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We studied the leading area term of the entanglement entropy of the N ¼ 1 supersymmetric OðNÞ
vector model in 2þ 1 dimensions close to the line of the second order phase transition in the large N limit.
We found that the area term is independent of the varying interaction coupling along the critical line, unlike
what is expected in a perturbative theory. Along the way, we studied noncommuting limits n − 1 → 0 vs
UV cutoff r → 0 when evaluating the gap equation and found a match only when the appropriate
counterterm is introduced and the coupling of which is chosen to take its fixed point value. As a bonus, we
also studied fermionic Green functions in the conical background. We made the observation of a map
between the problem and the relativistic hydrogen atom.
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I. INTRODUCTION

Entanglement entropy has emerged as a very powerful
tool in characterizing important properties of many body
systems. It has led to new insights for example in the
discovery and classification of new phases of matter, such
as, to name a few, these exotic symmetry protected
topological phases and topological orders [1–3]. Since
the beginning, it has been observed that the entanglement
entropy of ground states of local field theories [4,5], ormore
generally ground states of local Hamiltonians even in
discrete systems, satisfy a so-called area law. The area
law is the observation that for some choice of region A in
configuration space, of which the entanglement entropy
with its complement one calculates, the leading term in the
large region size limit is proportional to the area of the
codimension-1 surface bounding region A. Apart from one-
dimensional systems where there is an exact proof [6], the
area law remains a conjecture in other dimensions—
although new insights that edge toward a complete proof
of the statement are emerging more recently [7,8]. The
emergence of area laws is believed to be profoundly
connected to quantum gravity theories, given the similar-
ities between entanglement entropies and the Bekenstein-
Hawking black hole entropy.
There is a series of works that explores how the

entanglement entropy and, in particular, the area law
change in the presence of perturbations to some given
theories, such as free theories or conformal theories. (It is
impossible to exhaust the literature on these topics. See for
example Refs. [9–12], which are some of the early papers
on the subject). It is known that the area law term is not

universal in the sense that it can have dependence on the
precise regularization scheme, and there are some recent
efforts that extract universal contributions to the area term
from relevant perturbations [13,14].
On the other hand, precisely for reasons of generic

dependence of regularization schemes in field theories,
attention has often been focused on subleading terms in the
entanglement entropy, such as the logarithmic terms in even
dimensions and the constant terms in odd dimensions,
which are known to be scheme independent and are
connected to important characteristics of the underlying
theory, such as central charges, or the “F charge” in odd
dimensions, at conformal fixed points. (See for example the
seminal papers [15–18] that elaborated these connections.)
These works are generally independent of the details of
individual theories and are based on very general sym-
metries, such as Lorentz symmetries and conformal
invariance.
It is a curiosity therefore to ask how the entanglement

entropy depends on the strength of interaction coupling.
For strongly coupled theories, there are very restricted tools
at our disposal. We have a plethora of holographic results
(for a very recent comprehensive review, see for example
Ref. [19]). In some supersymmetric theories, a deformed
supersymmetry preserving “entanglement entropy” can be
computed exactly even in strongly interacting theories, first
considered in Ref. [20], although attention is not usually
paid to the coupling dependence of the area term, if there is
a continuous coupling to be tuned in these calculations
at all.
On the other hand, we have large N theories, where

entanglement entropies can be computed in the large N
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saddle point limit for generic interacting couplings. This
has been considered near the fixed point in Ref. [21], and
more recently the flow of the entanglement under
Renormalization (RG) flow of the renormalized mass
was obtained, making use of the entanglement first
law [22].
In this paper, we would like to consider another example

in which large N techniques would be useful. We study the
N ¼ 1 supersymmetric OðNÞ vector model in 2þ 1

dimensions. The theory has a critical line that controls
phase transitions between the OðNÞ symmetry preserving
phase and the OðNÞ spontaneously broken phase [23]. The
virtue of this is that there is a one parameter family of
theories sitting on the critical line such that we can study
the dependence of the entanglement entropy on this
coupling. For simplicity, we will work in the leading large
N limit and compute the entanglement entropy of half-
space i.e. y > 0. We will, in particular, focus on the area
term. As we will see, one issue of interest is that there are
various new counterterms that are required as soon as we
employ the replica trick and obtain the gap equation there.
Not all values of the counterterms can be easily fixed based
on physical requirements. The minimal choice would
suggest that the bosonic renormalized mass has no depend-
ence on the coupling and takes exactly the same value as in
the bosonic OðNÞ vector model [21]. The fermionic
renormalized mass depends on the inverse of the coupling
for any nonzero coupling and thus does not admit a smooth
limit back to the free theory. Surprisingly, however, the
final form of the area term has no dependence on the
coupling. That the area term is rigid in the leading large N
limit comes as a surprise and is possibly an artifact of the
large N expansion.
Before we end the Introduction, let us reiterate here why

the study of the area term is a well-defined question in the
current context, even though it is considered in many
circumstances as being nonuniversal, with cutoff depend-
ence. As discussed in Ref. [24], the entanglement entropy is
an expansion in L=ϵ, Lμ, etc., where L is the region size, ϵ
is the UV cutoff, and μ is any other mass scales in the
theory. The change of the UV cutoff would for example
have an interplay with the RG flow. Here, we focus on the
entanglement of half-space near the critical line, such that
L → ∞. Since we stay on the critical line as g is tuned,
there is no further complication of changing the cutoff
scheme once it is fixed once at a given g. This should
render the physics question we are posing sufficiently well
defined.
We will begin with a brief review of the supersymmetric

OðNÞ vector model in Sec. II. Then, we will present the
details of the computation of the entanglement entropy in
Sec. III.
We will conclude in Sec. IVand relegate some excessive

details to the Appendix.

II. SUPERSYMMETRIC O(N) VECTOR MODEL

The action is given by

Sðϕ;ψÞ ¼ 1=2
Z

d3x

�
∂μϕ∂μϕ − μ2ϕϕ

2

þ ψ̄ðiγμ∂μ − μψÞψ − 2
gμ
N

ðϕ2Þ2 − g2

N2
ðϕ2Þ3

−
g
N
ϕ2ðψ̄ :ψÞ − 2

g
N
ðϕ:ψ̄Þðϕ:ψÞ

�
; ð1Þ

where the bosons ϕi and fermions ψ i are in the fundamental
representation of OðNÞ and the Lorentz signature is chosen
as (1, −1, −1, −1) here.
After doing the Wick rotation, introducing the auxiliary

fields, and integrating out the fermions and bosons fields,
the effective action can be written as [23,25]

Seff ¼
Z

d3x

�
−
λρ

2
þ g2ρ3

2
þ gμρ2

�

þ 1

2
Tr lnð−□þ μ2ϕ þ λÞ − 1

2
Tr lnð∂ þ μψ þ g0ρÞ:

ð2Þ

Note that in the above action, μϕ, μψ , and μ are bare
parameters of the theory. When they are equal, the theory
preserves supersymmetry, which is the case we will focus
on i.e.

