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Neutron-star magnetospheres are structured by very intense magnetic fields extending from 100 to
105 km traveled by very energetic electrons and positrons with Lorentz factors up to ∼107. In this context,
particles are forced to travel almost along the magnetic field with very small gyromotion, potentially
reaching the quantified regime. We describe the state of Dirac particles in a locally uniform, constant, and
curved magnetic field in the approximation that the Larmor radius is very small compared to the radius of
curvature of the magnetic field lines. We obtain a result that admits the usual relativistic Landau states as a
limit of null curvature. We will describe the radiation of these states, which we call quantum curvature or
synchrocurvature radiation, in an upcoming paper.
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I. INTRODUCTION

Electron and positron states with very low momentum
perpendicular to the magnetic field have been of interest in
the field of rotating neutron-star magnetospheres almost
since their discovery in 1968 [1]. Indeed, the community
soon realized that the extremely intense rotating magnetic
fields of these magnetospheres, ranging from ∼104 Teslas
at the surface of old millisecond pulsars to ∼1011 Teslas at
the surface of some magnetars with a typical ∼108 Teslas
[2], could generate extremely large electric-potential gaps
along the open magnetic-field lines (see, e.g., [3] for a
review), which in turn accelerate charged particles to
energies only limited by radiation reaction. It is believed
that these magnetospheres are mostly filled with electrons
and positrons resulting from a cascade of pair creations:
pairs are created by quantum-electrodynamics processes
involving gamma rays and in turn radiate their kinetic
energy in gamma rays that make other pairs. The process of
radiation is that of an accelerated charge that inspirals
around a curved magnetic field. Because the magnetic field
~B is so intense, the gyrofrequence ω ¼ eB

mγ of an electron of
charge −e, mass m, and Lorentz factor γ is so large that the
momentum perpendicular to the local field is dissipated to
very low values almost instantaneously because of syn-
chrotron radiation reaction. It follows that electrons and
positrons are believed to remain mostly very close to
the local field line, radiating mostly because of their
motion along the curved field line rather than perpendicular
to it. Such motion and radiation are described either by
the synchrocurvature regime (see, e.g., [4–8]) or the

curvature regime [9], depending on whether the residual
perpendicular motion is taken into account or neglected.
With basic energetic arguments, one then realizes that this
can lead the particle to fall down in the quantified regime
both because radiation is efficient and because the energy
levels are large in intense magnetic fields. This led the
community to study transitions between low-lying Landau
levels; see, in particular, the work of [10]. However, Landau
levels are defined as the states of an electron in a constant
uniform magnetic field and therefore are unable to produce
transitions of momentum along the magnetic field, no more
than they can explain a curved trajectory of the particle.
Additionally, one will notice that the case of curvature
radiation corresponds to an unphysical motion: a particle of
charge e with a velocity ~v aligned with the local magnetic

field ~B cannot undergo the Lorentz force e~v∧~B and
therefore cannot follow the magnetic-field line.
Therefore, in this paper our purpose is to generalize the

quantum motion of electrons and positrons to the motion in
a locally uniform, circular, and constant magnetic field,
within the assumption that the radius of curvature is large
compared to the Larmor radius. We found precious help in
previous work about the motion of an electron in a constant
uniform magnetic field, including [11,12], and particularly
[13]. Based on the present paper, we will be able to derive
in an upcoming article the radiation of an electron on its
lowest perpendicular levels, which could be called quantum
synchrocurvature radiation.
We shall start by setting up the symmetries of the

problem in Sec. II, before deriving the solutions for a
Klein-Gordon particle and more generally for the second-
order Dirac’s equation in Sec. III. Based on those results we
derive the full set of Dirac’s Hamiltonian proper states in*guillaume.voisin@obspm.fr
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Sec. IV. Finally, in Sec. V we propose an interpretation of
the obtained states.

II. SYMMETRIES

We consider a particle along a circular magnetic field
line of radius ρ and of axis ~x, which we call in the following
the main circle.
Further, we assume that the characteristic extension Δr

of the wave function perpendicular to the magnetic field is
very small compared to the radius of curvature. This, of
course, must be checked a posteriori. In this case one may
consider that the magnetic field is locally homogeneous
upon an error of ∼ Δr

ρ B.
Within these assumptions we have, locally, three sym-

metries of the system: one rotation around ~x, one rotation
around the magnetic-field line, and one radial translation
from the magnetic-field line. This generates a solid torus
around the field line. According to Noether’s theorem, there
will be three corresponding conserved quantities, and so
three quantum numbers characterizing the proper states of a
particle in such a field, to which one has to add one for the
spin symmetry:
(a) s, which quantizes the orthogonal translation,
(b) l⊥, which quantizes the rotation around the field line,
(c) l∥, which quantizes the rotation around ~x,
(d) ζ, which accounts for the spin orientation.
The only difference with the assumptions prevailing in

the computation of regular Landau states is that the
invariance by translation along the magnetic field is
replaced by a rotation around the ~x axis.

III. SECOND-ORDER AND KLEIN-GORDON
SOLUTIONS

In this paper, except otherwise stated, we always assume
summation over repeated indices: Latin indices for space
components and Greek for space-time with a metric of
signature ðþ − −−Þ.
We start from Dirac’s Hamiltonian for an electron of

charge −e with minimal coupling to a classical magnetic

field given by a potential ~A

Ĥ ¼ αiP̂i þ βmc2; ð1Þ

where i ¼ fx; y; zg and the generalized impulsion is
given by

P̂i ¼ −iℏ
�
∂i þ i

e
ℏ
Ai

�
: ð2Þ

Dirac’s matrices αi are given in standard representation
(e.g., Eq. (20) of [14]§ 21)

β ¼
�
1 0

0 −1
�
; αi ¼

�
0 σi

σi 0

�
; ð3Þ

where the σi are the Pauli matrices

σx¼
�
0 1

1 0

�
; σy¼

�
0 −i
i 0

�
; σz¼

�
1 0

0 −1

�
: ð4Þ

We need a coordinate system that makes explicit both the
assumed rotation invariance around axis ~x and the part
orthogonal to the magnetic field. Such a system is given by
the “toroidal” coordinates, represented in Fig. 1. Toroidal
coordinates are related to the Cartesian system ðx; y; zÞ by
the homeomorphism

T∶ ðr; θ;ϕÞ →

0
B@ x ¼ r cosϕ

y ¼ cos θðρþ r sinϕÞ
z ¼ sin θðρþ r sinϕÞ

1
CA; ð5Þ

where θ represents the direct angle with respect to the ~y axis
in the ð~y; ~zÞ plane, ϕ represents the direct angle with respect

to ~x in the plane ð~x; ~y0Þ of the local frame ð~x; ~y0; ~uθÞ image
of ð~x; ~y; ~zÞ by a rotation of θ around ~x, and r represents the
distance to the main circle. In particular we will need

~uθ ¼ ð0;− sin θ; cos θÞð~x;~y;~zÞ: ð6Þ
In order to write Dirac’s equation in this system of

coordinates, we need to use the Jacobian of T, JT , given by
Eq. (A2) in Appendix A.

FIG. 1. Representation of a circular magnetic-field line (green)
of radius ρ, which we call in this paper the main circle. The blue
shadow around the line represents the wave function of a ground-
orthogonal level with a characteristic extent λ. The relation
between the toroidal coordinates ðr; θ;ϕÞ and the Cartesian
coordinates ðx; y; zÞ is also shown.
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Then, the covariant quantities and, in particular, the
impulsion operators transform as follow:

p̂j ¼ ðJ−1T Þijp̂i0 ; ð7Þ

where i0 ¼ fr; θ;ϕg.
It can be shown that Dirac’s Hamiltonian keeps the same

shape as in Eq. (1) if we express it with Dirac’s matrices
transformed in a “contravariant” way (see Appendix A 3),
namely

αi
0 ¼ αjðJ−1T Þi0j: ð8Þ

It follows that Dirac’s Hamiltonian reads

Ĥ ¼ αi
0
P̂i0 þ βmc2: ð9Þ

We define a suited expression for the magnetic potential
~A in toroidal coordinates. Since the magnetic field is along
~∂θ, Ar or Aϕ are its only nonzero components. Since we

impose rotation invariance, ~A does not depend on θ, and the
local quasiuniformity hypothesis implies the dependency in
r and ϕ should be negligible as long as r ≪ ρ, and more
precisely on the scale of the wave function Δr. From the
expression of the rotational in toroidal coordinates given by
(A19) in A, a simple potential yielding a constant magnetic
field to lowest order in r=ρ along ∂θ is

