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We investigate the viability of submillimeter-wavelength oscillating deviations from the Newtonian
potential at both the theoretical and the experimental/observational level. At the theoretical level, such
deviations are generic predictions in a wide range of extensions of general relativity (GR) including fðRÞ
theories, massive Brans-Dicke (BD) scalar-tensor theories, compactified extra dimension models, and
nonlocal extensions of GR. However, the range of parameters associated with such oscillating deviations is
usually connected with instabilities present at the perturbative level. An important exception emerges in
nonlocal gravity theories where oscillating deviations from Newtonian potential occur naturally on
submillimeter scales without any instabilities. As an example of a model with unstable Newtonian
oscillations, we review an fðRÞ expansion around general relativity of the form fðRÞ ¼ Rþ 1

6m2 R2 with

m2 < 0, pointing out possible stabilization mechanisms. As an example of a model with stable Newtonian
oscillations, we discuss nonlocal gravity theories. If such oscillations are realized in nature on
submillimeter scales, a signature is expected in torsion balance experiments testing the validity of
Newton’s law. We search for such a signature in the torsion balance data of the Washington experiment
[D. J. Kapner, T. S. Cook, E. G. Adelberger, J. H. Gundlach, B. R. Heckel, C. D. Hoyle, and H. E. Swanson,
Phys. Rev. Lett. 98, 021101 (2007).] (combined torque residuals of experiments I, II, and III), testing
Newton’s law at submillimeter scales. We show that an oscillating residual ansatz with spatial wavelength
λ≃ 0.1 mm provides a better fit to the data compared to the residual Newtonian constant ansatz by
Δχ2 ¼ −15. Similar improved fits however, also occur in about 10% of the Monte Carlo realization of
Newtonian data on similar or larger scales. Thus, the significance level of this improved fit is at a level of
not more than 2σ. The energy scale corresponding to this best-fit wavelength is identical to the dark energy

length scale, λde ≡
ffiffiffi
4

p
ℏc=ρde ≈ 0.1 mm.

DOI: 10.1103/PhysRevD.95.084050

I. INTRODUCTION

The discovery of the accelerating expansion of the
Universe [1–3] has opened a new prospect for a possible
need for modification of general relativity beyond the level
of a cosmological constant. Such a geometric origin of dark
energy is simple and well motivated physically [4–8].
The typical physics scale of geometric dark energy

required so that it starts dominating the Universe at recent
cosmological times is λde≡

ffiffiffi
4

p
ℏc=ρde≈0.085mm (assum-

ing Ω0m ¼ 0.3 and H0 ¼ 70 km sec−1Mpc−1). Therefore,
if the origin of the accelerating expansion is geometrical, it
is natural to expect the presence of signatures of modified
gravity on scales of about 0.1 mm.
A wide range of experiments has focused on this range

of scales [9–12], and constraints have been imposed on
particular parametrizations of extensions of Newton’s
gravitational potential. Such parametrizations are motivated
by viable extensions of general relativity and include

Yukawa interactions leading to an effective gravitational
potential

Veff ¼ −G
M
r
ð1þ αe−mrÞ ð1:1Þ

and a power-law ansatz of the form [13]

Veff ¼ −G
M
r

�
1þ βk

�
1

mr

�
k−1

�
ð1:2Þ

arising, for example, in the context of some brane world
models [14–17].
The Yukawa interaction parametrization (1.1) is moti-

vated by the weak gravitational field limit solution of a
point mass in a wide range of extensions of GR, including
fðRÞ theories [18–20], massive Brans-Dicke (BD) [21–23]
and scalar-tensor theories, compactified extra dimension
models [24–29], etc. In each of these models, the mass
scale m has a different physical origin. For example, in
massive BD theories, m is the mass scale of the BD scalar,
and α ¼ 1

3þ2ω; while in fðRÞ theories, it is the lowest-order-
term series expansion of fðRÞ around GR of the form
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fðRÞ ¼ Rþ 1

6m2
R2 þ � � � : ð1:3Þ

In fðRÞ theories, we have α ¼ 1
3
[30]. In radion compacti-

fied extra dimension models, m is the inverse radius of the
extra dimension (m ¼ b−1), while α ¼ D

