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In this work, we address the reconstruction problem, investigating the construction of field theories from
supersymmetric quantum mechanics. The procedure is reviewed, starting from reflectionless potentials
that admit one and two bound states. We show that, although the field theory reconstructed from the
potential that supports a single bound state is unique, it may break unicity in the case of two bound states.
We illustrate this with an example, which leads us to two distinct field theories.

DOI: 10.1103/PhysRevD.95.085008

I. INTRODUCTION

Reconstruction of field theories from reflectionless
symmetric quantum mechanical potentials is an old issue
[1–10]. An interesting fact involving reflectionless poten-
tials is that it can be constructed univocally once the bound
state spectrum is known, in a procedure that is sometimes
called the spectral method [6,7].
In the case of field theories that support defect structures,

the study of stability is directly connected to supersym-
metric quantum mechanics [1]. The interesting question
that arises in such a situation is whether there is a field
theory model associated with each supersymmetric quan-
tum mechanical potential. Moreover, such a question can
be enriched by asking if, given the spectrum of a quantum
mechanical potential, a field theory model is reconstructed.
The answer is not new and has been given in Refs. [9,10]
for a couple of reflectionless quantum mechanical exam-
ples. See also Refs. [2–5] for other details. An open
questions that remains to be studied is whether this
reconstruction is unique. The answer to this question is
considered in this work.
Throughout the current investigation, we shall be dealing

with a real scalar field ϕ ¼ ϕðx; tÞ in the (1,1)-dimensional
spacetime, described by the action

S½ϕ� ¼
Z

dtdx

�
1

2
∂μϕ∂μϕ − VðϕÞ

�
: ð1Þ

Here, μ ¼ 0, 1 stand for time and space coordinates,
respectively, with x0 ¼ t and x1 ¼ x, while V is some
function of the field ϕ. In many cases, it can be constructed
via another function W ¼ WðϕÞ, in the form

VðϕÞ ¼ 1

2
W2

ϕ; ð2Þ

whereWϕ ≡ dW=dϕ. The field ϕ, the space x, and the time
t are redefined here in such a way that they are all
dimensionless, so the work is written using dimensionless
quantities. The equation of motion that appears from the
action (1) is

ϕ̈ − ϕ00 þ Vϕ ¼ 0; ð3Þ

where the dot is a time derivative while the prime means x
derivative. Static solutions of (3) obey

ϕ00 ¼ Vϕ: ð4Þ

When the potential is written in terms of W, as in Eq. (2),
we are interested in the solutions of the first-order differ-
ential equations

ϕ0 ¼ �Wϕ; ð5Þ

known as Bogomol’nyi, Prasad, and Somerfield (BPS)
equations [11,12]. The signs in the above equations are
used to distinguish between kinks and antikinks.
Since supersymmetric quantum mechanical models arise

when one addresses the stability of the static solution, we
then consider small fluctuation of the time-dependent
solution ϕðx; tÞ around the static solution ϕðxÞ; namely,
we take ηðx; tÞ ≈ ϕðx; tÞ − ϕðxÞ. In this case, ηðx; tÞ obeys
the partial differential equation

η̈ − η00 þ UðxÞη ¼ 0; ð6Þ

where

UðxÞ ¼ Vϕϕ ¼ W2
ϕϕ þWϕϕϕWϕ ð7Þ

is the stability potential. Since UðxÞ only depends on x,
because we are considering fluctuation around a static
solution, we can separate variables and perform the mode
expansion
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ηðx; tÞ ¼
X∞
n¼0

ηnðxÞ cosðωntÞ: ð8Þ

In this case, the resulting quantum mechanical problem can
be cast into the form

�
−

d2

dx2
þUðxÞ

�
ηnðxÞ ¼ ω2

nηnðxÞ: ð9Þ

Now, stability demands ω2
n ≥ 0, which is guaranteed since

the Hamiltonian

H ¼ −
d2

dx2
þ UðxÞ ¼

�
−

d
dx

þ f

��
d
dx

þ f

�
¼ S†S

ð10Þ

is factorized through the operator

S ¼ d
dx

þ f; ð11Þ

with UðxÞ ¼ f2 − f0. One may recognize from (7) that
f ¼∓ Wϕϕ. The sign∓ for f depends on the sign assigned
to the first-order Eq. (5) and to W itself. For completeness,
the supersymmetric partner of H is

