ 1.0. The saddle points and steepest-descent contours
are shown in Fig. 13.
First, we consider keeping h ¼ 1 and rotating to g ¼ −1.

For h ¼ 1 and g ¼ −1, the potential has one minimum at
z ≈ 0.0: The bounce has been stabilized. In this case, the
integration contour along the z axis coincides with the
bounce saddle-point contour. When we rotate back to
g ¼ 1, this contour lines up with the imaginary axis.
Thus, integrating along the contour will give the complete
imaginary part of the bounce saddle-point integration,
without the factor of 1

2
. Of course, this had to happen:

By stabilizing the bounce, we matched the integration
contour with the bounce contour. When we rotate back, it
remains lined up, and therefore the full integral over the
bounce contour is kept.
Next, consider keeping g ¼ 1 but rotating h from 1 to

something negative and large enough to remove the other
minimum, such as h ¼ −5. For example, we can rotate
as h ¼ −2þ 3eiθ with 0 ≤ θ ≤ π. For h ¼ −5, the saddle
point on the real axis is the FV saddle, and the other
two have moved into the complex plane. When we
rotate back to h ¼ 1, this FV saddle moves along the
real axis and then up half of the bounce saddle. Thus, for
the h deformation, we get the extra factor of 1

2
, as

expected.
Finally, consider rotating h from 1 to 5. This stabilizes

the shot. Rotating back to h ¼ 1, we see that the shot
contour lines up with the other hand of the bounce
contour when we stabilized the FV. Thus, we get a factor
of 1

2
in this case. The sign of the imaginary part in any

case has to be fixed by physics. When we stabilize the

FIG. 12. For the action function Sg½z� ¼ z2
2
− g z4

4
þ z6

60
, the real axis is a valid integration contour for any g. However, as we change g,

the steepest-descent contours change. We see that for g ¼ expðiϵÞ the steepest-descent contour ends along the ray θ ¼ π
3
rather than the

real axis, θ ¼ 0.
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shot, we can choose the sign to be negative so that
Γ < 0. This makes sense physically because flux enters
the true vacuum region, so the probability grows with
time. This corresponds to incoming Gamow boundary
conditions (as in Sec. II B or Appendix A), and one
expects Γ < 0.

C. Summary of potential deformation method

In this section, we discussed how to compute a decay rate
from the Euclidean path integral, filling in some details and
examining some peculiarities not mentioned in [1,11] or
elsewhere in the literature to our knowledge. In this
method, one starts with a Euclidean path integral or
partition function,

Z ¼
Z

xðT Þ¼a

xð0Þ¼a
Dxe−SE½x�; ð3:31Þ

which is real for all T .
To get an imaginary part, we reduced the problem to

integrating along a one-parameter family of curves, passing
through the static FV path, the bounce, and the shot.
Around the bounce saddle point z ¼ s1, the 1D integral is
approximately

Z ¼
Z

dze−SðzÞ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

S00ðs1Þ

s
e−Sðs1Þ; ð3:32Þ

which is imaginary because of the negative curvature
around the bounce. However, one cannot just pick a single
saddle point. One must use the proper integration contour,
which can include multiple saddles, and the imaginary parts
can (and do) cancel. Physically, the T → ∞ limit always
picks out the true vacuum, and the path integral is
dominated by the shot not the bounce. The path integral
around the shot is real and exponentially larger than the
path integral around the bounce. Instead, we want the
metastable resonance state near the false vacuum to
dominate.
To isolate the resonance near the FV, one approach is to

deform the potential so that the FV is the true minimum.We
write g ¼ 1 for the original potential, and g ¼ −1 for when
the FV is stable. Unfortunately, at g ¼ −1, the path integral
is still real. Moreover, one cannot simply analytically
continue the result back to g ¼ −1, for then the true
minimum would be the true vacuum again, and Z would
still be real.
The right way to isolate the resonance is to deform the

theory at g ¼ −1 in a different way: We pin the contour

FIG. 13. The function Sh;gðzÞ ¼ h z
12
− g z2

2
þ z4

4
can be deformed in different ways from the physical case ðh; gÞ ¼ ð1; 1Þ (top). For

ðh; gÞ ¼ ð−5; 1Þ, the FV is stabilized, and the real axis lines up with the FV contour (green). The correct factor of 1
2
results. For

ðh; gÞ ¼ ð1;−1Þ, the bounce is stabilized (red). The imaginary part computed in this way is the naive one, missing the factor of 2.
For ðh; gÞ ¼ ð5; 1Þ, the shot is stabilized (blue).
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with the steepest-descent contour Cþ passing through the
FV saddle. Near g ¼ −1 this is identical to the analytic
function Zg. However, as the potential deforms back, the
analytic continuation remains real, while pinning the
contour to Cþ does not. This is a consequence of the fact
that through the deformation, the system crosses a Stokes
line, changing the region (the black arcs in Fig. 13, for
example) in which the steepest descent through the FV
saddle ends.
Of course, if at the end of the day all we want is to stick

to the FV contour, we do not have to bother with the
analytic continuation at all. The procedure is simply as
follows:

(i) The decay rate is given by the imaginary part of the
path integral along the steepest-descent contour Cþ
passing through the false-vacuum saddle point (not
the bounce saddle point, and not the path integral
over real paths).

Pinning the contour to focus on the FV is exactly what we
want physically: We want the resonance associated with the
FV to dominate, even when it is not the dominant saddle
point. This procedure enforces this dominance, albeit in a
somewhat artificial mathematical way.
The integral along the FV contour will produce some-

thing complex, Z ¼ Rþ iI . Then the decay rate, in the
limit I ≪ R, is

Γ
2
¼ 1

T
Im lnZ ≈

1

T
I
R

: ð3:33Þ

Unfortunately, to compute Z one cannot directly use the
saddle-point approximation since close to the saddle point
the FV contour will give something real,R alone. This real
part R is indeed given by the saddle-point approximation
around FV, R ≈ expf−S½x̄FV�g. The imaginary part I
comes from a region on the contour far away from the
FV saddle. Thus, to get the imaginary part under a saddle-
point approximation, we have to compute the discontinuity
between the two degenerate steepest-descent contours,
which is equivalent to evaluating 1

2
of the steepest-descent

contour through the bounce saddles. That is,
(i) the imaginary part of the path integral can be

computed along the steepest-descent contour pass-
ing through the bounce saddle point, times 1

2
.

Thus, to leading order

Γ
2
∼

1

2T
~K
expf−S½x̄bounce�g
expf−S½x̄FV�g

; ð3:34Þ

with the prefactor ~K computable systematically in the
saddle-point approximation.
We have performed some helpful sanity checks on this

algorithm. First, we considered examples from the liter-
ature that use actions unbounded from below, where one
can get a nontrivial result using analytic continuation

because the integral Z along the real axis diverges.
Thus, it looks like Z must be defined through analytic
continuation. But when considering bounded potentials, we
saw that analytic continuation does not give the right
answer. Instead, pinning to the steepest-descent contour
through the false vacuum gives consistent results in both
the bounded and unbounded cases we have considered.
Moreover, deforming the potential away from the FV
region and the barrier has little effect on the rate, as desired.
Second, we checked that the deformation must stabilize

the false vacuum, not any of the other saddle points. We
found that if the bounce is stabilized, one gets an answer
that is a factor of 2 too large. We also found that stabilizing
the shot gives an answer with the wrong sign. These
observations are consistent with the general physical argu-
ment that a proper derivation must include consideration
that T not be too large. For very large T, only the true
vacuum is relevant. By deforming the potential so the false
vacuum is the ground state, the false-vacuum bound states
can be found. After deforming back, these presumably turn
into the resonances, with outgoing boundary conditions and
imaginary energies.
There are two nagging questions we have been unable to

answer in our explorations of this method.
1. How can the rate be calculated without using the

saddle-point approximation, for example, nonper-
turbatively?

If the procedure were just analytic continuation, one could,
in principle, compute the path integral as a function of g and
analytically continue it from around g ¼ −1 back to g ¼ 1.
However, fixing one dimension of an infinite-dimensional
integral to a particular contour does not have an obvious
nonperturbative analog.

2. Can one prove that pinning the contour to Cþ is
identical to imposing the limits Tslosh ≪ T ≪ TNL?

In other words, how do we know the number Γ computed
through this mathematically consistent procedure always
gives the decay rate exactly?
The next section discusses a more physical approach,

with fewer mathematical subtleties, which we can (in
principle) compare to the potential-deformation approach
order by order.

IV. DIRECT METHOD

The potential-deformation method described in Sec. III
connects the Euclidean action to the decay rate in a
roundabout manner. It relies critically on an understanding
of the subtleties of analytic continuation, steepest-descent
contours, and saddle approximations of the path integral in
order to obtain an imaginary number. In this section, we
describe an alternative derivation that connects the path
integral directly to the decay rate.3

3Another approach, employing coherent states, is described
in [38].
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Let us assumewe have a potential with a FV, a barrier, and
a true vacuum region (R), as in Fig. 1. The energy
eigenstates which have support in the FV region are in
bands ofwidthΓi around resonance energiesEi. In Sec. II B,
we were led to assume, for simplicity, that our initial state
only had support for energies near E0. We would still like
this to be true, but it is more convenient with path integrals to
work with position eigenstates than energy eigenstates. So
let us assume now that the initial state is localized at the point
x ¼ awhere the minimum of the well is located. As we take
T large, this wave function will have dominant support from
within the lowest energy band. It will also have some
support for the higher energy bands; however, the higher
energy components die off much faster than the E0 compo-
nents, so if we focus on time scales T ≫ E−1

0 , we should be
able to ignore those components.
The decay rate to a region R is defined as in Eq. (2.7):

ΓR ¼ lim
T=TNL→0

T=Tslosh→∞

1

PFVðtÞ
dPRðTÞ
dT

; ð4:1Þ

where the probability PR is defined as

PRðtÞ ¼
Z
R
dxfjhxf; tja; 0ij2 ¼

Z
R
dxfjNDFða; 0; xf; tÞj2:

ð4:2Þ

The factor ofN in Eq. (4.2) is a normalization factor pulled
out of the path-integral form of the propagator, so the
Feynman propagator DF is simply

DFða; 0; xf; tÞ ¼
Z

xðtÞ¼xf

xð0Þ¼a
DxeiS½x�: ð4:3Þ

Normally, there would be a factor ofN in Eq. (4.3), but we
have put the N in Eq. (4.2) instead.
Let us denote by b the point on the boundary of R where

the potential is degenerate with the initial point a:
VðbÞ ¼ VðaÞ. By splitting every path into the part before
it first hits b (at time t0) and the part after t0, we can write

DFða; 0; xf; tÞ ¼
Z

t

0

dt0DFða; 0; b; t0ÞDFðb; 0; xf; t − t0Þ

ð4:4Þ

where

D̄Fða; 0; b; t0Þ≡
Z

xðt0Þ¼b

xð0Þ¼a
DxeiS½x�δðtb½x� − t0Þ: ð4:5Þ

Here, tb½x� is the functional returning the time the path xðtÞ
first crosses b. So D̄F is the Feynman propagator over paths
on the interval ð0; t0Þ that hit b exactly once, at t ¼ t0.

The separation in Eq. (4.4) works so long as all paths in
the original propagator pass through b at least once. In the
path integral, for each path xðtÞ into R, there is a time t0
when the path exits the barrier for the first time. Since we
have taken b to be the classical turning point on the
boundary of R, any path into R must hit b, so we can indeed
use Eq. (4.4). Thus, we find

PRðtÞ ¼ NN ⋆
Z

dxf

Z
T

0

dt0

Z
T

0

dt00D̄Fða; 0; b; t0Þ

× D̄⋆
Fða; 0; b; t00ÞDFðb; 0; xf; T − t0Þ

×D⋆
Fðb; 0; xf; T − t00Þ: ð4:6Þ

Now we want to use the fact that once the particle gets to
region R, it stays in region R; this is the limit T=TNL → 0.
This fact lets us replace the sum of jxfihxfj over points in R
to a sum over all points. Such a replacement will modify PR
only by terms which are exponentially small, for example,
suppressed by extra factors of the e−W WKB penetration
factor. Such exponentially small corrections are an irre-
ducible ambiguity in what is meant by a decay rate. Thus,
to the extent that Γ is well defined at all, we can drop them.
Then,

Z
dxFDFðb; 0; xf; T − t0ÞD⋆

Fðb; 0; xf; T − t00Þ

¼
Z

dxfhbje−iHðT−t0ÞjxfihxfjeiHðT−t0
0
Þjbi

≈DFðb; 0; b; t00 − t0Þ: ð4:7Þ

So we now have

PRðtÞ ¼ NN ⋆
Z

T

0

dt0

Z
T

0

dt00D̄Fða; 0; b; t0Þ

× D̄⋆
Fða; 0; b; t00ÞDFðb; 0; b; t00 − t0Þ: ð4:8Þ

Breaking the two integrals into the regions with t00 > t0 and
t0 > t00, we can use Eq. (4.4) on the two halves along with
D⋆

Fðx; 0; y; tÞ ¼ DFðy; 0; x;−tÞ to get

PRðtÞ ¼ NN ⋆
Z

T

0

dt0½D̄Fða; 0; b; t0ÞD⋆
Fða; 0; b; t0Þ

þ D̄⋆
Fða; 0; b; t0ÞDFða; 0; b; t0Þ�: ð4:9Þ

Then expanding the definitions of DF and D̄F in Eqs. (4.3)
and (4.5) and plugging this into the definition of ΓR in
Eq. (4.1) produces
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ΓR ¼ NN ⋆
PFVðTÞ

�Z
xðTÞ¼b

xð0Þ¼a
DxeiS½x�δðtb½x� − TÞ

�

×

�Z
xðTÞ¼b

xð0Þ¼a
DxeiS½x�

�⋆
þ c:c: ð4:10Þ

Now let us consider how to calculate these two path
integrals. Because the path integral has an imaginary
exponent, it is not convergent (when integrated along the
real x). For this reason the actual definition of the
Minkowski path integral involves a strange imaginary
integration path over x, or more simply, evaluating it for
T ¼ iT real and then analytically continuing.
For the first path integral in Eq. (4.10), we analytically

continue to T ¼ iT. Then the boundary conditions are
xð0Þ ¼ a and xðT Þ ¼ b as before, which are equivalent to
xð−T Þ ¼ a and xð0Þ ¼ b. For the second integral, which is
complex conjugated, we must analytically continue to T 0 ¼
−iτ ¼ −T to ensure convergence. This leads to xð0Þ ¼ a
and xð−T Þ ¼ b as boundary conditions, or equivalently,
xð0Þ ¼ b and xðT Þ ¼ a. Because the end points have
switched, the two Euclidean path integrals can then be
recombined, leading to

ΓR ¼ NN ⋆
PFVðTÞ

Z
xðT Þ¼a

xð−T Þ¼a
Dxe−SE½x�½ηþδð−iτb½x�Þ

þ η−δðiτb½x�Þ�: ð4:11Þ

To get to this result, we have replaced tb½x� with −iτb½x� in
the first δ function and iτb½x� in the second δ function.
However, changing variables within a δ function has to be
done carefully since the δ function is not defined for
imaginary arguments. Thus, we have added phase factors
η� in front, which we will now fix.
In order to analytically continue correctly, we should first

remove the δ-function mode, then analytically continue,
and then put it back. This will lead to δð�if½x�Þ≡
η�δðf½x�Þ for some η�. To see what these η� are, we focus
only on a single degree of freedom restricted by the δ
function. We analytically continue as follows:Z

dx½AeiαSðxÞδðαt½x�Þ þ A⋆e−iαSðxÞδðαt½x�Þ�

¼
�Z

dx½η−Ae−rSðxÞδðirt½x�Þ

þ ηþA⋆e−sSðxÞδð−ist½x�Þ�
�

r¼−iα
s¼iα

; ð4:12Þ

where A represents the integral over all the other modes,
and α represents a phase-factor coefficient in front of τ
which we will rotate from 1 to i. This notation means that
we evaluate the integrals for r and s positive (where the
other path integrals converge) and then make the substi-
tutions. Integrating over the δ functions gives

AeiαSðx�Þ þ A⋆e−iαSðx�Þ
jαt0ðx�Þj

¼
�
η−Ae−rSðx�Þ

rjt0ðx�Þj
þ ηþA⋆e−sSðx�Þ

sjt0ðx�Þj
�

r¼−iα
s¼iα

ð4:13Þ

¼ 1

rjt0ðx�Þj
ðη−Ae−rSðx�Þ − ηþA⋆erSðx�ÞÞr¼−iα ð4:14Þ

from which we see that ηþ ¼ −η− ¼ isignðαÞ will give us
the right answer. Thus, we see that the analytic continuation
of the δ function isZ

dx½AeiαSðxÞδðαt½x�Þ þ A⋆e−iαSðxÞδðαt½x�Þ�

¼ −signðαÞ2Im
�
A
Z

dxe−rSðxÞδðrtðxÞÞ
�

r>0
r¼−iα

; ð4:15Þ

where the notation means that we evaluate the expression
for r > 0, and then afterwards analytically continue to
r ¼ −iα. The sign ambiguity is due to a branch cut: The
answer depends on which way we rotate the argument, and
we will have to fix it with a physical argument.
Fixing the sign by requiring Γ > 0, the precise version of

Eq. (4.11) is then

Γ ¼ lim
T →∞

���� NN ⋆
PFVðTÞ

2Im

�Z
xðT Þ¼a

xð−T Þ¼a
Dxe−SE½x�δðτb½x�Þ

�
T >0
T ¼iT

����:
ð4:16Þ

The normalization PFVðTÞ
NN ⋆ can be manipulated in a similar

manner in the limit T=TNL → 0, which ultimately gives us

Γ ¼ lim
T→∞

����2Im
�R

Dxe−SE½x�δðτb½x�ÞR
Dxe−SE½x�

�
T >0
T ¼iT

���� ð4:17Þ

where both path integrals are evaluated with boundary
conditions xð�T Þ ¼ a. This formula provides an exact
expression for the decay rate defined in Eq. (2.7).
In Sec. III, in the potential-deformation method, we were

worried that we might accidentally be taking the imaginary
part of a real quantity by making an invalid saddle-point
approximation. So let us now discuss in detail where the
imaginary parts are coming from in this direct method.
Equation (4.10), before the analytic continuation to imagi-
nary time, is all-orders exact and manifestly real; one could,
in principle, make a lattice and calculate it numerically.
Then we analytically continued Eq. (4.10) to arrive at
Eq. (4.17). The path integral

R
Dxe−SE , without the δ

function, would be real for real T , but the δ function will
introduce a factor with dimensions of time, which becomes
imaginary when we plug in T → iT. Thus, we are taking
the imaginary part of something purely imaginary in

PRECISION DECAY RATE CALCULATIONS IN QUANTUM … PHYSICAL REVIEW D 95, 085011 (2017)

085011-19



Eq. (4.17). We will discuss the saddle-point approxima-
tion’s interaction with this story in Secs. IVA and IV B.
Before showing how Eq. (4.17) can be evaluated, let us

contrast it with the potential-deformation method discussed
in Sec. III. To make a precise connection to Eq. (3.4), let us
first change from T to T =2 (since the time is going to
infinity, the factor of 2 has no effect). To match the other
formula, we need to reintroduce the time-translation
degeneracy. Isolating the term

E ≡
R
Dxe−SE½x�δðτb½x�ÞR

Dxe−SE½x�
ð4:18Þ

which is time-translation invariant for all τ, that is,

E ¼ Eτ ≡
R
Dxe−SE½x�δðτb½x� − τÞR

Dxe−SE½x�
; ð4:19Þ

allows us to rewrite it as

E ¼ 1

T

Z
T =2

−T =2
dτEτ ¼

1

T

R
paths hit b Dxe−SE½x�R

Dxe−SE½x�
ð4:20Þ

from which we arrive at

Γ ¼ lim
T→∞

����2Im
�
1

T

R
paths hit bDxe−SE½x�R

Dxe−SE½x�

�
T >0
T ¼iT

����: ð4:21Þ

The δ function in the numerator has been removed by theR
dτ, except that it leaves the requirement that the path must

hit b at some time so that τb is defined. Thus, the path
integral in the numerator will exclude the constant false-
vacuum solution which dominates the denominator. In this
way, the need to determine the contour of steepest descent
as we did in the potential-deformation method is side-
stepped completely.