Dþ2
[27], whereD is

the number of toroidally compactified dimensions even
though different values may be obtained for different
compactifications [29].
In all these theories, the weak-field-limit solution

remains mathematically valid and consistent for m2 < 0
[18,30]. For this mass range, the correction of the effective
gravitational potential becomes oscillating and takes the
form

Veff ¼ −G
M
r
ð1þ α cosðmrþ θÞÞ; ð1:4Þ

where θ is an arbitrary parameter. Such a potential clearly
has no Newtonian limit and could be ruled out immediately
on this basis [20,31]. However, since the extra force
component averages out to zero, for submillimeter wave-
length oscillations and α ¼ Oð1Þ, such an oscillating
correction could remain undetectable by current experi-
ments and astrophysical observations due to finite accuracy
in length and force measurements.
This class of theories however, has an additional prob-

lem: the vacuum in most such theories suffers from serious
instabilities [32,33] (see also Ref. [34]) in this range of
values of m2. Due to these problems, the oscillating
correction has not been considered in any detail, and there
are currently no experimental constraints on the corre-
sponding parametrization parameters.
A peculiar feature of these perturbative results

[32,33,35–40] is that they indicate the presence of an
infinite discontinuity in the stability properties of these
theories as m−2 → 0−. In this limit, fðRÞ theories are
extremely unstable (with a lifetime of the vacuum that
approaches zero as m−2 → 0). At exactly m−2 ¼ 0, how-
ever, the theory becomes stable and identical to GR. The
existence of this unphysical infinite discontinuity may
indicate that nonperturbative effects and nontrivial back-
grounds may play a significant role in the stability analysis.
Such effects are briefly discussed in the present analysis.
A more promising theoretical model where stable spatial

oscillations naturally occur for the gravitational potential
are nonlocal theories of gravity [41–43] motivated from
string theory and described by actions that are made
generally covariant and ghost-free at the perturbative level
by including infinite derivatives [44–46]. For example,
such an action, viable also at the cosmological level, is of
the form [47]

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 1

6m2
R

�
1 −

Λ4

□2

�
R

�
; ð1:5Þ

wherem is the scale of nonlocality and□ is the d’Alembert
operator.
In this class of theories, the generalized Newtonian

potential remains finite at r ¼ 0 and may develop spatial
oscillations [41,42,48] around the scale of nonlocality
(see Sec. II C) which decay on larger scales. Despite its
increased complexity, this class of theories has four
important advantages:
(1) They can be free from singularities while having a

proper Newtonian limit [43].
(2) They are free from instabilities in the absence of

tensorial nonlocal terms [49].
(3) They can emerge from effects at the quantum level.

In particular, light-particle loops at the quantum
level can generate nonlocal terms in the quantum
effective action, which can make it renorma-
lizable [50].

(4) They are consistent with the cosmological observa-
tions without need for a cosmological constant
[47,51–53].

Thus, in view of the generic nature of oscillating para-
metrizations and the fact that there may be stabilization
mechanisms like backreaction from higher-order nonlinear
or nonlocal terms, it is of interest to consider in some detail
the theoretical models and the observational consequences
of such an oscillating correction of Newton’s law potential.
This is the goal of the present analysis.
Awide range of experiments (see Fig. 1 and Ref. [10] for

a good review) have been performed during recent years,
imposing constraints on deviations from Newton’s law
using the Yukawa and the power-law parametrizations.
These include torsion balance experiments [54–69] meas-
uring gravitational torques from source masses on test
masses attached to torsion balance bars, Casimir force
experiments [70,71] looking for anomalies in the electric

FIG. 1. A review of current constraints [9,11,12,54–67,70,71,
73–75] based on the Yukawa parametrization (1.1) for deviation
from Newton’s law (from Ref. [10]).
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forces between two metal surfaces and atomic or nuclear
experiments [72], and looking for anomalies in the dynami-
cal evolution of particle systems in the context of known
standard-model interactions. The constraints of such
experiments on Yukawa deviations from a Newtonian
potential are reviewed in Fig. 1.
The most constraining experiments testing the Yukawa

parametrization (1.1) for deviations from Newton’s
law for α ¼ Oð1Þ have been performed using a torsion
balance instrument by the Washington group [9] in 2006.
For α ¼ 1, the 2σ constraint on m was obtained as
m≳ 18 mm−1. An interesting open question is the follow-
ing: What are corresponding constraints in the context
of an oscillating parametrization for deviations from
Newton’s law? The answer to this question is one of the
main goals of the present analysis.
The structure of this paper is the following: In the

next section, we discuss the emergence of an oscillating
deviation from Newton’s constant in a particular class of
theoretical modified gravity models: fðRÞ theories [76]
with fðRÞ ¼ Rþ 1

