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We study the effective action for the massive vector field theory nonminimally coupled to external
gravitational field. Such a theory is an interesting model both from the theoretical side and also due to the
various phenomenological applications to cosmology and astrophysics. The present work pretends to
initiate a systematic study of its properties at the quantum level, by exploring free massive vector coupled to
an external symmetric second-rank tensor. Stueckelberg scalar field is used to restore the gauge invariance.
After that, by using a special gauge fixing and nonlocal in external fields change of variables, we
diagonalize the bilinear form of the action and develop a consistent procedure to study the effective action.
As a result we derive a complete nonlinear structure of divergences of the effective action and discuss its
properties.
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I. INTRODUCTION

The vector field models with soft and/or spontaneous
violation of gauge invariance is one of objects of modern
study in gravity and cosmology (see, e.g., [1,2] and
references therein). These models are closely related to
the classical and quantum vector Galileons [3–8]. The list
of applications of such models includes, in particular, the
generation of the initial seeds of magnetic fields in the early
universe [9] and vector inflation [10] (see also [11,12] for
extensive reviews). Both these subjects attract a great deal
of interest, however the considerations are concentrated
mainly on the classical theory. It seems natural to extend the
study of these theories to the quantum level, especially
because we know that quantum effects play an important
role in the usual scalar inflaton models. Therefore we can
hope that the quantum effects can play some role in the
vector inflation.
In the present work, we consider quantum aspects of

massive Abelian vector field in curved spacetime. The first
observation is that the coupling of such a field to external
gravity includes some interesting nontrivial aspects.
Indeed, let us start from an arbitrary matter field model
in Minkowski space. As we know, a generalization of such

a model to curved spacetime in nonunique (see, e.g., [13]).
The first possibility is to apply the procedure of minimal
covariant generalization, including interaction with gravity.
The last means one should treat the field as a tensor or
spinor in curved spacetime, replace partial derivatives by
the corresponding covariant derivatives, without changing
the canonical dimension of the field and trying to preserve
as much as possible global and gauge symmetries of the
initial flat-space theory. However, after that there is still a
freedom to enrich the Lagrangian by arbitrary local terms
containing the matter field and the powers of the curvature
tensor with some coupling constants. All these terms
describe the nonminimal coupling of matter field to gravity.
If we also demand that the matter sector does not contain
the new scales in comparison with theory in flat space, then
all nonminimal coupling constants must be dimensionless.
Taking into account the above arguments, it is evident

that the only possible nonminimal coupling for scalar field
ϕ is ξRϕ2 where R is a scalar curvature and ξ is a
dimensionless constant of nonminimal coupling. For the
massless vector field, nonminimal interactions with only
dimensionless coupling constants is forbidden by gauge
invariance. Furthermore, for a fermionic spin-1=2 field the
nonminimal interaction to gravity is ruled out by the
canonical dimension of the field. Let us now consider
the massive vector field model. This model is not gauge
invariant in flat space, therefore the arguments based on
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gauge invariance do not work anymore. As a result, the
most general action for massive vector field in curved
spacetime, without dimensionful coupling constants, has
the form

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2
μν−

1

2
m2A2

μ−
1

2
XμνðxÞAμAν

�
; ð1Þ

where

XμνðxÞ ¼ ξ1Rgμν þ ξ2Rμν: ð2Þ

Here ξ1 and ξ2 are two dimensionless nonminimal coupling
constants. All other notations are standard. This is the only
admissible nonminimal extension for the theory of a free
massive vector field in curved spacetime.
The versions of (1) that are mostly used for existing

applications are

Xμν ¼ ξ1Rgμν; m ≠ 0 ð3Þ

for vector inflation [10] and

Xμν ¼ ξ1Rgμν þ ξ2Rμν; m ¼ 0 ð4Þ

in the case of generating magnetic fields [9]. In this
case, the curvature-dependent terms are introduced at the
phenomenological level to break the local conformal
invariance of electromagnetic field. The coefficients ξ1
and ξ2 are chosen in each particular case from the
phenomenological arguments.
In more general theories, there may be other possibilities

for the field Xμν, besides (2). For example, there can be the
an external field Xμν which is not related to the curvature,
but can be useful for phenomenological reasons. Another
possibility originates if we consider a self-interacting
massive vector field model or massive vector field coupled
to other dynamical fields like scalars and/or fermions.
Then, in the one-loop approximation, one can meet the
action (1), where the field Xμν is constructed from the
background vector, scalar, or spinor fields. These circum-
stances motivate us to consider the model with action (1),
where no concrete form for the field Xμν is assumed.
In the present work, we intend to study the model (1)

treating XμνðxÞ as an arbitrary external symmetric tensor
field. Our main purpose is to formulate the quantum
effective action Γ½gμν; Xμν� for this model and to calculate
its divergences. It is important to note that the naive
quantization of the model (1) does not work. Within the
standard scheme, the effective action should be defined as a
functional integral over the fields AμðxÞ of the exponential
of the action (1). Hence, the result would have the form of
the functional determinant of the operator related to the
quadratic part (bilinear form) of the action (1). The reason
why this approach is not appropriate is that the kinetic part

of the action (1) is gauge invariant while the mass and
nonminimal terms are noninvariant. This yields the con-
straints on the dynamics of the theory and, as a result, the
naive functional integral approach becomes incorrect.
The first study of the model (1) has been undertaken by