A. Saddle-point approximations

As discussed in Sec. IV,
R
Dxe−SE , computed to all

orders, is real. And as we saw in Sec. III B, when we
approximate the path integral with a sum over saddle
points, some of the saddle points might be imaginary. The
imaginary parts will cancel if all the saddle points are kept
associated with the integration contour, but if some can be
dropped, the result may be complex. In the traditional
method, deformation of the contour of integration in the
path integral is used to justify dropping some saddle points,
giving a well-defined imaginary part. In the direct method,
the imaginary part comes out with less gymnastics. The
path integral is real for real T but simply becomes
imaginary for imaginary T .
In this section we will show that when performing the

saddle-point approximation for real T , the true vacuum

solution (the shot) dominates, but when evaluated for
imaginary T , the instanton solution dominates. Thus, we
are justified in using only the instanton because we are
looking at imaginary T . In particular, there is no tension
with the instanton’s saddle-point expansion (which matters
for imaginary T ) being imaginary when the original path
integral is real (for real T ).
As in the potential deformation method, the path

integrals in Eq. (4.17) are approximated by a sum of
saddle points:

expð−Sshot0 Þ þ expð−SbounceÞ
expð−SshotÞ þ expð−SbounceÞ þ expð−SFVÞ

: ð4:22Þ

Consider first the denominator. It contains contributions
from exactly the same paths as in the potential-deformation
method, shown in Fig. 5: the static FV solution, the bounce,
and the shot. Because of the forms of these solutions, it is
clear that the T dependence, for large T , must have a linear
dependence for the long stationary times and a constant
piece for the brief times when the particle is rolling fast:

Sshot ¼ ETVT þ S0S; ð4:23Þ

SFV ¼ EFVT ; ð4:24Þ

Sbounce ¼ EFVT þ S0B: ð4:25Þ

We also note that S0S > S0B since the shot must go faster than
the bounce and hence has more energy.
Recall that in the potential-deformation method, the shot

dominated for the actual path integral with the physical
potential, but when we deformed to g < 0, then the false
vacuum dominated. With the direct method, rather than
deforming the potential, we perform the standard T → iT
Wick rotation. For real T , the shot dominates. But we are
not interested in which dominates for real T , but rather
which dominates for T → iT. Then,

Sshot ¼ iETVT þ S0S; ð4:26Þ

SFV ¼ iEFVT; ð4:27Þ

Sbounce ¼ iEFVT þ S0B: ð4:28Þ

Since S0B < S0S, due to the e−S factors in the saddle-point
approximation, the bounce exponentially dominates over
the shot. However, both of these are dominated by the FV
solution, which has no exponential suppression at all. Thus,
for the denominator, if we drop exponentially suppressed
pieces, only the FV contribution remains.
The numerator of Eq. (4.22) is similar to the denominator

but has been modified by the δðτbÞ. In particular, the FV
solution, which never hits the point b, is removed entirely
by the δ function. The shot is also removed since it hits b
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before τ ¼ 0 (it hits the TV region at τ ¼ 0), but there is a
solution qualitatively similar to the shot that we call the
modified shot, or shot0 as in Eq. (4.22).4 In any case, the
argument for the numerator is then exactly the same as for
the denominator; for real T the modified shot dominates,
but when we rotate T → iT, the constant part of the action
now controls the size of e−S and so the bounce dominates.
Since the false vacuum is not present in the numerator at all,
the result is given by the bounce alone.
In summary, performing the saddle-point approximation

to Eq. (4.17) for imaginary T carefully, we find that the
bounce dominates the numerator and the FV dominates the
denominator. For real T , this would not be the correct set of
saddle points to use (the correct saddle points would be the
shot and modified shot). The point is that there is no tension
between the dominant saddle points being imaginary (for
imaginary T ) and the full path integral being real (for
real T ).

B. Saddle-point approximation and NLO formula

Having the all-orders formula, Eq. (4.17), we want to
apply the saddle-point approximation to it to get something
we can actually calculate. If x̄ is the bounce solution to the
Euclidean equations of motion and xFV is the static solution
which stays at the false vacuum, then we see that at leading
order,

ΓLO
R ¼ #

e−SE½x̄�

e−SE½xFV�
ð4:29Þ

which is the usual leading-order formula [40]. It also
agrees with Eq. (2.18), since for E0 ¼ 0 in the false
vacuum, SE ¼ 2

R ffiffiffiffiffiffiffiffiffiffi
2mV

p
dx.

To go to NLO, we would like to perform a Gaussian
approximation on Eq. (4.17). Expanding around the bounce
we write x ¼ x̄þ δx and

Γ ¼ e−SE½x̄�

e−SE½xFV�
lim
τ→∞

���� 2Im
R ½Dδx�e−1

2
S00E½x̄�δx2δðτb½x̄þ δx�ÞR ½Dδx�e−1

2
S00E½xFV�δx2

����:
ð4:30Þ

Normally, for a Gaussian integral, we expand the path in
orthonormal modes

xξ0;ξ1;…ðτÞ ¼ x̄ðτÞ þ
X∞
i¼0

ξixiðτÞ ð4:31Þ

where xiðτÞ are the eigenvectors of S00E½x̄� with eigenvalues
λi. Plugging this back into Eq. (4.30) would then give
Gaussian integrals

R
dξie−

1
2
λiξ

2
i . However, since one of the

modes has a zero eigenvalue [λ0 ¼ 0 for ξiðτÞ ∝ ∂τx̄], this
does not quite work. To resolve the divergent zero-mode
integral, we must replace ξ0 with a collective coordinate τ0
[11,41–44] (see also [3,6,45]). This means that instead of
Eq. (4.31), we parametrize our paths as

xτ0;ζ1;…ðτÞ ¼ x̄ðτ − τ0Þ þ
X∞
i¼1

ζixiðτ − τ0Þ: ð4:32Þ

In the potential-deformation method, the integral over τ0
gives a factor of T (due to the exact translation symmetry)
that resolves the

R
dξ0 singularity, along with a Jacobian

factor from going between ξ0 and τ0; one then divides by T
to find the rate. In the direct method, we can remove the
collective coordinate with the δ function. With the para-
metrization in Eq. (4.32), the functional τb is

τb½xτ0;ζ1;…� ¼ τ0 þ τb½x0;ζ1;…�: ð4:33Þ

So depending on the fζig, one of two things happens:
1. If the path x0;ζ1;… hits b at some time, then δðτb½x�Þ

simply removes the τ0 integral and fixes τ0 to some
value τ�ðζiÞ.

2. If the path x0;ζ1;… never hits b, then the δ function is
always 0, and this point in ζ space does not
contribute at all.

So we get

ΓNLO ¼ e−SE½x̄�

e−SE½xFV�
lim
T →∞

×

���� 2Im
R
dnζΘ½ζixið0Þ�J½τ�ðζÞ; ζ�e−

1
2

P
λiζ

2
iR

Dδxe−
1
2
S00E½xFV�δx2

����
ð4:34Þ

where the dnζ indicates infinitely many integrals. We will
now explain the addition of the theta function and the
Jacobian factor, and we will see how an appealing feature
of this method is the explanation of the factor of 1

2
.

Since the path x̄ just barely hits b at its maximum, the
constraint that x ¼ x̄þ δx must hit b forces δxð0Þ ≥ 0.
Since δx ¼ P

iζixi, we can enforce this positivity con-
straint with a step function Θ½ζixið0Þ�. Now, since we are
working at Gaussian order only and this is a constraint on a
simple linear combination of the ζ, we can use symmetry of
the other terms under ζ → −ζ to drop the step function and
divide by 2. This factor of 2, which arises in the Euclidean
approach from a subtle analytic continuation argument

4There will nevertheless still be a lower-action solution hitting
b at τ ¼ 0 (we know this because the bounce still has a negative
eigenvalue [1,39]). The minimum action solution probably looks
like the bounce up to τ ¼ 0 spliced to a rescaled shot for τ > 0.
The shot part has to be rescaled to return to the FVat τ ¼ T . The
extra kick needed to splice these solutions at τ ¼ 0 is allowed
because the δ function can introduce discontinuities in ∂τxðτÞ. We
call the actual minimum action solution the modified shot.
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(cf. Sec. III B), arises naturally in the direct method from
the requirement that the δ function fire. More physically, it
is a requirement that the path enter the destination region
DV, which excludes exactly half the variations around x̄.
Finally, we must discuss the Jacobian Jðτ0; ζÞ arising

when one goes from the orthonormal basis of fluctuations
in Eq. (4.31) to the collective coordinate parametrization in
Eq. (4.32). Note that J is nonsingular after fixing τ0, and it
has some expansion in ζ. At NLO, we only need to keep the
constant, ζ-independent piece. So we can replace

Jðτ�ðζÞ; ζÞ → Jðτ�ð0Þ; 0Þ ¼ Jð0; 0Þ: ð4:35Þ
This Jacobian at leading order is well known [1,3,6,45] and
discussed further in Appendix B5:

Jð0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEðx̄Þ=m

p
: ð4:36Þ

Putting together the Jacobian factor and the factor of 1
2
,

we get

ΓNLO ¼ e−SE½x̄�

e−SE½xFV�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE½x̄�=m

p ���� 1ffiffiffi
π

p Im

�
det0 1

2
S00E½x̄�

det 1
2
S00E½xFV�

�−1=2����
ð4:37Þ

where det0 indicates the determinant omitting the 0 eigen-
value, and the boundary conditions of the determinants’
domains are xð�∞Þ ¼ a. The π arises because the denom-
inator path integral has one more Gaussian integral than the
numerator.
While the dimensions of Eq. (4.37) are the correct

dimensions of the rate, they have become obscured by
the combination of the

ffiffiffiffiffiffiffiffiffiffiffiffi
SE=m

p
and the determinants. To

make the units clearer, let us remove m=2 from the
determinant, using det0A

detA ∼
1
A:

ΓNLO ¼ e−SE½x̄�

e−SE½xFV�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE½x̄�=2π

p ���� det0S00E½x̄�=m
det S00E½xFV�=m

����−1=2: ð4:38Þ

Expanding S00 then gives

ΓNLO ¼ e−SE½x̄�

e−SE½xFV�

ffiffiffiffiffiffiffiffiffiffi
SE½x̄�
2π

r ���� det0ð−∂2
t þ V 00ðx̄ðtÞÞ

m Þ
det ð−∂2

t þ V 00ðaÞ
m Þ

����
−1=2

:

ð4:39Þ

This agrees exactly with the formula surmised from the
potential-deformation method [3,6].

C. Direct method in d > 1

In more than 1 dimension, the main change is that we
must extend the turning point b to a surface Σ of possible
turning points since paths can enter the destination region
from any direction. The critical equation (4.4) becomes, in
multiple dimensions,

DFða; 0; xf; tÞ

¼
Z
Σ
db

Z
t

0

dt0D̄Fða; 0; b; t0ÞDFðb; 0; xf; t − t0Þ

ð4:40Þ

for Σ any codimension-1 surface which all paths go
through. The only subtlety is that, to avoid overcounting
of paths that enter and leave, the functional tb½x� in D̄F only
returns the first time xðtÞ hits b if that is the first time the
path crosses Σ at all (and returns ∞ otherwise).
From there the steps are the same as the one-dimensional

case. Equations (4.6)–(4.8) contain two integralsR
Σ db

R
Σ db

0. Equation (4.10) will thus include an integralR
Σ db, which stays through the end. Thus, we see

ΓR ¼
���� NN ⋆
PFVð∞Þ 2Im

Z
Σ
db

Z
xð∞Þ¼a

xð−∞Þ¼a
Dxe−SE½x�δðτb½x�Þ

����;
ð4:41Þ

where
R
Σ dbδðtb½x�Þ ¼ δðtΣ½x�Þ, and tΣ is the operator

which returns the first time ~xðtÞ crosses Σ. Thus,

ΓR ¼
���� 2Im

R
Dxe−SE½x�δðτΣ½x�ÞR
Dxe−SE½x�

���� ð4:42Þ

where now Σ is the entire surface which bounds R, just like
b was the turning point at the boundary of R. Both path
integrals go from xð−∞Þ ¼ a to xð∞Þ ¼ a.

D. Comparisons of the potential-deformation
and direct approaches

While similar in many ways, the derivations in Secs. III
and IV have a few key differences.

1. The potential-deformation method starts from
Γ
2
¼ jImE0j. While the decay rate is the imaginary

part of an energy, as explained in Sec. II B, it is
certainly not the imaginary part of the ground-state
energy E0. There is an implicit assumption that
deforming the potential (or, more honestly, integrat-
ing over complex paths intersecting the FV saddle)
somehow isolates the energy of interest. The direct
method instead starts from a physical definition, in
Eq. (2.7), and there is no leap of faith required.

2. In both approaches, the path integral only has an
imaginary part after an analytic continuation or

5In the existing literature (e.g. [3]), authors often calculate
Jðτ0 ¼ 0Þ, which is all that we need for our derivation. However,
for their derivations using the potential-deformation method, they
need the stronger derivation of Jðτ0Þ for general τ0. For this
reason, in Appendix B, we prove that J is a constant function of
τ0, even though in our case we could simply ignore the τ
dependence.
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contour deformation. In the direct approach, this is
the usual T → iT Wick rotation, which came natu-
rally in the derivation. In the Euclidean approach, this
contour deformation had to be put in by hand; instead
of just taking the imaginary part of E0, we had to
deform the contour of integration in the path integral,
in order to get a nonzero imaginary part.

3. Calculationally, the formulas remove the divergent
Gaussian integral of the time-translation zero mode
in the path integral differently. The deformation
approach schematically generates ΓT ¼ R

Dxe−SE .
The divergence at large T is removed by dividing
by T . In the direct approach, Γ ¼ R

Dxe−SEδðτbÞ,
and the would-be divergent integral is removed by
the δ function.

4. In both methods, the NLO rate is given by a path
integral around a bounce configuration divided by a
path integral around the static FV solution. In the
direct method, the FV solution does not contribute to
the path integral in the numerator because it never
fires the δðτbÞ. In the deformation approach, to
prevent the FV from dominating, one needs to
calculate the discontinuity between the two degen-
erate steepest-descent contours.

5. In the deformation formula, the factor of 1
2
in the

NLO approximation arises because an integral along
the FV contour has half of the imaginary part of an
integral along the bounce contour. In the direct
formula, it arises from the fact that only half of
all small variations of the bounce solution enter the
destination region R.

6. In the direct approach, one never has to worry about
summing over approximate instantons or the validity
of the dilute gas approximation. One simply system-
atically calculates the expansion of a path integral inℏ.

V. TUNNELING IN QUANTUM FIELD THEORY

Quantum field theory is just quantum mechanics, where
the Hilbert space happens to be an infinite-dimensional
Fock space. Thus, all the fundamental facts of quantum
mechanics apply, including all the facts about tunneling.
Understanding tunneling in QFT is exactly the same as
understanding tunneling in quantum mechanics (QM).
However, some confusing language can make it more
obscure than it needs to be.
Let us begin with theories with a single scalar field ϕ

with a (classical) action of the form

S½ϕ� ¼
Z

d4x

�
1

2
ð∂μϕÞ2 − VðϕÞ

�

¼
Z

d3xdt
�
1

2
_ϕ2 −

1

2
ð ~∇ϕÞ2 − VðϕÞ

�
ð5:1Þ

where _ϕ≡ ∂tϕ. We assume VðϕÞ has a false vacuum
at ϕ ¼ ϕF, where the potential is VðϕFÞ ¼ VF. It is

particularly convenient to shift the overall potential so that
VF ¼ 0 since this is the unique value for which the total
potential energy of the false vacuum

R
d3xVF is finite.

Thus, when convenient, we will follow the usual conven-
tion and assume ϕF ¼ 0 and VF ¼ 0.
When going from finite-dimensional QM to infinite-

dimensional QFT, it is important to keep in mind that the
notation and language change as well:

1. The set of classical configurations is not an n-
dimensional set of values ~x, but the infinite-
dimensional space of all field configurations, ϕðxÞ.

2. A quantum state, such as the true ground state, is not
specified by a wave function, ψðxÞ, but by a wave
functional Ψ½ϕ�.