μϕ ¼ μψ ¼ μ ¼ μ0: ð3Þ

In the leading large N limit, the gap equation is given by

mψ ¼ μ0 þ gρ; m2
ϕ ¼ μ20 þ 4gμρþ 3g2ρ2 − gχ; ð4Þ

where

ρ ¼ Gϕðx; xÞ; χ ¼ trGψðx; xÞ; ð5Þ

and the trace above refers to the trace with respect to spinor
indices. In flat space, these means

Gϕðx; xÞ ¼
Z

d3p
ð2πÞ3

1

p2 þm2
ϕ

;

trGψðx; xÞ ¼ tr
Z

d3p
ð2πÞ3

pþmψ

p2 þm2
ψ
: ð6Þ

We note that mψ and mϕ are physical masses and therefore
take finite values. However, at d ¼ 3, both propagators are
linearly divergent in the UV. In fact, the linear divergence is
given by
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divergenceðGϕÞ ¼
Λ

ð2πÞ2 ¼
1

2mψ
divergenceðGψÞ; ð7Þ

where Λ is a UV cutoff. Therefore, this means that the bare
couplings μ0 must in fact be divergent so as to cancel the
divergence of G to recover a finite physical mass.
The detailed phase structure in the leading large N limit

can be found in Ref. [23].
At criticality, we arrange that

mψ ¼ 0; μ0 ¼ −gρ: ð8Þ

Recall that the other gap equation is automatically satisfied
after picking the above value for μ0 for any value of g. This
means that no extra divergent parameters are needed to
remove any further singularities. In fact, it is convenient to
compute

m2
ϕ −m2

ψ ¼ 2gmψρ − gχ; ð9Þ

which clearly shows that the divergences of ρ and χ cancels
each other, leading to a finite value of mϕ as soon as mψ is
made finite. Supersymmetry ensures that this in fact
vanishes along the supersymmetric preserving saddle
points at all masses all the way to mψ ¼ mϕ ¼ 0.

III. AREA TERM IN THE ENTANGLEMENT
ENTROPY OF HALF-SPACE

Having briefly reviewed the theory, we would like to
explore its entanglement entropy in this section. For
simplicity, we will consider entanglement of half-space
i.e. y ≥ 0. We will employ the replica trick to extract the
entanglement entropy. At replica index n, it is equivalent to
putting the Euclidean path integral in a conical space, in
which an angle deficit located in the y − t plane is given by
2πðn − 1Þ. Translation invariance remains intact in the
orthogonal direction that we call x. The boundary of
half-space is thus the real line x, which has infinite length.
We will regulate it only at the end when we extract the
area term.

A. Green function in conical space

We will collect all the ingredients necessary to recover
the entanglement entropy. First, we need to recover the
Green function of both the bosons and fermions in the
n-replicated space.
As it was observed already in the scalarOðNÞmodel, it is

expected that the masses mψ and mϕ would generically
acquire r dependence. If we were working with a critical
theory at n ¼ 1, it would then be expected purely from
dimensional grounds that

m2
ϕ ¼ an

r2
; mψ ¼ bn

r
; ð10Þ

where an bn → 0 as n → 1. Currently, we adopt the
strategy of computing the gap equation by obtaining ρn,
χn perturbatively in n − 1.

1. Bosonic Green function

In three dimensions, the bosonic Green function of
which the mass is dependent on the conical place
satisfies

� ∂2

∂r2 þ
1

r
∂
∂rþ

1

r2
∂2

∂θ2 þ
an
r2

þ ∂2

∂x2
�
GB

�
m ¼ an

r2
; r; r1

�
¼ −δðr − r1Þ: ð11Þ

The Green function could be solved by mode expansion,
which gives

GBðr; r1Þ ¼
X∞
l¼−∞

eiνðθ−θ1Þ

2πn

Z
∞

−∞

dk⊥
2π

eik⊥ðx−x1Þ

×
Z

∞

0

kdk
JνlðkrÞJνlðkr1Þ

k2 þ k2⊥
ð12Þ

in which νl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

n2 þ an
q

for jlj > 0 and νl ¼ αn for l ¼ 0.
We define an ≡ αn

2 with αn taking either positive or
negative values. For l ≠ 0, we take the positive branch
of the solution, whereas at precisely l ¼ 0, the gap equation
appears to force upon us the negative branch of the
solution. This issue has been discussed in Ref. [21], which
is related to the threshold of bound state formation.
Now, we would like to calculate the leading n − 1

correction to the Green function in the conical space.
There are two contributions. First, because of the altered
periodicity in the presence of the cone, the Green function
at vanishing mass carries n − 1 dependence. To linear order
in n − 1, we have

Gnðr; rÞ −G1ðr; rÞ ¼ −
ðn − 1Þ
32r

ð13Þ

which is a special case of D ¼ 3 of Eq. (4.65) in Ref. [21].
Now, however, there is an extra mass term depending on

an that carries n − 1 dependence. To compute the leading
correction coming from an, we can treat an as a perturba-
tion of the conical space Laplacian. The correction to the
Green function as a power series expansion in an is then
obtained using

�
□n þ

an
r2

�
ðGn þ δGnÞðr; r0Þ ¼ −δ3ðr − r0Þ: ð14Þ
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Naively, therefore, we have