Hss ¼ SS† ¼ −
d2

dx2
þ UssðxÞ; ð12Þ

with UssðxÞ ¼ f2 þ f0.
The field theory in (1) is translationally invariant, and

this ensures the existence of the translation or zero mode
ηtðxÞ in the spectrum of H, with corresponding energy
eigenvalue ω2

t ¼ 0. One uses Eqs. (9) and (10) to get
SηtðxÞ ¼ 0, which gives

ηtðxÞ ¼ N exp

�
−
Z

fdx

�
¼ N

wðxÞ ; ð13Þ

where N is a normalization constant for ηtðxÞ. For future
purposes, we have introduced the function wðxÞ, which
must be nonlimited as x → �∞; it is related to f by the
definition

fðxÞ ¼ w0

w
: ð14Þ

A condition on f for the existence of a zero mode demands
that f− ¼ fðx → −∞Þ < 0 [7].
This paper is organized as follows. In Sec. II, we review

and summarize the reconstruction of a field theory with
topological structures emerging from a quantum mechani-
cal problem as well as the process of obtaining a quantum
mechanical potential from a discrete energy spectrum. We
move on to investigate in Sec. III the problem of uniqueness

of the reconstruction procedure, addressing the two known
problems that consider reflectionless potentials with one
and two bound states. Nonuniqueness of the reconstruction
procedure is shown in the case with two bound states.
Finally, in Sec. IV, we add some comments and
conclusions.

II. RECONSTRUCTION SCHEME

We follow the procedure of potential reconstruction
given in Ref. [8]. Once the quantum mechanical potential
is obtained, the steps suggested in Refs. [9,10] are used in
order to reconstruct the field theory model. To begin with,
let us sketch the reconstruction of the field potential VðϕÞ
once one knows UðxÞ. If the x derivative of (4) is
performed, one may recognize that ϕ0 ∝ ηtðxÞ. Then, given
UðxÞ, Eq. (9) for ω2

t ¼ 0 together with (13) enable us to
write

ϕ0 ¼ � ηtðxÞ
N

¼ � 1

wðxÞ ; ð15Þ

which lead us to

ϕ ¼ �
Z

dx
wðxÞ − c: ð16Þ

The � sign in the above equation is to take into account
the two possible BPS solutions (5), while c is just an
integration constant. Now, if xðϕÞ, the inverse of the
function ϕðxÞ in (16), can be obtained analytically, it is
straightforward to arrive at the potential

VðϕÞ ¼ ηtðxÞ2
2N2

����
x¼xðϕÞ

¼ 1

2wðxÞ2
����
x¼xðϕÞ

: ð17Þ

Here, a digression is needed. Although it seems that the
constant of integration in (16) can be absorbed by a simple
redefinition of the field ϕ, corresponding to an equivalent
field theory model, one should take into account that, when
the model being reconstructed has more than one topo-
logical sector, the constant cmay take more than one value,
leading to other possible static solutions. This is an
important point, and it was raised after our previous work
on the subject [13]. It precludes the elimination of c from
the problem by performing a unique redefinition of ϕ,
which, depending on each case, may give inequivalent
actions (1), that is, different scalar field theories. Now, extra
information is needed for the univocal reconstruction of
the field theory, namely, the existence of other topological
sectors. We note that one possible value of c is c ¼ 0;
however, since the solutions in (16) must identify its own
sector, one may also take, for instance,
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c ¼ � lim
x→∞