In particular, in 1D quantum mechanics, we argued in
Sec. II B that the decay rate is independent of the initial
wave function, as long as it has some support of the lowest
resonance in the false-vacuum region. Thus, for the path-
integral derivation, we took it to be ψðxÞ ¼ δðx − aÞ. We
could equally well have taken it to be the ground state
of a harmonic oscillator in the quadratic approximation to
the false-vacuum well: ψðxÞ ∝ expð− 1

2
mωax2Þ where

ωa ¼ V 00ðaÞ. Or we could have included admixtures of
higher excited states or continuummodes if the domain of x
was unbounded.
In quantum field theory, the ground state in the false

vacuum is specified by a functional

Ψ½ϕ� ¼ N exp

�
−
1

2

Z
d3k
ð2πÞ3 ωk

~ϕðkÞ ~ϕð−kÞ
	

ð5:2Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and ~ϕðkÞ ¼ R

d3xeikxðϕðxÞ − ϕFÞ
are the Fourier modes of ϕðxÞ. States with a finite number
of particles are finite-energy excitations on top of this
vacuum. The wave functional corresponding to the first
excited state of the harmonic oscillator has an infinite
amount of energy (proportional to volume) more than the
ground state. For the purpose of the tunneling rate
calculation, we can, analogously to QM, take Ψ½ϕ� ¼
δ½ϕ − ϕF�. This is what we mean when we say the state
is initially localized at ϕF.
Another important difference is as follows:
3. Despite the fact that the Lagrangian has an object

called V, the energy of a static field configuration
ϕð~xÞ is not given just by V½ϕ� but it also includes a
gradient energy contribution. Thus, we define the
potential-energy functional as

U½ϕðxÞ�≡
Z

d3x

�
1

2
ð ~∇ϕÞ2 þ VðϕÞ

�
: ð5:3Þ

The fact that the intuitive “potential” object is not the full
potential energy through which the tunneling occurs leads
to some effects that seem counterintuitive at first. For
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example, suppose VðϕÞ ¼ VF is constant, or has a slight
downward slope VðϕÞ ¼ VF − εϕ. Then one might imag-
ine, since there is no barrier in V, that tunneling would
occur infinitely fast, dominating over the classical rolling.
However, there is a potential barrier in U½ϕ� due to the
gradient energy term, so the tunneling rate is finite even as
ε → 0. See [46] for more details. We discuss below the case
VðϕÞ ¼ −λϕ4 where one also might worry that tunneling
would be infinitely fast.
In quantum field theory, the decay rate can be calculated

to all orders using Eq. (4.42) with an infinite number of
degrees of freedom:

ΓR ¼ lim
τ→∞

���� 2Im
R
Dϕe−SE½ϕ�δðτΣ½ϕ�ÞR
Dϕe−SE½ϕ�

���� : ð5:4Þ

Now Σ is a codimension-1 surface in the enormous
configuration space of possible classical field configura-
tions ϕð~xÞ which bounds the destination region R (also a
region in field configuration space). The surface Σ is
naturally taken to be the set of field configurations for
which U½ϕ� ¼ U½ϕFV�. Indeed, because semiclassical
methods conserve energy, the end point of quantum
tunneling must be on this surface.
Some interesting examples of the competition between

tunneling rates to different regions were considered by
Brown and Dahlen [47]. In particular, these authors
explored examples where the rate for one of the tunneling
processes abruptly goes from a finite value to zero after a
small change in the potential. They also pointed out that in
quantum field theory, for the surface Σ on which U½ϕ� ¼
U½ϕFV� is connected, one can interpolate between one
region R and another with nonspherically symmetric
configurations comprising subcritical and supercritical
bubbles. Nevertheless, after tunneling occurs, subcritical
bubbles will implode. In field theory, there is a well-defined
set of quasistable local minima to which fields will evolve
classically after tunneling occurs. Possible regions R are
therefore naturally taken to be bounded by the separate
parts of Σ from which fields will evolve separately to each
minima.
In Sec. V B we will look at how we can visualize the

decay in terms of the potential-energy functional along the
particular field directions.

A. Bounces in QFT

If we want to work in the saddle-point approximation,
then we need to find the stationary configurations of the
Euclidean action:

SE½ϕ� ¼
Z

d4x

�
1

2
ð∂μϕÞ2 þ VðϕÞ

�

¼
Z

d3xdt
1

2
_ϕ2 þ

Z
dtU½ϕ�: ð5:5Þ

The dominant bounce will always be Oð4Þ symmetric [48];
that is, ϕBðxÞ ¼ ϕBðρÞ, where ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2 þ τ2

p
.

For these solutions, the Euclidean equations of motion
reduce to

∂2
ρϕB þ 3

ρ
∂ρϕB − V 0½ϕB� ¼ 0: ð5:6Þ

This equation has the analog mechanics interpretation of a
particle rolling down a potential −VðϕÞ with ρ a time
coordinate and 3

ρ
_ϕ representing a kind of time-dependent

friction. Matching onto the false vacuum with ϕ ¼ ϕF at
τ ¼ �∞ translates to the boundary condition ϕðρ ¼ ∞Þ ¼
ϕF ¼ 0. For the solution to be smooth at ρ ¼ 0, we must
also have ∂ρϕjρ¼0 ¼ 0. With these boundary conditions,
the analog classical system has a particle starting at a point
ϕ0 at rest (at ρ ¼ 0) and ending at rest at ϕ ¼ ϕF ¼ 0
at ρ ¼ ∞.
One should think of ϕBð~x; τÞ as providing a path through

field space ϕð~xÞ parametrized by τ. This path goes from the
false vacuum at τ ¼ −∞ to the bubble at τ ¼ 0 and then
back to the false vacuum at τ ¼ ∞. This path is much like a
path through configuration space ~x in multidimensional
quantum mechanics parametrized by some path length s.
The bubble ϕBðrÞ ¼ ϕBð~x; τ ¼ 0Þ is the analog of the
turning point x ¼ b.
As the potential is time independent, energy is conserved

along the path in time (or Euclidean time). Thus, the
potential energy of the bubble is the same as that of the false
vacuum U½ϕBðrÞ� ¼ U½ϕF� ¼ 0. Since total energy is
conserved in τ, we also have

U½ϕB� ¼
Z

d3x
1

2
ð∂τϕBÞ2: ð5:7Þ

The Euclidean action on the bounce is

SE½ϕB� ¼
Z

d4x
�
1

2
ð∂τϕBÞ2 þ

1

2
ð ~∇ϕBÞ2 þ V½ϕB�

�

¼
Z

∞

−∞
dτ2U½ϕB�: ð5:8Þ

There are a few known exact solutions to Eq. (5.6). An
important case is when V ¼ −λϕ4 and the solution has the
form

ϕCðρÞ ¼
ffiffiffi
2

λ

r
R

R2 þ ρ2
ð5:9Þ

for any R and λ > 0. We call these solutions “quartic
bounces.” There are a handful of other known exact
solutions [46,49–51]. To explore the relation between
the bounce shape and the potential, it is sometimes easier
to construct exact potentials given a bounce [by integrating
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Eq. (5.6)] than to construct bounces given potentials.
Alternatively, one can build up exact solutions perturba-
tively if there is some small parameter in the potential.
More generally, it is straightforward to solve Eq. (5.6)

numerically with the shooting method. The idea is that it is
easy to solve differential equations with initial conditions
but not with our boundary conditions ϕ0ð0Þ ¼ 0 and
ϕð∞Þ ¼ ϕF. So one solves with ϕ0ð0Þ ¼ 0 and ϕð0Þ ¼
ϕ0 and varies ϕ0 until the solution satisfies ϕð∞Þ ¼ ϕF. If
ϕ0 is too large, the particle will overshoot ϕ ¼ ϕFV at large
ρ, and if ϕ0 is too small, it will undershoot. Thus, one
iteratively hones in on the right ϕ0. One hurdle to rapid
convergences with this method is that due to the 3

ρ term, one
cannot actually start rolling from ρ ¼ 0without a numerical
singularity. However, this hurdle is easily surmounted using
a trick described in Appendix C.

B. Visualizing U½ϕ�
As mentioned after Eq. (5.3), the gradient energy present

in U½ϕ� but not in VðϕÞ can mislead our intuition.
Unfortunately, because U½ϕ� is a functional rather than a
function, we cannot simply plot it. More generally, QFT
field configuration space, in all its infinite-dimensional
glory, can be challenging to visualize. One approach which
we now explore is to consider U½ϕ� restricted to a one- or
two-parameter slice of field space. We can plot UðαÞ≡
U½ϕα� along the parameter(s) α. In such a plot all of the
intuition from quantum mechanics applies, including intu-
ition for the tunneling rate coming from the WKB approxi-
mation (cf. Sec. II D).
One natural choice for α is the Euclidean time τ para-

metrizing the path through field space of the bounce. For
any bounce ϕBðρÞ, the τ path is given by

ϕτð~xÞ ¼ ϕBð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ τ2

p
Þ: ð5:10Þ

Now we are using τ as simply a useful coordinate on the
slice of field space of interest. For example, with a potential
VðϕÞ ¼ −λϕ4, the bounce is given by Eq. (5.9), so that

UðτÞ ¼ U½ϕC� ¼
π2R2τ2

2λðR2 þ τ2Þ5=2 : ð5:11Þ

This function is shown for a selection of R in Fig. 14, on
the left. We see that while VðϕÞ has no barrier, U½ϕ� does.
Also, from Eq. (5.8) we see that the area under the curves
gives the Euclidean action for that bounce. In this case, the
areas are all equal as the potential is classically scale
invariant and SE ¼ 2π2

3λ is independent of R.
Parametrization of paths with τ is fine, but to really think

ofUðτÞ as a potential, the distance along the path should be
properly normalized. Recall that in going from quantum
mechanics to quantum field theory, position is replaced by
field values ϕð~xÞ. Thus, instead of ds2 ¼ dx2 þ dy2 þ � � �,
the measure along a path in field space is given by the
somewhat odd-looking line element ds2 ¼ R

d3x½dϕðxÞ�2.
To change from τ to s, we use

�
ds
dτ

�
2

¼
Z

d3x

�∂ϕB

∂τ
�

2

¼ 2U½ϕB�: ð5:12Þ

Thus, Eq. (5.8) becomes

SE ¼
Z

∞

−∞
dτ2U½ϕB� ¼ 2

Z
0

−∞
dτ2U½ϕB�

¼ 2

Z
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U½ϕB�

p
: ð5:13Þ

The right-hand side of this equation is the exact field-theory
analog of the exponent in the WKB formula in Eq. (2.24).
The right side of Fig. 14 showsU as a function of s. It is the

FIG. 14. The proper analog of the potential in QM is the effective energy functional U. This example uses VðϕÞ ¼ −λϕ4 with λ ¼ 1.
The left panel shows UðτÞ, and the integral of 4UðτÞ from −∞ < τ < 0 gives SE. The right panel shows UðsÞ, and the integral offfiffiffiffiffiffiffiffiffiffiffiffi

2UðsÞp
over 0 < s <

ffiffiffiffi
4R
λ

q
π gives SE. One can see the degeneracy in the fact that each of these barriers has the same integral.

Remember that these curves show the height of the barrier in five different directions in field configuration space, which happen to all
have the same tunneling rate at LO. Curves from steep to shallow have R ¼ 1, 2, 3, 4 and 5.
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integral of the square root of these curves which gives the
tunneling rate, as in the finite-dimensional WKB formula.
More generally, for any family ϕα of field configurations

parametrized by some coordinate α, we can find the
appropriate normalization using

ds2 ¼
�Z

d3x

�
dϕα

dα

�
2
�
dα2: ð5:14Þ

Once normalized, the decay rate calculated from the
minimal action along the subspace of field configurations
will approximate the correct decay rate. It will be inexact
for two reasons. First, in the fluctuations around the
minimum-action path, we will entirely ignore all the modes
of fluctuation that are not contained in our subspace. If all
we care about is LO accuracy, then this is not a worry.
Second, the minimum-action path through our subspace
may be very different from the true minimum path, so the
dominant e−SE in the subspace may exponentially over-
estimate the leading-order decay rate.
Thus, to make our 1D slice useful, it should contain the

dominant path, as the parametrization by Euclidean time τ,
Eq. (5.11), automatically does (since τ is exactly the
parameter along the dominant path).
Although we often restrict to 1D slices through field

space, it is important to keep in mind that QFT has an
infinite variety of field configurations, and potential barriers
can be subverted through excursions to large field values.

Indeed, one very important distinction between quantum
mechanics and quantum field theory is that in quantum
field theory the tunneling rate depends on the potential at
arbitrarily large field values. In quantum mechanics,
tunneling always proceeds through the closest barrier first,
as illustrated in the top-left plot in Fig. 15. In QFT, there
can be multiple competing tunneling directions. This is
indicated by the orange and green arrows in the lower-left
plot of Fig. 15. The end points of the arrows indicate the
value of the field at the center of the bubble which forms.
Thus, these two arrows correspond to two paths through
field space ϕs1ð~xÞ and ϕs2ð~xÞ, corresponding to two differ-
ent types of bubbles forming. The barrier (according to
U½ϕ�) along the shorter direction [smaller change in ϕð0Þ]
is not necessarily lower than the barrier along the longer
direction. In fact, tunneling rates to bubbles with large field
values can be exponentially larger than tunneling rates to
smaller field values. This is important for the Standard
Model, as it makes the stability of our Universe unavoid-
ably sensitive to arbitrarily high-scale physics, as we
discuss in Sec. VII C 2.

C. Using approximate solutions

We can visualize the energy along a path through field
space as a function of τ if we already know the bounce
solution. But what if we do not already have a bounce in
hand? Since ϕB is an extremum of the action, we can use a

FIG. 15. In quantum mechanics (top left), the tunneling rate is determined by the nearest potential barrier to the closest turning point of
VðxÞ. In quantum field theory, tunneling can proceed in different directions of field space. For a potential VðϕÞ of the same shape as
VðxÞ, tunneling may proceed through the path labeled s1 corresponding to a family of fields ϕs1ð~xÞ or through the path labeled s2
corresponding to a family of fields ϕs2ð~xÞ. The energy functional on a two-parameter family ϕs1;s2ð~xÞ is shown on the right.
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variational approach to get a handle on it by considering a
family of approximate solutions.
For most potentials of interest, it is sufficient to consider

a two-parameter family of spherically symmetric fields,
with the two parameters representing the width of the
bubble R which (roughly) controls the gradient energy or
surface-tension contribution and the height of the bubble ϕ0

which we can define as the value at the center
ϕ0 ¼ ϕðr ¼ 0Þ. For example, a useful two-parameter
family includes the “Gaussian” bubbles:

ϕGðρÞ ¼ ϕ0e−ρ
2=R2

: ð5:15Þ

Other simple families are the quartic bubbles, ϕ ¼
ϕ0

1
1þρ2=R2, and thin-wall bubbles for which ϕ0 ¼ 0 outside

of a wall of thickness t.6

The Euclidean action for the Gaussian bubbles is

SE½ϕG� ¼ 2π2
Z

dρρ3
�
1

2
ð∂ρϕGÞ2 þ V½ϕGðρÞ�

�
ð5:16Þ

¼ π2

2
R2ϕ2

0 þ a
π2

4
R4Vðϕ0Þ: ð5:17Þ

The second term has a potential-dependent number a in it.
For smooth potentials we expect a ∼ 1. For example, if
V ¼ −λϕ4, then a ¼ 1

4
.

To find the bounce, we must keep in mind that the
bounce is not the true minimum of the action, but only a
saddle point. Indeed, the negative-action fluctuation is
precisely what is needed to give the path integral the
required imaginary part to compute the decay rate. We
know a decay can occur if and only if Vðϕ0Þ < 0 for some
ϕ0, but then SE in Eq. (5.17) is unbounded from below as
R → ∞. The true minimum is the shot: a path which starts
at the false vacuumwith enough kinetic energy to make it to
the true vacuum quickly, stay there for a long time, and
eventually return. Recall that the fluctuation around the
bounce with negative eigenvalue (the fluctuation towards
the minima) has no nodes and therefore is nonzero at τ ¼ 0.
Thus, while the bounce hits the zero-energy surface at
τ ¼ 0, the shot or any other spherically symmetric lower-
action configuration cannot. So to find the bounce and not
the shot, we can minimize the action over ϕ0 and R,
restricting to U½ϕGðτ ¼ 0Þ� ¼ 0.

The energy of the Gaussian bubbles (at τ ¼ 0) is

U ¼ 4π

Z
r2dr

�
1

2
ð∂rϕGðrÞÞ2 þ VðϕGðrÞÞ

�
ð5:18Þ

¼ 3π3=2

4
ffiffiffi
2

p Rϕ2
0 þ b

π3=2ffiffiffi
2

p R3V½ϕ0�: ð5:19Þ

The second term here has another potential-dependent

order-one number, b. For example, if V ¼ −λϕ4, b ¼
ffiffi
2

p
8
.

Restricting to U ¼ 0 means

R2 ¼ −
3

4b
ϕ2
0

Vðϕ0Þ
: ð5:20Þ

Note that Vðϕ0Þ < 0 since there is a friction term that
forces the field to start out slightly beyond the turning point
where V ¼ 0, so R2 > 0. Using this restriction on R, the
Euclidean action becomes

SE ¼ 3π2

64b2
ð8b − 3aÞ ϕ4

0

−Vðϕ0Þ
: ð5:21Þ

More suggestively, if we define the effective quartic as

λeffðϕÞ≡ VðϕÞ
ϕ4

; ð5:22Þ

then the extremum is where

d
dϕ

λeff ¼ 0: ð5:23Þ

Note that this condition is independent of a and b; it
depends only on the Gaussian bubbles being a reasonable
approximation to the true solution.7

The above manipulations provide us with a useful
shortcut to deduce the approximate features of the bounce
simply by looking at the potential: The field value at the
center of the bounce ϕ0 is where λeff is flat, the size of the
bubble is given by Eq. (5.20), and the action on the bounce
is no larger than Eq. (5.21). For example, with V ¼ −λϕ4,
the exact Euclidean action on the true, quartic bounce is
SE½ϕC� ¼ 2π2

3λ ≈ 6.5
λ . The extremum along the paths of zero-

energy Gaussian bubbles has SE½ϕC� ≈ 9.8
λ (although it is

something of a degenerate case because the action along the
zero-energy Gaussian bubbles is exactly constant).
This effective coupling is commonly used in the liter-

ature on the Standard Model effective potential. There it is
often invoked in the context of a resummed effective
potential where the MS scale μ is set equal to the Higgs

6This parametrization is more general than the thin-wall
approximation originally used by Coleman [40]. The thin-wall
approximation requires the two minima to be nearly degenerate
so that the bounce remains the true vacuum long enough to
neglect the damping term. For potentials which are not nearly
degenerate, it has been shown that the thin-wall approximation is
not in good quantitative agreement with exact numerical results
[52,53]. We will not neglect the damping term. Using Gaussian
bubbles seems to give results in good agreement with exact
numerical solutions in all the cases we have tried.