6m2 R2. We derive the parameter range
of m2 for which an oscillating deviation from the
Newtonian potential emerges using both the fðRÞ for-
malism [77] and the equivalent massive BD formalism
[78]. We also discuss the stability of this solution and
confirm that it is unstable, in accordance with the
Dolgov-Kawasaki-Faraoni instability [32,38]. The gravi-
tational potential that emerges in nonlocal gravity theo-
ries is also discussed and shown to have oscillating
deviations from the Newtonian potential. Even though
these deviations are in general complicated functional
expressions [41], we show that within appropriate limits,
they are very well fit by simple trigonometric functions.
In Sec. III, we discuss the consistency of these sub-
millimeter oscillations of the generalized Newtonian
potential with macroscopic large-scale observations given
the finite accuracy in the measurement of forces and
lengths. We also use an oscillating parametrization to fit
the torsion balance data of the Washington group experi-
ment. Finally, in Sec. IV, we conclude, summarize, and
discuss future extensions of the present analysis.1

II. SPATIAL OSCILLATIONS OF NEWTON’S
CONSTANT IN MODIFIED GRAVITY THEORIES

A. f ðRÞ theories I: The equivalent BD formalism
and the Newtonian limit

The Einstein-Hilbert action is generalized in the context
of fðRÞ theories as

SR ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smatter; ð2:1Þ

where R is the Ricci scalar. This action may be shown to be
dynamically equivalent to the scalar-tensor action of a
massive BD scalar field with ω ¼ 0 [78–80]:

SBD ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðϕÞ þ fϕðϕÞðR − ϕÞ� þ Smatter:

ð2:2Þ

Variation of the action (2.2) with respect to the field ϕ leads
to the condition ϕ ¼ R (assuming fϕϕ ≠ 0), which reduces
the action (2.2) to the fðRÞ action (2.1) [78]. Assuming an
fðRÞ theory of the form

fðRÞ ¼ Rþ 1

6m2
R2; ð2:3Þ

the scalar field action (2.2) is easily shown to take the form

SBD ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ��
1þ 1

3m2
ϕ

�
R −

1

6m2
ϕ2

�

þ Smatter: ð2:4Þ

We now define the fieldΦ≡ 1þ 1
3m2 ϕ, and the action (2.4)

takes the form

SBD ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
ΦR −

3

2
m2ðΦ − 1Þ2

�
þ Smatter:

ð2:5Þ

The action (2.5) is identical with the action of a massive BD
scalar field with ω ¼ 0. Due to the nonzero mass of the BD
scalar PPN parameter, γ is not of the form γ ¼ 1þω

2þω ¼ 1
2
as in

the massless case. The Newtonian limit of this theory has
been investigated in detail in Ref. [21], but we review that
analysis here for completeness, setting ω ¼ 0.
The dynamical field equations obtained by varying the

action (2.5) are of the form

Φ
�
Rμν −

1

2
gμνR

�
¼ 8πGTμν þ∇μ∂νΦ − gμν□Φ

− gμν
3

4
m2ðΦ − 1Þ2 ð2:6Þ

□Φ ¼ 8πG
3

T þm2ððΦ − 1Þ2 þ ðΦ − 1ÞΦÞ: ð2:7Þ

We now consider the weak gravitational field of a point
mass with

Tμν ¼ diagðMδðr⃗Þ; 0; 0; 0Þ; ð2:8Þ

1In what follows, we use the metric signature ð−þþþÞ. This
is important, in view of the fact that the sign of the Ricci scalar
changes if a different metric signature is used, and thus the sign
of m2 in Eq. (1.3) leading to stability or instability would also
change.
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and thus we expand around a constant-uniform back-
ground field Φ0 ¼ 1 and a Minkowski metric ημν ¼
diagð−1; 1; 1; 1Þ:

Φ ¼ 1þ φ; ð2:9Þ

gμν ¼ ημν þ hμν: ð2:10Þ

The resulting equations for φ and hμν obtained from (2.6),
(2.7), (2.9), and (2.10) in the gauge hμν ;μ − 1

2
hμμ;ν ¼ φ;ν are

of the form

ð□ −m2Þφ ¼ −
8πG
3

Mδðr⃗Þ; ð2:11Þ

−
1

2

�
□

�
hμν − ημν

h
2

��
¼ 8πGTμν þ ∂μ∂νφ − ημν□φ;

ð2:12Þ

where h ¼ hμμ. For static configurations, the equa-
tions (2.11) and (2.12) become

∇2φ −m2φ ¼ −
8πG
3

Mδðr⃗Þ; ð2:13Þ

∇2h00 −∇2φ ¼ −8πGMδðr⃗Þ; ð2:14Þ

∇2hij − δij∇2φ ¼ −8πGMδðr⃗Þδij: ð2:15Þ

These equations have the following solution:

φ ¼ 2GM
3r

e−mr; ð2:16Þ

h00 ¼
2GM
r

�
1þ 1

3
e−mr

�
; ð2:17Þ

hij ¼
2GM
r

δij

�
1 −

1

3
e−mr

�
: ð2:18Þ

The metric may now be expanded in terms of the γ post-
Newtonian parameter as

g00 ¼ −ð1þ 2VeffÞ; ð2:19Þ

gij ¼ ð1 − 2γVeffÞδij; ð2:20Þ

where Veff is the Newtonian potential. Thus, we obtain

γðm; rÞ ¼ hijji¼j

h00
¼ 3 − e−mr

3þ e−mr : ð2:21Þ

In the special case of m ¼ 0, we obtain the result of
Refs. [77,81–83], γ ¼ 1

2
(extreme deviation from GR);

while for m → ∞, we recover the GR limit γ → 1. It is

therefore clear that these theories are viable and have a
well-defined Newtonian limit in contrast to the conclusion
of some previous studies (e.g. Ref. [77]).
The generalized Newtonian potential takes the form

Veff ¼ −
h00
2

¼ −
GM
r

�
1þ 1

3
e−mr

�
; ð2:22Þ

while the corresponding force is

Feff
��! ¼ −r̂

GM
r2

�
1þ e−mr

3
þmr

3
e−mr

�
: ð2:23Þ

The stability of the solution in (2.16)–(2.18) may be
studied by considering perturbations of the form φ ¼
φ0ðrÞ þ δφðr; tÞ, where φ0 is the unperturbed static
solution (2.16). The perturbation satisfies the equation

−δ̈φþ∇2δφ −m2δφ ¼ 0: ð2:24Þ

For m2 > 0, this is the Klein-Gordon equation, which
has only wavelike solutions, and therefore φ0 is stable.
The presence of higher-order terms in the Lagrangian (2.5),
however, could change the stability properties of this
solution, since it is well known that the nonlinear Klein-
Gordon equation can have instabilities around nontrivial
solutions (e.g. Ref. [84]). The vacuum solution, however,
(φ ¼ 0) is always stable for m2 > 0.
For m2 < 0, the weak-field solution of Eq. (2.13)

becomes oscillatory and takes the form

φ ¼ 2GM
3r

cosðjmjrþ θÞ; ð2:25Þ

where θ is an arbitrary phase. The Newtonian potential in
this case takes the form

Veff ¼ −
h00
2

¼ −
GM
r

�
1þ 1

3
cosðjmjrþ θÞ

�
: ð2:26Þ

This solution is perturbatively unstable in the absence of
higher-order terms in the action or in the absence of a
nontrivial background energy-momentum tensor. In addi-
tion, the trivial vacuum solution (φ0 ¼ 0) is clearly always
unstable for this range of m2.