Z
dx
wðxÞ ð18Þ

and check if it brings new possibilities. Below, we illustrate
this point with two distinct investigations.
Let us now summarize the reconstruction of UðxÞ

from its scattering data for the case of a positive energy
spectrum [8]. We first recall that this is always the case
because we are reconstructing field theory models based
on the existence of non-negative potentials of the
form (2), and this implies that all the kinklike solutions
are BPS states that solve first-order equations [14]. Now,
suppose we know the N bound states of UðxÞ to be
ω1 > ω2 > � � � > ωN ¼ 0, the last one being the smallest
one and corresponding to the zero mode, since the
reconstructed field theory must be translationally invariant.
Also, let UnðxÞ be a potential that contains the bound states
ω1 > ω2 � � � > ωn for n ¼ 1;…; N. If n ≠ N, then ωn ≠ 0.
However, Un − ω2

n corresponds to a potential which con-
tains a zero mode. From supersymmetric quantum mechan-
ics [7], the potential Un − ω2

n can be obtained from fn such
that Un − ω2

n ¼ f2n − f0, while its superpartner potential
Un−1ðxÞ − ω2

n ¼ f2n þ f0n will have the same spectrum
except for the zero mode. In other words, Un−1ðxÞ will
have the bound state energies ω1 > ω2 > � � � > ωn−1. This
enables one to get the recurrence equations

Un−1 ¼ f2n þ f0n þ ω2
n; ð19aÞ

Un ¼ f2n − f0n þ ω2
n; ð19bÞ

where ωN ¼ ωt ¼ 0 and UNðxÞ ¼ UðxÞ. Once one knows
Un−1ðxÞ, the definition

fnðxÞ ¼
w0
nðxÞ

wnðxÞ
ð20Þ

can be used together with Eq. (19) to obtain the second-
order differential equation

−
d2wn

dx2
þ ½Un−1ðxÞ − ω2

n�wnðxÞ ¼ 0: ð21Þ

The solutions wnðxÞ must be always unbounded in the
limit x → �∞. This is because (21) is a Schödinger-like
equation for the zero energy state, which must be absent in
the spectrum of Un−1 − ω2

n.
At this point, one notes that there is another freedom

of choice that resides beyond the knowledge of the
complete discrete spectrum: the choice of the potential
U0ðxÞ, which is arbitrary. The only condition over U0 is to
have a positive nonzero continuum spectrum. This arbi-
trariness is eliminated if one wants reflectionless symmetric
potentials UðxÞ. In such a case, U0 must be a positive
constant [9,10].

III. RECONSTRUCTION FROM
REFLECTIONLESS POTENTIALS

The reconstruction of field theory from symmetric
reflectionless potentials has already been studied for the
case of potentials that support one bound state and two
bound states [9,10]. In this section, we shall revisit such a
problem without fixing, at first, the constant c in (16) and
verify what happens in both cases.

A. One bound state

The situation with one bound state has only the eigen-
value ω2

1 ¼ 0. Reflectionless symmetric potentials demand
U0 to be a positive constant potential. So, we may write
U0 ¼ α2 > 0, for α real. One of the solutions of the
differential equation (21) is

w1ðxÞ ¼ coshðαxÞ: ð22Þ

The other solution is sinhðαxÞ, but it is antisymmetric and
will not be considered here. A suitable integration constant
is not necessary, since it would not appear in (20) nor in the
potential UðxÞ. Applying (22) to both (20) and (19b) gives

f1ðxÞ ¼ α tanhðαxÞ; ð23Þ

and

UðxÞ ¼ α2½1 − 2sech2ðαxÞ�: ð24Þ

By taking the change of variable αx → x in the associated
Schrödinger equation (9), the potential can be rewritten as

UðxÞ ¼ 1 − 2sech2ðxÞ: ð25Þ

The field ϕ is obtained from (16) and reads

ϕðxÞ ¼ �2 arctan

�
tanh

�
x
2

��
− c: ð26Þ

Then, by inverting (26) to obtain xðϕÞ in (17), one obtains

VðϕÞ ¼ 1

2
cos2ðϕþ cÞ: ð27Þ

Note that VðϕÞ has minima when ϕþ c ¼ ð2nþ 1Þπ=2 for
integer n. The complete set of solutions then reads

ϕnðxÞ ¼ �2 arctan

�
arctanh

�
x
2

��
þ nπ: ð28Þ

Here, we have chosen c ¼ nπ. Any other choice of c
in (27) will reproduce equivalent field theory, with the
same number of topological sectors. With the choice (28),
one has
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VðϕÞ ¼ 1

2
cos2ðϕÞ; ð29Þ

which is the Sine-Gordon model. So far, no novelty arises
due to the constant c except that its different values describe
solutions in different topological sectors of the same theory.