7The condition requires 8b > 3a, which is true for all the
examples we have considered.
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background field value, and minimizing λeff is sometimes
associated with a renormalization group condition
∂μλeffðμÞ ¼ 0. Here we see that the relevance of λeff to
the bounce solutions has nothing to do with renormaliza-
tion: It follows generically in classical potentials.
Another fun exercise with these Gaussian bubbles is to

determine how R would depend on time in a classical field
theory. Consider a Gaussian bubble

ϕGðr; tÞ ¼ ϕ0 exp

�
−

r2

RðtÞ2
�
: ð5:24Þ

To determine the time dependence, we can integrate over
d3x in the Minkowski-space action to get an effective one-
dimensional Lagrangian:

L ¼ 4π

Z
drr2

�
1

2
ð∂tϕGÞ2 −

1

2
ð∂rϕGÞ2 − VðϕGÞ

�
ð5:25Þ

¼ 15π3=2

16
ffiffiffi
2

p R _R2ϕ2
0 −

3π3=2

4
ffiffiffi
2

p Rϕ2
0 − b

π3=2ffiffiffi
2

p R3Vðϕ0Þ; ð5:26Þ

where b is the same order-one constant as in Eq. (5.19). The
last two terms in this expression for L are just −U, from
Eq. (5.19). Calculating the Euler-Lagrange equations from
this Lagrangian gives

R̈ ¼ −
_R2

2R
−
8bVðϕ0ÞR

5ϕ2
0

−
2

5R
: ð5:27Þ

We immediately confirm that for bubbles to grow Vðϕ0Þ
must be negative (as expected). For bubbles at rest ( _R ¼ 0)
the condition for bubble growth (R̈ > 0) is that

R2 > −
ϕ2
0

4bVðϕ0Þ
: ð5:28Þ

Comparing to Eq. (5.20), we see that these bubbles grow if
R2 > 1

3
R2
E¼0, where RE¼0 is the condition for the bubble to

have zero energy. In particular, Gaussian bubbles which
form on the U ¼ 0 surface Σ do indeed grow with time.

VI. TUNNELING AT NLO AND
EFFECTIVE ACTIONS

The previous sections have discussed tunneling in
quantummechanics and quantum field theory, both through
an exact, nonperturbative definition of the decay rate and
through the perturbative approximation to the rate coming
from expanding around saddle points. All of these calcu-
lations assumed that a potential VðϕÞ of a single scalar field
ϕ was given. In quantum field theory, the physics of
tunneling is often associated with an effective potential
Veff , generated by integrating out quantum corrections. In
some cases, the instability is even induced from radiative

corrections. One might imagine that the effective potential
can simply be used in place of the classical potential in the
tunneling formulas. However, this is incorrect; it will
overcount the quantum corrections.
A classic example where the instability is a quantum

effect is the Coleman-Weinberg potential [10]. Coleman
and Weinberg considered the theory of a complex scalar
field and an Abelian gauge boson, i.e., massless scalar
QED. In the Coleman-Weinberg model, the classical
potential VðϕÞ ¼ λjϕj4 is scale invariant and has an
absolutely stable minimum at ϕ ¼ 0 (for λ > 0). In con-
trast, the effective potential has a minimum at jϕj > 0, and
thus ϕ ¼ 0 is unstable. The scale for the new minimum is
determined by dimensional transmutation from the renorm-
alization group scale of the couplings. What is the correct
procedure to compute the tunneling rate in this model? One
cannot use VðϕÞ in the tunneling rate formulas above since
there are no bounce solutions for this potential to expand
around. Nor can one use Veff , as the quantum fluctuations
have already been integrated out, so there is no longer a
path integral.
The same problem occurs in the Standard Model, where

the classical potential for the Higgs field has an absolute
minimum at the electroweak vacuum expectation value
hhi ¼ 246 GeV. The effective potential indicates tunneling
to a very high scale. However, how can we calculate this
tunneling rate accurately?

A. Effective actions

First, let us quickly review what is meant by the terms
effective potential and effective action. Unfortunately, these
same terms are used for a few different but related
functions.
The simplest way to compute an effective action for a

field ϕ is to integrate out (perform the path integral over) all
the other fields in the theory. For example, with two fields
ϕ and χ, one could integrate out χ to get an effective action
for ϕ:

e−Seff ½ϕ� ≡
Z

Dχe−S½ϕ;χ�: ð6:1Þ

The path integral on the right is to be calculated for a fixed
(but possibly position-dependent) background configura-
tion ϕ. In particular, no loops involving virtual ϕ particles
are to be included in the calculation on the right-hand side.
Although computing effective actions this way for general
field configurations ϕ in any theory is essentially impos-
sible, a momentum expansion is feasible. For example, the
Euler-Heisenberg action is an effective action of this type,
where the electron is integrated out in QED and the
background Aμ is assumed constant.
Even if the classical action for ϕ, S½ϕ; 0�, has no

instability but the effective action computed this way does,
one can proceed to calculate the tunneling rate using the
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effective action. There is no double counting because the
fluctuations of some fields [χ in Eq. (6.1)] are included in
the calculation of the effective action while the fluctuations
of other fields (ϕ) are only included when the rate is
computed, as in Eq. (5.4). This approach was explored by
Weinberg in [54]. In particular, Weinberg observed that in
scalar QED integrating out Aμ generates the instability. He
also observed that one can additionally integrate out the
imaginary part of ϕ, leaving an effective action that
depends only on the real part of ϕ. A derivative expansion,
justified with λ ∼ e4 scaling, was critical to Weinberg’s
argument, as we review below.
It may turn out that the fluctuations of the field ϕ itself

are required to generate the instability. In that case, one
cannot simply integrate out ϕ, or there is nothing left for the
effective action to depend on. For example, one might try to
replace ϕ → ϕþ ϕ̄, with ϕ̄ a fixed external background
field, and then integrate out ϕ. That is, we can compute

Z½0� ¼
Z

Dϕe−S½ϕ� ¼
Z

Dϕe−S½ϕþϕ̄�: ð6:2Þ

Since the path integral is invariant under field reparamet-
rizations, Z½0� computed this way is just a number. That is,
it will not depend on ϕ̄ at all. Nevertheless, this is the same
Z used in the potential-deformation method for computing
the tunneling rate. Thus, one should expect Im lnZ½0� to be
related to the decay rate. Note that even if the classical
potential has no instability, as long as the full theory has an
instability, one can still, in principle, compute the decay
rate in this way. However, one cannot use the saddle-point
approximation since we have no classical bounce solution.
The usual procedure for computing an effective action

that admits a bounce is to begin with the generating
functional

W½J� ¼ − lnZ½J� ¼ − ln
Z

Dϕe−S½ϕ�−
R

d4xϕðxÞJðxÞ ð6:3Þ

and take its Legendre transform

Seff ½ϕ̄� ¼ W½Jϕ̄� −
Z

Jϕ̄ðxÞϕ̄ðxÞ: ð6:4Þ

Here, Jϕ̄ is defined so that δW
δJ jJ¼Jϕ̄

¼ ϕ̄. Since δW
δJ jJ¼Jϕ̄

is

the expectation value of the field in the quantum theory, this
says that Jϕ̄ is the background current required to make the

expectation value of ϕ ¼ ϕ̄. Since δSeff
δϕ̄

¼ −Jϕ̄, we conclude
that the true vacuum of the theory ϕ̄0;TV is given by an
extremum of Seff .
Formally, the Legendre transform requires that there is a

one-to-one correspondence between Jϕ̄ and ϕ̄. That is, the
functionals W½J� and Seff ½ϕ̄� must be convex for the

Legendre transform to exist. However, convex actions
never admit tunneling.
The incompatibility of convexity and tunneling is not as

problematic as it sounds. First of all, in practice, one
computes the effective action not through the Legendre
transform but through the computation of 1PI diagrams
with background fields. The action generated by back-
ground fields does not have to be convex (in the Standard
Model, for example, it is not). Weinberg and Wu have
argued [55] that this 1PI effective action is more physical
than the Legendre transform version since it does not
include linear superpositions of vacua. Although their
argument is compelling, it does not help if we want to
use the Legendre transform definition to compute the
tunneling rate.
A more convincing argument is that in the potential-

deformation method, we actually do want a convex
potential, whose single minimum corresponds to the false
vacuum. We can get this by deforming the potential or,
more directly, by sticking to a steepest-descent contour.
Following the logic from Sec. III, we can define the
effective action Seff ½ϕ̄0� through the Legendre transform
along the convex steepest-descent contour through the false
vacuum. We then write the imaginary part as the disconti-
nuity of the effective action defined along the steepest-
descent contour through the bounce. So

1

2

Γ
V
¼ 1

2
Im

�
1

T V
e−Seff ½ϕ̄0�

�
ð6:5Þ

where ϕ̄0 is the bounce solution to the equation of motion,
S0eff ½ϕ̄0� ¼ 0. In principle, we should normalize this by
e−Seff ½0�, but this is equal to 1 by our choice of origin ϕ ¼ 0.
The requirement to only include the bounce saddle point is
built into the way we compute in perturbation theory; we
only include small fluctuations around the argument of Seff .
The gauge dependence of this way of computing the
tunneling rate, particularly with regard to boundary con-
ditions, is discussed in [56].
Let us briefly review how one evaluates the one-bounce

contribution to the path integral Z (see Sec. VI B) using the
functional determinant and the classical action. There Z ¼
Ke−S½ϕC� at NLO, where K ≡ ðDet½S00½ϕC��

Det½S00½0�� Þ−
1
2. Due to the zero

modes from translations, K ¼ T VK0 where K0 has the
determinants evaluated with the zero modes removed, and
T V is the volume of Euclidean space-time. Note thatK0 has
units of mass, 4 and it must come from some characteristic
length scale R from the bounce solution; thus, we can
reexpress this as K0 ∼ 1

R4 up to some dimensionless number
we expect to be of order one [19].
We expect the same thing to happen for the effective

action using Eq. (6.5), but to our knowledge, no complete
proof exists. The bounce solution ϕ̄0 is space-time trans-
lation invariant, so Z should be proportional to T V. To get
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the right dimensions, we must compensate with some
characteristic scale R from the bounce solution. We then
find

Γ
V
¼ 1

R4
Im½e−Seff ½ϕ̄0��: ð6:6Þ

We will show that the tree-level and logarithmic terms
agree between the effective potential method and the
functional determinant method in the next section. We
will also see that if we wish to check the prefactor of
Eq. (6.6) and the Oð1Þ terms in the exponent, we would
have to know all the higher derivative terms in the
effective action.
In summary, in situations where the classical potential is

stable but there is an instability in the quantum theory, the
tunneling rate is given by the exponential of the effective
action evaluated on the solution ϕ̄0 to its equations of
motion. Of course, the effective action can be used to
calculate the decay rate even in situations where the
classical potential admits tunneling. However, this
approach is only useful to the extent that the effective
action can be computed exactly, or in some approximation
consistent with a perturbative expansion of the decay rate.
Next, we explore what the effective action looks like and
whether it is useful for computing tunneling rates in an
example.

B. NLO tunneling in scalar field theory

Consider the theory of a real scalar field with classical
potential VðϕÞ ¼ λϕ4. For λ < 0, the vacuum at ϕ ¼ 0 is
unstable. The Euclidean equations of motion are solved by

the quartic bounces in Eq. (5.9): ϕCðρÞ ¼
ffiffiffiffi
2
jλj

q
R

R2þρ2
. The

tree-level Euclidean action evaluated on the quartic bounce
is SE½ϕC� ¼ 2π2

3jλj, independent of the bubble size R. The
decay rate at NLO can be computed either using Eq. (6.2),
summing over the Gaussian fluctuations around ϕC, or
using Eq. (6.6) where the field fluctuations around an
arbitrary background field configuration contribute to the
form of the effective action.
To compute the rate by integrating over Gaussian

fluctuations around ϕC, we follow the approach of
[15,57]. We directly calculate

Γ
V
¼ SE½ϕC�2

4π2

�
−det0S00E½ϕC�
det S00E½0�

�
−1=2

e−SE½ϕC�: ð6:7Þ

Here det0 refers to the functional determinant where the
zero modes corresponding to translations have been
removed. This functional determinant can be computed
by solving the eigenvalue equation ½−∂2 þWðρÞ�ϕ ¼ λϕ
and taking the product of the eigenvalues. We relegate
details of this calculation to Appendix E. In M̄S, the result
is that

Γ
V
¼ 1

R4
exp

�
−

2π2

3jλðμÞj þ 3 lnðRμÞ þOð1Þ
�

ð6:8Þ

where Oð1Þ is some order-one number coming from the
evaluation of the functional determinant, and R takes a
specific value which saturates the path integral over the
associated collective coordinate.
As a quick check, we can verify that the rate is

independent of μ to order λ, using βλ ¼ μ ∂
∂μ λ ¼ 9

2π2
λ2.

Note that the NLO rate breaks the degeneracy in R. In
fact, for a given value of μ, the rate appears to go to zero
if R → 0, or the rate is unbounded from above if R → ∞.
As the rate increases, however, the logarithm also grows
to the point where subleading orders become relevant.
The logarithms are minimized at the scale μ where
βλ ¼ 0. This is consistent with the prescription for
finding the bubble shape for a general potential discussed
in Sec. V C.
The second method, using Eq. (6.6), requires knowing

the exact effective action, so that its equations of motion
can be solved and its solution used to evaluate the rate. If
we write ϕ̄0 ¼ ϕC þ ℏϕ1 þ � � � and Seff ¼ S0 þ ℏS1 þ � � �,
then

Seff ½ϕ̄0� ¼ S0½ϕC� þ ℏS00½ϕC� þ ℏS1½ϕC� þOðℏ2Þ: ð6:9Þ

Since S00½ϕC� ¼ 0, to NLO we only need to compute
S1½ϕC�. That is, the corrections to the shape of the bubble
come in first at next-to-next-to-leading order. In particular,
we do not have to compute or solve the equations of motion
for the effective action (which could have been very
difficult considering that Seff is nonlocal).
Computing the full effective action Seff ½ϕ� is essen-

tially impossible, even at one loop. We can, however,
compute it order by order in a momentum expansion.
The leading contribution, with no derivatives, is the
effective potential:

Veff ¼ λϕ4 þ 9

4π2
λ2ϕ4

�
ln
12λϕ2

μ2
−
3

2

�
: ð6:10Þ

This is computed in the background field method
assuming the background fields are constant. To get
the terms with two derivatives, we compute diagrams
with background fields with nonzero momenta and take
two derivatives with respect to those momenta, then set
the momenta to zero. More details are given in
Appendix D. The result is that to one loop with up
to four derivatives, the effective action in Euclidean
space is
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Seff ½ϕ� ¼
Z

d4x

�
λϕ4 þ 9

4π2
λ2ϕ4

�
ln
12λϕ2

μ2
−
3

2

�

þ 1

2
ð∂μϕÞ2

�
1þ 1

4π2
λ

�
−
1

2
ð□ϕÞ2 1

480π2
1

ϕ2

þ 1

2
ð∂μϕÞ2□ϕ

1

720π2
1

ϕ3

−
1

8
ð∂μϕÞ2ð∂νϕÞ2

1

360π2ϕ4
þOð∂6Þ

�
: ð6:11Þ

We can now check whether the momentum expansion is
justified for use in the calculation of the decay rate.
The effective potential (zero-derivative terms) contrib-

utes to the action as

SVeff ½ϕC� ¼ 2π2
Z

dρρ3Veff ½ϕCðρÞ�

¼ −
2π2

3jλj −
19

4
− 3 ln

Rμ

2
ffiffiffi
6

p � i
3π

2
ð6:12Þ

where�i 3π
2
comes from ln λ

jλj and λ < 0. This imaginary term

in the action makes e−Seff imaginary since e�i3π
2 ¼ ∓ i. The

sign is ambiguous, but we pick the sign such that Γ > 0. The
two-derivative terms

S2 dereff ½ϕ� ¼
Z

d4x

�
1þ λ

4π2

�
1

2
ð∂μϕÞ2 ð6:13Þ

contribute to the action on the bounce as

S2 dereff ½ϕC� ¼
4π2

3jλj −
1

3
: ð6:14Þ

Using Eq. (6.6), and ignoring the Oð1Þ numbers, we find

Γ
V
¼ 1

R4
Im½e−i3π2 e−2π2

3jλjþ3 lnðRμÞþOð1Þ� ð6:15Þ

¼ 1

R4
exp

�
−
2π2

3jλj þ 3 lnðRμÞ þOð1Þ
�
: ð6:16Þ

We see that the logarithm and 1
λ term in Eq. (6.8) are

reproduced exactly. This of course has to happen since all the
μ dependence at one loop must be compensated by the
potential and kinetic terms in the classical action.
Note that the NLO part of Eq. (6.14) (the 1

3
) has the same

scaling as the NLO contributions from the potential,
Eq. (6.12). Thus, adding derivatives does not seem to give
additional suppression.
To understand whether higher order terms give addi-

tional suppression, let us turn to the four-derivative terms in
the one-loop effective action (see Appendix D):

S4 dereff ¼ −
1

2
ð□ϕÞ2 1

480π2
1

ϕ2
þ 1

2
ð∂μϕÞ2□ϕ

1

720π2ϕ3

−
1

8
ð∂μϕÞ2ð∂νϕÞ2

1

360π2ϕ4
: ð6:17Þ

Since the bounce ϕC ∼ 1ffiffiffiffi
jλj

p , when we evaluate the action on

the bounce, all these terms will scale like λ0. Thus, they
will be of the same order as the potential and two-
derivative terms.
More generally, one-loop terms with any number of

derivatives contribute to Seff ½ϕC� at the same order as the
one-loop effective potential. To see this, note that whenever
a factor of momentum is pulled out of a loop graph, it must
be compensated by an effective mass, by dimensional
analysis. In λϕ4 theory, the effective mass is
m2

eff ¼ 12λϕ2. Since ϕC ∼ 1ffiffi
λ

p , adding two derivatives and
1

m2
eff
does not change the power counting.