D. J. Toms [14]. It was shown that the naive approach
treating the term with Xμν as a small perturbation leads to
inconsistencies, because the propagator of the zero-order
theory, that is the Proca model, is a subject of the mentioned
constraint. This observation was confirmed by the canoni-
cal analysis. In particular, this means that the standard
procedure of dealing with a free Proca model in curved
space [15] (see also [16]) leads to an inconsistency.1 The
derivation of the one-loop divergences in [14] was based on
the noncovariant approach related to the Faddeev-Jackiw
quantization [18]. As a result, the divergences were
obtained only for the two special cases with constant
external field Xμν, from which it is difficult to restore
the covariant result.
In what follows, we describe the general procedure of

consistent quantization of the theory (1) which is mani-
festly covariant and can be applied for an unconstrained
and possibly nonconstant external field XμνðxÞ and for an
arbitrary external metric. As a result, we arrive at the
covariant expression for the effective action and calculate
its divergent part. As was already mentioned, the quantiza-
tion is not a trivial task because of the degeneracy of the
kinetic term and the broken gauge symmetry. In the usual
Proca theory, this problem has two standard solutions [19],
but both methods meet serious difficulties in the presence
of the nonminimal term with an arbitrary field Xμν. In the
rest of the paper, we perform calculations by combining a
nonstandard application of the covariant Stueckelberg
procedure and different versions of the Schwinger-
DeWitt technique [15,20]. The work can be seen as a first
step in exploring the quantum properties and loop correc-
tions for a wider class of massive and massless vector
theories with a nonminimal interaction
The paper is organized as follows. In Sec. II, it is shown

how the theory of the massive vector field with nonminimal
coupling to an external tensor field can be reformulated by
introducing a compensating auxiliary scalar and restoring
gauge invariance. After that, the gauge fixing is introduced
and the basis for quantum theory formulated. In Sec. III, we
construct the bilinear form of the action and discuss two
alternative ways to make it diagonal. Section IV is devoted
to the nonpolynomial change of variables in the scalar
sector and to the main quantum calculation. In Sec. V, an
independent calculation the first order in Xμν is performed
to provide an independent verification of the main result.
Finally, in Sec. VI, we draw our conclusions and discuss
possible extensions and generalizations of this work.

1Certain aspects of quantum Proca theory were recently
discussed in [17].
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II. RESTORING AND FIXING
GAUGE SYMMETRY

Our consideration is based on reformulation of the model
(1) in dynamical equivalent but gauge invariant form. For
this aim we use the Stueckelberg procedure [19] and
perform the transformation

Aμ → Aμ −
1

m
∂μφ: ð5Þ

After that the new action, depending now on Aμ and φ,
becomes invariant under the gauge transformation

Aμ → Aμ þ ∂μf; φ → φþmf: ð6Þ
Here f is a gauge parameter. As a result, we arrive at the
action which is dynamically equivalent to (1), but possesses
the symmetry under (6),

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2
μν −

1

2
m2A2

μ −
1

2
XμνAμAν

−
1

2
ð∇φÞ2 − 1

2m2
Xμν∇νφ∇μφþmAμ∇μφ

þ 1

m
XμνAν∇μφ

�
: ð7Þ

In the special gauge φ ¼ 0, the theory comes back to (1).
According to the standard consideration (see e.g. [21]), the
result of the quantum calculation in this and similar cases
does not depend on the gauge fixing condition, and hence
one is free to choose another gauge, making quantum
theory more transparent and calculations more accessible.
A useful gauge fixing (GF) action is given by

Sgf ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
χ2; ð8Þ

where

χ ¼ ∇μAμ −mφ: ð9Þ
The total action with the gauge fixing term has the form

S0 þ Sgf ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
F2
μν −

1

2
ð∇μAμÞ2

−
1

2
m2A2

μ −
1

2
XμνAμAν −

1

2
ð∇φÞ2 − 1

2
m2φ2

−
1

2m2
Xμν∇μφ∇νφþ 1

m
XμνAν∇μφ

�
; ð10Þ

which still looks complicated, especially due to the non-
minimal second-derivative term in the scalar sector. There
is also a linear in derivative term in the mixed Aφ sector.
Due to the unusual scalar operator, one cannot apply a
known technique (see e.g. [13]) of dealing with such a term
and it is necessary to look for some other approach.

III. BILINEAR OPERATOR
IN QUANTUM FIELDS

Using the GF condition (9) and the action (10), one can
find the following operator of the theory:

S0 þ Sgf ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fL0 þ Lgfg

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðAμ φ ÞĤ
�
Aν

φ

�
; ð11Þ

where

Ĥ ¼
�
ĤAA ĤAφ

ĤφA Ĥφφ

�
: ð12Þ

Here and in the following, we use bold notations for the
matrix operators only. The blocks of (12) have the form