Ar ¼ 0; Aθ ¼ 0; Aϕ ¼ −
1

2
B: ð10Þ

Using the metric gT [Eq. (A10)], we obtain the covariant
component

Aϕ ¼ 1

2
r2B: ð11Þ

This corresponds to a magnetic field

~B ¼ B~uθ þ○ðr=ρÞ: ð12Þ

Let us remark that this is compatible with the uniform
homogeneous field when ρ → ∞, as required, since the
toroidal coordinates then tend to the cylindrical system.
Following the procedure described in [14], we seek a

second-order equation of which solutions include Dirac’s
equation solutions by taking the covariant form of Dirac’s
equation,

D̂Ψ ¼ 0⇔ðcγμP̂μ −mc2ÞΨ ¼ 0; ð13Þ

and applying to it the operator Ĉ ¼ ðcγμP̂μ þmc2Þ. One
obtains what we call here the second-order Dirac equation

Ĉ D̂Ψ ¼ 0⇔ℏ2∂2
t2Ψ ¼ Ĥ2Ψ; ð14Þ

where Ĥ2 is the second-order “Hamiltonian” which for the
magnetic potential given in (10) is explicitely given by

Ĥ2 ¼ ðℏcÞ2
�
∂2
r þ

1

r
∂r þ

cosϕ
ρþ r cosϕ

∂r þ
1

r2
∂2
ϕ2

−
sinϕ

rðρþ r cosϕÞ ∂ϕ − 2i
e
ℏ
Aϕ∂ϕ þ

e2

ℏ2
AϕAϕ

− ie
r sinϕ

ρþ r cosϕ
Aϕ þ 1

ðρþ r cosϕÞ2 ∂
2
θ2

−
e
ℏ
~B · ~Σ −

m2c2

ℏ2

�
; ð15Þ

where ~Σ ¼
� ~σ 0

0 ~σ

�
are the spin 1

2
rotation generators in

standard representation. The full derivation of Eq. (15) is
given in Appendix B.
Now we notice that the interaction between the magnetic

field and the state of the electron involves the characteristic
magnetic length scale

λ ¼
�
2ℏ
eB

�
1=2

: ð16Þ

Anticipating the result, we shall consider that λ defines
the characteristic perpendicular extent of the wave function
for low-perpendicular-momentum states. This is backed by
the fact that the same magnetic length scale plays a similar
role in the uniform-magnetic-field case (see, e.g., [13],
where λ−2 is denoted γ).
We can define a dimensionless coordinate x≡ r

λ and the
parameter ϵ≡ λ

ρ. Following our primary assumptions, we
shall consider that ϵ ≪ 1. One can check that this is
particularly well verified in the case of a typical pulsar
magnetic field of intensity B ∼ 108 Teslas and curvature
radius ρ ∼ 104 meters

ϵ ∼ 10−16B−1=2
8 ρ−14 ; ð17Þ

where ρ4 ¼ ρ=104 and B8 ¼ B=108. Notice it could also be
true in large particle accelerators because of the soft
(square-root) dependence on the magnetic-field intensity.
We can now give a quantitative meaning to the

assumption of low perpendicular momentum, that is

∂x ∼ ∂ϕ ≪ ϵ−1: ð18Þ
The longitudinal momentum can be larger. However, we

assume that

∂θ ≪ ϵ−3=2 ð19Þ

and justify this approximation at the end of this section,
where Eq. (46) translates in terms of maximum Lorentz
factor the above approximation.
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We now rewrite Ĥ2 (15) in terms of x, ϵ, and λ keeping
only the lowest-order terms in ϵ,

Ĥ2 ¼
�
ℏc
λ

�
2
�
∂2
x þ

1

x
∂x þ

1

x2
∂2
ϕ2 þ 2i∂ϕ

− x2 þ ϵ2∂2
θ2
− 2~uθ · ~Σ −

m2c2λ2

ℏ2

�
þ○ðϵÞ: ð20Þ

Compared to Eq. (15) the rightmost term of the two first
lines have vanished and we used the fact that 1

ρþr sinϕ ¼
ϵ
λ þ○ðϵ2Þ to simplify the others. The eigen problem of
operator Eq. (20) is separable, which would not have been
the case if we had considered ∂θ ≥ ϵ−3=2 since we would
have to take into account an additional 2ϵ3x cosϕ∂2

θ2
. It is

also worth noticing that, as expected, this equation is very
similar to the one found when solving the uniform field
problem in cylindrical coordinates (see [13]).
Our symmetry requirements impose that the sought

states be proper states not only of the Dirac Hamiltonian
but also of two rotation generators

Ĵθ ¼ −iℏ∂ϕ þ
ℏ
2
~uθ · ~Σ; ð21Þ

Ĵx ¼ −iℏ∂θ þ
ℏ
2
Σx; ð22Þ

where Ĵθ is the angular-momentum operator around the
magnetic field centered on the main circle, and Jx is the
angular-momentum operator around the axis of the main
circle. These operators commute exactly, while commuta-
tion with the Dirac Hamiltonian is ensured to order ϵ,

½Ĵθ; Ĵx� ¼ 0; ð23Þ

½Ĥ; Ĵx� ¼ ○ðϵÞ: ð24Þ

This leads to consider proper states of both operators
which are of the form

χl∥;j⊥ðθ;ϕÞ ¼
1

2
eij⊥ϕþiθl∥0

BBBBB@
e−

iθ
2 ðb1e

iϕ
2 þ b2e−

iϕ
2 Þ− e

iθ
2 ðb1e

iϕ
2 − b2e−

iϕ
2 Þ

e−
iθ
2 ðb1e

iϕ
2 þ b2e−

iϕ
2 Þ þ e

iθ
2 ðb1e

iϕ
2 − b2e−

iϕ
2 Þ

e−
iθ
2 ðb3e

iϕ
2 þ b4e−

iϕ
2 Þ− e

iθ
2 ðb3e

iϕ
2 − b4e−

iϕ
2 Þ

e−
iθ
2 ðb3e

iϕ
2 þ b4e−

iϕ
2 Þ þ e

iθ
2 ðb3e

iϕ
2 − b4e−

iϕ
2 Þ

1
CCCCCA;

ð25Þ

where b1, b2, b3, b4 are constants of ϕ and θ, and ℏj⊥ and
ℏl∥ are the proper values of Ĵθ and Ĵx, respectively. l∥ and
j⊥ are half-integers � � � − 3

2
;− 1

2
; 1
2
; 3
2
� � �.

We seek a solution to the eigen problem

Ĥ2Ψ ¼ E2Ψ; ð26Þ

where one can show that�E are also proper energies of the
Dirac Hamiltonian Ĥ. We seek a solution of the problem of
Eq. (26) with the help of the ansatz

Ψðx; θ;ϕÞ ¼ χðθ;ϕÞΦðxÞ: ð27Þ

Inserting this ansatz into Eq. (26), one gets for χ an eigen
problem of the form

ðϵ2∂2
θ2
− ~uθ · ~ΣÞχðθ;ϕÞ ¼ −CθχðθÞ; ð28Þ

where Cθ is a constant. As expected, the operator on the
left-hand side of Eq. (28) commutes with Ĵx and Ĵθ.
Therefore, χ is necessarily a combination of χl∥;j⊥ .
Moreover, it can be shown that the operator in Eq. (28)
is degenerate with respect to j⊥ but not to l∥. Therefore, we
have that

χðθ;ϕÞ ¼
X
j⊥

χl∥;j⊥ðθ;ϕÞ; ð29Þ

where each χl∥;j⊥ has a different set of unknowns

ðbiÞ ¼ ðbj⊥i Þ, i ranging from 1 to 4.
However, we notice that a solution of Eq. (28) can be

found with a combination of only two states, χðθ;ϕÞ ¼
χl∥;j⊥−1 þ χl∥;j⊥ , if for a given j⊥ one takes bj⊥1 ¼ bj⊥3 ¼
bj⊥−12 ¼ bj⊥−14 ¼ 0, giving

χðθ;ϕÞ¼eil∥θeil⊥ϕ

0
BBBBB@

e−i
θ
2ðbj⊥−11 þbj⊥2 Þ−ei

θ
2ðbj⊥−11 −bj⊥2 Þ

e−i
θ
2ðbj⊥−11 þbj⊥2 Þþei

θ
2ðbj⊥−11 −bj⊥2 Þ

e−i
θ
2ðbj⊥−13 þbj⊥4 Þ−ei

θ
2ðbj⊥−13 −bj⊥4 Þ

e−i
θ
2ðbj⊥−13 þbj⊥4 Þþei

θ
2ðbj⊥−13 −bj⊥4 Þ

1
CCCCCA;

ð30Þ

where we define l⊥ ≡ j⊥ − 1
2
. With this choice, l⊥ is no

longer the exact angular momentum; it will, however,
simplify upcoming calculations and allow a direct com-
parison with the uniform case as presented in [13]. We will
give its exact meaning in Sec. V.
Then, χ is a solution provided that the remaining free

coefficients satisfy the following systems, obtained after
inserting Eq. (30) back into Eq. (28):