δGnðr; rÞ ¼ lim
r00→r

− an

Z
d3x0

1

r02
Gnðr00; r0ÞGnðr0; r0Þ

¼ lim
x00→x

− an

Z
dr0

r0
X
l

1

2πn

Z
dk⊥
2π

eik⊥ðx−x00Þ

ðk2 þ k2⊥Þðk02 þ k2⊥Þ
Z

∞

0

kdkJνlðkrÞJνlðkr0Þ
Z

∞

0

k0dk0Jνlðk0r0ÞJνlðk0rÞ

¼ lim
x00→x

− an
X
l

1

2πn

Z
dk⊥
2π

eik⊥ðx−x00Þ

ðk2 þ k2⊥Þðk02 þ k2⊥Þ
Z

∞

0

kdkJνlðkrÞ
Z

k

0

k0dk0Jνlðk0rÞ
�
k0

k

�
ν 1

νl

¼ lim
x00→x

− an
X
l

1

4πn

Z
∞

0

dk
Z

k

0

k0e−kðx−x00Þ − ke−k
0ðx−x00Þ

k02 − k2
dk0JνlðkrÞJνlðk0rÞ

�
k0

k

�
ν 1

νl

¼ −an
1

4π3=2nr

X
l

1

νl

Z
1

0

dt
t2νl

1þ t 2
F1

�
1

2
;
1

2
þ ν; 1þ ν; t2

�
Γð1

2
þ νÞ

Γð1þ νÞ ; ð15Þ

where we take x ¼ x00 and perform the integral over k0 only
in the last step and made a change of variables, defin-
ing k0 ¼ kt.
In the above calculation, strictly speaking, we should

have taken Gn to be evaluated at an ¼ 0. However,
supposedly, if the expression is regular in an, then to
leading order in an it would not have made a difference had
we set an → 0 in Gn only in the last step. We now
investigate this limit αn → 0. The important surprise is
that the l ¼ 0 term contains a pole in 1=αn inherited from
1=νl, and therefore that term alone is ofOðαnÞ. The leading
an contribution to the Green function is therefore not linear
in an, but depending on

ffiffiffiffiffi
an

p
. Focusing on the l ¼ 0 term,

we finally get

− an
1

4π3=2nr

1

αn

Γð1
2
Þ

Γð1Þ
Z

1

0

dt
1

1þ t 2
F1

�
1

2
;
1

2
; 1; t2

�

¼ −an
1

4π3=2nr

1

αn

Γð1
2
Þ

Γð1Þ
2

π

Z
1

0

dt
EllipticKðt2Þ

1þ t

¼ −
αn

16nr
: ð16Þ

We note immediately that this result is half of that
obtained in Ref. [21]. The reason is that our expansion
assumed that this is a power series expansion in an which,
however, is in fact a function of

ffiffiffiffiffi
an

p
. When we computed

the linear order term in an, it was effectively a first
derivative of the function subsequently evaluated near
an ¼ 0. Now, noting that for z ¼ x2,

d
dz

fðxÞ ¼ d
dx

fðxÞ × 1

2x
; ð17Þ

we reckon the factor of 2 we obtained can be attributed to
treating the expansion as a function of an when it is in fact a
function of αn. Correcting this subtlety, we arrive at

δGnðr; rÞ ¼ −
αn
8nr

; ð18Þ

recovering correctly the result in Ref. [21].
The jlj > 0 terms can in fact be summed, and they are

evaluated to −an=ð16πnrÞ.
There is an alternative way to think about the pole in α

obtained above. If we focus on the r0 → 0 limit of the
integral and compute the k⊥ integral first, one can see that
the ν0 term would contribute to a logarithmic divergence in
the r0 integral precisely if we first take the limit an → 0.
Therefore, the α pole observed above can also be alter-
natively taken as a logarithmic divergence localized at the
conical singularity, r → 0. To confirm such an expectation,
let us extract the logarithmic divergence explicitly. One
very convenient way is to recall that Eq. (13) implies that if
we use the Euclidian Green function G0 to calculate the
correction above, the difference would be of order
Oðn − 1Þ3, assuming that αn ∼Oðn − 1Þ. Let us note that
this assumption is supported by evidence in the solution of
the gap equation of the OðNÞ scalar model in Ref. [21] and
also the expectation that the free energy should remain
analytic in n − 1 in the limit n → 1. As we will see, this
assumption is confirmed when we solve the gap equation in
our case. So, up to Oðn − 1Þ2, the result would be the same
if we replace Gn by G1. The massless bosonic Green
function in 3D Euclidean space is

G1ðr0; r1Þ ¼
1

4πrð3Þ
ð19Þ

in which rð3Þ is the three-dimensional distance which is
given by

rð3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ r21 − 2r0r1 cosðθ0 − θ1Þ þ ðx0 − x1Þ2

q
: ð20Þ
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Therefore, to extract the leading divergent terms propor-
tional to an, we can return to (15) and replace Gn → G1,
which gives

α2n
16π2

Z
∞

0

dr1
r1

Z
2πn

0

dθ1

Z
∞

−∞
dx1ðr20þr21−2r0r1cosðθ0−θ1Þ

þðx0−x1Þ2Þ−1

¼ α2n
16π

Z
r0

0

dr1
r0r1

Z
2πn

0

dθ1ð1þa2−2acosðθ0−θ1ÞÞ−1=2

þ α2n
16π

Z
∞

r0

dr1
r21

Z
2πn

0

dθ1ð1þa2−2acosðθ0−θ1ÞÞ−1=2

≈
α2n
4πr0

�Z
1

ϵ
r0

da
a
EllipticKða2Þþ

Z
1

0

daEllipticKða2Þ
�

¼ α2n
4r0

�
log2−

1

2
log

ϵ

r0

�
; ð21Þ

where we have defined a≡ r1=r0 < 1.
The first term in the second-to-last line is divergent as

a → 0. Thus, we introduce a short range cutoff ϵ
r0
, which

shows a logarithmic divergence located at the conical
singularity. The coefficient of the logarithmic divergence
is given by −1=ð8rÞ, precisely that anticipated in (18) in the
n → 1 limit. We note the similarity of this divergence to
that observed in Ref. [21] that requires the counterterm of
the form

R
d3xδ2ðrÞϕ2 localized at the conical singularity.

2. Localized counterterms and conformal fixed points

Now let us introduce the counterterm c
2

R
d3xδ2ðrÞϕ2, so

that the Green function would be modified and take the
form

Gc
Bðr; r0Þ ¼

1

−□n þ α2

r2 þ c δðrÞ
r

: ð22Þ

The calculation of the correction induced by the counter-
term is straightforward, and it turns out that to the second
order in c, the correction is (a detailed calculation is
displayed in Appendix A)

δcGc
Bðr; rÞ ¼ −

c
16nr0

þ c2

32r0
ð− log kϵþ log 2 − γÞ: ð23Þ

We find that one proper form of c that could subtract the
divergence can be chosen as

c ¼ cr þ
c2r
2
ð− log kϵþ log 2 − γÞ

− 4α2n

�
log 2 −

1

2
log ϵ=r0

�
þOðn − 1Þ3 ð24Þ

in which cr is the coefficient c after renormalization.