B. Two bound states

As was claimed in the abstract, we shall see new
information arising from the choice of c for the situation
with two bound states. Here, the two energy eigenvalues
obey ω2

1 > ω2
2 ¼ 0. If one uses (21) and defines

U0 − ω2
1 ¼ α2 > 0, it is possible to write

w1ðxÞ ¼ coshðαxÞ; ð30Þ

which gives

f1ðxÞ ¼ α tanhðαxÞ: ð31Þ

As before, we set U0 as a positive constant and dropped the
linearly independent solution sinhðαxÞ to obtain symmetric
reflectionless potentials. The resulting potential U1ðxÞ is

U1ðxÞ ¼ α2½1 − 2sech2ðαxÞ� þ ω2
1: ð32Þ

ForU2ðxÞ, one uses (21) once again and solves the equation

−
d2w2

dx2
þ ½α2 þ ω2

1 − 2α2sech2ðαxÞ�w2 ¼ 0: ð33Þ

By performing the change of variable y ¼ tanhðαxÞ, one
arrives at the associated Legendre differential equation for
l ¼ 1 [15], that is to say,

d
dy

�
ð1 − y2Þ d

dy
w2

�
þ
�
2 −

m2

1 − y2

�
w2 ¼ 0; ð34Þ

where

m2 ≡ 1þ ω2
1

α2
: ð35Þ

Since one needs w2ðxÞ to be a nonlimited symmetric
function, the suitable solutions of (34) are the Legendre
polynomials of the second kind,Qm

1 ðyÞ, form ¼ 2; 4; 6;….
Here, we need some extra information about the system in
order to be able to reconstruct UðxÞ univocally. In other
words, one has to know the difference between U0 and ω2

1,
and for the purpose of the current work, we choose m ¼ 2.
In this case, one gets ω2

1 ¼ 3α2,

w2ðxÞ ¼ cosh2ðαxÞ; ð36Þ

f2ðxÞ ¼ 2α tanhðαxÞ; ð37Þ

and

UðxÞ ¼ α2½4 − 6sech2ðαxÞ�; ð38Þ
since here U2ðxÞ must be identified with UðxÞ. One can
redefine αx → x such that the Schrödinger equation (9)
associated with (38) will have the potential

UðxÞ ¼ 4 − 6sech2ðxÞ; ð39Þ
eliminating α in Eqs. (36) and (37). As expected, the
translational mode will be a square integrable function,

ηtðxÞ ¼ Nsech2ðxÞ; ð40Þ
while

ϕðxÞ ¼ � tanhðxÞ − c: ð41Þ
By inverting ϕðxÞ in (41) and applying xðϕÞ to (17),
one gets

VðϕÞ ¼ 1

2
sech4ðxÞ ¼ 1

2
½1 − ϕ2 − 2cϕ − c2�2: ð42Þ

This result requires a closer investigation, to study the
different field theories that may emerge due to distinct
choices of c. If one recalls the discussion leading to
Eq. (18), here we should probe the cases c ¼ 0 and also
c ¼ �1, as we consider below.