Mθ

� bj⊥2;4

bj⊥−11;3

�
¼ 0; ð31Þ

where Mθ is defined by the matrix coefficients
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Mθ11 ¼ −ϵ2ð2l∥ þ 1Þ2 − 4ð2 − CθÞ;
Mθ12 ¼ ð2l∥ þ 1Þ2ϵ2 − 4ð2þ CθÞ;
Mθ21 ¼ −ð1 − 2l∥Þ2ϵ2 − 4ð2 − CθÞ;
Mθ22 ¼ −ð1 − 2l∥Þ2ϵ2 þ 4ðCθ þ 2Þ: ð32Þ

This system has a nontrivial solution only if

Cσ
θ ¼

1

4

�
4l2∥ϵ

2 þ ϵ2 þ σ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2∥ϵ

4 þ 4
q �

; ð33Þ

which leads to the solution coefficients

bj⊥2;4σ ¼ cσ1;2
�
2 − l∥ϵ2 þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2∥ϵ

4 þ 4
q �

; ð34Þ

bj⊥−11;3 σ
¼ cσ1;2

�
−2 − l∥ϵ2 þ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2∥ϵ

4 þ 4
q �

; ð35Þ

where c1 and c2 are for now arbitrary constants describing
the two proper spaces found for ðbj⊥2 ; bj⊥−11 Þ (two first lines
of χ) and ðbj⊥4 ; bj⊥−13 Þ (two last lines of χ), respectively. The
number σ ¼ �1 distinguishes two classes of solutions that
we shall denote ↑ ¼ þ1 and ↓ ¼ −1 for reasons that will
become obvious when we see its physical meaning in
Sec. V.
Let us now solve the equation for ΦðxÞ. After inserting

our ansatz Eq. (27), including the previously found
expression for χ, we get the equation�

∂2
x2 þ

1

x
∂x −

l2⊥
x2

− x2 − 2l⊥
�
ΦðxÞ ¼ −CxΦðxÞ; ð36Þ

where Cx is a constant to be determined. We give the
detailed resolution of this equation in Appendix C, where
we find that

ΦðxÞ ¼ xl⊥e−
x2
2 Ll⊥

s ðx2Þ ð37Þ

Cx ¼ 4

�
nþ 1

2

�
; ð38Þ

where Ll
s is a generalized Laguerre polynomial of degree s

as defined in [15] (§ 18.5) by

Ll
sðxÞ ¼

Xs
i¼0

ðlþ iþ 1Þs−i
ðs − iÞ!i! ð−xÞi; ð39Þ

where ðaÞn ¼ Γðaþ nÞ=ΓðaÞ is a Pochhammer’s symbol.
In addition, n ¼ sþ l⊥ is the primary perpendicular

quantum number, s is a positive integer, and the
perpendicular angular momentum must be positive or null
l⊥ ≥ 0 to ensure that the wave function vanishes at infinity
and is square-integrable. We will come back later to the
interpretation of these quantum numbers. Notice that we

use the same notations as in [13] for the uniform-magnetic-
field case, where the radial dependency has exactly the
same form but is expressed with a different coordinate
system. Notice as well that Eq. (37) is proportional to a
normalization constant that we dropped here for simplicity.
Normalization will be determined later on.
Putting the wholeΨ back into the main equation (26), we

get the proper energies

E2 ¼ m2c4 þ ℏ2c2

λ2
ðCx þ Cσ

θÞ; ð40Þ

which develops as

E ¼ �mc2
�
1þ 2

ℏωc

mc2

�
nþ 1

2

�
þ σ

ℏωc

mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðϵ2l∥Þ2

q

þ
�
ℏΩ
mc2

�
2
�
1

4
þ l2∥

��1
2

; ð41Þ

where ωc ¼ eB
m is the cyclotron pulsation and Ω ¼ c

ρ is the
pulsation of the circular trajectory.
Proper functions Ψ and proper values E2 are the exact

solutions of the eigen problem of the approximated
operator Ĥ2 (20). However, our approximations do not
allow us to take meaningfully into account terms of order ϵ
and higher. At this order, the complete solutions of the
second-order eigen problem, Eq. (26), is explicitly given by

Ψ2ðx;θ;ϕÞ¼4xl⊥e−
x2
2 Ll⊥

s ðx2Þeil∥θeil⊥ϕ

0
BBBBB@
cσ1ðσe−i

θ
2þei

θ
2Þ

cσ1ðσe−i
θ
2−ei

θ
2Þ

cσ2ðσe−i
θ
2þei

θ
2Þ

cσ2ðσe−i
θ
2−ei

θ
2Þ

1
CCCCCA

þ○ðϵÞ; ð42Þ

E¼�mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2

ℏωc

mc2

�
nþ1þσ

2

�
þ
�
ℏΩ
mc2

�
2

l2∥

s
; ð43Þ

where in such a development, one has to remember that l∥
can be of order ϵ−1. In this limit we obtain degenerate
states; indeed, states with n; σ ¼ þ1 have the same energy
as states with numbers nþ 1, σ ¼ −1. The only exception
is for what we will from now on call the perpendicular
fundamental state: n ¼ 0, σ ¼ −1, which is nondegenerate.
Before going farther, let us note that we have already

obtained the solution to the Klein-Gordon equation for an
electron in a circular magnetic field. Indeed, Ĥ2 corre-
sponds to the Klein-Gordon “Hamiltonian” plus a spin term
~uθ · Σ. Neglecting this term, it comes that χðθ;ϕÞ ¼
eil∥θeil⊥ϕ and the proper states of energy (43) are given by
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ΨKGðx; θ;ϕÞ ¼ eil∥θeil⊥ϕxl⊥e−
x2
2 Ll⊥

s ðx2Þ: ð44Þ

We now justify a posteriori approximation (19).
Assuming as in typical pulsar magnetospheres that the
motion is dominated by the momentum along the field and
that particles are ultrarelativistic with a classical Lorentz
factor γ ≫ 1, we obtain, using Eq. (43),

E ¼ γmc2 ¼ ℏΩl∥ þ○

�
1

l∥

�
: ð45Þ

This allows us to translate the approximation Eq. (19) in
terms of a limit on the Lorentz factor

γ ≪ 6 · 106ρ1=24 B3=4
8 ; ð46Þ

compatible with a variety of pulsar-magnetosphere situa-
tions. We briefly come back to the interpretation in terms of
possible drifts at the end of Sec. V.

IV. DIRAC’S EQUATION SOLUTIONS

A. General solution

It is can be shown from the derivation of the second-
order Eq. (14) that from any second-order solution a first-
order solution can be obtained by applying the Ĉ operator
to it, as in

Ψðx; θ;ϕÞ ¼ Ĉe−i
E
ℏtΨ2ðx; θ;ϕÞ: ð47Þ

This is the approach suggested in [14]. However, naively
following this procedure leads to obtaining as many first-
order solutions as second-order solutions while there
should be half as many. One can check that we now
have 4 independent second-order solutions for each triplet
ðn; l⊥; l∥Þ, two for each value of σ, as shown in Eqs. (34)
and (35). Moreover, one can check that the obtained
second-order solutions are neither directly solutions of Ĉ
or of D̂, which implies that proper states for a given energy
must be linear combinations of the second-order solutions.
We are going to show that such solutions can be obtained

using the combination

Ψ ¼ e−i
E
ℏtðΨ2l⊥−1;σ¼þ1 þ Ψ2l⊥;σ¼−1Þ; ð48Þ

E ¼ �mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

ℏωc

mc2
nþ

�
ℏΩ
mc2

�
2

l2∥

s
: ð49Þ

The state Ψ above is thus defined by the superposition of
two states having the same quantum number s. The proper
energy, Eq. (49), can be equivalently defined as E2

l⊥−1;σ¼þ1

or E2
l⊥;σ¼−1. We chose the second option in Eq. (49). Note

that as such, Ψ is undefined for l⊥ ¼ 0. Prescribing that

Ψ2l⊥¼−1 ¼ 0, we find the perpendicular fundamental state
as the particular case Ψs¼0;l⊥¼0.
One can show that solving the equation D̂Ψ ¼ 0

amounts to solving the linear problem

MD

0
BBB@

c−1
c−2
cþ1
cþ2

1
CCCA ¼ 0: ð50Þ

Calculations to obtain the matrixMD are lengthy but appeal
to relatively simple operations for which a formal calcu-
lation engine can be helpful. We consider that the details of
it would be of little interest to the reader; for this reason, we
give here only the main steps. It goes as follows:
(a) Divide by the following common factor to isolate the

“spinor part” of the equation

S≡ D̂Ψ=ðeil∥θeiðl⊥−1Þϕxl⊥e−x2
2 Þ ¼ 0: ð51Þ

(b) The remaining function can be expanded on the basis
of the four orthogonal functions: ðeaiθ2ebiϕÞ, where a ¼
�1 and b ¼ f0; 1g. Taking into account the four
spinor components, labeled by j hereafter, this gives
us 16 coefficients depending on the four unknowns
ðc↓1 ; c↓2 ; c↑1 ; c↑2 Þ that we call sj;a;b. It follows that the
equation D̂Ψ ¼ 0 reduces to a linear system of 16
equations

∀j; ∀a; ∀b; sj;a;b ¼ 0: ð52Þ

Notice that, at this stage, the coefficients still depend
on functions of x.