We conclude that the derivative expansion is not justified
for calculating decay rates. That is, to compute the decay
rate at NLO in λϕ4 theory using the effective action, we
need the complete effective action to one loop, not just the
leading-momentum-dependent terms. Since this effective
action is nearly impossible to compute, this method is not
feasible for computing NLO decay rates in quantum field
theory. Similar conclusions were reached through a calcu-
lation in quantum mechanics in [58].
Keep in mind that we have only shown that the derivative

expansion does not work for λϕ4 theory. In other theories, it
may be useful, but it depends on the circumstances. For
example, in the Coleman-Weinberg model, there are two
couplings, λ and e. For e small, the running of the couplings
is perturbative and λ goes from −∞ toþ∞while e remains
small. Thus, the theory is completely specified by a single
small number e. The loop corrections in this theory induce
spontaneous symmetry breaking at a scale μ where
λðμÞ ∼ eðμÞ4. Having λ ∼ e4 is more than just a numerical
association: One must power count with this scaling so that
physical quantities, such as the vector-to-scalar mass ratio,
are gauge invariant [59]. In the Coleman-Weinberg model,
the effective masses relevant at one loop are of the form
meff ∼ eϕ. When λ ∼ e4, then □

m2
eff
∼ λ

e2 ∼ e2, so higher

derivative terms are power suppressed.
Weinberg and Metaxas [60] used the λ ∼ e4 power

counting to show that the tunneling rate in the Coleman-
Weinberg model is gauge invariant at NLO. But although
λ ∼ e4 scaling is critical for spontaneous symmetry break-
ing, it is not the appropriate scaling for the calculation of
tunneling rates. As discussed earlier in this section, the
scale appropriate for tunneling is where βλðμÞ ¼ 0. Since
βλ ∼ e4 þ e2λþ λ4, βλ ¼ 0 is compatible with the normal
loop power counting where λ ∼ e2. With this counting,
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meff ∼ 1 as in λϕ4 theory and □

meff
corrections are as

important as corrections to the effective potential.

VII. STANDARD MODEL

In the previous sections, we have discussed general
features of tunneling calculations in quantum mechanics
and quantum field theory. In this section, we apply some of
those insights to the Standard Model. In particular, we
consider the question of how to calculate the lifetime of the
metastable Standard Model vacuum with hhi ¼ 246 GeV
in a systematically improvable way. We also discuss the UV
sensitivity of the decay rate calculation.

A. Effective potential and gauge invariance

A discussion of vacuum stability in the Standard Model
usually begins with the Standard Model effective potential.
As we have seen, this is not all we need to accurately
describe tunneling. This potential VSMðh; μÞ is a function of
a constant real scalar background Higgs field h, the
renormalization group scale μ, and the various couplings
in the theory. It has been computed to two-loop accuracy
with resummation of large logarithms to the three-loop level.
An important feature of the Standard Model effective

potential is that it is nearly scale invariant. The only mass
scale in the Standard Model is the single dimensionful
parameter v (the Higgs vev). For h ≫ v, we can set v ¼ 0,
along with the Higgs mass and all other masses. Then all of
the scale dependence comes from quantum corrections and
dimensional transmutation. To make this clear, we often
write

VSMðh; μÞ ¼
1

4
h4λeffðh; μÞ: ð7:1Þ

The function λeffðh; μÞ is dimensionless, matches the Higgs
quartic at the weak scale, and changes slowly (logarithmi-
cally) as h is increased. Here μ is the M̄S scale, and all of
the μ dependence is either implicit, through the gauge
couplings giðμÞ, top Yukawa λtðμÞ, etc., or explicit in terms
of the form ln h

μ. The explicit and implicit μ dependences are
related by the renormalization group equation�

μ
∂
∂μ − γh

∂
∂hþ βi

∂
∂λi

�
VSMðh; μÞ ¼ 0 ð7:2Þ

with γ the Higgs field anomalous dimension.
It is commonplace to resum the effective potential by

setting μ ¼ h [61]. Indeed, this is the natural choice, as h is
the only scale around. However, setting μ ¼ h is dangerous.
For example, if one is interested in extrema of VSM, then
solving ∂

∂h VSMðh; μÞ ¼ 0 and setting μ ¼ h afterwards does
not give the same value of h as solving ∂

∂h VSMðh; hÞ ¼ 0.
Or, to calculate the tunneling rate, one must evaluate the
effective action on a solution to the equations of motion
before setting μ ¼ h, rather than after.

Another issue to keep in mind is that VSM is not gauge
invariant. In fact, explicit gauge dependence is required for
Eq. (7.2) to hold since the anomalous dimension γ is gauge
dependent. Moreover, not all the gauge dependence can be
associated with γ; there is further gauge dependence in the
nonlogarithmic terms in VSM as well. The gauge depend-
ence of effective potentials is fairly well understood. Recall
that the effective potential describes the energy of the
system in the presence of a background current J. Since this
current is a charged source, it depends on gauge, and
therefore the potential will be gauge dependent whenever
J ≠ 0. This explanation also implies that at the extrema,
where J ¼ 0, the effective potential is gauge invariant.
Thus, the energy of any metastable minimum is gauge
invariant and possibly physical. This is indeed true and has
been checked explicitly. A more rigorous proof that the
vacuum energy is gauge invariant relies on the Nielsen
identity [62] (see also [63]).
Since the tunneling rate is physical, it should be gauge

invariant. In fact, as it appears to be given by the Euclidean
effective action at its extremum (the bounce), its gauge
invariance also follows from the Nielsen identity. Some
subtleties in establishing gauge invariance, involving
boundary conditions on the path integral, were recently
explored in [56] (see also [18]). Unfortunately, we know of
no explicit demonstrations of gauge invariance, say, at next-
to-leading order, even in scalar QED.8 Such demonstrations
may have practical implications for tunneling rate calcu-
lations as they had for absolute stability bounds.
In [64], it was shown that for the absolute stability bound

in the Standard Model to be gauge invariant, two mod-
ifications of the usual procedure were necessary. To be
clear, by “usual procedure” we mean using the resummed
effective potential with μ ¼ h in Landau gauge as in [61].
The modifications were as follows:

1. The effective potential had to be known to fixed
order in ℏ assuming that λ ∼ ℏ. This is the same
scaling as introduced by Coleman andWeinberg, but
it had not been used in the SM.

2. The renormalization group equation for the effective
potential should not be solved, and we should not set
μ ¼ h; rather, the couplings run to a scale μX where
the leading-order (in the modified ℏ scaling) poten-
tial is minimized and the potential evaluated at
fixed order.

Let us now consider whether these two modifications also
must be applied to the calculation of tunneling rates.
First, we would like to know if we should use λ ∼ ℏ as in

the absolute stability calculation, or λ ∼ ℏ0 as in ordinary
perturbation theory. The reason the modified scaling is
appropriate for absolute stability is because an extremum of

8In [60], Weinberg and Metaxas confirm the Nielsen identity at
one loop using λ ∼ ℏ scaling, but they do not explicitly show
gauge invariance of the one-loop rate.
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the potential requires that the growth of the monotonic
classical potential V ¼ 1

4
λh4 be canceled by loop effects

scaling like ℏ. This is only possible if λ is anomalously
small, λ ∼ ℏ. For absolute stability, we need the potential in
only a small neighborhood of an extremum, so it is
consistent for λ ∼ ℏ within the entire neighborhood.
However, for tunneling, which involves the potential
connecting different extrema, we necessarily need a large
range of scales, and it is inconsistent for λ ∼ ℏ throughout
that range. It is easy to see that in the Standard Model, λðμÞ
is indeed not anomalously small away from extrema of
VSM. We conclude that for a tunneling rate, one should not
take λ ∼ ℏ, but instead take λ ∼ ℏ0 and use ordinary
perturbation theory. As discussed in Sec. VI B, this means
that all higher derivative terms in the Standard Model
effective action will be as important as corrections to the
effective potential.
For the second point, we have a new problem: The

effective potential describes a minimum near h ¼ 0 (our
vacuum), a maximum where the Landau-gauge field is
around h ∼ 109 GeV, and another minimum at around
h ∼ 1030 GeV. These scales are so far apart that there
are necessarily large logarithms in the effective potential
and presumably resummation is critical. Indeed, with
μ ≈ 200 GeV, the resummed effective potential is not at
all well described by fixed-order perturbation theory. But if
we require resummation, which mixes orders in ℏ, check-
ing gauge invariance order by order in ℏ is impossible.
To investigate further, we write the SM effective poten-

tial to two-loop order (in Landau gauge) as

Vð2Þ
SMðhÞ ¼ h4

�
Aþ B ln

h
μ
þ Cln2

h
μ

�
: ð7:3Þ

Here, A, B, and C are calculable functions of the SM
couplings, which in turn depend on μ. A lot of this μ
dependence is canceled by the explicit μ dependence in
Eq. (7.3), but not all of it. At tree level with μ ¼ 200 GeV,
A ¼ λ

4
¼ 0.031 and B ¼ C ¼ 0. Values for A, B, and C at

two loops for different choices of μ are given in Table I.
Conveniently, we find that there is good agreement

between the traditional resummed potential VSMðh; hÞ
and the fixed-order potential Vð2Þ

SM when μ ¼ 1017 GeV
as can be seen in Fig. 16. By good agreement, we mean that
the extrema are fairly close. Both have maxima at around
h ¼ 109 GeV and minima around h ¼ 1030 GeV. (In
contrast, taking μ ¼ 1010 GeV leads to a maximum at
h ¼ 1010 GeV and a minimum at 1018 GeV.)
In conclusion, we have shown that fixed-order pertur-

bation theory can be used to calculate the Standard Model
effective potential in good quantitative agreement with the
resummed potential. This implies that there is no impedi-
ment in trying to establish explicitly the gauge independ-
ence of the tunneling rate in the Standard Model using the

fixed-order effective action if one can calculate all the
higher derivative corrections relevant to that order. Even in
the absence of such an explicit demonstration, it seems
reasonable to expect that, since resummation mixes up
orders in perturbation theory, one should always use the
fixed-order potential and never the resummed one.

B. SM tunneling rate

The Standard Model effective potential has a minimum
at our electroweak vacuum (h ∼ 0) with VSMð0Þ ¼ 0 and a
maximum value of Vmax ≈ ð1010 GeVÞ4. It then turns over
and runs negative, eventually hitting another minimum at
around Vmin ∼ −ð1030 GeVÞ4 [64]. The field values where
these extrema are taken are gauge dependent, but the
energy densities at the extrema are gauge independent.
One should not take the value 1030 GeV for the scale of the
absolute minimum very seriously: Quantum gravity will
obviously modify this scale, as we discuss below in
Sec. VII C.

TABLE I. Values of A, B, and C in the fixed-order SM effective

potential Vð2Þ
SMðhÞ ¼ h4ðAþ B ln h

μ þ C ln h
μÞ as in Eq. (7.3) for

various choices of μ in Landau gauge. We have used mpole
h ¼

ð125.14� 0.24Þ GeV and mpole
t ¼ ð173.34� 1.12Þ GeV. For

μ ¼ 1017 GeV, the two-loop potential is in good agreement with
the resummed potential.

μ (GeV) A B C

200 0.0387 −0.00777 8.38 × 10−4

105 0.151 −0.00248 1.64 × 10−4

1010 0.000751 −6.08 × 10−4 2.84 × 10−5

1015 −0.00313 −1.48 × 10−4 9.32 × 10−6

1017 −0.00352 −6.19 × 10−5 6.76 × 10−6

1020 −0.00347 2.28 × 10−5 4.86 × 10−6

FIG. 16. The effective potential in the Standard Model in
Landau gauge resummed with μ ¼ h (red curve) is compared
to the effective potential at two loops with μ ¼ 1010 GeV (blue)
and μ ¼ 1017 GeV (green).
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The fact that the potential grows, has a maximum, and
then decreases to a minimum indicates that there is a
potential barrier through which the Higgs field can tunnel.
However, as we saw in Sec. V, this is not the correct picture.
It is not the barrier of the effective potential of height
1010 GeV that we should think about tunneling through.
Instead we must study the barrier in the potential energy
functional U½h� defined in Eq. (5.3). To see this, recall the
general result from Sec. V C that for a potential VðhÞ the
bubble size is determined by the condition d

dh
VðhÞ
h4 ¼ 0. For

the Standard Model, this scale is h ∼ 1017 GeV. As we can
see from Table I, near the scale μ ¼ 1017 GeV, the
Standard Model effective potential is basically just

VSMðh ∼ 1017 GeVÞ ≈ λ0
4
h4;

λ0
4
¼ −0.00352: ð7:4Þ

Here λ0 is approximately the value of the Higgs quartic at
its minimum, λ0 ≈ λðμ ¼ 1017Þ.
There are solutions to the Euclidean equations of motion

following from Eq. (7.4) for any bubble size R. These are

just the quartic bounces as in Eq. (5.9): hRCðρÞ ¼
ffiffiffiffiffi
8
jλ0j

q
R

R2þρ2
,

and the energy functional U for the different bubble shapes
is shown in Fig. 14. The tree-level action on any of these
bounces is S½hRC� ¼ 8π2

3jλ0j. The decay rate per unit volume is

therefore

ΓLO

V
¼ exp

�
−

8π2

3jλ0j
�
≈ 10−812 ð7:5Þ

independent of R. The right-hand side has the wrong units,
as the units come in at NLO. However, the rate is so small
that to a first approximation, the units do not even matter.
The difference between choosing a scale of the Planck mass
and a scale of the size of the Universe (to the fourth power)
gives only a factor around 10200.
If the degeneracy in R persists to all orders, it would

invalidate the method of computing the tunneling rate in the
Gaussian approximation: Varying R would lead to a zero
eigenvalue of the quadratic fluctuations, and it would be
unsuppressed in the path integral. We could possibly treat
the scale invariance as we treat translation symmetries:
integrate over R as a collective coordinate to produce a
“volume” factor. However, the R dependence is in fact
broken by loop corrections.
There is a shortcut to determining the R dependence of

the NLO decay rate. The decay rate, being physical,
satisfies a renormalization group equation of the form�

μ
∂
∂μþ βi

∂
∂λi

�
ΓðR; μÞ ¼ 0: ð7:6Þ

The μ dependence is known from the SM β functions, and
the R dependence is determined by dimensional analysis.
Explicitly, we must have

1

V
ΓNLO ¼ R−4 exp

�
−

8π2

3jλ0j
−
�
−4þ 2

λ2t
jλ0j

−
2g22 þ g2Z
2jλ0j

þ λ4t
λ20

−
2g42 þ g4Z
16λ20

�
lnðRμÞ þ R independent

�
ð7:7Þ

in agreement with [15].
Since the action depends on R, the degeneracy over R is

broken. At this order, however, the rate can be made
arbitrarily small for any choice of μ since it is a monotonic
function of R. At the next order there will be terms
quadratic in ln Rμ. If we had those terms, we could solve
for an exact, well-defined minimum of the two-loop rate,
which could only give us RM ∼ μ−1. Thus, even at NNLO,
the result would depend on an arbitrary scale μ. The full
exact rate, however, is independent of the artificial scale μ.
Thus, there must be an actual scale RM for which the rate is
maximal. By dimensional analysis, R−1

M is almost certainly
near the scale μ0 where βλðμ0Þ ¼ 0 [15,19]. However, to
our knowledge this has not been rigorously shown.
Assuming μ0 is the correct scale, we take R ¼ RM ¼
μ−10 and then μ ¼ μ0 to minimize the large logarithms.
The conclusion is that the decay rate is given as the formula
in Eq. (7.5) plus NLO corrections. The leading-order rate is
so small that the NLO corrections are not even worth
computing.
The take-home lesson from the analysis of the SM

decay rate is that everything hinges on a single dimen-
sionful scale μ0. This scale sets the size of the bubble
R ¼ RM ∼ μ−10 , which in turn provides the dimensions of
the decay rate Γ ∼ 1

R4. The decay rate is exponential in λ−10 ,
where λ0 ¼ λðμ0Þ. The scale μ0 is completely undeter-
mined by the tree-level action, which is scale invariant. It
is also not determined by the NLO corrections to the
decay rate: Quadratic fluctuations in the direction of
changing R are not exponentially suppressed. Thus, one
needs to go to at least NNLO to fix μ0. Looking at the
effective potential at NNLO, we see that the degeneracy is
broken at a scale μ0 where λ0effðh ¼ μ0Þ ¼ 0, with
λeff ≡ 4

h4 VSM. However, the full effective action (with
derivative terms) could change this conclusion and is
not known to NNLO. Of course, the simplest procedure to
determine μ0 is to maximize the leading-order rate
Γ ∼ expð− 8π

jλðμ0ÞjÞ, as is often done [15,18,19]. The dis-

cussion here has investigated to what extent that procedure
can be rigorously justified.

C. Higher-dimension operators

In the discussion above, we assumed that there was no
physics beyond the Standard Model which could affect the
lifetime of our vacuum. This assumption is not valid. At a
minimum, there will be contributions from gravity which
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come in at a scale MPl ∼ 1019 GeV, but there is also the
possibility of new physics at scales well below MPl. It has
been argued relatively recently by Branchina et al. that even
contributions at MPl can destabilize the vacuum [19–22].
Their argument relies on the coincidence between the field
value ϕ0 at the center of the critical bubble (ultimately
determined by where βλ ¼ 0) in the Standard Model
and the Planck scale. In this section, we discuss how
sensitive the SM tunneling rate may be to physics at a new
scale. We confirm the Planck sensitivity, but also show how
it would persist even without the coincidence between MPl
and ϕ0.
To begin, we recall that the Standard Model is qualita-

tively very similar to a simple toy scalar field theory with
potential V ¼ λ

4
ϕ4 with λ < 0. As long as we are concerned

with energy scales well below the scale of the new physics,
we can perform the path integral over the new particles to
generate a low-energy effective action which can be
expanded in derivatives. This leads us to consider a
modified potential of the form

V ¼ λ

4
ϕ4 −

1

6Λ2
ϕ6 þ 1

8M4
ϕ8 ð7:8Þ

where Λ and M are two parameters with dimension of
mass. For λ < 0,Λ > 0 andM > 0, the potential has a local
maximum at ϕ ¼ 0 and a minimum at ϕmin ≈ M2

Λ þOðλΛ3

M2 Þ.
To be clear, since we have completely integrated out the

new physics, we can put this classical potential into the
action to find the tunneling rate; there is no double counting
since the fluctuations of new physics are integrated out in
producing the potential and only the fluctuations of ϕ are
used to calculate the rate. This is consistent with the
discussion in Sec. VI.
While we do not have analytical solutions to the

Euclidean equations of motion for this potential, we can
easily find numerical solutions (see Appendix C). We find,

numerically, that the starting point for the bounce (field
value at the center) and value of the Euclidean action on the
bounce are

ϕ0 ≈ 0.85 ×
M2

Λ
; SE ≈ 290 ×

Λ4

M4
; ð7:9Þ

respectively.