ĤAA ¼ gμνð□ −m2Þ − Rμν − Xμν; ð13Þ

ĤAφ ¼ 1

m
Xμν∇μ; ð14Þ

ĤφA ¼ −
1

m
ð∇μXμνÞ − 1

m
Xμν∇μ; ð15Þ

Ĥφφ ¼ □ −m2 þ 1

m2
ð∇μXμνÞ∇ν þ

1

m2
Xμν∇μ∇ν: ð16Þ

We emphasize here that no one term in the action (11) is
degenerated. It means that the quantization is realized by
standard procedure, the corresponding effective action is
given by standard functional integral for gauge theory and
the effective action will be given by

i
2
lnDetĤ; ð17Þ

plus the corresponding ghost contribution. However, the
bilinear form (12) has nonstandard structure for study the
effective action. For instance, the operator Ĥ is nonminimal
and nondiagonal at the same time. Our next purpose will be
to derive the divergent part of the expression (17) for this
complicated case. The most standard approach would be to
perform this calculation by constructing perturbation
theory in Xμν, similar to what was done by two of us in
the theory with brokenCPT or Lorentz symmetry [22]. The
main disadvantage of this method is that it works only for a
small Xμν. This is a reasonable assumption in the case of
CPT or Lorentz symmetry violation, but not in the case of
vector inflation. Therefore, we shall try to make a non-
perturbative in Xμν calculation. Later on, the perturbative
approach will be used for an independent verification of the
result in the linear approximation.

MASSIVE VECTOR FIELD ON CURVED BACKGROUND: … PHYSICAL REVIEW D 95, 085009 (2017)

085009-3



In the following, we consider two different ways to
eliminate the mixed Aμφ term in the action.

A. Diagonalization by rotational type
of transformation

In order to diagonalize the operator (12) let us make the
following transformation of the fields:

Aμ ¼ Bμ þ
1

m
∇μχ; ð18Þ

φ ¼ χ þ 1

m
∇νBν: ð19Þ

In the new variables the action (10) becomes

L0 þ Lgf ¼
1

2
BμĤAABν þ

1

2m2
∇μBμĤφφ∇νBν þ 1

m2
BμXμν∇ν∇αBα þ 1

2
χĤφφχ

þ 1

2m2
∇μχĤAA∇νχ þ

1

m2
∇μχXμν∇νχ þ

1

m
Bμ½gμνð□ −m2Þ − Rμν − Xμν�∇νχ

þ 1

m
χ

�
ð□ −m2Þ þ 1

m2
ð∇μXμνÞ∇ν þ

1

m2
Xμν∇μ∇ν

�
∇αBα þ 1

m
BμXμν∇νχ

þ 1

m3
Xμν∇μχ∇ν∇αBα: ð20Þ

After some integration by parts one can show that all mixed
terms in Eq. (20) cancel and the Lagrangian boils down to

L0 þ Lgf ¼
1

2
BμĤAABν þ

1

2m2
∇μBμĤφφ∇νBν

þ 1

m2
BμXμν∇ν∇αBα þ 1

2
χĤφφχ

þ 1

2m2
∇μχĤAA∇νχ þ

1

m2
∇μχXμν∇νχ: ð21Þ

The last expression provides a diagonal bilinear operator Ĥ.
However, there is a major problem with the theory (21),
because of the nonminimal Xαβ∇α∇β term in the vector
field sector and because of the similar nonminimal fourth
derivative terms in both scalar and vector sectors. The
operator has too complicated form, such that no way to deal
with its functional determinant is known. For example, the
generalized Schwinger-DeWitt technique of [15] does not
look applicable because Xαβ is a field and hence the
nonminimal structure here cannot be parametrized by
numerical parameters.

B. Diagonalization by the shiftlike transformation

Consider another transformation, which involves only
vector part,

Aμ ¼ Bμ þ αμρ∂ρφ; ð22Þ

where Bμ is the new quantum variable and αμρ is an
unknown function of background fields. All indices are
lowered and raised with the metric gαβ and its inverse gαβ.
Using the transformation (22) in the action (10), we
arrive at

L0 þ Lgf ¼ 1

2
BμĤAABν þ

1

2
φĤφφφ

þ 1

2
αμρ∇ρφĤAAανω∇ωφþ 1

m
ανρ∇ρφXμν∇μφ

þ BμðHAAÞμνανω∇ωφþ 1

m
BμXμν∇μφ: ð23Þ

The condition of diagonalization is

Bμ

�
ðHAAÞμνανω þ 1

m
Xμ
ω

�
∇ωφ ¼ 0; ð24Þ

which has the nonlocal solution

αμν ¼ −
1

m
ðHAAÞ−1μρXρ

ν

¼ −
1

m
ðgαβ□ −m2gαβ − Rαβ − XαβÞ−1μρXρ

ν: ð25Þ

Let us stress that the Green function in (25) acts only on the
field Xρ

ν and not on the quantum and background fields on
the right of this expression. Replacing the solution (25) in
the Lagrangian (23) we arrive at the expression

L0 þ Lgf ¼
1

2
BμĤAABν þ

1

2
φĤφφφ

þ 1

2m
αμρXμν∇ρφ∇νφ; ð26Þ

where ĤAA and Ĥφφ were defined in Eqs. (13) and (17),
correspondingly.
The new Lagrangian, Eq. (26), is diagonal, but it is still

nonminimal and contains a new nonlocal term in the scalar
field sector, with tensor Xμν being contracted with covariant
derivatives. Once again we arrive at the situation when the
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standard way of dealing with nonminimal operators [15] is
not applicable, because the nonminimality cannot be para-
metrized by a single real parameter, or even by a finite set of
such parameters.
Anyway, the result of the second approach to diagonal-

ization has a serious advantage compared to our first
attempt. In the present case the problem corresponds only
to the scalar sector, while the form of the vector operator is
pretty standard. For instance, the expression (26) is a useful
starting point for making calculations perturbatively in Xμν.
At the same time one can do much more than this. In the
next section, we describe a new efficient method of dealing
with the nonminimal scalar operator.