(c) A lot of these equations are actually equivalent. The
coefficients with a ¼ þ1 are proportional to coeffi-
cients with a ¼ −1 for any given doublet ðj; bÞ. Also,
notice that the components of the spinor are related
two by two: s1;a;b ∝ s2;a;b and s3;a;b ∝ s4;a;b for all a
and b. Finally, there are only four a priori independent
equations. To fix ideas, we will go on with the system

8>>><
>>>:

s1;1;1 ¼ 0

s3;1;1 ¼ 0

s1;1;0 ¼ 0

s3;1;0 ¼ 0

: ð53Þ

(d) Using the two relations

Ll⊥þ1
s ðx2Þ ¼ Ll⊥þ1

s−1 ðx2Þ þ Ll⊥
s ðx2Þ; ð54Þ

Ll⊥
s ðx2Þ ¼ ð1þ l⊥ÞLl⊥þ1

s ðx2Þ − x2; Ll⊥þ2
s−1 ðx2Þ

ðsþ l⊥ þ 1Þ ; ð55Þ
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which can be derived from the Laguerre-polynomial
recurrence relations given in [15] § 18.9, one shows
that s1;1;1 and s3;1;1 are proportional to xLl⊥þ1

s , while
s1;1;0 and s3;1;0 are proportional to Ll⊥

s .
(e) It follows from the previous point that after dividing

each equation by its respective x polynomial as well as
2ℏc=λ (to make it dimensionless), the system Eq. (53)
gives Eq. (50) with

MD ¼

0
BBBBBB@

E−mc2
ℏc=λ ϵl∥ 0 2i

−ϵl∥ − Eþmc2
ℏc=λ −2i 0

0 −2ið1þ nÞ E−mc2
ℏc=λ −ϵl∥

2ið1þ nÞ 0 ϵl∥ − Eþmc2
ℏc=λ

1
CCCCCCA:

ð56Þ

The determinant of MD is null, which means, as
expected, that the kernel of MD is not empty. One finds
two independent solutions given by 

c↓1

c↓2

!
¼
 

Eþmc2
ℏc=λ

−ϵl∥

!
and

 
c↑1

c↑2

!
¼ 2n

�
0

i

�
; ð57Þ

 
c↓1

c↓2

!
¼
� −ϵl∥

E−mc2
ℏc=λ

�
and

 
c↑1

c↑2

!
¼ 2n

�
i

0

�
: ð58Þ

Notice that the perpendicular fundamental state comes
out naturally from the two solutions, Eqs. (57) and (58).
Indeed, for n ¼ 0 the σ ¼ ↑ coefficients vanish, and the

energy becomes E ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð ℏΩmc2Þ2l2∥

q
. Then the two

solutions are proportional, as expected from the nondege-
neracy of the perpendicular fundamental, since one finds
Eq. (58) by simply multiplying Eq. (57) by − E−mc2

ℏc=λ . The
two solutions, Eqs. (57) and (58), correspond to two spin
states that we shall respectively label by ζ ¼ −1 and
ζ ¼ þ1. Some more details will be given in Sec. V.

B. Normalization

We now have obtained the three parts of the wave
function. We still need to impose normalization with

Z
d3~x
X4
i¼1

Ψ�
iΨi ¼ 1: ð59Þ

We need the Jacobian determinant of the toroidal
coordinates

d3~x ¼ jrðρþ r sinϕÞjdrdθdϕ: ð60Þ

Expressing it as a function of the dimensionless variable x,

d3~x ¼ λ2ρjxð1þ ϵx sinϕÞjdxdθdϕ; ð61Þ

it becomes obvious that the sinϕ term can be removed at
lowest order in ϵ.
For the integration over x the following integral [15]Z þ∞

x¼0

x2le−x
2 ½Ll

sðx2Þ�2xdx ¼ ðsþ lÞ!
2s!

ð62Þ

is useful.
We get the normalization

N ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρλ2

ðn − 1Þ!ððEþζmc2

ℏc=λ Þ2 þ ðϵl∥Þ2nþ 2n2Þ
2s!

s
: ð63Þ

C. Complete proper states

Eventually, the proper states of a particle of energy E,
Eq. (49), in a toroidal magnetic field can be explicitly
given by

Ψ ¼ 1

N
e−

x2
2 eil∥θeiðl⊥−1

2
Þϕðe−iϕ2xl⊥−1Ll⊥−1

s ðx2Þχ↑ζ ðθÞ

þ ei
ϕ
2xl⊥Ll⊥

s ðx2Þχ↓ζ ðθÞÞ: ð64Þ

The two χσζ spinors are explicitly given by

χ↓ζ ¼

0
BBBBBBBB@

�
1þζ
2

Eþmc2
ℏc=λ − 1−ζ

2
ϵl∥
�
ð−e−iθ2 þ ei

θ
2Þ�

1þζ
2

Eþmc2
ℏc=λ − 1−ζ

2
ϵl∥
�
ð−e−iθ2 − ei

θ
2Þ�

− 1þζ
2
ϵl∥ þ 1−ζ

2
E−mc2
ℏc=λ

�
ð−e−iθ2 þ ei

θ
2Þ�

− 1þζ
2
ϵl∥ þ 1−ζ

2
E−mc2
ℏc=λ

�
ð−e−iθ2 − ei

θ
2Þ

1
CCCCCCCCA
; ð65Þ

χ↑ζ ¼ 2ni

0
BBBBB@

1−ζ
2
ðe−iθ2 þ ei

θ
2Þ

1−ζ
2
ðe−iθ2 − ei

θ
2Þ

1þζ
2
ðe−iθ2 þ ei

θ
2Þ

1þζ
2
ðe−iθ2 − ei

θ
2Þ

1
CCCCCA: ð66Þ

One can see that the constant uniform-magnetic-field
case can be recovered by taking the limit ρ → ∞ in Eq. (64)
after having performed the replacements: θ → z=ρ,
l∥ → ρkz, where ~z is the axis along the magnetic field
and kz is the associated wave number.

V. INTERPRETATION OF THE
QUANTUM NUMBERS

In this section we consider an electron state (positive
energy) to simplify the discussion without any loss of
generality.
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The parallel quantum number l∥ quantifies, by construc-
tion, the angular momentum around the ~x axis. From the
expression of the proper energy we can also interpret ℏΩl∥
as the “component” of the energy corresponding to the
motion along the magnetic field.
We move on to interpreting the perpendicular motion.