B. f ðRÞ theories II: The Newtonian limit
in the f ðRÞ formalism

We now rederive the form of the weak-field metric and
the effective Newtonian potential using the fðRÞ formalism
directly [18,19,30,77,78,81,85], since there has been some
controversy in the literature concerning the equivalence of
the two formalisms [80].
Variation of the fðRÞ action (2.1) with respect to the

metric leads to the generalized Einstein equations
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f0ðRÞRμν −
1

2
gμνfðRÞ ¼ 8πGTμν þ∇μ∇νf0ðRÞ

− gμν□f0ðRÞ: ð2:27Þ

Using the ansatz (2.3) and the weak-field metric expansion
(2.10) while keeping only linear terms in hμν, the dynamical
equations take the form

Rμν −
1

2
Rημν ¼ 8πGTμν þ ð∂μ∂ν − ημν∇2Þ 1

3m2
R: ð2:28Þ

Taking the trace of (2.28) and using Eq. (2.8), we find

1

m2
∇2R − R ¼ −8πGMδðr⃗Þ: ð2:29Þ

For m2 > 0, the physically interesting solution of this
equation is

R̄ ¼ 2GM
r

m2e−mr; ð2:30Þ

while for m2 < 0, we obtain the oscillating form

R̄ ¼ 2GM
r

m2 cosðjmjrþ θÞ: ð2:31Þ

Using Eq. (2.30) in Eq. (2.28), we now find the equation for
the 00-component as

R00 ¼
16

3
πGρ −

1

6
R: ð2:32Þ

At the linear level in hμν, the Ricci tensor is of the form

Rμν ¼
1

2
ð∂σ∂νhσμ þ ∂σ∂μhσν − ∂μ∂νh −∇2hμνÞ; ð2:33Þ

which for the 00-component becomes

R00 ¼
1

2
ð−∇2h00Þ: ð2:34Þ

Using Eq. (2.34) in (2.32), we find

∇2h00 ¼ −
32

3
πGρþ 1

3
R: ð2:35Þ

Setting ρ ¼ Mδðr⃗Þ and using (2.30) in (2.35), we obtain the
solution for h00 as

h00 ¼
2GM
r

�
1þ 1

3
e−mr

�
; ð2:36Þ

which is identical with the corresponding result (2.17)
found using the massive BD formalism. In order to find the

hijji¼j components, we express R in terms of the linearized
metric components as

R ¼ −2∇2hijji¼j þ∇2h00: ð2:37Þ

Using (2.35) in (2.37), we find

∇2hijji¼j ¼ −
16

3
πGρ −

1

3
R; ð2:38Þ

which for ρ ¼ Mδðr⃗Þ and R from Eq. (2.30) leads to

hij ¼
2GM
r

δij

�
1 −

1

3
e−mr

�
: ð2:39Þ

This is identical to the corresponding result (2.18)
obtained using the massive BD formalism. The generalized
Newtonian potential and the PPN parameter γ are now
obtained in exactly the same way as in the massive BD
formalism.
For m2 < 0, the solution reduces to the oscillating form

h00 ¼
2GM
r

�
1þ 1

3
cosðjmjrþ θÞ

�
; ð2:40Þ

hij ¼
2GM
r

δij

�
1 −

1

3
cosðjmjrþ θÞ

�
: ð2:41Þ

We thus conclude that the two formalisms are consistent
and equivalent, and they predict an oscillating correction
to the Newtonian potential in accordance with Eq. (2.26)
for m2 < 0.

1. Stability at the nonlinear level

We now discuss the stability of this oscillating weak-
field solution in the fðRÞ formulation in the presence of
nonlinear terms. Using the ansatz (2.3) in the trace of the
dynamical equations (2.27), we find [33]

−R̈þ∇2Rþ 1

6
R2 −m2R ¼ −8πGMm2δðr⃗Þ: ð2:42Þ

For large but finite m2, the linear term dominates and this
equation reduces to Eq. (2.29) with the solution in
Eqs. (2.30) and (2.31).
In order to test the stability of this solution, we perturb it,

setting R ¼ R̄þ δR, where δR is a time-dependent pertur-
bation. In view of the fact that the unperturbed solution R̄ is
large [Oðm2Þ], we need to take into account the back-
reaction from the nonlinear term 1

6
R2 to find the time

evolution of the perturbation δR. This contribution has not
been taken into account in previous stability analyses [33].
Thus, taking this term into account and keeping only linear
terms in δR, we obtain
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−δ̈Rþ∇2δR −m2