IV. DERIVATION OF ONE-LOOP
DIVERGENCES

After applying the procedure described in the
subsection III B, the total action of the model consists
from the pretty standard minimal vector sector and the
complicated nonminimal scalar action. The whole expres-
sion can be presented as follows:

S0 þ Sgf ¼ S1 −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ðgμν þ YμνÞ∂μφ∂νφ

þ 1

2
m2φ2

�
; ð27Þ

where

S1 ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Bμðδμν□ − Rμ

ν − Xμ
ν − δμνm2ÞBν ð28Þ

and

Yμν ¼ 1

m2
Xμν −

1

m
αμρXν

ρ: ð29Þ

In order to work out the scalar operator, let us define a
new metric,

Gμν ¼ gμν þ Yμν: ð30Þ

After that the action (27) becomes

S0 þ Sgf ¼ S1 −
1

2

Z
d4x

ffiffiffiffiffiffiffi
−G

p
fðGμνDμφDνφþm2φ2Þ;

ð31Þ
where

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGμν

det gμν

s
ð32Þ

is the new background scalar field and Dμφ ¼ ∂μφ is the
covariant derivative constructed with the new metric Gμν,

defined as an inverse to Gμν in Eq. (30). In the second term
in (31) and related calculations, the indices are lowered and
raised with the new metric and with its inverse. It proves
useful to introduce the corresponding affine connection,

ϒτ
αβ ¼

1

2
Gτλð∂αGλβ þ ∂βGαλ − ∂λGαβÞ; ð33Þ

covariant derivative Dμ, the curvature tensor

½Dμ; Dν�Aα ¼ Kα
:βμνA

β ð34Þ

and its contractions Kαβ ¼ GμνKμανβ and K ¼ GαβKαβ.
These new curvatures differ from the usual Riemann,
Ricci tensors and scalar curvature R by the terms of first
and higher orders in the field Xμν and in the nonlocal Xμν-
dependent expression αμν, defined in Eq. (25). Some useful
formulas for the first order expansions can be found in the
Appendix.
Starting from this point the derivation of one-loop

divergences becomes pretty much standard. The divergen-
ces of the one-loop effective action are given by the
expression

Γð1Þ
div ¼

i
2
Tr ln Ĥjdiv − iTr ln Ĥghjdiv

¼ i
2
Tr ln ðδμν□ − Rμ

ν − Xμ
ν − δμνm2Þjdiv

− iTr lnð□ −m2Þjdiv
þ i
2
Tr ln ðD2 þ 2ĥμDμ −m2Þjdiv; ð35Þ

where

ĥμ ¼
1

2
DμðlnfÞ ¼

1

2
∂μðlnfÞ and D2 ¼GμνDμDν: ð36Þ

Each of the terms in Eq. (35) can be calculated separately
by means of the standard Schwinger-DeWitt technique
[20]. For the first term, one can obtain, in dimensional
regularization,

i
2
Tr lnðδμν□ − Rμ

ν − Xμ
ν − δμνm2Þjdiv

¼ −
μn−4

ε

Z
dnx

ffiffiffiffiffiffi
−g

p
tr

�
1̂

180
ðR2

μναβ − R2
αβ þ□RÞ

þ 1

2
P̂2
1 þ

1

6
□P̂1 þ

1

12
R̂2

αβ

�
; ð37Þ

where ε ¼ ð4πÞ2ðn − 4Þ is the dimensional regularization
parameter, μ is the dimensional parameter of renormaliza-
tion, and
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1̂ ¼ δμν ; P̂1 ¼ ðP1Þμν ¼ −Rμ
ν þ 1

6
δμνR −m2δμν − Xμ

ν ;

R̂αβ ¼ ðRαβÞμν ¼ Rμ
:ναβ: ð38Þ

Taking into account the Faddeev-Popov ghost term, after a
small algebra we find

i
2
Tr lnðδμν□ − Rμ

ν − Xμ
ν − δμνm2Þjdiv − iTr lnð□ −m2Þjdiv

¼ −
μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
−

13

180
R2
αβμν þ

22

45
R2
αβ

−
5

36
R2 −

1

10
□Rþ 2

3
m2Rþm4 þm2X

−
1

6
XRþ XαβRαβ þ 1

2
X2
αβ −

1

6
□X

�
; ð39Þ

where X ¼ gαβXαβ. It is important to remember that the
indices here are lowered and raised by the normal space-
time metric gμν and its inverse.
In the scalar sector, we obtain

i
2
Tr lnðD2 þ 2ĥμDμ −m2Þjdiv

¼ −
μn−4

ε

Z
d4x

ffiffiffiffiffiffiffi
−G

p �
1

180
ðK2

μναβ − K2
αβ þD2KÞ

þ 1

2
P̂2
0 þ

1

6
D2P̂0

�
; ð40Þ

where

P̂0 ¼ −m2 þ 1

6
K −Dμĥ

μ − ĥμĥ
μ ð41Þ

and

1

2
P̂2
0¼

1

2
m4−

1

6
m2Kþ 1

72
K2−m2Fþ1

6
KFþ1

2
F2: ð42Þ

In the last expression were introduced the useful notation

F ¼ 1

4f2
ðDfÞ2 − 1

2f
D2f ¼ −

1ffiffiffi
f

p ðD2
ffiffiffi
f

p
Þ; ð43Þ

where

ðDfÞ2 ¼ GμνDμfDνf; D2f ¼ GμνDμDνf:

Thus, the unconventional scalar sector contribution can be
written in the form

i
2
Tr lnðD2 þ 2ĥμDμ −m2Þjdiv

¼ −
μn−4

ε

Z
d4x

ffiffiffiffiffiffiffi
−G

p �
1

180
K2

αβμν −
1

180
K2

αβ

þ 1

30
D2K þ 1

72
K2 −

1

6
m2K þ 1

2
m4

þ 1

6
KF −m2F þ 1

2
F2 þ 1

6
D2F

�
: ð44Þ

Finally, using the intermediate results (35), (39), and
(44), we arrive at the final result for the one-loop diver-
gences in the theory (1),

Γð1Þ
div ¼ −

μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
−

13

180
R2
αβμν þ

22

45
R2
αβ

−
5

36
R2 −

1

10
□Rþ 2

3
m2Rþm4 þm2X

−
1

6
XRþ XαβRαβ þ 1

2
X2
αβ −

1

6
□X

�

−
μn−4

ε

Z
d4x

ffiffiffiffiffiffiffi
−G

p �
1

180
K2

αβμν −
1

180
K2

αβ

þ 1

72
K2 þ 1

30
D2K −

1

6
m2K þ 1

2
m4 þ 1

6
KF

−m2F þ 1

2
F2 þ 1

6
D2F

�
: ð45Þ

The expression (45) is the result of a nonstandard
calculational procedure, which involves the change of
quantum variables (22) with the nonlocal coefficient
defined in (25). It is important to remember that the
quantum field theory calculation (Schwinger-DeWitt tech-
nique, in our case) is applied, in the scalar sector, to the
theory with the background metricGμν. In terms of this new
metric, the second part of the expression (45) has a rather
standard local form. At the same the divergences are given
by a nonlocal expression in terms of the original fields gμν
and Xμν.
Equation (45) enables one to obtain the one-loop

divergences in terms of the original metric gμν and in each
desired order in Xμν. It proves useful to obtain an explicit
expression in the first order in Xμν. To this end, we write
down the following first-order expansions:

Gμν ¼ gμν − Yμν þ � � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detGμν

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

p �
1þ 1

2
Y þ � � �

�
; ð46Þ

where Y ¼ gμνYμν. Then, for the determinant of the inverse
matrix G ¼ detðGμνÞ,
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ffiffiffiffiffiffiffi
−G

p
¼ ffiffiffiffiffiffi

−g
p �

1 −
1

2
Y þ � � �

�

f ¼ 1þ 1

2
Y þ � � � ; F ¼ −

1

4
□Y þ � � � ð47Þ

Kαβμν ¼ Rαβμν þ
1

2
ð∇μ∇αYβν −∇ν∇αYβμ

þ∇ν∇βYαμ −∇μ∇βYαν þ Rρ
:αμνYρβ

− Rρ
:βμνYραÞ þ � � � ð48Þ

Kαβ ¼ Rαβ þ
1

2
ð□Yαβ þ∇α∇βY

−∇ρ∇αY
ρ
β −∇ρ∇βY

ρ
αÞ þ � � � ð49Þ

K ¼ Rþ RαβYαβ þ□Y −∇α∇βYαβ þ � � � ð50Þ

D2 ¼ □þ Yαβ∇α∇β þ ð∇αYαβÞ∇β

−
1

2
ð∇αYÞ∇α þ � � � ; ð51Þ

where D2 acts on a scalar field, and

Yαβ ¼
1

m2
Xαβ þ � � � : ð52Þ

Using these expansions, we find the one-loop divergen-
ces in the first order in Xμν, written in terms of the original
metric gμν,

Γð1Þ
div ¼ Γð1Þ

vac½gμν� −
μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
3

4
m2X

þ 5

6
XμνRμν −

1

12
XRþ Xμν

180m2
ð5RRμν

þ 2RαβRαμβν þ 2RαβρμR
αβρ
…ν − 4RμαRα

ν

þ 3□Rμν − 6∇μ∇νRÞ −
X

720m2
ð2R2

μναβ

− 2R2
αβ þ 5R2 þ 12□RÞ

�
; ð53Þ

where

Γð1Þ
vac½gμν� ¼ −

μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
29

60
R2
αβ ð54Þ

−
1

15
R2
αβμν −

1

8
R2 þm2

2
Rþ 3m4

2

�
ð55Þ

is the contribution of Proca field, which depends only on
external metric and not on Xμν. In the case of Xμν ¼ 0, we
come back to the well-known result derived in [15,16,21]
by means of different methods. In the formula (53), we
omitted the total derivative terms for the sake of brevity. As

one should expect, the linear result is local in terms of the
original fields gμν and Xμν.