So, we can immediately see that the beta function for cr
now takes the form

βðcrÞ ¼
c2r
2
− 2α2n: ð25Þ

The fixed points for the theory are

cr� ¼ �2αn: ð26Þ
We note that only crþ is a stable fixed point.
There are now two different expressions describing the

same corrections to the Green’s function in the replicated
space. They are given by

Gc
Bðr; rÞ −G1ðr; rÞ ¼

(
− αn

8nr0
− n−1

32r0
þOðn − 1Þ2;

− crþ
16nr0

− n−1
32r0

þOðn − 1Þ2; ð27Þ

where the first expression is obtained by keeping finite an,
obtaining a finite expression that carries a pole in α,
whereas the second expression requires regulating the
log-divergence when the an → 0 limit is first taken, and
then counterterms, the coupling of which is taken to be 1 at
the stable fixed point, are introduced. Reassuringly, these
two answers match.
The importance of the introduction of the counterterm

was already noticed in Ref. [21] and revisited in Ref. [22],
where it is shown that the boundary term can be understood
as following from the conformal coupling of the scalar to
the Ricci scalar. Here, it is of note to see that the effect of
this term can in fact be replaced by taking the n → 1
limit last.

3. Fermionic Green function

Like bosons, the fermionic Green function could acquire
a mass term in the conical space as well, such that

SF ¼
�
∂ þ bn

r

�
−1

¼

0
B@ ∂x þ bn

r −e−iθ̂=n
�
n
r ∂ θ̂ þ i∂r

�
−eiθ̂=n

�
n
r ∂ θ̂ − i∂r

�
−∂x þ bn

r

1
CA

−1

:

ð28Þ

And we define GF as

□GFðr; r1Þ ¼ ∂2GFðr; r1Þ ¼ −δðr − r1Þ ð29Þ

which is related to the free fermionic Green function by

∂−1 ¼ ∂GF: ð30Þ

Let us clarify here that the coordinates we are using is such
that the metric is given by
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ds2 ¼ dr2 þ r2dθ2 þ dx2 ¼ dx2 þ dy2 þ dz2;

y ¼ r cos θ; z ¼ r sin θ; θ ¼ nθ̂; ð31Þ
where θ has periodicity 2πn. Of course, the above coor-
dinates are not single valued. However, if we are only
interested in evaluating the Green function at the same
point far away from the conical singularity at r ¼ 0, space

is essentially flat, and this coordinate can be used in a patch
by patch fashion, which it is single valued. Then, GF is
solved in one patch and then transformed to the r; θ̂
coordinates, corresponding to patching all the patches
together to recover one single valued Green function.
In the n-replicated space, therefore, the fermionic Green

function has a mode expansion as follows:

GFðr; r1Þ ¼
X∞
l¼−∞

eiνlðθ−θ1Þ

2πn

Z
∞

−∞

dk⊥
2π

eik⊥ðx−x1Þ
Z

∞

0

kdk
JνlðkrÞJνlðkr1Þ

k2 þ k2⊥

¼
X∞
l¼−∞

eiνlðθ−θ1Þ

2πn

Z
∞

−∞

dk⊥
2π

eik⊥ðx−x1ÞIνlðk⊥rÞKνlðk⊥r1Þðfor r < r1Þ: ð32Þ

Here, νl ¼ j 2lþ1
2n j, so that the antiperiodic boundary con-

dition is satisfied around the θ circle.
Just like the bosonic Green function, we tried to get the

whole spectrum of the fermion (in order to calculate the
Renyi entropy), and we found that it is closely related to
the hydrogen atom, which is shown in Appendix C.
However, the significant difference from the hydrogen
atom is that the potential is an imaginary one, so the

current problem does not have bound state solutions, unlike
the hydrogen atom. However, the scattering problem for the
hydrogen atom does not have a rigorous analytic expres-
sion up to our limited knowledge. But if we only calculate
the entanglement entropy, only the order (n − 1) terms are
important, which leads to the strategy similar to the case of
bosons here, and we use the (n − 1) expansion to obtain the
leading order corrections of the propagator from bn,

δSFðr0; r1Þ ¼ −
1

∂
bn
r
1

∂ ¼ −∂GF
bn
r
∂GF

¼ −
Z

r2dr2

Z
dx2

Z
dθ2∂0Gðr0; r2Þ

bn
r2

∂2Gðr2; r1Þ

¼ bn

Z
dr2

Z
dx2

Z
dθ2∂2Gðr0; r2Þ∂2Gðr2; r1Þ: ð33Þ

Taking the trace of the above expression, we get

trδSFðr0; r1Þ ¼ 2bn

Z
dr2

Z
dx2

Z
dθ2∂x2Gðr0; r2Þ∂x2Gðr2; r1Þþ∂r2Gðr0; r2Þ∂r2Gðr2; r1Þþ

1

r22
∂θ2Gðr0; r2Þ∂θ2Gðr2; r1Þ

¼ −2bn
Z

dr2

Z
dx2

Z
dθ2

�
Gðr0; r2Þ□Gðr2; r1Þ −Gðr0; r2Þ

∂r2

r2
Gðr2; r1Þ

�

¼ 2
bn
r1

Gðr0; r1Þ þ 2bn

Z
dr2

Z
dx2

Z
dθ2Gðr0; r2Þ

∂r2

r2
Gðr2; r1Þ: ð34Þ

Now, we focus on the second term in Eq. (34) and take r0 → r1 hereafter,

2bn

Z
dr2

Z
dx2

Z
dθ2Gðr0; r2Þ

∂r2

r2
Gðr2; r0Þ ¼

bn
2π2n

X∞
l¼−∞

Z
∞

−∞
dk⊥

�Z
r0

0

dr2
r2

Iνðk⊥r2ÞK2
νðk⊥r0Þ∂r2Iνðk⊥r2Þ

þ
Z

∞

r0

dr2
r2

Kνðk⊥r2ÞI2νðk⊥r0Þ∂r2Kνðk⊥r2Þ
�

¼ 2bn
π2nr20

X∞
l¼1

1

2ð4ν2 − 1Þ þ
bn

4π2r20
ð1 − 2 logðϵ=r0ÞÞ −

bn
2π2r20

¼ −
bn

2π2r20
logðϵ=r0Þ þ bn ×Oðn − 1Þ: ð35Þ
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The ϵ is a cutoff in the distance to the conical singularity.
Much likewhat happens in the case of bosons, the calculation
is strongly suggestive of the need to include a counterterm
that is localized at r → 0. However, the term of the form
γ
R
d3xδðrÞψ̄ψ is such that γ is dimensionful and thus would