�
1 −

1

3m2
R̄

�
δR ¼ 0; ð2:43Þ

where R̄ is given by Eq. (2.30).
Assuming m2 < 0 and setting δR ¼ δR0ðrÞeωt, we

obtain a Schrodinger-like equation for the perturbation
δR0 of the form

ð−∇2 þ VðrÞÞδR0 ¼ −ω2δR0; ð2:44Þ

where the potential is

VðrÞ≡m2

�
1 −

rc
3r

cosðjmjrþ θÞ
�

ð2:45Þ

with rc ≡ 2GM. After a rescaling jmjr → r̄, we are left
with a single dimensionless parameter, r̄c ≡ jmjrc. The
presence of the large nontrivial background solution
combined with the presence of the nonlinear term has
modified the effective mass by an oscillating r-dependent
term which is not smaller than the homogeneous mass term.
This term could in principle modify the stability properties
of the background oscillating solution R̄. Notice, however,
that such a term would not change the stability properties of
the vacuum (R̄ ¼ 0). We have shown by numerical solution
of Eq. (2.44) that there are unstable mode solutions
(ω2 > 0) for all values of the dimensionless parameter r̄c
which rise exponentially with time for finite r̄ and go to 0
at r̄ → ∞.
In order to demonstrate the effects of the nonlinear

term on the stability of the perturbations, we have solved
Eq. (2.43) with the initial conditions δRðt ¼ 0; rÞ ¼ e−r

2

,
_δRðt ¼ 0; rÞ ¼ 0 for both m2 > 0 (stability) and m2 < 0

(instability). For m2 > 0 and proper rescaling, Eq. (2.43)
takes the form

−δ̈Rþ∇2δR −
�
1 −

r̄c
3r̄

e−r
�
δR ¼ 0; ð2:46Þ

while for m2 < 0 it can be written as

−δ̈Rþ∇2δRþ
�
1 −

r̄c
3r̄

cosðrÞ
�
δR ¼ 0; ð2:47Þ

where we have set the arbitrary phase θ to 0. In order to
demonstrate the effects of the nonlinear term on the
evolution of the perturbations, we have considered the
cases r̄c ¼ 0 (continuous lines in Fig. 2) and r̄c ¼ 10
(dashed lines in Fig. 2). The evolution of the perturbations
is shown in Fig. 2 for m2 > 0 (red lines) and m2 < 0 (blue
lines). Clearly, the evolution of the perturbations is sig-
nificantly affected by the presence of the nonlinear term
(dashed lines), but it appears that in this case, this term
cannot change the stability properties. In different forms of

fðRÞ, the effects of such nonlinear terms may become
important enough to stabilize such oscillating solutions
or destabilize solutions that are stable at the linear level.
Notice, for example, that one effect of the nonlinear term is
the increase of the amplitude of the oscillations in the stable
solution (m2 > 0), thus leading to time-dependent oscillat-
ing terms which do not decay even though m2 > 0. This is
an interesting new effect with possible cosmological
implications [86,87] and deserves further investigation.

C. Nonlocal gravity theories

An important problem of GR is its behavior at small
scales, where it predicts the existence of singularities. In
addition, at the quantum level, the theory is plagued with
unrenormalizable UV divergences (it is not UV-finite) [88].
A possible cure of these divergences is the introduction
of higher-derivative terms in the Einstein-Hilbert action,
which can make the theory UV-finite [89]. However, such
terms introduce instabilities at the quantum level (a spin-2
component of the graviton propagator), which can also
destabilize the classical vacuum of the theory. These
instabilities can be cured by making the theory nonlocal
through the introduction of infinite derivatives in the action
leading to modification of the graviton propagator [90]. In
order to avoid the introduction of new poles, such infinite
derivatives may be introduced in the form of an exponential
of an entire function [44,45,91,92].
This class of nonlocal gravity theories generically soft-

ens UV divergences at the quantum level while removing
the big bang and black hole singularities [90,93]. It also
leads to a modification of the Newtonian potential around
and below the scale of nonlocality m [41–43,48,94]. This
modification includes a removal of the divergence of the
potential at r ¼ 0 (the potential goes to a constant at r ¼ 0)
and the possibility of the introduction of decaying spatial

FIG. 2. The evolution of the Ricci scalar perturbations
δRðt; jmjr ¼ 1Þ is shown in for m2 > 0 (red lines: stability)
and m2 < 0 (blue lines: instability). The dashed lines correspond
to the presence of the nonlinear term with r̄c ¼ 10, while for the
continuous lines, the nonlinear term is absent (r̄c ¼ 0).