V. CALCULATION USING UNIVERSAL TRACES

As we have already mentioned above, the main expres-
sion (45) is the result of a nonstandard calculational
procedure, hence it would be useful to have its verification.
The first order in Xμν divergences can be obtained inde-
pendently by means of the universal functional traces
method (generalized Schwinger-DeWitt technique) of
Barvinsky and Vilkovisky [15]. In this section, we shall
perform such a calculation in order to compare the result
with Eq. (53), and thus partially verify the main result (45).
The calculation described below is analogous to the one
developed in Ref. [22] for the complicated gauge model
with broken Lorentz and CPT background. For this reason,
we can skip some technical explanations, which can be
found in this reference.
Before the diagonalization procedure, the bilinear form

(12) can be written as

Ĥ ¼ Ĥm þ Ĥnm; ð56Þ

where

Ĥm ¼ 1̂□þ 2L̂μ∇μ þ ðΠ̂0 þ M̂Þ ð57Þ

is the minimal part of bilinear operator in quantum fields
and

Ĥnm ¼ K̂μν∇μ∇ν ð58Þ

is the nonminimal part. The relevant matrices are defined as
follows:

1̂ ¼
�
δμν 0

0 1

�
;

L̂μ ¼
�

0 1
2mX

μν

− 1
2mX

μν 1
2m2 ∇νXμν

�
;

Π̂0 ¼
�
−δμνm2 − Rμ

ν 0

0 −m2

�
;

M̂ ¼
� −Xμ

ν 0

− 1
m∇νXμν 0

�
;

K̂μν ¼
�
0 0

0 1
m2 Xμν

�
: ð59Þ

The one-loop effective action is given by the known
formula

Γð1Þ ¼ i
2
Tr lnðĤm þ ĤnmÞ − iTr ln Ĥgh: ð60Þ
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Let us make the following transformation:

Tr ln Ĥ ¼ Tr lnðĤm þ ĤnmÞ
¼ Tr ln Ĥm þ Tr lnð1̂þ Ĥ−1

m :ĤnmÞ
¼ Tr ln Ĥm þ TrĤnm:Ĥ

−1
0 þ � � � ; ð61Þ

where dots stand for the terms of higher orders in Xμν,
Ĥ0 ¼ □ −m2 and

Ĥnm ¼ 1

m2
Xμν∇μ∇ν: ð62Þ

In the last line of Eq. (61) we perform the expansion of the
logarithm and take into account only terms of the first order
in Xμν. The first term in the last line of Eq. (61) can be
directly calculated by the standard Schwinger-DeWitt
method [20], while the second term can be calculated by
means of the universal functional traces method [15].
For the minimal part it is possible to obtain the one-loop

divergences by using the known formula of the Schwinger-
DeWitt technique,

i
2
Tr ln Ĥmjdiv ¼ −

μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p
tr

�
1̂
180

ðR2
μναβ − R2

αβÞ

þ 1

2
P̂2 þ 1

12
Ŝ2
αβ

�
; ð63Þ

where

P̂ ¼ P̂0 þ M̂ −∇μL̂
μ þ � � � ; ð64Þ

Ŝαβ ¼ R̂αβ −∇αL̂β þ∇βL̂α þ � � � ; ð65Þ

with

P̂0 ¼ Π̂0 þ
1

6
1̂R and R̂αβ ¼ 1̂½∇α;∇β�: ð66Þ

Up to the first order in the new parameters, we obtain

1

2
trP̂2 ¼ 1

2
trP̂2

0 þ trP̂0M̂ − trP̂0∇μL̂μ þ � � � ;
trŜ2

αβ ¼ trðR̂2
αβ þ 4R̂αβ∇βL̂αÞ þ � � � ; ð67Þ

while Eq. (63) with the Faddeev-Popov ghost term
reduces to

i
2
Tr ln Ĥmjdiv − iTr ln Ĥghjdiv

¼ Γð1Þ
vac½gμν� −

μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p
tr

�
P̂0M̂ − P̂0∇μL̂

μ

þ 1

3
R̂αβ∇βL̂α

�
þ � � � ; ð68Þ

where Γð1Þ
vac½gμν� was defined in Eq. (55). After performing

some algebra, one can find

trP̂0M̂ ¼ m2X þ XαβRαβ −
1

6
XRþ � � � ;

trP̂0∇μL̂
μ ¼ 1

12m2
Xαβ∇α∇βRþ � � � ;

trR̂αβ∇βL̂α ¼ 0þ � � � : ð69Þ

So, finally

i
2
Tr ln Ĥmjdiv − iTr ln Ĥghjdiv

¼ −
μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
m2X þ XαβRαβ

−
1

12m2
Xαβ∇α∇βR −

1

6
XR

�
þ Γð1Þ

vac½gμν� þ � � � : ð70Þ

For calculating the divergent part of the nonminimal
piece of Eq. (61), we need the inverse of the operator Ĥ0,
which can be expressed as

Ĥ−1
0 ¼ 1

□
þm2

1

□
2
þm4

1

□
3
þOðl−5Þ: ð71Þ

In the last formula, 1=□ is the inverse of the
d’Alembert operator and the last term Oðl−5Þ indicates
omitted irrelevant terms of a higher background
dimension [15].
Using equation (62), one can obtain the relation

TrĤnm:Ĥ
−1
0 ¼Xμν

�
1

m2
∇μ∇ν

1

□
þ∇μ∇ν

1

□
2
þm2∇μ∇ν

1

□
3

�
þOðl−5Þ: ð72Þ

Equation (72) is already in the form that allows us to apply
the tables of universal functional traces of [15]. The
calculation is straightforward (albeit not really easy), and
the results have the form (note that we use Minkowski
signature)
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1

m2
Xμν∇μ∇ν

1

□

				
div

¼ iμn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

m2
Xμν

�
1

45
RαβρμR

αβρ
…ν þ 1

45
RαβRαμβν −

2

45
RμαRα

ν þ
1

18
RRμν

þ 1

30
□Rμν þ

1

10
∇μ∇νR

�
−

1

m2
X

�
1

180
R2
μναβ −

1

180
R2
αβ þ

1

72
R2 þ 1

30
□R

��
;