not produce a divergence term that behaves in the same way
as the one observed above. The above calculation is
suggestive of a nonlocal counterterm perhaps of the formR
ψ̄∂−1∂r∂−1ψ . Without knowing the precise form of the

counterterm, we resort to a different strategy.Much likewhat
happens for bosons, we can compute the above correction
keeping n general and taking the n → 1 limit only at the end.
The details of this calculation are relegated toAppendixC. In
that case, the integral is finite, and we obtain

−
bn

2π2r20ðn − 1Þ þ
bngðn − 1Þ

24r2
þOðn − 1Þ2; ð36Þ

where we find no Oðn − 1Þ0 term exactly as in (35) above
when a cutoff was introduced.

B. Gap equation in replicated space in n= 1 expansion

We now turn to the gap equations (4). We may expect
that the interaction would break the supersymmetry, so we
restore the notation to show possible deviation from the
supersymmetric critical line,

mψ ¼ μψ þ gψρ; m2
ϕ ¼ μ2ϕ þ 4gϕ1

μρþ 3g2ϕ2
ρ2 − gψχ;

ð37Þ

in which μψ and μ2ϕ are the bare masses of the fermion and
boson. Like in the flat n ¼ 1 case, these bare masses need
to be renormalized, absorbing divergences in ρ and χ. To
make these precise, we consider computing ρ and χ using
Pauli-Villars regularization so that the divergences can be
isolated clearly.

1. Pauli-Villars regularization of the
bosonic and fermionic propagator

We would like to use Pauli-Villars1 regularization to
modify the Euclidian Green function a little. The idea is to
consider a modified propagator which is the original
propagator subtracted by one corresponding to a boson/
fermion with a mass M; i.e. replace

GF=B → GR
F=B ¼ GF=BðM ¼ 0Þ − GF=BðMÞ: ð38Þ

In the limit M → ∞, this extra term GF=BðMÞ approaches
zero. We will keep the massM finite and takeM → ∞ only
at the end.
Under mode expansion, the regulator for the fermion

now takes the form of

GFðMÞ ¼
X∞
l¼−∞

eiνðθ−θ1Þ

2πn

Z
∞

−∞

dk⊥
2π

eik⊥ðx−x1Þ
Z

∞

0

kdk
Jνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
rÞJνð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
r1Þ

k2 þM2 þ k2⊥

¼
X∞
l¼−∞

eiνðθ−θ1Þ

2πn

Z
∞

−∞

dk⊥
2π

eik⊥ðx−x1ÞIν
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ þM2

q
r
�
Kν

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þM2

q
r1
�
ðr < r1Þ: ð39Þ

Using the uniform expansion for both order and argument of the Bessel functions [26],

IνðkrÞKνðkrÞ ≈
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r2 þ ν2

p : ð40Þ

The regulated fermionic Green function at replica index n then takes the form

GR
Fnðr; rÞ ¼

Mψ

4π
−

1

4π2nr

�
logð2 cosh πÞ þ

X
l

�
ψ

�				 lþ 1=2
n

				þ 1

2

�
−
1

2
log

��
lþ 1=2

n

�
2

þ 1

���

¼ Mψ

4π
−
cFðnÞ
4π2nr

ð41Þ

in which ψðxÞ is the polygamma function and cFðnÞ is a constant that depends on n and in the first order of n − 1 takes the
form of cFðnÞ ¼ 1þ 1

2
ðn − 1Þ. It is noteworthy that this term is nonvanishing in the limit n → 1.

Taking the same strategy, the regulated bosonic Green function is given by

GR
Bnðr; rÞ ¼

Mϕ

4π
−

1

4π2nr

�
logð2 sinh πÞ þ

X
l

�
ψ

�				 ln
				þ 1

2

�
−
1

2
log

��
l
n

�
2

þ 1

���
¼ Mϕ

4π
−
cBðnÞ
4π2nr

ð42Þ

1We thank S. Sachdev for sharing his notes explaining how this is done in replicated space.
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in which cBð1Þ is exactly 0 and cBðnÞ ¼ ðn − 1Þπ2=8 to the
leading order of (n − 1). We note that this result is
consistent with Eq. (13).

2. Renormalization of the gap equation

In Euclidian space, as pointed out in Eq. (3), all the mass
scales coincide with each other when supersymmetry is
exact, and all the couplings are related to each other. So we
may expect that in the replicated space the masses would
deviate from each other. The deviation should be propor-
tional to powers of (n − 1) which vanishes at n ¼ 1. So, in
the renormalization process, we put in the ansatz

μ2ϕ ¼ μ2ψ þ A; μ ¼ μψ þ B; ð43Þ

while μψ is chosen such that the first gap equation is
properly renormalized.
We find that (taking n → 1 last in the fermion integral to

avoid the logarithmic divergence)

μψ ¼ bn
r
− gρ ¼ −

M
4π

ð44Þ

A ¼ 0 ð45Þ

B ¼ −
bn
2r

: ð46Þ

Indeed, in the limit n → 1, A and B vanish as bn vanishes,
so that flat space supersymmetry is recovered.
So, after the renormailzation, the gap equations now take

the form of

bn
r
¼ g

�
−

αn
8nr

−
ðn − 1Þ
32r

�
ð47Þ

an
r2

¼ b2n
r2

−
gbn

2π2r2ðn − 1Þ þ
bngðn − 1Þ

24r2
þ bnOðn − 1Þ2:

ð48Þ

3. Solution of the gap equations

A set of self-consistent solutions perturbatively in
n − 1 is

αn ¼ −
ðn − 1Þ

4
; ð49Þ

bn ¼ −
π2ðn − 1Þ3

8gψ
: ð50Þ

We find that an is independent of all the coupling
constants, which is exactly the same number as (6.27) in
Ref. [21]. This is not surprising since the fermionic part is
just an order ðn − 1Þ3 one. On the other hand, to the lowest
order, bn is inversely proportional to gψ ≡ g, which is a
manifestation of the nonperturbative nature in the large N
calculation. This set of solutions does not admit a smooth
limit back to g → 0. At precisely g ¼ 0, the only solution is
an ¼ bn ¼ 0, as expected of a noninteracting theory.