L. PERIVOLAROPOULOS PHYSICAL REVIEW D 95, 084050 (2017)

084050-6



oscillations on scales close to the scale of nonlocality. In
particular, the predicted form of the modified Newtonian
potential in these theories is of the form [41]

VeffðrÞ ¼ −
GM
r

fðr;mÞ; ð2:48Þ

where

fðr;mÞ ¼ 1

π

Z þ∞

−∞
dk

sinðkrÞe−τðk;mÞ

k
: ð2:49Þ

A typical form for τ is

τ ¼ k2n

m2n : ð2:50Þ

For n ¼ 1, it may be shown that fðrÞ ¼ Erfðm r
2
Þ, which is

linear ∼r for r < m−1 and goes to a constant for r ≫ m−1.
The form of fðrÞ for n ¼ 1 and n ¼ 20 is shown in Fig. 3
(r̄≡mr). For n > 10, the form of fðrÞ is practically
unchanged. For large n, fðrÞ is very well fit by the function

fðrÞ ¼ α1r̄ 0 < r̄ < 1; ð2:51Þ

fðrÞ ¼ 1þ α2
cosðr̄þ θÞ

r̄
1 < r̄; ð2:52Þ

where α1 ¼ 0.544, α2 ¼ 0.572, and θ ¼ 0.885π. Notice the
decaying oscillations that develop for r≳m−1 which
constitute a signature for this class of models. This class
of models are particularly interesting not only for their
UV finiteness, but also because they are free from singu-
larities while having a well-defined Newtonian limit in the
case n ¼ 1. It is therefore important to search for this type

of spatially oscillating signature in torsion balance experi-
ment data. This type of test is implemented in the next
section.

III. OSCILLATING CORRECTIONS ON
NEWTON’S CONSTANT: CONSISTENCY

WITH MACROSCOPIC OBSERVATIONS AND
TORSION BALANCE EXPERIMENTS

A. Observational viability of spatial oscillations
of Newton’s constant

The generalized Newtonian force forms predicted in the
weak-field limit of the theoretical models discussed in the
previous section may be obtained easily by differentiation
of the corresponding effective gravitational potentials.
For the nonlocal large-n effective potential (2.48) fit by
Eqs. (2.51) and (2.52), we obtain for r > m−1

F⃗1 ¼ −r̂
GM
r2

�
1þ 2α2 cosðmrþ θÞ

mr
þ α2 sinðmrþ θÞ

�
;

ð3:1Þ

while for the oscillating effective potential (2.26) obtained
for fðRÞ theories, we have

F⃗2 ¼ −r̂
GM
r2

�
1þ cosðmrþ θÞ

3
þmr

3
sinðmrþ θÞ

�
:

ð3:2Þ

The radial weak-field geodesic equation for a bound
system in such a force field, after proper rescaling, is of
the form

̈r ¼ 1

r3
−

1

r2

�
1þ 1

3
cosðmrþ θÞ þ 1

3
mr sinðmrþ θÞ

�
:

ð3:3Þ

This equation may be obtained using the effective potential

VðrÞ ¼ 1

2r2
−
1

r

�
1þ 1

3
cosðmrþ θÞ

�
; ð3:4Þ

which is shown in Fig. 4 along with the corresponding
Newtonian effective potential of a bound system.
Both types of forces, (3.1) and (3.2), clearly do not

have a Newtonian limit, since as m → ∞, there is no well-
defined limit for the corresponding deviations. However,
the existence of a Newtonian limit is not the relevant
question for the viability of these predictions. The relevant
question is the following: What are the experimental and
observational consequences of the above forms of gravi-
tational forces for

m > 10 mm−1; ð3:5Þ

FIG. 3. The form of fðrÞ for n ¼ 1 (dashed green line) and for
n ¼ 20 superposed with the fit of (2.51) and (2.52). For large n,
there are decaying spatial oscillations for r̄≡mr ≳ 1 which are
very well fit by (2.51) and (2.52). The linear behavior close to the
origin dissolves the divergence of the Newtonian potential.
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and are these consistent with current experiments and
observations?
The fact that the extra spatially oscillating force compo-