Our treatment is similar to that of [13]. The energy of the
motion perpendicular to the magnetic field is quantified by
the quantum number n ¼ sþ l⊥. It can be interpreted as the
quantification of the square of the radius of the trajectory of
the electron since the classical gyroradius can be expressed
as rg ¼ p⊥=ðmωcÞ with p⊥ the perpendicular momentum
and, in the case of a purely perpendicular motion,
E2 ¼ p2⊥ þm2c4. We see below that this assertion can
be very quickly proven in the classical limit in the particular
case n ¼ l⊥.
As we saw in the previous section, the wave function is

not defined for a strictly negative l⊥. From a classical point
of view this is easily understandable since l⊥ quantifies the
angular momentum around the local axis of the magnetic
field. Therefore, l⊥ > 0 corresponds to a rotation in the
direct sense, which is the orientation that an electron takes

under the action of the classical Lorentz force ~v∧~B, where
~v is the speed of the electron.
Going a little bit deeper, one can show that the solution

Eq. (64) is a proper state of the angular momentum around
the magnetic field Ĵθ of proper value ℏðl⊥ − 1=2Þ. This
means that the perpendicular fundamental has a negative
angular momentum of −ℏ=2. However, it does not mean
that the electron classically turns backwards around the
magnetic field, but rather that the spin is oriented backward,
while the orbital angular momentum is zero. Indeed, one
can show that the spinors χσζ are proper states of the
operator of projection of the spin onto the main circle of the

magnetic field, ℏ
2
~uθ · ~Σ (the spin part of Ĵθ), with proper

values ℏσ=2. We here justify the notation ↑ or ↓ for σ ¼ �1
as meaning that the spin is aligned or antialigned with the
magnetic field. The perpendicular fundamental state is thus
the only purely antialigned state, as we will see. Since it has
no orbital momentum, one cannot interpret the trajectory of
the particle following the magnetic field as the result of the
classical Lorentz force but rather as a strictly quantum
phenomenon of the interaction between spin and magnetic
field. States with n > 0 (i.e., l⊥ > 0 or s > 0) are in a
superposed spin state, both aligned and antialigned with the
magnetic field, which results into a degeneracy into two
states parametrized by ζ. It is in theory possible to find
measurable quantities, hermitian operators that commute
with the Hamiltonian, such that this degeneracy would be
lifted and the spin orientation fixed (see, e.g., [13] or [16]
for possibilities in the case of a uniform homogeneous
magnetic field). However, it is usually impossible to
determine the state of the spin, in particular in astrophysics.
We therefore prefer to consider the most general case in

which a state of energy E is the superposition of the two ζ
states of Eq. (64) combined through a mixing angle η,

Ψ ¼ cosðηÞΨζ¼−1 þ sinðηÞΨζ¼þ1: ð67Þ

Parametrization by such an angle takes into account the
constraint of having a norm of the final state that is still one.
Notice that it is impossible to form a purely aligned or
antialigned state for any value of the mixing angle, as we
previously stated.
We now explain the role of the quantum numbers s

and l⊥ and why their role in the energy is degenerated.
First, consider an electron with s ¼ 0, then the radial part
of the wave function Eq. (64) is merely ∝ e−x

2

x2p, where
p ¼ l⊥ − 1 for the antialigned term and p ¼ l⊥ for the
aligned term. Now, this function is peaked at xp ¼ ffiffiffiffi

p
p

with
an amplitude at the peak of pp. This means that, apart from
the perpendicular fundamental, the electron always has a
double orbit: one of aligned spin and, a bit further, one of
antialigned spin, as shown in Fig. 2.
Considering a high value of the perpendicular angular

momentum, one can quickly recover classical results
analogous to the uniform-magnetic-field case. For simplic-
ity we will consider that momentum along the field is zero,
l∥ ¼ 0. From the previous discussion the particle orbits at a
distance rp ≃ λ

ffiffiffiffiffi
l⊥

p
. Expressing l⊥ as a function of the

energy, one gets

l⊥ ¼ E2 −m2c4

2mc2ℏωc
: ð68Þ

In the classical limit the numerator simply identifies with
the square of the perpendicular momentum of the particle

FIG. 2. Left panel: Probability density of detecting an electron
in a state s ¼ 1, l⊥ ¼ 1 in a plane orthogonal to the magnetic-
field line of radius ρ. The color goes from blue (inner part of each
ring), spin aligned with the magnetic field, to red (outer part of
each ring), spin antialigned. Here the parallel motion is small,
l∥ ≲ ϵ−1, such that both spin components are almost equally
important. In the case of a relativistic parallel motion, l∥ > ϵ−1,
only the antialigned (red) component plays a significant role as
one can see from Eqs. (64), (65), and (66). Right panel:
Representation of a family of off-centered classical trajectories
defined by a ¼ 1.5, where a is defined in Eq. (D22).
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p2⊥. Inserting Eq. (68) into rp, we obtain the classical
(relativistic) Larmor radius,

rp ¼ rg ¼
p⊥
eB

ð69Þ

This is in agreement with the more general result given
above. Moreover, it confirms that the typical extent of the
wave function can be taken to be the gyroradius, at least for
high enough quantum numbers, and the approximation
Eq. (18) can be written in a more intuitive way,

rg ≪ ρ: ð70Þ

Similarly, one finds that the group velocity of a wave
packet, vg ¼ ∂ω

∂k, can be found after identifying ω ¼ E=ℏ
and k ¼ l⊥=rp: vg ¼ rpωc=γ with γ ¼ E=ðmc2Þ. We here
recognize the classical relativistic gyrofrequency ωc=γ of
an electron in a uniform magnetic field.
Now, for a same energy we may as well have states of

lower l⊥ and higher s. This degeneracy also appears, to
some extent, in the classical treatment of this problem.
Since the radial part of the motion is mostly identical to the
uniform-magnetic-field case, we can use the latter to better
understand the former. We developed in Appendix D the
Newtonian solution to the uniform problem based on the
Hamilton-Jacobi formalism which, because of its parenting
with quantum mechanics, allows a formulation in similar
terms. In particular, it is found that there are two terms in
the perpendicular energy: one related to the angular
momentum (noted as pθ in the classical case) and the
other to a shift of distance r0 of the center of the trajectory
with respect to the origin of the coordinate. This is
summarized in Eq. (D33), recalled here,

E ¼ pθωc þ
1

2
mr20ω

2
c: ð71Þ

Wewill follow that guide. If l⊥ obviously corresponds to
the angular-momentum, pθ term, we can show that s
corresponds to the second term. The position of the center
of the trajectory given by Eq. (D31) can be generalized as
the operator

~̂x0 ¼ ~̂xþ
~̂J∧ ~̂p

mωcj~̂Jj
; ð72Þ

where ~̂x is the position operator, ~̂p the impulsion, and ~̂J the
angular momentum with respect to the coordinate origin.

For our set of solutions ~̂J ¼ Ĵθ and the previous operator
simplifies to the two components

x̂0 ¼ x̂ −
p̂y0

mωc
; ð73Þ

ŷ00 ¼ ŷ0 þ p̂x

mωc
; ð74Þ

where ðx; y0Þ are the coordinates locally perpendicular to
the magnetic field as defined in Fig. 1. From that, an
operator r̂20 ¼ x̂20 þ ŷ020 is readily obtained. Using the
dimensionless coordinate x ¼ r=λ

r̂20 ¼ λ2
�
x2 − ∂2

x2 −
1

x
∂x −

1

x2
∂2
ϕ2 þ 2i∂ϕ

�
; ð75Þ

where one recognizes the radial part of the second-order
equation previously solved [see Eqs. (36) or (C3)] except
for the ∂ϕ term whose sign is reversed. From that
observation it is straightforward to see that the proper
values of r̂20 are

r20 ¼ 4λ2
�
sþ 1

2

�
: ð76Þ

The 1
2
term comes from the spin interaction that broadens

the orbits as we saw previously. Now interpreting the
trajectory as an off-centered circle obviously breaks the
assumed rotation invariance around the coordinate center.
This apparent paradox is solved by considering that a
proper wave function is analogous not to a single classical
trajectory but to the set of all the trajectories corresponding
to the invariants of motion defining the proper state: n or
the perpendicular energy and l⊥ or the perpendicular
angular momentum. We see from the expression of the
trajectory Eq. (D20) that this set is classically parametrized
by the constant of integration θ0. This constant is defined
by the initial conditions of the motion, and it sets the
position of the center of trajectory on the circle of radius r0
centered on the main circle. Then, it is obvious that this set
is invariant by rotation, as shown in Fig. 2. Thus, we
recover the interpretation of s as characterizing the radial
symmetry assumed in Sec. II.
One notices that in the present solution, the particle

remains localized around the magnetic-field line, and
therefore there is no drift perpendicular to the line as in
the classical theory, where the drift is due to the centrifugal
force (see, e.g., [8]). This is justified by the fact that we
considered only the lowest perpendicular states and a
“moderate” longitudinal momentum [Eq. (19)] that allows
us to neglect coupling terms between longitudinal motion
(∂θ terms) and perpendicular motion (x, ∂x, and ∂ϕ terms).
We notice that several works on the classical theory of
synchrocurvature radiation (for example, [4–7]) did not
take this drift into account either, and this approximation is
widely used for lepton trajectories in pulsar magneto-
spheres even with Lorentz factors largely above the limit
given in Eq. (46). Besides, in [8] the authors show that the
effect on radiation of the drift classically results in an
effective radius of curvature.
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VI. CONCLUSION

In this paper we were able to generalize the relativistic
Landau states to the case of a circular magnetic field
[Eq. (64)], in the approximation that the curvature radius is
large compared to the Larmor radius of the particle while
the momentum along the field is not excessively large
[Eq. (18) or Eqs. (70) and (19)]. Our main interest is for
applications to the very intense magnetic fields around
rotating neutron stars, pulsars and magnetars, in which
radiation from very low perpendicular-momentum elec-
trons and positrons is believed to be ubiquitous. In an
upcoming paper, we will address the problem of radiation
from transitions between the states derived in the present
paper. We could call this quantum curvature radiation
for transitions involving only the ground perpendicular
state or, more generally, quantum synchrocurvature radia-
tion (see, e.g., [4]).
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APPENDIX A: TOROIDAL COORDINATES
TOOLBOX

The toroidal coordinates are defined by the following
diffeomorphism T

T∶

0
B@ r

θ

ϕ

1
CA →

0
B@ x

y

z

1
CA ¼

0
B@ r cosϕ

cos θðρþ r sinϕÞ
sin θðρþ r sinϕÞ

1
CA; ðA1Þ

such that surfaces of constant r are torii centered on the
circle of radius ρ > 0.
The primed quantities denote quantities in the basis

ð∂T∂r ; ∂T∂θ ; ∂T∂ϕÞ.