C. Area term

The entropy takes the form of

SEE ¼ ∂nSeffðnÞjn¼1 − Seffð1Þ: ð51Þ

With a little bit of rearrangement, Eq. (2) now takes the
form of

Z
d3x

ffiffiffiffiffiffiffiffiffiffiffi
det gn

p
ρðm2

ϕ −m2
ψÞ

þ 1

2

�
Tr log

�
−□þ an

r2

�
− Tr log

�
∂ þ bn

r

��
: ð52Þ

If evaluated ∂nSeffðnÞjn¼1, we would find all the other terms
vanishing, since they areOðn − 1Þ2 or higher, while the last
term vanishes for the trace over γ matrices to leading order
in (n − 1). The remaining terms are

1

2

�
Tr½GnðanÞ

∂nan
r2

�
jn¼1 − Tr logð−□Þ�: ð53Þ

Naively thinking it is of order Oðn − 1Þ2 exactly like an.
However, as we previously showed, there is a nontrivial
pole existing in the infrared limit which makes this term the
only one contributing to the entropy. And it indeed gives
the area law as we will show in the following:

∂nan
1

2
Tr

�
GnðanÞ

1

r2

�
¼ 1

2
∂nan

Z ffiffiffiffiffiffiffiffiffiffiffi
det gn

p d3x
r2

Z
dk⊥
2π

eik⊥ðx⊥−x0⊥Þ
X
l

eilðθ−θ0Þ

2πn

Z
∞

0

kdk
JνlðkrÞJνlðkr0Þ

k2 þ k2⊥
: ð54Þ
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Performing the k⊥ integral, we get

1

2
∂nanTr

�
GnðanÞ

1

r2

�
¼ 1

4
∂nan

Z ffiffiffiffiffiffiffiffiffiffiffi
det gn

p d3x
r2

X
l

eilðθ−θ0Þ

2πn

Z
∞

0

e−kϵdkJνlðkrÞJνlðkrÞ

¼ 1

4
∂nan

X
l

1

2πn

Z
2π

0

ndθ
Z

∞

0

dr
r
JνlðkrÞJνlðkrÞ

Z
∞

∞
dx⊥

Z
∞

0

e−kϵdk

¼ 1

4
∂nan

X
l

1

2π

Z
2π

0

dθ
1

2νl

Z
∞

−∞
dx⊥

1

ϵ
: ð55Þ

We find that in the limit n → 1, the jlj > 1 terms vanish
since ∂nan is of order Oðn − 1Þ. However, the l ¼ 0 term
remains. Therefore, the leading term in the entanglement
entropy is given by

SEE ¼ α̂L
2ϵ

þ � � � ; ð56Þ

here, � � � could include a subleading term in the large area
expansion. Also, ϵ ¼ Δx⊥ is the short range cutoff in the x⊥
direction, and L is the scale of the box in the dimension x⊥,
while α̂ ¼ limn→1αn=ðn − 1Þ. If we take the solution of the
gap equation in (49), we find that the area term in the
entanglement entropy to leading order in the large N limit
admits no dependence on the interaction coupling g.

IV. CONCLUSION

Motivated by a lack of computable examples of entan-
glement entropy of interacting field theories, we studied the
N ¼ 1 supersymmetric OðNÞ vector model in d ¼ 3 near
the second order phase transition line and computed the
entanglement entropy of the half-space, extracting the
leading area term. By considering the entanglement of
the half-space, the volume and also boundary area of which
diverge, we a priori made it almost impossible to extract
the subleading universal constant term in the entanglement.
Yet, since the area term itself encapsulates in reality most of
the quantum entanglement of the ground state, and the
physical significance of the emergence of an area term in a
local field theory in the first place, we would like to
understand whether the variation of the interaction coupling
makes any qualitative difference to this leading term.
It turns out the supersymmetric theory has lots of

similarities with the scalar OðNÞ model at the critical
point. The correction of the massless fermionic propagator
in conical space computed perturbatively in n − 1 has some
new divergences, the counterterms of which we have not
been able to pin down uniquely. Nevertheless, this term
remains finite at any finite n − 1 and acquires a 1=ðn − 1Þ
pole enhancement. We solved the gap equations of the
system perturbatively in n − 1 and found surprisingly that
the bosonic mass acquires exactly the same value as in the
critical scalar theory found in Ref. [21], independently of

the coupling constant g that can be varied freely along the
critical line. An interesting note here is that we found two
distinct ways of computing this quantity, by changing the
order of limits—one in which n − 1 is taken as the smallest
scale and expanded first, such that a logarithmic divergence
near the conical singularity would arise and call for a
localized counterterm, and one in which the r integral is
done first before the n → 1 limit is taken, as in Ref. [21]. It
turns out that the two match, if the couplings of the
counterterm are chosen to take its fixed point value,
suggesting that the value is robust and unique.
Nonetheless, combining with the fermionic results, we
arrive at the leading area term of the entanglement entropy
that is only sensitive to the bosonic mass, and thus
independent of the coupling g. We suspect this is a large
N artifact and that a 1=N correction should reveal more
intricate dependence of the coupling.
We made other interesting observations along the way.

Particularly, we noticed the connection between, on the one
hand, the equation of the fermionic Green function in
conical space in the presence of a mass term bn=r and the
Dirac equation describing an electron in a relativistic
hydrogen atom on the other. The bound states of the
relativistic hydrogen atom have been carefully studied, and
it is a subject discussed in textbooks. A good review can be
found for example in Ref. [27]. These bound state solutions
diverge when substituting in the parameters relevant in our
problem. However, we believe that scattering states should
have a sensible interpretation. The connection is to be
studied in more detail in future work.
As mentioned above, the computation of the correction

to the fermionic propagator also allowed the choice of two
orders of limits, much like the bosonic ones. In this case,
however, the logarithmic divergence is not obviously
associated to a local counterterm. Our computation has
assumed that the final result should agree with that
following from the other order of the limit. But in the
case of the unpalatable scenario in which counterterms with
differing subtraction schemes could alter the result, we
studied some typical possibilities and found that unsurpris-
ingly the coupling constant could in fact enter into the area
term if such counterterm ambiguities do exist. The physics
question we asked is unambiguous, and we do not believe
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such ambiguity could exist, as we demonstrated in the
bosonic case. Nonetheless, this is an important question
whether the replica trick does recover uniquely the entan-
glement entropy of a given wave function.
The subleading universal term also holds key informa-

tion, along with 1=N corrections. We would like to leave
these important questions for future investigations.
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APPENDIX A: COUNTERTERM CALCULATION
OF BOSONIC PROPAGATOR

In this part, we show explicitly the calculation of the
counterterm of the boson mass in Eq. (23).