Xμν∇μ∇ν
1

□
2

				
div

¼ iμn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

6
XR −

1

3
XαβRαβ

�
;

m2Xμν∇μ∇ν
1

□
2

				
div

¼ −
iμn−4

2ε

Z
d4x

ffiffiffiffiffiffi
−g

p
m2X: ð73Þ

By using relations (72) and (74), one can obtain

i
2
TrĤnm:Ĥ

−1
0

			
div

¼ −
μn−4

ε

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

12
XR −

1

6
XμνRμν −

1

4
m2X

þ 1

m2
Xμν

�
1

90
RαβρμR

αβρ
…ν þ 1

90
RαβRαμβν −

1

45
RμαRα

ν þ
1

36
RRμν þ

1

60
□Rμν þ

1

20
∇μ∇νR

�

−
1

2m2
X

�
1

180
R2
μναβ −

1

180
R2
αβ þ

1

72
R2 þ 1

30
□R

��
: ð74Þ

Now, from equations (60), (61), (70), and (74), it is not
difficult to verify that we arrive exactly at the result
for the one-loop divergences derived by the new method,
Eq. (53).

VI. CONCLUSIONS AND DISCUSSIONS

Let us summarize the results. We have developed the
generic procedure for consistent formulation of the effec-
tive action for the free massive Abelian vector in curved
spacetime with nonminimal coupling to an arbitrary sym-
metric background tensor Xμν. The result of the calculation
for the divergent part of the effective action has the form
(45). The remarkable feature of this expression is that it has
a standard appearance of a local expression when written in
terms of the quantities K,D, and F, and at the same time, it
looks like a rather unusual nonlocal functional when
expressed in terms of the original external field gμν and
Xμν. The reason for this is the nonlocal change of variable
which has been performed in the course of diagonalization
of the bilinear form of the action. Nevertheless, this
effective action can be expanded in the functional power
series in Xμν. Then we will obtain an infinite number of
local terms containing any powers of Xμν with any number
of covariant derivatives action on Xμν. The number of
derivatives will increase with the power of expansion.
It would be quite interesting to explore some extensions

and modifications of this result. First of all, it would
be interesting to formulate a similar scheme for construct-
ing the effective action and calculation of one-loop diver-
gences for the massless version of the theory, which has
an important application to astrophysics [9]. The develop-
ment of this model would open the way for exploring the

self-interacting massless vector field, with the possibility
to analyze the dynamical symmetry breaking in the
vector model.
An obvious possible extension of our model is related

to introducing the interaction to fermions and other
components of the standard model of particle physics.
Such an extension would be especially useful for the
applications to inflation, because this would opens the
gate to explore particle creation on the vector inflation.
On the other hand, it would be certainly interesting to

add a self-interaction term, but this is not a simple task.
For instance, the most natural form ðAμAμÞ2 may be quite
complicated to deal with, as it was discussed in [13] in
relation to the model of conformal invariant axial vector
(antisymmetric torsion) field. The theory with such a
term, without Xμν and mass, possesses local conformal
invariance, has soft breaking of gauge invariance, and
was never explored at both the classical and quantum
levels. The massive version looks more accessible and
will hopefully be explored in the next publications. We
leave this problem for the future, expecting that the
technical progress achieved in the present work will be
useful then.
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APPENDIX: FIRST-ORDER RELATIONS FOR CURVATURES

Here we present the useful expansion formulas for the terms in Eq. (53), which are of the fourth order in the extended
covariant derivative Dμ,

K2
αβμν ¼ R2

αβμν þ 2RαβρμR
αβρ
…νYμν þ 4Rαβμν∇μ∇αYβν þ � � �

¼ R2
αβμν þ 4Yαβ

□Rαβ − 2Yαβ∇α∇βRþ 2RαβρμR
αβρ
…νYμν þ 4RαβRαμβνYμν

− 4RαβR
β
μYμα þ total derivatives; ðA1Þ

K2
αβ ¼ R2

αβ þ Rαβð2Rβ
μYμα þ□Yαβ þ∇α∇βY − 2∇ρ∇αYρβÞ þ � � �

¼ R2
αβ þ Yαβ□Rαβ þ

1

2
Y□R − Yαβ∇α∇βRþ 2RαβRαμβνYμν þ total derivatives; ðA2Þ

K2 ¼ R2 þ 2RRαβYαβ þ 2Y□R − 2Yαβ∇α∇βRþ total derivatives; ðA3Þ

D2K ¼ Yαβ∇α∇βRþ ð∇αYαβÞ∇βR −
1

2
ð∇αYÞ∇αRþ total derivatives

¼ 1

2
Y□Rþ total derivatives: ðA4Þ

[1] E. Allys, J. P. B. Almeida, P. Peter, and Y. Rodríguez,
J. Cosmol. Astropart. Phys. 09 (2016) 026.