1. Jacobian

The Jacobian of this coordinate system is

JT ¼

0
B@ cosϕ 0 −r sinϕ

cos θ sinϕ − sin θðρþ r sinϕÞ r cos θ cosϕ

sin θ sinϕ cos θðρþ r sinϕÞ r sin θ cosϕ

1
CA;

ðA2Þ
with determinant det JT ¼ −rðρþ r sinϕÞ, and inverse

J−1T ¼

0
B@

cosϕ cos θ sinϕ sin θ sinϕ

0 − sin θ
ρþr sinϕ

cos θ
ρþr sinϕ

− sinϕ
r

cos θ cosϕ
r

sin θ cosϕ
r

1
CA: ðA3Þ

2. Transformation of covariant quantities

Covariant quantities transform like Ai → A0
i

A0 ¼ tJTA⇔ A0
i ¼ ðJTÞjiAj; ðA4Þ

A ¼ tðJ−1T ÞA0 ⇔ Ai ¼ ðJ−1T ÞjiA0
j: ðA5Þ

Here is an example with the derivation operators,

∂x ¼ cosϕ∂r −
sinϕ
r

∂ϕ; ðA6Þ

∂y¼ cosθsinϕ∂r−
sinθ

ρþrsinϕ
∂θþ

cosθcosϕ
r

∂ϕ; ðA7Þ

∂z¼ sinθsinϕ∂rþ
cosθ

ρþrsinϕ
∂θþ

sinθcosϕ
r

∂ϕ: ðA8Þ

The Minkowski metric η ¼ ð1;−1;−1;−1Þ transforms
according to

MT ¼
�
1 0

0 JT

�
; ðA9Þ

which gives

ηT ¼ tMTgEMT ¼

0
BBB@
1 0 0 0

0 −1 0 0

0 0 −ðρþrsinϕÞ2 0

0 0 0 −r2

1
CCCA: ðA10Þ

3. Transformation of contravariant quantities

Contravariant quantities transform like Ai → A0i,

A0 ¼ J−1T A⇔ A0i ¼ ðJ−1T ÞijAj; ðA11Þ

A ¼ JTA0 ⇔ Ai ¼ ðJTÞijA0j: ðA12Þ

This is the case, for example, of the magnetic potential or of
the Dirac matrices α (which are not really contravariant, but
we use this type of transformation in the text). In particular,

αr ¼ cosϕαx þ cos θ sinϕαy þ sin θ sinϕαz; ðA13Þ

αθ ¼ 1

ρþ r sinϕ
ð− sin θαy þ cos θαzÞ; ðA14Þ

αϕ ¼ −
sinϕ
r

αx þ cos θ cosϕ
r

αy þ sin θ cosϕ
r

αz: ðA15Þ

4. Transformation of differential operators

a. Laplacian

The Laplacian is needed for the kinetic part of the
second-order Dirac equation,
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∇2
T ¼ 1

rjρþ r sinϕj
�
∂rðrjρþ r sinϕj∂rÞ

þ ∂θ

�
r

jρþ r sinϕj ∂θ

�
þ ∂ϕ

�jρþ r sinϕj
r

∂ϕ

��
:

ðA16Þ

Practically, we always have ρþ r sinϕ > 0 in this paper.

b. Divergence

The divergence can be used to derive the second-order
Dirac equation and is given by

∇T · A0 ¼ 1

jrðρþ r sinϕÞj ð∂rðjrðρþ r sinϕÞjA0rÞ

þ ∂θðjrðρþ r sinϕÞjA0θÞ
þ ∂ϕðjrðρþ r sinϕÞjA0ϕÞÞ: ðA17Þ

c. Rotational of covariant components

We need the rotational of the magnetic covariant vector
which gives the magnetic field

Bx0 ¼ ð∇T∧ðA0
iÞÞx0 ; ðA18Þ

which explicitly reads

Br ¼ −
�
−
jρþ r sinϕj

r
∂ϕ þ 2 sinϕ

�
Aθ þ r

jρþ r sinϕj ∂θAϕ;

Bθ ¼ −
1

jρþ r sinϕj
�
1

r
∂ϕAr − ð2þ r∂rÞAϕ

�
;

Bϕ ¼ −
1

rjρþ r sinϕj ð−∂θAr þ ð2 cosϕjρþ r sinϕj þ jρþ r sinϕj2∂rÞAθÞ: ðA19Þ

APPENDIX B: SECOND-ORDER DIRAC
EQUATION IN TOROIDAL COORDINATES

Greek indices are used for Minskowski space-time of
metric signature ðþ − −−Þ, while Latin indices are used for
the spatial part only. ημν represents the Minkowski metric,
ϵijk represents the fully antisymetric (Ricci) pseudotensor,
and 1 represents the identity.
We start with the derivation of the second-order Dirac

equation in Cartesian coordinates and then turn it into
toroidal coordinates. We take into account the coupling of
an electron of charge −e to a classical electromagnetic field

defined by a four-potential ðAμÞ ¼ ðΦ=c; ~AÞ through the
covariant derivative defined as

DμΨ ¼
�
∂μ þ

i
ℏ
eAμ

�
Ψ: ðB1Þ

For convenience we use the natural units such that
ℏ ¼ c ¼ 1. Then, the Dirac equation reads

ðiγμDμ −mcÞΨ ¼ 0; ðB2Þ
on which we apply the “squaring” operator ðiγμDμ þmcÞ.
The second-order Dirac equation then takes the form

−ððγμDμÞðγνDνÞ þm2ÞΨ ¼ 0: ðB3Þ
Developing the kinetic part, one finds

ðγμDμÞðγνDνÞ¼ð∂μ∂μþðieÞ2AμAμÞþ iefγμAμ;γν∂νg;
ðB4Þ

where

fγμAμ; γν∂νg ¼ fγμ; γνgAμ∂ν þ γνγμ∂νðAμÞ; ðB5Þ

and where

γνγμ∂νðAμÞ ¼
1

2
½γμγν∂μðAνÞ þ γνγμ∂νðAμÞ�

¼ 1

2
½γμγνð∂μAν − ∂νAμÞ þ 2ημν∂νAμ�: ðB6Þ

Using the identities

fγμ; γνg ¼ 2ημν1; ðB7Þ

γiγj ¼ −δij − iϵijkΣk; ðB8Þ

γ0γi ¼ αi; ðB9Þ

and recognizing the electromagnetic field tensor,

Fμν ¼ ∂μAν − ∂νAμ; ðB10Þ
from which we get the contravariant components of the
electric and magnetic fields (see, e.g., [17])

Ei ¼ ηijF0j ¼ −F0i; ðB11Þ

Bi ¼ ϵijkFjk; ðB12Þ

we get
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γνγμ∂νðAμÞ ¼ −~α · ~E − iΣk ϵijk∂iAj|fflfflfflffl{zfflfflfflffl}
curlðAÞk¼Bk

þ 2ημν∂νAμ: ðB13Þ

The anticommutator Eq. (B5) then becomes

fγμAμ;γν∂νg¼2

�
Aμ∂μþ

1

2
∂μAμ

�
− ~α · ~E− i~B · ~Σ: ðB14Þ

Inserting Eq. (B14) back into Eq. (B4) and reorganizing the terms a little, we obtain

ðγμDμÞðγνDνÞ ¼
�
∂μ∂μ þ 2i

e
ℏ

�
Aμ∂μ þ

1

2
∂μAμ

�
−
e2

ℏ2
AμAμ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð∂μþieℏAμÞ2

− ie~α · ~Eþ e~B · ~Σ; ðB15Þ

from which we get the same expression for the second-order Dirac equation as in [14] (one will pay attention that in
Cartesian coordinates Ax ¼ −Ax and that the usual magnetic potential ~A is defined as a contravariant quantity; with the
metric signature used here: A0 ¼ Φ=c ¼ A0),

ðℏcÞ2
��

1

c
∂t þ i

e
ℏc

Φ
�

2

−
X

x∈fx;y;zg

�
∂x þ i

e
ℏ
Ax

�
2

−i
e
ℏc

~α · ~Eþ e
ℏ
~B · ~Σþm2c2

ℏ2

�
Ψ ¼ 0: ðB16Þ

We now switch to another spatial coordinate system denoted by primes, with the only assumption that this system is
orthogonal. The Jacobian of the transformation is given by ðJijÞ. In Eq. (B17) we separate the time components from the
space components,

ðγμDμÞðγνDνÞ ¼ ð∂t þ ieΦÞ2 −
�
Δ0 − 2i

e
ℏ

�
A0i∂ 0

i þ
1

2
∇0 · ~A0

�
þ e2

ℏ2
A0iA0

i

�
− ie~α · ~Eþ e~B · ~Σ; ðB17Þ

where A0
i ¼ JijAi and Δ0;∇0· represent the Laplacian and

the divergence in the primed system of coordinates. We
have used the orthogonality of Jij to eliminate cross terms.