1. −Gðr; r1Þc δðr1Þ
r2

Gðr1; rÞ
The first order correction in c could be written as

− c
Z

∞

0

δðr1Þdr1
Z

2πn

0

dθ1

Z
∞

−∞
dx1

1

ð4πnÞ2 ðr
2
0 þ r21 − 2r0r1 cosðθ0 − θ1Þ

þ ðx0 − x1Þ2Þ−1=2ðr21 þ r22 − 2r1r2 cosðθ1 − θ2Þðx1 − x2Þ2Þ−1=2

¼ −
c

16πn

Z
∞

−∞
dx1ðr20 þ ðx0 − x1Þ2Þ−1=2ðr22 þ ðx1 − x2Þ2Þ−1=2

¼ −
c

16πn

Z
∞

−∞
dx1ðr20 þ ðx0 − x1Þ2Þ−1ðtaker0 ¼ r2; x0 ¼ x2Þ

¼ −
c

16nr0
: ðA1Þ

2. Gðr; r1Þc δðr1Þ
r1

Gðr1; r2Þc δðr2Þ
r2

Gðr2; rÞ
The second order correction in c takes the form

c2

ð4πnÞ3
Z

∞

0

δðr1Þdr1
Z

2πn

0

dθ1

Z
∞

−∞
dx1

Z
∞

0

δðr2Þdr2
Z

2πn

0

dθ2

Z
∞

−∞
dx2ðr20 þ r21 − 2r0r1 cosðθ0 − θ1Þ

þ ðx0 − x1Þ2Þ−1=2ðr21 þ r22 − 2r1r2 cosðθ1 − θ2Þ þ ðx1 − x2Þ2Þ−1=2ðr22 þ r23 − 2r2r3 cosðθ2 − θ3Þ þ ðx2 − x3Þ2Þ−1=2

¼ c2

ð2πnÞ3
Z

∞

0

δðr1Þdr1
Z

2πn

0

dθ1

Z
∞

−∞
dx1

Z
∞

0

δðr2Þdr2
Z

2πn

0

dθ2

Z
∞

−∞
dx2

Z
∞

−∞

dk1
2π

Z
∞

−∞

dks
2π

Z
∞

−∞

dk3
2π

× eik1ðx0−x1Þeik2ðx1−x2Þeik3ðx2−x3ÞK0½k1ðr20 þ r21 − 2r0r1 cosðθ0 − θ1ÞÞ1=2�
× K0½k2ðr21 þ r22 − 2r1r2 cosðθ1 − θ2ÞÞ1=2�K0½k3ðr22 þ r23 − 2r2r3 cosðθ2 − θ3ÞÞ1=2�

¼ c2

ð2πnÞ3
Z

∞

0

δðr1Þdr1
Z

2πn

0

dθ1

Z
∞

0

δðr2Þdr2
Z

2πn

0

dθ2

Z
∞

−∞

dk1
2π

eik1ðx1−x3ÞK0½k1ðr20 þ r21 − 2r0r1 cosðθ0 − θ1ÞÞ1=2�

× K0½k1ðr21 þ r22 − 2r1r2 cosðθ1 − θ2ÞÞ1=2�K0½k1ðr22 þ r23 − 2r2r3 cosðθ2 − θ3ÞÞ1=2�

¼ c2

8πn

Z
∞

−∞

dk1
2π

eik1ðx1−x3ÞK0½k1r0�K0½k10�K0½k1r3�ðtake r0 ¼ r3; x0 ¼ x3Þ

¼ c2

32nr0
K0½k10�

¼ c2

32nr0
ð− log kϵþ log 2 − γÞ: ðA2Þ
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Since K0½k0� is divergent, we hereby introduce ϵ as a point
spliting cutoff. The last line is valid as long as kϵ is small.
The divergence arises as r1 → 0, r2 → 0.

APPENDIX B: FERMIONIC GREEN FUNCTION
AND THE HYDROGEN ATOM

Besides the perturbative calculation for the fermionic
Green function in the main text, we can actually use the
method ofmode expansion to express theGreen function as a
sum of eigenfunctions, and this method might have possible
further use since it will allow us to calculate the Renyi
entropy. Andwewill show that the eigenfunctions have close
connection with the 3þ 1-dimensional hydrogen atom.
The eigenfunction equation for eigenvalue E is�

∂ þ bn
r

�
ψ ¼ Eψ : ðB1Þ

After changing the coordinate into a polar coordinate,
we get

�
∂ þ bn

r

�
¼

0
B@ ∂x þ bn

r −e−iθ
n

�
n ∂θ

r þ i∂r

�
−eiθ

n

�
n ∂θ

r − i∂r

�
−∂x þ bn

r

1
CA:

ðB2Þ

Then, we expand using the eigenfunctions for θ and x, and
we have

ψ ¼
Z

dkx
2π

eikx
X
l

eiðlþ1
2
Þθn
�
e−

iθ
2 0

0 e
iθ
2

��
ψ1ðrÞ
ψ2ðrÞ

�
; ðB3Þ

then, we get the eigenfunctions for r:�
ikxþ

bn
r
−E

�
ψ1þ

�
−i

ð2lþ1þnÞ
2nr

−i∂r

�
ψ2¼0 ðB4Þ

�
−i

ð2lþ 1 − nÞ
2nr

þ i∂r

�
ψ1 þ

�
ikx þ

bn
r
− E

�
ψ2 ¼ 0:

ðB5Þ

Now, we introduce dimensionless functions FðrÞ ¼ffiffiffi
r

p
ψ1 GðrÞ ¼ ffiffiffi

r
p

ψ2, and the equations become

�
kx − i

bn
r
þ iE

�
F − ∂rG −

2lþ 1

2nr
G ¼ 0 ðB6Þ

�
−kx − i

bn
r
þ iE

�
Gþ ∂rF −

2lþ 1

2nr
F ¼ 0: ðB7Þ

Compared with the equations of the 3þ 1-dimensional
hydrogen atom, the eigenfunctions are