1. Approximate solutions

It is perhaps informative to compare this exact numerical
result to the approximate result coming from using
approximate solutions, the Gaussian bubbles discussed
in Sec. V C. These are bubbles of the form ϕGðρÞ ¼
ϕ0 expð−ρ2=R2Þ with two parameters ϕ0 and R, as in
Eq. (5.15). The Euclidean action with this potential on
these bubbles is

SE½ϕG� ¼
1

2
π2R2ϕ2

0 þ
π2R4ϕ4

0

64

�
λ −

8ϕ2
0

27Λ2
þ ϕ4

0

8M4

�
: ð7:10Þ

The energy of the bubbles is

U½ϕG� ¼
3π3=2Rϕ2

0

4
ffiffiffi
2

p þ ϕ4
0R

3
π3=2

16
ffiffiffi
2

p
�

λffiffiffi
2

p −
4ϕ2

0

9
ffiffiffi
3

p
Λ2

þ ϕ4
0

8M4

�
:

ð7:11Þ

We recall that before minimizing, we need to restrict
ourselves to the U ¼ 0 surface. So the zero-energy
surface is

R−2 ¼ −λ
ϕ2
0

12
ffiffiffi
2

p þ ϕ4
0

27
ffiffiffi
3

p
Λ2

−
ϕ6
0

96M4
: ð7:12Þ

This gives us the action on the zero-energy surface as a
function of ϕ0 only:

SE½ϕ0� ¼
162π2Λ2M4ð64ð4 ffiffiffi

3
p

− 3ÞM4ϕ2
0 − 27Λ2ð8ð4 ffiffiffi

2
p

− 3ÞλM4 þ 5ϕ4
0ÞÞ

ð27Λ2ϕ4
0 þ 4M4ð27 ffiffiffi

2
p

λΛ2 − 8
ffiffiffi
3

p
ϕ2
0ÞÞ2

: ð7:13Þ

Minimizing with respect to ϕ0 leads to

ϕ0 ¼ 1.1 ×
M2

Λ
; R ¼ 8.9 ×

Λ3

M4
;

SE½ϕG� ¼ 224.7 ×
Λ4

M4
ð7:14Þ

in parametric and reasonable numerical agreement with
Eq. (7.9).

Alternatively, solving λ0effðϕ0Þ ¼ 0 gives

ϕ0 ¼
ffiffiffi
2

3

r
M2

Λ
¼ 0.82 ×

M2

Λ
; ð7:15Þ

also in good agreement with Eq. (7.9).

2. High-scale operators in the standard model

Now let us consider what happens when we add such
higher dimension operators to the Standard Model.
Importantly, there are two qualitatively different types of
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effects. First, adding a potential Vnew will cause a pertur-
bative change to the Euclidean action on the Standard
Model bounce, given by

ΔS ¼
Z

d4xVnew½hRCðxÞ� ∼
1

Λ2R2
þ 1

M4R4
: ð7:16Þ

By dimensional analysis, this correction will be suppressed
by factors of MR and ΛR as shown. Even for Planck scale
operators, this may not be much suppression, since in the
Standard Model R−1 ∼ 1017 GeV, which is not that far
from MPl.
In the limit that M and Λ are taken very large, one

expects that the new physics should decouple and the
Standard Model bounce should be unaffected, which
indeed is what happens. However, in this limit a new
tunneling direction can open up; although the Standard
Model bounce is unaffected, the decay rate (determined by
the integration over all bounces) can be affected if a new
direction in field space has lower Euclidean action than the
Standard Model bounce. Thus, the second effect which can
happen when new operators are added is that tunneling
proceeds through an entirely new direction in field space.
To see the new direction emerge, we need to keep track

of two corrections to the tree-level quartic potential: the
Standard Model logarithms and the high-scale operators.
Each of these induces a slight change to the action, ΔSðRÞ.
The high-scale operators’ correction can be calculated
analytically; the Standard Model logarithms must be
computed numerically. These corrections pick out a dom-
inant value of R. Depending on the scale of new physics,
we might get one or two local minima (see Fig. 17).
Explicitly, taking the bounce to be the quartic bounce

of size R from Eq. (5.9) (with λ → λ
4
and denoting this

solution by hRC), the shift in the action from the high-scale
operators is

ΔSNPðRÞ ¼
Z

Ω3ρ
3dρ

�
−

1

6Λ2
hRCðρÞ6 þ

1

8M4
hRCðρÞ8

�

¼ 64π2

λ4

�
4

21M4R4
−

jλj
15Λ2R2

�
: ð7:17Þ

This action is minimized for

Rmin ¼
ffiffiffiffiffiffiffiffi
40

7jλj

s
Λ
M2

: ð7:18Þ

That is, as M → ∞ and Λ → ∞ holding M=Λ fixed,
tunneling is dominated by bubbles of smaller and
smaller size.
Next we focus on the Standard Model corrections, which

will pick out the minimum of λeff ¼ 4
h4 V. Of course, as we

have argued, one cannot use the SM effective potential for
tunneling calculations. However, there does exist a full
effective action for the SM which one could use in
principle, and we will assume the higher derivative terms
are independent of R. Evaluating this action on bubbles of
size R, one finds a function ΔSSMðRÞ which has its
minimum at RSM where R−1

SM ¼ μ0 ≈ 1017 GeV. Thus,
the full action is

Sfull ¼ SLOSM þ ΔSSMðRÞ þ ΔSNPðRÞ: ð7:19Þ

We know the second term, ΔSSM, has a minimum around
RSM, and the third term, ΔSNP, has a minimum around
R ∼ Λ

M2. So we generically expect the curve to look some-
thing like the right plot in Fig. 17.
When Λ and M are much larger than MPl, there are two

local minima (see Fig. 17): the Standard Model one at RSM,
perturbed only slightly by the higher-dimension operators,

FIG. 17. Left panel: Corrections to the standard model LO action (violet) for each R, using μ0 ¼ 1017 and λðμ0Þ ¼ −0.015, induced by
the Standard Model logs at NNLO (orange), and also the higher-dimension potential terms from Eq (7.8) with Λ ¼ 5.09 × 1018 GeV,
M ¼ 3.16 × 1018 GeV (blue), and Λ ¼ 2.80 × 1036 GeV, M ¼ 2.34 × 1036 GeV (red). Right panel: Sum of Standard Model logs at
NNLO and new physics. For S35NP there are two distinct local minimum bubbles, the SM one with R ∼ 1017 GeV and the high-scale one
with R ∼ 1035 GeV, while for S17NP there is only one bubble. For these particular parameters for S35NP, the high-scale one has less total
action and hence it dominates the rate.

ANDREASSEN, FARHI, FROST, and SCHWARTZ PHYSICAL REVIEW D 95, 085011 (2017)

085011-36



and the higher-dimension one at
ffiffiffiffiffiffi
40
7jλj

q
Λ
M2, perturbed only

slightly by the Standard Model logs.
Since there are several bounces, the total tunneling rate is

dominated by whichever has the smaller Euclidean action.
The Standard Model bounce’s action is given in the
exponent of Eq. (7.7), and the higher-dimension operators’
action is controlled by Λ and M according to Eq. (7.9).
Thus, depending on the details of the higher-dimension
operators, the Standard Model or the new physics bounce
might dominate, no matter how high the scale Λ. This was
the point illustrated by Fig. 15. Because of this possibility,
the full tunneling rate is always sensitive to physics at
arbitrary high scales. The Standard Model calculations at
low energy provide a lower bound on the tunneling rate, but
arbitrarily high scale operators can always make the rate
faster by adding new tunneling directions in field space.

VIII. SUMMARY AND CONCLUSIONS

The first four sections of this paper attempt to provide a
thorough exposition of the various ways tunneling rates are
calculated in quantum mechanics and quantum field theory.
While many of the methods discussed here are explained in
the literature, we hoped that compiling them with explicit
examples and additional commentary on subtle points
rarely emphasized could be helpful. One path-integral
method, which we call the direct method, was introduced
in [8], and more details are given here for the first time.
Later in this paper, we explored tunneling in quantum field
theory and discussed the role that the effective potential
plays. As an application to the Standard Model, we
investigated the UV sensitivity of the tunneling rate.
One critical observation about tunneling is that two time

scales must be well separated for the tunneling rate to even be
well defined. First, there is what we call the sloshing time
Tslosh, characterizing the time scale for movement within the
false-vacuum well region. One must average over times of
order Tslosh in defining the rate Γ. We call the other time scale
TNL. It represents the time scale for the transmitted wave
function to start propagating back into the false vacuum.
In many presentations, one takes T → ∞ to find the

decay rate. However, as we repeatedly emphasize, this has
to be done carefully. In the strict T → ∞ limit, the system
ends up in the true vacuum, at rest. Much of the subtlety in
calculating decay rates can be traced to enforcing the
double limit T ≫ Tslosh and T ≪ TNL.
In QM, one can enforce T ≪ TNL by using radiative

outgoing-wave-only boundary conditions. These boundary
conditions, by definition, prevent the transmitted wave
from returning. Moreover, the boundary conditions are
unphysical, so the energy eigenstates of the Hermitian
Hamiltonian can have complex energy eigenvalues. The
imaginary part of the energy of a resonance localized in the
false vacuum can be readily identified with the decay rate.
This was shown in Sec. II.

The outgoing-boundary condition way of enforcing T ≪
TNL is not readily generalizable to multidimensional
systems. In the path-integral derivation, originally due to
Callan and Coleman [1], this time scale is left implicit.
Nevertheless, we show that if one blindly takes T → ∞, the
energy E0 picked out by this method is not the quasistable
false-vacuum state of interest, but rather the true vacuum (in
the path integral, the dominant saddle point is not the
bounce but rather the shot, a solution that stays in the true
vacuum for nearly all times). To isolate the false-vacuum
energy as E0, one must change the contour on integration to
be the steepest-descent contour through the false vacuum.
We spent some time in this paper discussing various

subtleties in performing the analytic continuation or contour
deviation and saddle-point approximation properly.Onemust
account for the locations of all the relevant saddle points in the
complex plane, how the integration contour deforms as the
continuation is done, and how the imaginary part is to be
extracted so that one is using an asymptotic expansion
consistently. Importantly, the relevant contour is the contour
of steepest descent through the false-vacuum saddle point.
One hiccup of the potential-deformation method that we

were not able to resolve is why the imaginary number
computed through this method is the decay rate of the false
vacuum. Unlike the outgoing-boundary conditions pre-
scription, we found no intuitive physical narrative to
connect this imaginary number to the decay rate of interest.
It does seem that deforming the contour of integration to the
steepest descent through the false vacuum has some
connection to enforcing T ≪ TNL, which prevents the true
vacuum from dominating. However, we do not know how
to make this precise. Moreover, the imaginary part depends
on how the analytic continuation is done. We expect that
there should be a proof that this method, with some precise
prescription for how the contour deformation is to be done,
will always generate the decay rate of interest. It would also
be great to see a proof of the universality of the famous
factor of 1

2
(cf. Sec. III), other than the indirect proof we

provide here through the direct method. Such investigations
could provide fruitful avenues for future research.
In the direct method, explored at length in Sec. III,

the computation of tunneling rates is approached from the
starting point of the casual propagator. Inspired by the
WKB approximation, the direct method computes the rate
to propagate from the false vacuum through a barrier. The
condition T ≪ TNL is imposed by assuming that once the
particle exits the barrier, it will never pass back through.
The end result of this method is a nonperturbative formula
for the tunneling rate. It is exact, up to the exponentially
small corrections that are an inherent ambiguity in the
definition of the decay rate. The formula relates Γ to a ratio
of two path integrals. In the saddle-point approximation to
this formula, the numerator is dominated by the Euclidean
bounce solution and the denominator by the static false-
vacuum solution. The final prescription is in agreement
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with previous results at NLO. One corollary of the direct
derivation provided here is that it relates the bounce action
to the actual tunneling rate thereby validating the univer-
sality of the factor of 1

2
.

The remainder of this paper was devoted to reviewing
and expounding some important aspects of tunneling
calculations in quantum field theory. We discussed how
the energy functional U½ϕ� can be productively visualized
along a tunneling direction. We then showed how one can
get good intuition for tunneling and bounces from approxi-
mate analytic solutions, rather than exact numerical ones.
In particular, we derived that the field at the center of the
bounce ϕ0 ¼ ϕBðρ ¼ 0Þ will generically be determined by
the scale where ∂ϕ½ 1ϕ4 VðϕÞ� ¼ 0. This is in accordance with

renormalization-group-based arguments predicated on min-
imizing Γ ∼ exp½− 1

λðμÞ�, but it is conceptually cleaner: It is

just a shortcut to solving classical equations of motion.
One point we thought worth clarifying is the use of the

effective potential in tunneling calculations. It is not
acceptable to use an effective potential for tunneling,
e.g. using it to find bounces. We also showed that the
terms in the effective action with derivatives are equally
important as the NLO corrections to the potential, and the
higher derivative terms are generally unknown. To verify
this explicitly, we computed the four-derivative terms at
one loop in a scalar field theory and compared to what one
gets using the full NLO bounce action. The potential terms,
the four derivatives, and even higher-order terms, all
contribute to the decay rate at the same order.
The last sectionwas devoted to some comments onvacuum

stability in the StandardModel. It would be good to check that
the decay rate in the Standard Model is gauge invariant by an
explicit calculation. Although the rate must be gauge invari-
ant, and general nonperturbative proofs show that it is, there
may be subtleties with the power counting that require special
care when working in perturbation theory. Such was the case
for the absolute stability bound [64]. As a small step in this
direction, we argued that the appropriate power counting
should be the usual loop expansion in ℏ, not the λ ∼ ℏ
counting of the Coleman-Weinberg model. Even then, one
cannot use a resummed potential or action since these mix
orders in perturbation theory. Conveniently, we showed that
for the effective potential at least resummation is not neces-
sary: A fixed-order expansion using μ ∼ 1017 GeV agrees
qualitatively quite well with the full resummed potential.
Finally, we included some remarks on the UV sensitivity

of the Standard Model decay rate. It has been argued that
the rate is sensitive to Planck scale physics due to a
coincidence between the critical bubble size in the gravity-
free Standard Model, and the Planck scale. We showed that
this is not true.Nomatter howhigh thePlanck orUVscale is,
tunneling rates will always be UV sensitive. Decoupling
arguments simply do not apply to the lower bound on
tunneling rates. This result is in agreement with other recent

work [18]. Without any gravitational or beyond-the-
Standard-Model physics, the lifetime of our Universe
appears to be around 10600 years. Although physics beyond
1018 GeV could make this lifetime shorter, it seems hard for
new physics at this scale tomake the lifetime longer. Thus if,
for whatever reason (e.g. [15]), one can argue that our
Universe must be absolutely stable, then there must be sub-
Planckian physics beyond the Standard Model. Otherwise,
unless we get a better handle on quantum gravity, the fate of
our Universe will remain uncertain.
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APPENDIX A: COMPLEX ENERGIES AND
DECAY RATES IN A SQUARE WELL

In this appendix, we compute the decay rate for the
simple square-well potential shown in Fig. 18. The explicit
results here may help elucidate some of the general state-
ments from Sec. II A. Related calculations can be found, for
example, in [65].
Suppose we have an initial state jψi localized in the FV

region at t ¼ 0. This can be a Gaussian, a delta function, or
simply a constant in the FV region. At a later time, the state
is jψðtÞi ¼ e−iHtjψi. The probability that we find the state
in region FV at a later time is given by

PFVðtÞ ¼
Z
FV

dxjhxjψðtÞij2 ¼
Z

a

0

dxjψðx; tÞj2: ðA1Þ

To compute the probability, we start by decomposing the
wave function into energy eigenstates. Labeling these states
ϕp by momentum p, we can write ψðx; tÞ,

FIG. 18. Square potential well. The potential is divided into
three regions: FV is the false vacuum, B is the barrier, and R is the
destination region to which a state initially localized in FV will
decay over time.
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ψðx; tÞ ¼
Z

∞

0

dp
2π

Z
∞

0

dyψðyÞϕ�
pðyÞϕpðxÞe−i

p2

2mt; ðA2Þ

where ψðyÞ≡ ψðy; t ¼ 0Þ.
Since region R is infinite in extent, there are energy

eigenstates for any energy E ¼ p2

2m. Of these, some will be

resonances. These resonances come in bands of width Γi
around energies Ei. The resonant energies Ei are close to
what the bound-state energies in the FV region would be if
we disallowed tunneling, for example, with b → ∞. For
finite b, the resonant energies broaden across a band and
have support in the region R.
More precisely, the exact energy eigenstates are

ϕpðxÞ ¼

8>>><
>>>:

ϕFV
p ðxÞ ¼ 2

Np
sinðpxÞ 0 < x < a

ϕB
pðxÞ ¼ 1

Np
½Apeκðx−aÞ þ Bpe−κðx−aÞ� a < x < b

ϕR
pðxÞ ¼ 1

Np
½Cpeipðx−bÞ þDpe−ipðx−bÞ� b < x

ðA3Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV0 − p2

p
and

Ap ¼ sinðpaÞ þ p
κ
cosðpaÞ; ðA4Þ

Bp ¼ sinðpaÞ − p
κ
cosðpaÞ; ðA5Þ

Cp ¼ 1

2

�
1 − i

κ

p

�
ApeWp þ 1

2

�
1þ i

κ

p

�
Bpe−Wp; ðA6Þ

Dp ¼ 1

2

�
1þ i

κ

p

�
ApeWp þ 1

2

�
1 − i

κ

p

�
Bpe−Wp: ðA7Þ

Here Wp ¼ R
b
a dxκ ¼ ðb − aÞκ is the usual WKB

exponent.
The factor Np can be computed by requiring that the

states have the usual normalization

Z
∞

0

dxϕpðxÞϕ�
p0 ðxÞ ¼ δðp − p0Þ: ðA8Þ

The only place such a δ function can come from is the
integral over the region b < x < ∞. To see this, write

Z
∞

0

dxϕpðxÞϕ�
p0 ðxÞ

¼
Z

∞

b
dxϕR

pðxÞϕR�
p0 ðxÞ þ

Z
b

0

dxϕpðxÞϕ�
p0 ðxÞ ðA9Þ

¼ π
CpC�

p0 þDpD�
p0

NpN�
p0

δðp − p0Þ: ðA10Þ

The second integral, from 0 to b, has exactly vanished.
Comparing with Eq. (A8) and noting that Cp ¼ D�

p for real
p, we can write jNpj2 as an analytic function of p:

jNpj2 ¼ 2πCpDp: ðA11Þ

We now see that up to an overall phase, ϕR
pðxÞ ¼

cosðpxÞ for any p. That is, all the wave functions are
order 1 in the region R. In the FV region, the wave
functions vary in size as 1

jNpj. Equations (A6), (A7), and

(A11) imply that N ¼ ffiffiffiffiffiffi
2π

p
C ∼ AeW þ Be−W . For W ≫ 1,

where the WKB approximation is supposed to work,
N ∼ AeW . Thus, generically, ϕFV

p ∼ e−W . So for most values
of p, the wave function has support almost entirely outside
the well and is exponentially suppressed in the well. The
only time it can have reasonable support in the well is when
A≲ e−2W ; indeed for A≲ e−2W, we see N ≲ e−W

and ϕFV
p ∼ eW .