[2] K. Dimopoulos and M. Karciauskas, J. High Energy Phys.
07 (2008) 119; K. Dimopoulos, Int. J. Mod. Phys. D 21,
1250023 (2012); 21, 1292003(E) (2012).

[3] G. Tasinato, J. High Energy Phys. 04 (2014) 067.
[4] L. Heisenberg, J. Cosmol. Astropart. Phys. 05 (2014) 015.
[5] C. de Rham, L. Keltner, and A. J. Tolley, Phys. Rev. D 90,

024050 (2014).
[6] L. Heisenberg, R. Kimura, and K. Yamamoto, Phys. Rev. D

89, 103008 (2014).
[7] F. Charmchi, Z. Haghani, S. Shahidi, and L. Shahkarami,

Phys. Rev. D 93, 124044 (2016); A. Amado, Z. Haghani,
A. Mohammadi, and Sh. Shahidi, Quantum corrections
to the generalized Proca theory via a matter field,
arXiv:1612.06938.

[8] J. B. Jimenez andL.Heisenberg, Phys. Lett. B757, 405 (2016);
A. De Felice, L. Heisenberg, R. Kase, Sh. Mukohyama, Sh.
Tsujikawa, and Y. Zhang, J. Cosmol. Astropart. Phys. 06
(2016) 048; Phys.Rev.D 94, 044024 (2016); L.Heisenberg,R.
Kase, and Sh. Tsujikawa, Phys. Lett. B 760, 617 (2016); J. B.
Jimenez and L. Heisenberg, arXiv:1610.08960.

[9] M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743
(1988).

[10] A. Golovnev, V. Mukhanov, and V. Vanchurin, J. Cosmol.
Astropart. Phys. 06 (2008) 009.

[11] A. Maleknejad, M. M. Sheikh-Jabbari, and J. Soda, Phys.
Rep. 528, 161 (2013).

[12] G. Esposito-Farese, C. Pitrou, and J.-Ph. Uzan, Phys. Rev. D
81, 063519 (2010).

[13] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective
Action in Quantum Gravity (IOP Publishing, Bristol, 1992).

[14] D. J. Toms, arXiv:1509.05989.
[15] A. O. Barvinsky and G. A. Vilkovisky, Phys. Rep. 119, 1

(1985).
[16] E. V. Gorbar and I. L. Shapiro, J. High Energy Phys. 06

(2003) 004.
[17] A. Belokogne and A. Folacci, Phys. Rev. D 93, 044063

(2016).
[18] L. Faddeev and R. Jackiw, Phys. Rev. Lett. 60 (1988) 1692.
[19] H. Ruegg and M. Ruiz-Altaba, Int. J. Mod. Phys. A 19,

3265 (2004).
[20] B. S. DeWitt, Dynamical theory of groups and fields

(Gordon and Breach, New York, 1965).
[21] I. L. Buchbinder, G. de Berredo-Peixoto, and I. L. Shapiro,

Phys. Lett. B 649, 454 (2007).
[22] T. de P. Netto and I. L. Shapiro, Phys. Rev. D 89, 104037

(2014).

BUCHBINDER, NETTO, and SHAPIRO PHYSICAL REVIEW D 95, 085009 (2017)

085009-10

https://doi.org/10.1088/1475-7516/2016/09/026
https://doi.org/10.1088/1126-6708/2008/07/119
https://doi.org/10.1088/1126-6708/2008/07/119
https://doi.org/10.1142/S021827181250023X
https://doi.org/10.1142/S021827181250023X
https://doi.org/10.1142/S0218271812920034
https://doi.org/10.1007/JHEP04(2014)067
https://doi.org/10.1088/1475-7516/2014/05/015
https://doi.org/10.1103/PhysRevD.90.024050
https://doi.org/10.1103/PhysRevD.90.024050
https://doi.org/10.1103/PhysRevD.89.103008
https://doi.org/10.1103/PhysRevD.89.103008
https://doi.org/10.1103/PhysRevD.93.124044
http://arXiv.org/abs/1612.06938
https://doi.org/10.1016/j.physletb.2016.04.017
https://doi.org/10.1088/1475-7516/2016/06/048
https://doi.org/10.1088/1475-7516/2016/06/048
https://doi.org/10.1103/PhysRevD.94.044024
https://doi.org/10.1016/j.physletb.2016.07.052
http://arXiv.org/abs/1610.08960
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1103/PhysRevD.37.2743
https://doi.org/10.1088/1475-7516/2008/06/009
https://doi.org/10.1088/1475-7516/2008/06/009
https://doi.org/10.1016/j.physrep.2013.03.003
https://doi.org/10.1016/j.physrep.2013.03.003
https://doi.org/10.1103/PhysRevD.81.063519
https://doi.org/10.1103/PhysRevD.81.063519
http://arXiv.org/abs/1509.05989
https://doi.org/10.1016/0370-1573(85)90148-6
https://doi.org/10.1016/0370-1573(85)90148-6
https://doi.org/10.1088/1126-6708/2003/06/004
https://doi.org/10.1088/1126-6708/2003/06/004
https://doi.org/10.1103/PhysRevD.93.044063
https://doi.org/10.1103/PhysRevD.93.044063
https://doi.org/10.1103/PhysRevLett.60.1692
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1142/S0217751X04019755
https://doi.org/10.1016/j.physletb.2007.04.039
https://doi.org/10.1103/PhysRevD.89.104037
https://doi.org/10.1103/PhysRevD.89.104037