�
mc −

α

r
− ϵmc

�
F − ∂rG − kG ¼ 0 ðB8Þ

�
−mc −

α

r
− ϵmc

�
Gþ ∂rF − kF ¼ 0 ðB9Þ

Using the well-known result for bound states of the
hydrogen atom,we have the eigenvalues for the bound states,

E¼ ikx�
1−bn2

�
n− j2lþ1

2nr jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2lþ1
2nr j2þbn2

q �
−2
�
1=2

: ðB10Þ

However, this just means that there are no bound states
for the current problem, since now jEj > kx, which is
inconsistent with the assumption used to solve the bound
state problem. This example gives the reason why in these
kinds of problems we never use bound states to construct
the set of complete bases.
On the other hand, calculation and summation for the

scattering problem of the hydrogen atom has not been fully
considered in the literature, at least within the limited
knowledge of the writers. So, we end our discussion here
before we can go further for the problem of getting the
whole spectrum and Renyi entropy. So we took a step back
and settle with obtaining an (n − 1) expansion as described
in the main text.

APPENDIX C: CORRECTION OF THE
FERMIONIC GREEN FUNCTION

In this section, we may show that the logarithmic
divergence in Eq. (35) can be subtracted in the form of
a pole in 1=ðn − 1Þ.

We start with

χnðbnÞ¼ tr½∂−1−∂−1ðδÞ∂−1� ¼ tr

�
∂rGðr;r00Þ

�
bn
r00

�
∂−1ðr00;r0Þ

�
¼ tr

�
Gðr;r00Þ∂⃖r

�
bn
r00

�
∂−1ðr00;r0Þ

�

¼ tr

�
−Gðr;r00Þ∂⃖r00

�
bn
r00

�
∂−1ðr00;r0Þ

�
¼ tr

�
Gðr;r00Þ

��
bn
r00

�
∂−1ðr00;r0Þ

��
¼ tr½Gð∂δ∂Þ∂−1þGðδ∂Þ∂∂−1�

¼ 2
bn
r
ðGnðmψ ¼ 0;γ¼ 1=2ÞÞ−bn

Z
dxdθdr

r2
G2

nðbn;γ¼ 1=2Þþbn

Z
dθdx

�
Gðmψ ¼ 0;γ¼ 1=2Þ2

r

�				r→∞

r→0

; ðC1Þ
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where the last surface term can be shown to be zero.
Now, we focus on the second term above:

Z
G2

r02
d3x0 ¼

Z
2nπ

0

dθ0
Z

dx0
Z

∞

0

dr0

r02
Xl¼∞

l¼−∞

eiνlðθ−θ0Þ

2πn

Xl0¼∞

l0¼−∞

eiνl0 ðθ0−θ00Þ

2πn

×
Z

dk⊥
2π

eik⊥ðx−x0Þ
Z

dk0⊥
2π

eik
0⊥ðx0−x00Þ

Z
∞

0

JνlðkrÞJνlðkr0Þ
k2 þ k2⊥

kdk
Z

∞

0

Jνlðk0r00ÞJνlðk0r0Þ
k02 þ k02⊥

k0dk0

¼
Xl¼∞

l¼−∞

1

4πn

Z
∞

0

dr0

r02

Z
∞

0

dk
Z

∞

0

dk0
JνlðkrÞJνlðk0r00ÞJνlðkr0ÞJνlðk0r0Þ

kþ k0

¼
Xl¼∞

l¼−∞

1

4π3=2n

Z
∞

0

dk
Z

1

0

tνl

1þ t
Γð−1=2þ νlÞ
Γð1þ νlÞ 2F1ð−1=2;−1=2þ νl; 1þ νl; t2ÞJνlðkrÞJνlðktrÞ

¼
Xl¼∞

l¼−∞

1

8π2nr2
1

ν2l − 1=4
¼ tanðπ

2
nÞ

4πr2
: ðC2Þ

When we investigate the limit n → 1, we expand the
expression to get

bn tanðπ2 nÞ
4πr2

¼ −
bn

2π2r2
1

ðn − 1Þ þ
bnðn − 1Þ

24r2
þOðn − 1Þ2:

ðC3Þ

We find that the result is in correspondence to Eq. (35) in
that the coefficient of the divergence as well as the O(1)
term are exactly the same.

APPENDIX D: OTHER SOLUTIONS
OF THE GAP EQUATION?

In the case of bosons, we were able to pin down a fixed
point value of these couplings of counterterms, leading to
an answer that appears to be robust against the choice of
different normalization schemes. For fermions, this issue is
not well understood, and so here we explore the conse-
quence should any scheme dependence in the gap equation
actually survive. Suppose we subtract the leading term bn

2π2r2

in the gap equation by hand without referring to any fixed
point value of a counterterm. In that case, Eqs. (47) and (48)
become a set of homogeneous equations, with both αn and
bn proportional to (n − 1). So, generically, we write

αn ¼ ðn − 1Þαðgϕ2
; gψÞ; bn ¼ ðn − 1Þbðgϕ2

; gψ Þ ðD1Þ

in which α and b are functions that depend only on the
coupling constants.
Two sets of the solutions to Eqs. (D1) are

α ¼
9g2ϕ2

þ 2gψ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
432g2ϕ2

þ gψðgψ þ 192Þ
q
768 − 36g2ϕ2

;

b ¼
g2
�
gψ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
432g2ϕ2

þ gψ ðgψ þ 192Þ
q

þ 96
�

48ð3g2ϕ2
− 64Þ

α ¼
9g2ϕ2

þ 2gψ − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
432g2ϕ2

þ gψðg2 þ 192Þ
q
768 − 36g2ϕ2

;

b ¼ −
3gψ

gψ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
432g2ϕ2

þ gψðgψ þ 192Þ
q

þ 96
: ðD2Þ

A noteworthy feature of the solution is that the solution
would be divergent at given value gϕ2

¼ 8=
ffiffiffi
3

p
, regardless

of other parameters. This indicates a possible phase
transition at this specific value. However, there exists
another set of solution which remains regular for all values
of the coefficients. Whether such a scenario would ever
arise will be explored in future work.
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