1. c = 0

The choice c ¼ 0 reproduces the result of Refs. [9,10]
and is the well-known ϕ4 theory characterized by the
potential

VðϕÞ ¼ 1

2
ð1 − ϕ2Þ2: ð43Þ

This choice for c reduces the problem to a problem
with one topological section since the potential VðϕÞ has
only two minima (ϕ̄� ¼ �1) and one topological sector
described by the kink and antikink solutions,

ϕðxÞ ¼ � tanhðxÞ: ð44Þ
This construction is univocal, in the sense that a simple

redefinition of the field ϕ in Eq. (43) will not bring another
model, because it has no power to modify the number
of minima nor the topological structure of the model. As
argued before, this is also valid for the Sine-Gordon model.

2. c = � 1

The choice c ¼ �1 is different. It describes two distinct
topological sectors of the same field theory. Consider the
solutions
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ϕðxÞ ¼ � tanhðxÞ ∓ 1; ð45Þ
where the � sign distinguishes between the two different
BPS solutions, while the∓ 1 comes from the choice of c as
�1 in Eq. (41). In this case, since ϕ ¼ −jϕj when c ¼ 1
and ϕ ¼ jϕj when c ¼ −1, one can easily verify that the
resulting potential is the same for both choices of c, namely,

VðϕÞ ¼ 1

2
ϕ2ð2cþ ϕÞ2 ¼ 1

2
ϕ2ð2 − jϕjÞ2: ð46Þ

We can redefine ϕ → 2ϕ and xμ → xμ=2 in the action (1) to
get the model with potential

VðϕÞ ¼ 1

2
ϕ2ð1 − jϕjÞ2: ð47Þ

It has three minima (ϕ̄0 ¼ 0 and ϕ̄� ¼ �1) and two
topological sectors, one connecting the minima ϕ̄− ↔ ϕ̄0

and the other ϕ̄0 ↔ ϕ̄þ. This model was studied before in
Ref. [16]. It seems to mimic the ϕ6 theory studied in
Ref. [17], but here the potential inside each one of its two
topological sectors is symmetric around each one of its
local maxima. See Fig. 1, where the potential is displayed.
This fact is important since it results in a symmetric
reflectionless quantum mechanical potential. Another fact
of interest is that, although this potential is of the fourth-
order power in the field, its symmetric (ϕ̄0 ¼ 0) and
asymmetric (ϕ̄� ¼ �1) minima suggest the possibility of
describing a first-order phase transition, and this cannot be
described by the ϕ4 model of Eq. (43).
In the ϕ6 case [17], the potential is different and loses

the symmetry behavior of the model (47), leading to

asymmetric potentials that are not reflectionless anymore.
As a consequence, the ϕ6 model cannot be obtained from
the above reconstruction.
It is worth mentioning that a simple redefinition of the

field ϕ will not bring (47) to the ϕ4 model. This happens
because a shift in the field has no power to modify the
number of minima nor the topological structure of the
potential. This proves our claim that the reconstruction
procedure is not always univocal.

IV. COMMENTS AND CONCLUSIONS

In this work, we studied the reconstruction of field
theory models from supersymmetric quantum mechan-
ics. We addressed the case of potentials that support
one and two bound states that are symmetric and
reflectionless, as studied before in Refs. [9,10]. We
demonstrated that, although the problem with one
bound state recovers univocally the sine-Gordon theory,
the potential with two bound states does not result in a
unique field theory. In this last case, we recovered two
inequivalent field theories, the ϕ4 model that contains
two minima and a single topological sector and a
modified ϕ4 model containing three minima and two
topological sectors.
This work was motivated by the recent investigation

[13], in which the authors studied the other route, the
passage from field theory to supersymmetric quantum
mechanics. There, it was shown that such a route is not
unique, so we asked if this is true or not in the
reconstruction process, in the passage from quantum
mechanics to field theory. We explored this possibility in
the current work, bringing an interesting new result which
we think will motivate new investigations in the subject. We
are now examining other systems, dealing with other
potentials and possible generalizations. In particular, we
are studying the deformation procedure developed in
Ref. [18] to see how it can contribute to the reconstruction
procedure. These and other related issues are currently
under consideration, and we hope to report on them in the
near future.
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FIG. 1. The potential (47), displayed to show how it behaves
around its two local maxima, one in each one of the two
topological sectors.
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