The momenta for which jNpj2 is minimized are the
resonance momenta. They are exponentially close [within
Oðe−2WÞ] to the zeros of Ap. The zeros of Ap correspond to
the bound states in the limit b → ∞ orW → ∞. This can be
seen by considering the condition for wave-function
normalization in this limit; it is precisely Ap ¼ 0 that stops
the wave function’s growth as x increases, and discretizes
the spectrum. For finite b, tunneling through the barrier
shifts the bound-state energies by Oðe−2WÞ, and they
become the resonant energies.

1. Relating the probability to the pole

To calculate the probability PFVðtÞ, let us assume for
simplicity that the initial wave function ψðxÞ≡ ψðx; t ¼ 0Þ
only has significant overlap with modes whose energies are
close to E0, where E0 is the smallest real energy for which
jNðEÞj2 has a local minimum. Here, we are interchanging
the momentum label p with an energy label E, where
p2 ¼ 2mE. So we will write CðEÞ, DðEÞ, etc., rather than
Cp, Dp, etc.
To compute the probability, it is helpful to consider

imaginary energies. To do so, we first need to analytically
continue jNðEÞj2, which can be done by writing it in the
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form of Eq. (A11): jNðEÞj2 ¼ 2πCðEÞDðEÞ. This analytic
function has zeros in the complex plane, and the zeros come
in pairs. Indeed, from looking at the form of C and D in
Eq. (A6), we see that if E ¼ aþ ib is a zero of C, then
E� ¼ a − ib will be a zero of D. From the form of ϕR in
Eq. (A3), we see that C ¼ 0 corresponds to incoming
boundary conditions and D ¼ 0 to outgoing boundary

conditions. The first pair of zeros for jNj2 ¼ 2πCD are
at E ¼ E0 � i

2
Γ0. As we will confirm, Γ0

E0
∼ e−2W ≪ 1 as in

the WKB approximation.
Plugging Eq. (A3) into Eq. (A2) we find

ψðx; tÞ ¼
Z

a

0

dyψðyÞ
Z

∞

0

dE

�
1

2π

ffiffiffiffiffiffi
m
2E

r �

×
sinð ffiffiffiffiffiffiffiffiffiffi

2mE
p

xÞ sinð ffiffiffiffiffiffiffiffiffiffi
2mE

p
yÞ

2πCðEÞDðEÞ e−iEt ðA12Þ

where the spatial integral is over y ∈ ð0; aÞ since ψðy;t¼0Þ
only has support in the FV region. This is convergent when
E has a negative imaginary part. So we can deform the
contour to write

ψðx; tÞ ¼
Z

a

0

dyψðyÞ½Fðx; y; tÞ þ Gðx; y; tÞ� ðA13Þ

where

Fðx; y; tÞ ¼
I
Υ
dE

�
1

2π

ffiffiffiffiffiffi
m
2E

r �

×
sinðx ffiffiffiffiffiffiffiffiffiffi

2mE
p Þ sinðy ffiffiffiffiffiffiffiffiffiffi

2mE
p Þ

2πCðEÞDðEÞ e−iEt ðA14Þ

and

Gðx; y; tÞ ¼
Z

−i∞

0

dE

�
1

2π

ffiffiffiffiffiffi
m
2E

r �
sinðx ffiffiffiffiffiffiffiffiffiffi

2mE
p Þ sinðy ffiffiffiffiffiffiffiffiffiffi

2mE
p Þ

2πCðEÞDðEÞ e−iEt

¼ −i
Z

∞

0

dE
�
1

2π

ffiffiffiffiffiffiffiffiffiffi
m

−i2E

r �
sinðx ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−i2mE
p Þ sinðy ffiffiffiffiffiffiffiffiffiffiffiffiffi

−2mE
p Þ

2πCð−iEÞDð−iEÞ e−Et: ðA15Þ

The contour ϒ for the integral in Fðx; y; zÞ is shown in Fig. 19.
The Fðx; y; tÞ integral can be calculated by replacing the contour ϒ with ϒε, a circle of radius ε around the pole. This

lets us expand CðEÞDðEÞ around its zero and use its lowest order term. That is, we can write CðEÞDðEÞ ¼ CðE0 −
i
2
Γ0ÞD0ðE0 − i

2
Γ0ÞðE − E0 þ i

2
Γ0Þ þ � � � and use the residue theorem to give

Fðx; y; tÞ ¼ 2πi

�
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2ðE0 − i
2
Γ0Þ

r � sin


x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE0 − i

2
Γ0Þ

q �
sin



y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE0 − i

2
Γ0Þ

q �
2πCðE0 − i

2
Γ0ÞD0ðE0 − i

2
Γ0Þ

e−iðE0−i
2
Γ0Þt

¼ i
2π

ffiffiffiffiffiffiffiffi
m
2E0

r
sin ðx ffiffiffiffiffiffiffiffiffiffiffiffi

2mE0

p Þ sin ðy ffiffiffiffiffiffiffiffiffiffiffiffi
2mE0

p Þ
CðE0ÞD0ðE0Þ

e−iE0te−
1
2
Γ0t

�
1þO

�
Γ0

E0

��
ðA16Þ

where in the last line we have used Γ0

E0
≪ 1.

To evaluate Gðx; y; tÞ, we begin by replacing E → E0α in Eq. (A15) where α is dimensionless. Then

Gðx; y; tÞ ¼ −iE0

�
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

−i2E0

r �Z
∞

0

dα
1ffiffiffi
α

p sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−i2mE0

p
x

ffiffiffi
α

p Þ sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−i2mE0

p
y

ffiffiffi
α

p Þ
2πCð−iE0αÞDð−iE0αÞ

e−αðE0tÞ: ðA17Þ

Now let us assume that t ≫ 1
E0
∼ Tslosh. This is one of the required conditions for having a well-defined decay rate. Then

E0t ≫ 1 and, due to the exponential factor, only very small values of α contribute. Thus we can expand the prefactor for
small α, giving

FIG. 19. The contour ϒ used in Eq. (A14) enclosing the pole
E ¼ E0 − i

2
Γ0, and the smaller contour Υε allowing the use of the

Laurent series.

ANDREASSEN, FARHI, FROST, and SCHWARTZ PHYSICAL REVIEW D 95, 085011 (2017)

085011-40



Gðx; y; tÞ ¼ −iE0

�
1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

−i2E0

r �Z
∞

0

dα
1ffiffiffi
α

p −i2mE0xyα
jNð0Þj2 ½1þOðαÞ�e−αðE0tÞ

¼ −ð1þ iÞðE0mÞ32 xy
4

ffiffiffi
π

p jNð0Þj2 ðE0tÞ−3
2½1þOððE0tÞ−1Þ�: ðA18Þ

Now note that F ∼ expð− 1
2
Γ0tÞ while G ∼ ðE0tÞ−3=2. Thus if t is not too large, t≲ Γ−1

0 ∼ TNL, F ≫ G and

ψðx; tÞ ≈
�Z

a

0

dyψðyÞ sinð
ffiffiffiffiffiffiffiffiffiffiffiffi
2mE0

p
yÞ
�

1

4π2

ffiffiffiffiffiffiffiffi
m
2E0

r
sinð ffiffiffiffiffiffiffiffiffiffiffiffi

2mE0

p
xÞ

CðE0ÞD0ðE0Þ
e−iE0te−

1
2
Γ0t ðA19Þ

where≈means that termsOððE0tÞ−3
2Þ and higher order in Γ0

E0

have been dropped. The probability in Eq. (A1) therefore
takes the form

PFVðtÞ
E−1
0
≪t≪Γ−1

0

≈ const × e−Γ0t ðA20Þ

and thus Γ0 is indeed the rate.
In other words, we have established a direct connection

between the complex zeros of DðEÞ and the decay rate.
From Eq. (A3), the complex zeros of DðEÞ correspond to
outgoing-only plane waves in region R. In this way, the
connection between Gamow-Siegert outgoing boundary
conditions and decay rates is made precise (at least in this
example).
Note that the assumption t < TNL ∼ Γ−1

0 was essential.
At very late times t ≫ Γ−1

0 , then G ≫ F. In this limit,

PFVðtÞ
E−1
0
≪Γ−1

0
≪t

≈ const ×
1

ðE0tÞ3
: ðA21Þ

This is the nonlinear behavior. In this regime there is not a
well-defined decay rate.
In this calculation we assumed we were dealing with an

initial wave function dominated by energy eigenfunctions
close to E0. If this were not the case, we would have other
resonances to worry about, each corresponding to poles of
the form E ¼ En − i

2
Γn. The above analysis follows

through in the same way, and the result is a sum of the
form

P
nane

−Γnt for some an. After enough time, only the
dominant term with P ∼ e−Γ0t will remain, while the others
decay away.

2. Explicit computation of Γ

We have shown that the decay rate Γ is determined by the
imaginary part of the energy for which DðEÞ vanishes.
Now let us calculate Γ explicitly.
First, we observe that the complex zeros are exponen-

tially close to the resonant energies. These resonant

energies ER ¼ p2
R

2m are the zeros of AðEÞ or equivalently
of Ap. Setting Ap ¼ 0 implies

sinðpRaÞ ¼ −
pRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
R þ κ2R

p ; cosðpRaÞ ¼
κRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
R þ κ2R

p ;

ðA22Þ

where κR ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV0 − p2

R

p
. We can then find the complex

zeros of Dp by expanding perturbatively in

δ≡ e−Wp ¼ e−κRðb−aÞ: ðA23Þ

Both the real and the imaginary part of the complex
energies should differ from the resonant energies by
amounts of order δ2.
Next, we write p ¼ pR þ δ2pC þOðδ4Þ and expand

Dp ¼ 1

2

�
1þ i

κ

p

��
sinðpaÞ þ p

κ
cosðpaÞ

�
eWp

þ 1

2

�
1 − i

κ

p

��
sinðpaÞ − p

κ
cosðpaÞ

�
e−Wp ðA24Þ

to order δ. Setting Dp ¼ 0 and using Eq. (A22) to simplify
the answer, we find

pC ¼ 2pRκ
2
R

ðpR þ iκRÞ2ð1þ aκRÞ
ðA25Þ

and therefore

Γ ¼ −2Im
p2

2m
¼ 8p3

Rκ
3
R

mð1þ aκRÞðp2
R þ κ2RÞ2

e−2W: ðA26Þ

Note that unlike Eq. (2.2) the prefactor does depend on the
height of the barrier, V0.
It is perhaps informative to compare this calculation to

the result of Eq. (2.16). Note that Eq. (2.16) is independent
of the normalization, so we can set Np ¼ 1 in Eq. (A3).
Then we find

jϕEðbÞj2 ¼
16p2

Rκ
2
R

ðp2
R þ κ2RÞ2

δ2; ðA27Þ
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Z
a

0

dxjϕEðxÞj2 ¼ 2aþ 2κR
p2
R þ κ2R

þOðδ2Þ; ðA28Þ

and

Z
b

a
dxjϕEðxÞj2 ¼

1

p2
R þ κ2R

2p2
R

κR
þOðδ2Þ; ðA29Þ

so

Γ ¼ pb

m
jϕEðbÞj2R

b
0 dxjϕEðxÞj2

¼ 8p3
Rκ

3
R

mð1þ aκRÞðp2
R þ κ2RÞ2

e−2W

ðA30Þ

in agreement with Eq. (A26).
On the other hand, if we use the real-energy eigenstate in

Eq. (2.16), we would get

Γreal ¼
pb

m
jϕEðbÞj2R

b
0 dxjϕEðxÞj2

¼ 2p3
RκR

mð1þ aκRÞðp2
R þ κ2RÞ

e−2W:

ðA31Þ

Taking the ratio we find

Γreal

Γ
¼ 1

4
þ p2

R

4κ2R
: ðA32Þ

Thus using the real-energy eigenstates gets the right rate to
a factor of order 1. The factor of 4 in the large κR (large V0)
limit can be traced to the mode that grows inside the barrier
from a to b. This mode is exactly zero for the real-
energy state.

APPENDIX B: CHANGING TO COLLECTIVE
COORDINATES

The Gaussian integral
R
dξ0 expð−λ0ξ20Þ is divergent

when λ0 is zero. This happens for the zero mode corre-
sponding to translation invariance around a bounce. In
order to regulate this divergence, the standard procedure is
to trade ξ0 for a collective coordinate τ0 so that the integral
over τ0 simply gives a factor of T which can then be
divided out to get a decay rate [1,5,6]. In trading ξ0 for τ0,
one also must adjust the other modes ξi to a new
orthonormal basis ζi. The change of variables from fξig
to fτ0; ζig results in a Jacobian factor Jðτ0; ζiÞ. This
appendix addresses some subtleties in the change of
variables that we have not seen in decay-rate literature
but was understood in pioneering works on collective
coordinates [66].
In the evaluation of the saddle-point approximation

around a bounce or instanton denoted x̄, one naturally
parametrizes paths by the eigenfunctions xn of S00E with
eigenvalues λn:

xξ0;ξ1;…ðτÞ ¼ x̄ðτÞ þ
X∞
n¼0

ξnxnðτÞ: ðB1Þ

One of these modes, x0 ¼ ∂τx̄, has an eigenvalue of exactly
zero: λ0 ¼ 0. This zero mode corresponds to an infinitesi-
mal shift. Large shifts in τ are an approximate symmetry of
the path integral using Dirichlet [1] boundary conditions as
an exact symmetry with periodic boundary conditions
[5,6]. In order to make the symmetry manifest, it is helpful
to have one of the coordinates parametrizing paths be the
shift by τ0 rather than the addition of an ξ0 amount of the
first derivative.
We might write

xτ0;ξ0;ξ1;…ðτÞ ¼ x̄ðτ − τ0Þ þ
X∞
i¼1

ξixiðτÞ ðB2Þ

as in [6]. But unfortunately this parametrization is not
complete. To see that, integrate both sides of Eq. (B2)
against x0ðtÞ. Using Eq. (B1) for the left-hand side, we find
ξ0ðτ0Þ ¼

R
dτx0ðτÞx̄ðτ − τ0Þ, which is bounded. In con-

trast, the integration over ξ0 should go from −∞ to ∞ to
parametrize all paths. In particular, the parametrization in
Eq. (B2) does not cover exactly the large-ξ0 fluctuations
which caused the problem with the Gaussian integrations in
the first place.
A better parametrization is

xτ0;ζ1;ζ2;…ðτÞ ¼ x̄ðτ − τ0Þ þ
X∞
n¼1

ζnxnðτ − τ0Þ: ðB3Þ

Here we have used ζn instead of ξn for n > 0 since the
coordinates for all the modes generically change when we
change variables. This parametrization is complete.
Next, we calculate the Jacobian Jðτ0; ζÞ between the

parametrizations Eqs. (B1) and (B3). There are two subtle-
ties in this calculation that are often overlooked (e.g. in [3]):

1. Because the ζn are not the same as the ξn, this
Jacobian is really the determinant of a nontrivial
infinite-dimensional matrix; it is not simply equal
to dξ0=dτ0.

2. Because x̄ðτÞ breaks time-translation symmetry, one
must show that Jðτ0; ζÞ is independent of τ. For
example, in [3], only Jð0; ζÞ is calculated and
assumed equal to Jðτ0; ζÞ [cf. Eqs. (17.103) and
(17.108)].9

To calculate the Jacobian, we write the ξn as a function of
ζm and τ0,

9Actually, in the direct path-integral method, described in
Sec. IV, only Jð0; 0Þ is needed because of the δ function in the
path integral. In the conventional potential-deformation method,
the full Jðτ0; ζÞ is needed.
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ξn ¼
Z

½xðτÞ − x̄ðτÞ�xnðτÞdτ

¼
Z �

x̄ðτ − τ0Þ − x̄ðτÞ þ
X∞
m¼1

ζmxmðτ − τ0Þ
�
xnðτÞdτ

ðB4Þ

which means that

∂ξn
∂ζm ¼

Z
xnðτÞxmðτ − τ0Þdτ

∂ξn
∂τ0 ¼

Z �
− _̄xðτ − τ0Þ −

X∞
m¼1

ζm _xmðτ − τ0Þ
�
xnðτÞdτ

¼ −

ffiffiffiffiffiffiffiffiffiffi
SE½x̄�
m

r Z
xnðτÞx0ðτ − τ0Þdτ

−
X∞
m¼1

ζm

Z
_xmðτ − τ0ÞxnðτÞdτ: ðB5Þ

To proceed, it is useful to define the orthogonal matrix U:

Unmðτ0Þ≡
Z

dτxnðτÞxmðτ − τ0Þ: ðB6Þ

Note that U is orthogonal because both fxiðτÞg and
fxiðτ − τ0Þg are complete bases. The derivative matrix is:

0
BBBBB@

..

. ..
.

−
ffiffiffiffi
SE
m

q
Un0 þ

P
ζm _Unm Un1 Un2 � � �

..

. ..
.

1
CCCCCA: ðB7Þ

The determinant is linear in the first column, so the
determinant is

Jðτ0; ζÞ ¼

�����������
−

ffiffiffiffiffiffi
SE
m

r
detU þ det

0
BBBBB@

..

. ..
.

vn Un1 Un2 � � �
..
. ..

.

1
CCCCCA

�����������
ðB8Þ

where the vector v is defined by vn ≡P
ζm _Unm. SinceU is

orthogonal, we can decompose v in terms of the columns of
U; vn ¼

P
kckUnk. Then the second term in Eq. (B8) is a

linear combination of determinants of U with the zeroth
column replaced by the kth column. This determinant is
simply 0 if k ≠ 0 and detU if k ¼ 0. SinceU is orthogonal,
detU ¼ 1, so we have

Jðτ0; ζÞ ¼
����−

ffiffiffiffiffiffi
SE
m

r
þ c0

����: ðB9Þ

The coefficient c0 is simply the k ¼ 0 component of the
vector vn decomposed into the columns of U:

c0 ¼
X∞
n¼0

vnUn0 ¼
X∞
n¼0

X∞
m¼1

ζm _UnmUn0 ¼ −
X∞
m¼1

ζmrm

ðB10Þ

where

rm ≡
Z

dτ _xmðτÞx0ðτÞ: ðB11Þ

So altogether the Jacobian is exactly

Jðτ0; ζÞ ¼
ffiffiffiffiffiffi
SE
m

r
þ
X∞
m¼1

ζmrm ðB12Þ

and we see that it is indeed independent of τ0.