If only spatial coordinates change, the electric field ~E here
transforms like a covariant vector and ~α like a contravariant
quantity (as shown in the text) such that ~α · ~E ¼ ~α0 · ~E0. The
rules of transformation of the magnetic field are less
straightforward, and it might be simpler to just express it

as a function of the primed variables without changing its
basis. That is the choice of this paper.
In the case proposed in this paper, we use the

toroidal coordinates defined in A, with a Laplacian and
a divergence respectively given by Eqs. (A16) and (A17).
The magnetic potential is assumed to be only along
the third direction: ~A0 ¼ ð0; 0; AϕÞ. With all replacements
made, we obtain

− ðℏcÞ2
�
−

1

c2
∂2
t2þ∂2

r þ
1

r
∂r þ

1

ðρþ r cosϕÞ2 ∂
2
θ2
þ 1

r2
∂2
ϕ2 − 2i

e
ℏ
Aϕ∂ϕ þ

e2

ℏ2
AϕAϕ −

e
ℏ
~B · ~Σ −

m2c2

ℏ2

þ cosϕ
ρþ r cosϕ

∂r −
sinϕ

rðρþ r cosϕÞ ∂ϕ − ie
r sinϕ

ρþ r cosϕ
Aϕ

�
Ψ ¼ 0: ðB18Þ

The non-negligible (see the text) Laplacian terms are the
first five terms on the first line. The terms involving
the magnetic potential are the three following terms. All
the terms on the second line are neglected in this paper, the
two leftmost terms coming from the Laplacian and the
rightmost term being the divergence.

APPENDIX C: RESOLUTION OF THE RADIAL
DIFFERENTIAL EQUATION

In this appendix, we develop the detailed solution of
the differential Eq. (36), giving the radial dependency of
the proper states of Dirac’s equation. Here we recall the
equation
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�
∂2
x2 þ

1

x
∂xþ

1

x2
∂2
ϕ2 þ2i∂ϕ−x2þC

�
fðx;ϕÞ¼0; ðC1Þ

where −C is the proper value of the equation, to be
determined.
Assuming the following form for f:

fðx;ϕÞ ¼ eiξϕgðxÞ ðC2Þ

and inserting it into Eq. (C3), we obtain

�
∂2
x2 þ

1

x
∂x −

ξ2

x2
− 2ξ − x2 þ C

�
gðxÞ ¼ 0: ðC3Þ

We notice that

�
∂2
x2 þ

1

x
∂x

�
gðxÞ ¼ 1ffiffiffi

x
p ∂2

x2ð
ffiffiffi
x

p
gðxÞÞ þ 1

4x2
gðxÞ; ðC4Þ

which once put into Eq. (C3) gives the following form:

∂2
x2ð

ffiffiffi
x

p
gðxÞÞþ

�1
4
−ξ2

x2
−2ξ−x2þC

�
ð ffiffiffi

x
p

gðxÞÞ¼0: ðC5Þ

Here we recognize the differential equation giving
generalized Laguerre functions given in [15], table 18.8.1,

�
∂2
x2 þ

1
4
− α2

x2
− x2 þ 4sþ 2αþ 2

�
hðxÞ ¼ 0; ðC6Þ

where α is a real parameter strictly larger than −1, s a
positive integer, and the solution h is

hðxÞ ¼ e−
x2
2 xαþ1=2LðαÞ

s ðx2Þ: ðC7Þ

Identifying α and C in Eq. (C5), we find

α ¼

� jξj if jξj < 1

jξj if jξj ≥ 1
; ðC8Þ

and

C ¼


4sþ 2ðξ� jξjÞ þ 2 if jξj < 1

4sþ 2ðξþ jξjÞ þ 2 if jξj ≥ 1
: ðC9Þ

Finally the solutions of Eq. (C3) are

fðx;ϕÞ ¼ eiξϕe−
x2
2 xαLðαÞ

s ðx2Þ: ðC10Þ

In the specific case of this paper we have ξ ¼ l⊥.
Therefore, we obtain

α ¼

� 1

2
if l⊥ ¼ 1

2

jl⊥j otherwise
; ðC11Þ

and

C ¼


4sþ 2 if l⊥ ≤ 0

4ðsþ l⊥Þ þ 2 if l⊥ ≥ 0
: ðC12Þ

APPENDIX D: RESOLUTION OF THE
NEWTONIAN HAMILTON-JACOBI PROBLEM

OF AN ELECTRON IN A CONSTANT
UNIFORM MAGNETIC FIELD

We work out the general solution, without assuming the
center of motion, of the motion of an electron in a uniform
constant magnetic field in polar coordinates using the
Hamilton-Jacobi formalism of Newtonian mechanics.
Although heavy, this way of obtaining a common result
is interesting in view of the comparison with the quantum
mechanical result, given the parenting between Hamilton-
Jacobi formalism and Hamiltonian quantum mechanics.
Without loss of generality we restrict ourselves to a plane

of motion with polar coordinates ðr; θÞ. The position vector
~r and the velocity _~r are then expressed in the polar basis
ð~ur; ~uθÞ by

~r ¼ r~ur; ðD1Þ

_~r ¼ _r~ur þ r_θ~uθ: ðD2Þ

The link with Cartesian coordinates comes with ~ur ¼
ðcos θ; sin θÞ and ~uθ ¼ ð− sin θ; cos θÞ.
We choose to write the magnetic potential giving a field

of flux intensity B orthogonal to the plane of motion in a
symmetric gauge with

~A ¼ 1

2
rB~uθ: ðD3Þ

Then, the Lagrangian of an electron of charge −e is
given by

L ¼ 1

2
mð_r2 þ ðr_θÞ2Þ − 1

2
er2 _θB: ðD4Þ

We readily see that θ is a cyclic coordinate as only its
derivative participates in the Lagrangian. Therefore, its
conjugate momentum is a constant of motion

pθ ¼
∂L
∂ _θ ¼ mr2

�
_θ −

ωc

2

�
: ðD5Þ

Notice that pθ is actually the angular momentum of the
particle.

DIRAC STATES OF AN ELECTRON IN A CIRCULAR … PHYSICAL REVIEW D 95, 085002 (2017)

085002-13



We may now define the typical time scale T and length
scale λ

ðωc=2Þ−1 ¼
�
eB
2m

�
−1
; ðD6Þ

λ ¼
ffiffiffiffiffiffiffiffiffi
2pθ

mωc

s
; ðD7Þ

which define an energy scale

ϵ ¼ mðλωc=2Þ2: ðD8Þ
We switch now to dimensionless coordinates

r → x ¼ r=λ; ðD9Þ

t → τ ¼ ωc

2
t; ðD10Þ

and to a dimensionless Lagrangian

~L ¼ L=ϵ ¼ 1

2
ðx02 þ θ0ð1þ x2ÞÞ − 1 − x2; ðD11Þ

where 0 denotes the derivation with respect to τ while _ is
with respect to t.
The momentum conjugated to x is simply

px ¼
∂ ~L
∂x0 ¼ x0: ðD12Þ

The Legendre transform of ~L gives us the corresponding
Hamiltonian

~H ¼ pxx0 þ pθθ
0 − ~L ¼ 1

2

�
p2
x þ

1

x2
þ 2þ x2

�
; ðD13Þ

where we made obvious that θ was an ignorable coordinate
by using Eq. (D5) to get that θ0 ¼ 1=x2 þ 1.
Let us now introduce the Hamilton characteristic

function W (see, e.g., [18]), of which we consider only
the x dependence. We get the following Hamilton-Jacobi
equation �∂W