APPENDIX C: FINDING NUMERICAL
BOUNCE SOLUTIONS

In this appendix we discuss how to numerically find
bounce solutions. We want to solve Eq. (5.6):

∂2
ρϕþ 3

ρ
∂ρ − V 0½ϕ� ¼ 0 ðC1Þ

with boundary conditions ϕ0ð0Þ ¼ 0 and ϕð∞Þ ¼ 0.
Equivalently, we want to find an initial condition ϕð0Þ ¼
ϕ0 for which the field rolls down the potential −VðϕÞ
ending at the origin ϕ ¼ 0 at asymptotically late times. The
usual shooting method suggests we try various values of ϕ0

until we find one initial conditionϕþ
0 for which the evolution

overshoots [ends up with ϕðρÞ < 0 for some ρ] and one
initial condition ϕ−

0 for which the evolution undershoots
[ϕðρÞ > 0 for all ρ]. Then we know the solution is between
ϕþ
0 and ϕ−

0 , sowe simply have to refine this interval until the
desired precision is reached.
One difficulty with the shooting method described above

is that the 3
ρ coefficient in the differential equation makes the

point ρ ¼ 0 singular. Thus, when numerically solving the
equation, one has to start at some small ρ0 > 0, say
ρ0 ¼ 10−5. However, taking ϕðρ0Þ ¼ ϕ0 and ϕ0ðρ0Þ ¼ 0
as boundary conditions can be dangerous. These conditions
imply that ϕ has rolled from some ϕð0Þ to end up at ϕ0 at
rest when ρ ¼ ρ0. But how does ϕ come to rest at ρ0? This
is only possible if it rolls up the potential to get to ϕ0 and
then turns around to roll back. Clearly, such a solution is
not what we were looking for and will depend on ρ0. Often
the effect of starting at ρ0 is negligible since the rolling

PRECISION DECAY RATE CALCULATIONS IN QUANTUM … PHYSICAL REVIEW D 95, 085011 (2017)

085011-43



starts off slow due to the friction term. However, for
improved convergence, or for situations like searching
for multiple bounces in which high precision is necessary,
it can be helpful to reduce the ρ0 dependence.
This difficulty can be overcome by expanding the

potential around ϕ0:

VðϕÞ ≈ V lin ≡ Vðϕ0Þ þ ðϕ − ϕ0ÞV 0ðϕ0Þ: ðC2Þ

Using V linðϕÞ in Eq. (C1) leads to an analytic solution

ϕlinðρÞ ¼ ϕ0 þ
1

8
ρ2V 0ðϕ0Þ: ðC3Þ

So if ϕð0Þ ¼ ϕ0 with ϕ0ð0Þ ¼ 0, then

ϕðρ0Þ ¼ ϕ0 þ
1

8
ρ20V

0ðϕ0Þ and ϕ0ðρ0Þ ¼
1

4
ρ0V 0ðϕ0Þ:

ðC4Þ

Using these boundary conditions allows for an efficient
numerical solution to the differential equation and a fast
convergence towards the bounce. The solutions computed
this way are very insensitive to ρ0.

APPENDIX D: HIGHER DERIVATIVE
CORRECTIONS

The effective action is constructed so that when used
classically (at tree level) it reproduces the quantum physics
(all loop order) of a classical action. Unfortunately, it is
difficult, if not impossible, to calculate the effective action
exactly even at one loop. Diagrammatically the effective
action can be computed by summing over 1PI graphs with
any number of external legs with any momenta running
through them. Even at one loop, there are an infinite
number of relevant graphs, so computing the effective
action exactly is intractable.
Fortunately, a derivative expansion of the effective action

is calculable. The 1PI effective action of a scalar field ϕ at
up to four-derivative order can be written as

Seff ½ϕ� ¼
Z

d4x

�
−VeffðϕÞ þ

1

2
ð∂μϕÞ2Z2ðϕÞ

þ 1

2
ð□ϕÞ2Z4ðϕÞ þ

1

2
ð∂μϕÞ2□ϕρðϕÞ

þ 1

8
ð∂μϕÞ2ð∂νϕÞ2ΩðϕÞ þOð∂6Þ

�
: ðD1Þ

Using Lorentz invariance and integration by parts, we
have reduced the action to depending on only five
independent functions: VeffðϕÞ, Z2ðϕÞ, Z4ðϕÞ, ρðϕÞ,
and ΩðϕÞ.
Note that Veff is the well-known effective potential. To

compute it, we expand the Lagrangian around a constant
background field, Lðϕþ ~ϕÞ, and calculate the vacuum
diagrams where ϕ propagates and ~ϕ is fixed. (Throughout
this appendix ~ϕ will represent a constant field.) To
determine the other four functions, one might think to
calculate the 1PI vertices using Seff and L, and compare,
but this is not so straightforward. The problem lies in the
fact that Z2, Z4, ρ, and Ω are nonlocal functions of ϕ, with
terms like ln ϕ

μ or 1
ϕ3 in them. One cannot derive Feynman

rules for such terms as one does for a local Lagrangian.
To proceed, we note that the effective potential is

computed by expanding around a constant background
field ~ϕ, but with momentum dependence in ϕ. In back-
ground-field calculations, the external lines, with or with-
out momentum, are always ϕ. To find Seff , we simply
compute the same thing. We expand Seff ½ϕþ ~ϕ� for
constant ~ϕ and compute diagrams with external ϕ legs,
with or without momentum in them. The difference
between the calculation using Seff and using L is that with
the effective action, only tree-level graphs are ever
evaluated.
Let us compute with the effective action first. We take

ϕ → ϕþ ~ϕ and series expand each function around ~ϕ ¼ 0.

Let us write Ziðϕþ ~ϕÞ ¼ P∞
i¼0

1
n!Z

ðnÞ
i ð ~ϕÞϕn and so on,

where for each function fðnÞð ~ϕÞ≡ dn

dð ~ϕÞn fð ~ϕÞ. Then,

Seff ½ϕþ ~ϕ� ¼
Z

d4x
X∞
n¼0

1

n!
ϕn

�
−VðnÞ

eff ð ~ϕÞ þ
1

2
ð∂μϕÞ2ZðnÞ

2 ð ~ϕÞ þ 1

2
ð□ϕÞ2ZðnÞ

4 ð ~ϕÞ

þ 1

2
ð∂μϕÞ2□ϕρðnÞð ~ϕÞ þ 1

8
ð∂μϕÞ2ð∂νϕÞ2ΩðnÞð ~ϕÞ þOð∂6Þ

�
: ðD2Þ

The expanded Lagrangian is now local in ϕ, so we can easily compute Feynman diagrams that have external ϕ lines with it.
We get

ðD3Þ
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ðD4Þ

ðD5Þ

This process can be continued to higher derivative terms if desired.
Now we compute the same n-point functions using the classical action, at one-loop level, also with an external ϕ field.

For the example of massless ϕ4 theory, the Lagrangian density is

L ¼ −
1

2
ϕ□ϕ − λϕ4: ðD6Þ

Following the process outlined above, we expand this with ϕ → ϕþ ~ϕ, resulting in

LExpanded ¼ −λ ~ϕ4 − 4λ ~ϕ3ϕ −
1

2
ϕ½□þ 12λ ~ϕ2�ϕ − 4λ ~ϕϕ3 − λϕ4: ðD7Þ

We can safely drop −λ ~ϕ4 − 4λ ~ϕ3ϕ because these terms cannot contribute to the diagrams we are calculating. Thus for our
purposes, we have

LExpanded ¼ −
1

2
ϕ½□þm2�ϕ − 4λ ~ϕϕ3 − λϕ4 ðD8Þ

with m2 ¼ 12λ ~ϕ2. The Feynman rules are

ðD9Þ

The zero-point diagrams give the well-known one-loop effective potential [10]:

Veff ¼ λϕ4 −
i
2
ℏ
Z

d4k
ð2πÞ4 ln

�
1 −

m2

k2

�
þ � � � ¼ λϕ4 þ 9ℏ

4π2
λ2ϕ4

�
ln
12λϕ2

μ2
−
3

2

�
þOðℏ2Þ: ðD10Þ
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There are two one-loop diagrams for the two-point function

ðD11Þ

which, along with the tree-level piece, is given by the amplitude

ðD12Þ

where in the last line, we have evaluated the integral expanded in momenta. We find that the momentum-free piece gives

−i ∂2Veff∂ϕ2 as expected. Using p1 ¼ −p2, we can rewrite this in the form of Eq. (D3),

ðD13Þ

from which we extract

Z2 ¼ 1þ ℏ
16π2

4λ
12λϕ2

m2
¼ 1þ ℏ

4π2
λ; ðD14Þ

Z4 ¼
ℏ
4π2

λ

10

12λϕ2

ðm2Þ2 ¼ ℏ
480π2ϕ2

: ðD15Þ

For the three-point function there are two types of one-loop diagrams,

ðD16Þ

and for the four-point function there are three types of one-loop diagrams,
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ðD17Þ

Following the same procedure as for the two-point function, we find the three- and four-point function amplitudes

ðD18Þ

ðD19Þ

From these results we extract ρ ¼ ℏ
720π2ϕ3 and Ω ¼ ℏ

360π2ϕ4.

To summarize our results, we found that, up to four derivatives, the effective action for ϕ4 theory is given by

Seff ½ϕ� ¼
Z

d4x

�
−
�
λϕ4 þ 9ℏ

4π2
λ2ϕ4

�
ln
12λϕ2

μ2
−
3

2

��
þ 1

2
ð∂μϕÞ2

�
1þ ℏ

4π2
λ

�
þ 1

2
ð□ϕÞ2 ℏ

480π2
1

ϕ2

−
1

2
ð∂μϕÞ2□ϕ

ℏ
720π2

1

ϕ3
þ 1

8
ð∂μϕÞ2ð∂νϕÞ2

ℏ
360π2ϕ4

þOð∂6Þ
�
: ðD20Þ

This is written in Minkowski space. Going to Euclidean space, we send t → −iτ, which changes ð∂μϕÞ2 → −ð∂μϕÞ2 and
□ϕ → −□ϕ. Pulling out an extra minus sign (since iSeff ¼ −SEeff ), we find

SEeff ½ϕ� ¼
Z

d4x
�
λϕ4 þ 9ℏ

4π2
λ2ϕ4

�
ln
12λϕ2

μ2
−
3

2

�
þ 1

2
ð∂μϕÞ2

�
1þ ℏ

4π2
λ

�
−
1

2
ð□ϕÞ2 ℏ

480π2
1

ϕ2

þ 1

2
ð∂μϕÞ2□ϕ

ℏ
720π2

1

ϕ3
−
1

8
ð∂μϕÞ2ð∂νϕÞ2

ℏ
360π2ϕ4

þOð∂6Þ
�

ðD21Þ

where d4x ¼ dτd3~x and μ ¼ 0 corresponds to x0 ¼ τ.
Our final result agrees with [67], where the four-derivative terms were computed using a different method.

APPENDIX E: NLO FUNCTIONAL DETERMINANTS

In quantum field theory, the calculation of decay rates at NLO amounts to evaluating the ratio of functional determinants:

ΓNLO

V
¼ 1

VT
e−SE½ϕ̄�

e−SE½ϕFV�

����Detð−∂2 þ V 00½ϕ̄ðx�ÞÞ
Detð−∂2 þ V 00½ϕFV�Þ

����−1=2: ðE1Þ
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Here, ϕ̄ is the bounce solution to the Euclidean equations of
motion, and ϕFV is the field value at the false vacuumwhich
we can always choose to be zero. Generally, ϕ̄ðxÞ is
spherically symmetric, only depending on the Euclidean
length r. So we define

WðrÞ ¼ V 00½ϕ̄ðrÞ�: ðE2Þ

One can evaluate the functional determinant in terms of
Feynman diagrams

ΔS ¼ 1

2
logDetð−∂2 þWðrÞÞ − 1

2
logDetð−∂2Þ ðE3Þ

¼ 1

2
Tr log ð−∂2 þWðrÞÞ − 1

2
Tr log ð−∂2Þ ðE4Þ

¼ −Tr
X∞
n¼1

ð−1Þn
2n

½ð−∂2Þ−1WðrÞ�n ðE5Þ

ðE6Þ

¼ 1

2
~Wð0Þ

Z
ddp
ð2πÞd

1

p2
−
1

4

Z
ddq
ð2πÞd

ddk
ð2πÞd

~WðqÞ ~Wð−qÞ
k2ðkþ qÞ2 þ � � � ðE7Þ

We see that the first two terms are UV divergent, and these
divergences can easily be removed using MS counterterms.
All the other terms will be UV finite, but they are
unfortunately very complicated to calculate. Note that
we are not expanding in any small parameter, so, in
general, all terms will be equally important. Hence, they
are not only hard to calculate, but we would also have to
calculate infinitely many of them.
There is an alternative way of calculating the functional

determinants using the Gelfand-Yaglom theorem [15,57]
which makes it possible to calculate ΔS to all orders in W.
Since WðrÞ only depends on the Euclidean distance r, we
can decompose ½−∂2 þWðrÞ� into partial waves. We start
by writing ∂2 ¼ d2

dr2 þ 3
r
d
dr −

L2

r2 ≡∇2
l , where L

2 is the four-
dimensional angular momentum operator with eigenvalue
lðlþ 2Þ and degeneracy ðlþ 1Þ2 for l ¼ 0; 1; 2;…. We can
then write

ΔS≡ 1

2
ln
Det½−∂2 þWðrÞ�

Det½−∂2�

¼ 1

2

X
l

ðlþ 1Þ2 lnDet½−∇
2
l þWðrÞ�

Det½−∇2
l �

: ðE8Þ

We can solve for the ratio of determinants for each l by
solving for the two functions ulWðrÞ and ul0ðrÞ, which are

radial eigenfunctions of −∂2 þW and −∂2, respectively,
regular at r ¼ 0, with a given l and zero eigenvalues. Then

ρl ≡ Det½−∇2
l þWðrÞ�

Det½−∇2
l �

¼ lim
r→∞

ρlðrÞ ¼ lim
r→∞

ulWðrÞ
ul0ðrÞ

: ðE9Þ

One can solve for ul0ðrÞ and express the differential
equation for ulWðrÞ in terms of ρlðrÞ,

ρ00l ðrÞ þ
2lþ 3

r
ρ0lðrÞ ¼ WðrÞρlðrÞ: ðE10Þ

In summary, to calculate ΔS we need to find ρlðrÞ from
Eq. (E10) for each l and then sum the asymptotic values

ΔS ¼ 1

2

X∞
l¼0

ðlþ 1Þ2 ln ρl; ðE11Þ

where ρl is related to ρlðrÞ by Eq. (E9).
There are two complications with directly implementing

this approach. First, for most cases of interest, ρl can be
either negative or zero for l ¼ 0, 1, so that ln ρl is infinite or
complex. The negative eigenvalue is of course expected, as
the imaginary part is supposed to give the decay rate. The
zero eigenvalues are also expected, as they correspond to
exact or approximate symmetries such as translation or
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scale invariance. See [15,20,57] for a discussion on how to
evaluate the zero and negative eigenvalues.
Second, the sum over l is divergent, as we already knew

it had to be from Eq. (E7). The UV divergence in Eq. (E7)
came from the OðWÞ and OðW2Þ terms which we can
easily calculate analytically. So let us define ΔS½2� ≡
½ΔS�OðW2Þ, i.e. formally truncated to second order in W.

We then add and subtract ΔS½2�, as well as subtracting off
the infinities using MS counterterms,

ΔS → ½ΔS − ΔS½2�� þ ½ΔS½2� − δSct�: ðE12Þ

The terms in the second set of brackets can be calculated
analytically using Eq. (E7), and the terms in the first set of
brackets will be calculated numerically.
To find ρj truncated to second order in W, we write

ρlðrÞ¼1þρð1Þl ðrÞþρð2Þl ðrÞþ���, where ρð1Þl ðrÞ ¼ OðWÞ,
ρð2Þl ðrÞ ¼ OðW2Þ, etc. Solving Eq. (E10) order by order in
W, we find the set of equations

ρð1Þl
00ðrÞ þ 2lþ 3

r
ρð1Þl

0ðrÞ ¼ WðrÞ; ðE13Þ

ρð2Þl
00ðrÞ þ 2lþ 3

r
ρð2Þl

0ðrÞ ¼ WðrÞρð1Þl ðrÞ: ðE14Þ

When we have obtained these solutions, we can calculate

ΔS½2� ¼ 1

2

X∞
l¼0

ðlþ 1Þ2½ln ρl�OðW2Þ ðE15Þ

¼ 1

2

X∞
l¼0

ðlþ1Þ2½lnð1þρð1Þl þρð2Þl þ���Þ�OðW2Þ ðE16Þ

¼ 1

2

X∞
l¼0

ðlþ 1Þ2
�
ρð1Þl −

1

2
ðρð1Þl Þ2 þ ρð2Þl

�
: ðE17Þ

Hence, we find that the numerical bracket is

½ΔS − ΔS½2��

¼ 1

2

X∞
l¼0

ðlþ 1Þ2
�
ln ρl − ρð1Þl þ 1

2
ðρð1Þl Þ2 − ρð2Þl

�
ðE18Þ

which will be finite as l → ∞. In practice, this sum rapidly
converges, and one only has to sum a finite number of terms.
We can simplify ½ΔS½2� − δSct� by noting that the OðWÞ

term in Eq. (E7) has a scaleless momentum space integral,
which is zero in dimensional regularization using MS. The
OðW2Þ integral can be simplified by first doing an integral
over k,

B0ðq2Þ ¼ μ4−d
Z

ddk
ð2πÞd

1

k2ðkþ qÞ2

¼ 1

ð4πÞ2
�
1

ϵ
þ 2þ ln

μ2

q2

�
: ðE19Þ

Removing the infinity using the counterterm, we find

½ΔS½2� − δSct� ¼ −
1

4

Z
d4q
ð2πÞ4 ½

~WðqÞ�2B0ðq2Þ: ðE20Þ

In the case of V ¼ − jλj
4!
ϕ4,

WðrÞ ¼ −
jλj
2
ϕ̄ðrÞ2

¼ −
24R2

ðr2 þ R2Þ2 ⇒
~WðpÞ

¼ 48π2R2K0ðjpjRÞ ðE21Þ
where K0 is a BesselK function. Using Eq. (E20), we then
find

½ΔS½2� − δSct� ¼ −3L −
5

2
ðE22Þ

where L ¼ ln RμeγE
2
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