∂x
�

2

þ 1

x2
þ 2þ x2 ¼ 2 ~E; ðD14Þ

where ~E ¼ E=ϵ is the dimensionless energy of the
system. It follows that one gets the following Hamilton
function

W ¼ �
Z

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E −

1

x2
− 2 − x2

r
: ðD15Þ

Choosing ~E as the new momentum we get that its
conjugate coordinate is

Q ~E ¼ ∂W
∂ ~E ¼ �

Z
dx

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E − 1

x2 − 2 − x2
q ; ðD16Þ

which integrates as

Q ~E ¼ � 1

2
arctan

�
a − x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ax2 − x4 − 1
p

�
; ðD17Þ

where a ¼ ~E − 1.
The denominator of the arctan argument in Eq. (D17) is

necessarily positive since it is proportional to ð∂W∂x Þ2. By
construction we now have Q0

~E
¼ ∂ ~H

∂ ~E ¼ 1. Integrating and
equating to Eq. (D17), one obtains

a − x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ax2 − x4 − 1

p ¼ � tan ð2τ þ θ0Þ ðD18Þ

Solving for x2 in Eq. (D18), one obtains

x2 ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
jsinð2τ þ θ0Þj: ðD19Þ

In order to keep a continuous trajectory, one will switch
from the þ to the − solution whenever the sin function
switches as well.
Finally, we use the conservation of angular momentum

[Eq. (D5)] to obtain the equation for θ and switch back to
the international unit system,

r ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
sin ðωctþ θ0Þ

q
;

θ ¼ ωc

2
tþ arctan

�
a tan

�
ωc

2
tþ θ0

2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p �
þ nπ;

ðD20Þ
with

λ ¼
ffiffiffiffiffiffiffiffiffi
2pθ

mωc

s
; ðD21Þ

a ¼ E
1
2
pθωc

− 1; ðD22Þ

and

n ¼ π

2
þ floor

�ωc
2
tþ θ0

2
− π

2

π

�
: ðD23Þ

Thus, we obtain a solution depending only on the
invariants of motion, E and pθ, and a constant of integration
θ0 depending on the initial conditions.
Let us interpret the different trajectories. First, if we

assume that r or _θ is constant, from the expression of pθ

[Eq. (D5)] we see that the other one is constant as well.
From Eq. (D20) we see that this is allowed only for a ¼ 1.
In this case we find readily that
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r ¼ λ; ðD24Þ

θ ¼ ωct: ðD25Þ

Using the relation between the conjugate momentum pθ

and the orthogonal “kinetic” momentum p⊥ ¼ mr_θ,

pθ ¼ rp⊥ −mr2
ωc

2
: ðD26Þ

Replacing r with λ in the above expression, one obtains
that the radius of the trajectory is the usual Larmor radius

r ¼ λ ¼ p⊥
mωc

: ðD27Þ

In this configuration the radial momentum is zero, and

E ¼ pθωc: ðD28Þ

In this particular configuration we see that p⊥ is constant
as well.
We see that by construction a ≥ 1. Now, we consider the

solutions for higher energies, i.e., higher values of a. We
see that they are all circles after computing the curvature
radius using the formula

ρ ¼ ðdrdθ2 þ r2Þ3=2
2drdθ

2 þ r2 − r d2r
dθ2

: ðD29Þ

We obtain, after a lengthy but straightforward calcula-
tion, the general formula for the radius of curvature

ρ ¼ λ

ffiffiffiffiffiffiffiffiffiffiffi
aþ 1

2

r
¼

ffiffiffiffiffiffiffiffiffi
2E
mω2

c

s
: ðD30Þ

Remembering that the magnetic field does not work, we
find that the kinetic energy is constant and therefore these
circles are circulated at constant speed ωcρ. This allows us
to find the center of each circle ~r0 by simple geometric
considerations,

~r0 ¼ ~r −
1

ωc

d~r
dt

∧ ~pθ

pθ
; ðD31Þ

where ~pθ is the vectorial angular momentum, which here is
orthogonal to the plane of motion. The distance of the
center of motion to the origin of coordinates takes a simple
form

∥~r0∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − λ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
E − pθωc

mω2
c

s
: ðD32Þ

Put differently, this gives a simple expression for the
energy in terms of

E ¼ pθωc þ
1

2
mr20ω

2
c: ðD33Þ

Thus, we find the very intuitive result that, when the
trajectory is centered on the origin of coordinates, all the
energy is stored in the angular momentum. However, we
also see that the energy is “degenerate” with another
invariant of motion, r20, as in the quantum case. In any
case, according to Eq. (D30), the radius of the trajectory is
proportional to the square root of the full energy.

[1] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and
R. A. Collins, Observation of a rapidly pulsating radio
source, Nature (London) 217, 709 (1968).

[2] D. Viganò, J. A. Pons, J. A. Miralles, and N. Rea, Magnetic
fields in neutron stars, arXiv:1501.06735.

[3] J. Arons, in Neutron Stars and Pulsars, Astrophysics and
Space Science Library Vol. 357, edited by W. Becker
(Springer, Berlin, 2009), p. 373.

[4] K. S. Cheng and J. L. Zhang, General radiation formulae for
a relativistic charged particle moving in curved magnetic
field lines: The synchrocurvature radiation mechanism,
Astrophys. J. 463, 271 (1996).

[5] J. L. Zhang and Y. F. Yuan, The quantum radiation formulae
of a new radiation mechanism in curved magnetic fields,
Astrophys. J. 493, 826 (1998).

[6] T. Harko and K. S. Cheng, Unified classical and quantum
radiation mechanism for ultrarelativistic electrons in curved

and inhomogeneous magnetic fields, Mon. Not. R. Astron.
Soc. 335, 99 (2002).

[7] D. Viganò, D. F. Torres, K. Hirotani, and M. E. Pessah,
Compact formulae, dynamics and radiation of charged
particles under synchro-curvature losses, Mon. Not. R.
Astron. Soc. 447, 1164 (2015).

[8] S. R. Kelner, A. Y. Prosekin, and F. A. Aharonian, Synchro-
curvature radiation of charged particles in the strong curved
magnetic fields, Astron. J. 149, 33 (2015).

[9] M. A. Ruderman and P. G. Sutherland, Theory of pulsars–
Polar caps, sparks, and coherent microwave radiation,
Astrophys. J. 196, 51 (1975).

[10] A. K. Harding and R. Preece, Quantized synchrotron radi-
ation in strong magnetic fields, Astrophys. J. 319, 939
(1987).

[11] L. D. Huff, The motion of a Dirac electron in a magnetic
field, Phys. Rev. 38, 501 (1931).

DIRAC STATES OF AN ELECTRON IN A CIRCULAR … PHYSICAL REVIEW D 95, 085002 (2017)

085002-15

https://doi.org/10.1038/217709a0
http://arXiv.org/abs/1501.06735
https://doi.org/10.1086/177239
https://doi.org/10.1086/305138
https://doi.org/10.1046/j.1365-8711.2002.05598.x
https://doi.org/10.1046/j.1365-8711.2002.05598.x
https://doi.org/10.1093/mnras/stu2456
https://doi.org/10.1093/mnras/stu2456
https://doi.org/10.1088/0004-6256/149/1/33
https://doi.org/10.1086/153393
https://doi.org/10.1086/165510
https://doi.org/10.1086/165510
https://doi.org/10.1103/PhysRev.38.501


[12] M. H. Johnson and B. A. Lippmann, Motion in a constant
magnetic field, Phys. Rev. 76, 828 (1949).

[13] A. A. Sokolov and I. M. Ternov, Synchrotron Radiation
(Akademie-Verlag, Berlin, 1968).

[14] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevski,
Quantum Electrodynamics (Oxford University Press,
Oxford, 1982).

[15] NIST Handbook of Mathematical Functions, edited by
F.W. J. Olver, D. W. Lozier, R. F. Boisvert, and C.W. Clark

(Cambridge University Press, Cambridge, England,
2010).

[16] D. B. Melrose and A. J. Parle, Quantum electrodynamics in
strong magnetic fields. I. Electron states, Aust. J. Phys. 36,
755 (1983).

[17] E. Gourgoulhon, Special Relativity in General Frames,
Graduate Texts in Physics (Springer, Berlin, 2013).

[18] H. Goldstein, Classical Mechanics (Addison-Wesley,
Reading, MA, 1980).

VOISIN, BONAZZOLA, and MOTTEZ PHYSICAL REVIEW D 95, 085002 (2017)

085002-16

https://doi.org/10.1103/PhysRev.76.828
https://doi.org/10.1071/PH830755
https://doi.org/10.1071/PH830755