nent averages out to 0 over scales larger than 1 mm makes
the answer to this question a nontrivial issue. Immediately
ruling out these oscillating gravitational force forms just
because they do not have a Newtonian limit would be like
ruling out quantum theory because it predicts that macro-
scopic objects have a wave nature before checking if their
de Broglie wavelength is consistent with experiments.
As a simple useful toy model system where the detect-

ability of the predicted force oscillations can be tested,
consider a point mass at the center of a thick, homo-
geneous, spherical shell of density ρsh with inner radius r1
and outer radius r2 (Fig. 5). Consider now the magnitude
of the force exerted by a small solid angle ΔΩ of the
shell. Using Eq. (3.2) [where the oscillating terms are
more important compared to the corresponding terms in
Eq. (3.1)], we can easily find the force magnitude per solid
angle exerted by the shell on the particle as

Ftot ¼ FN þ Fa þ Fb; ð3:6Þ

where FN is the Newtonian contribution and Fa, Fb are the
contributions from the oscillating components which are of
the form

FNðr1; r2Þ ¼ GMρshðr2 − r1Þ; ð3:7Þ

Faðr1; r2Þ ¼ GMρsh
2

m
ðsinðmr2Þ − sinðmr1ÞÞ; ð3:8Þ

Fbðr1; r2Þ ¼ GMρshðr2 cosðmr2Þ − r1 cosðmr1ÞÞ: ð3:9Þ

For large ri and a thin shell, we can have Fb ≫ FN , and
thus it would appear that the oscillating contribution
contradicts all current experiments and observations.
However, what is actually measured in any experiment
or observation is an average gravitational force over a
range of distances and object dimensions. This averaging is
due to the relative motion of objects during an observation
and also due to the inaccurate knowledge of distances and
dimensions of gravitating objects, or even due to the
quantum uncertainty principle. Thus, the observable gravi-
tational force is

F̄ ¼ 1

δr2

Z
r1þδr=2

r1−δr=2

Z
r2þδr=2

r2−δr=2
dr01dr

0
2Fðr01; r02Þ; ð3:10Þ

where δr is the uncertainty in r1, r2 due to the above
mentioned factors. It is straightforward to show that for
any finite r1, r2, δr and large enough m, the ratios of the
oscillating components over the Newtonian component
obey

F̄b

F̄N
≲OððmδrÞ−1Þ; ð3:11Þ

F̄a

F̄N
≲OððmδrÞ−1Þ; ð3:12Þ

and thus can be made arbitrarily small and consistent
with macroscopic observations and experiments. A similar
conclusion can be obtained for the oscillating components
of Eq. (3.1) for the oscillations coming from the nonlocal
gravity theory.
In view of the derived consistency of the predicted

oscillating gravitational force terms with macroscopic
observations, it is clear that oscillating force signatures
of these theories can be searched in laboratory experiments
testing the validity of the Newtonian potential at sub-
millimeter scales. The most constraining such experiments
to date for the particular types of potentials discussed in the
present analysis are the torsion balance experiments of the
Washington group [9]. The Newtonian residual torque data
obtained by the Washington group have been used to

FIG. 4. The oscillating effective potential for a bound system of
Eq. (3.4) with m ¼ 100, superposed with the corresponding
Newtonian potential (red line).

FIG. 5. A point mass interacting gravitationally with a thick
massive spherical shell.
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constrain Yukawa and power-law-type corrections to the
Newtonian potential of the form

Veff ¼ −
GM
r

ð1þ αe−mrÞ ð3:13Þ

and have ruled out values ofm≲ 18 mm−1 for α ¼ 1 at the
2σ level. The corresponding gravitational force oscillating
parametrization is of the form

Feff ¼ −r̂
GM
r2

ð1þ αe−mr þ αmre−mrÞ: ð3:14Þ

In the next section, we extend the analysis of the
Washington group [9], using a oscillating parametrization
in addition to the Yukawa one in an attempt to search
for oscillating signatures or constraints in the data. We test
the validity of our analysis by verifying that we obtain
the same bound on m as that of Ref. [9] for the Yukawa
parametrization.

B. Fitting spatial oscillations of Newton’s constant
to the Washington experiment data

1. Maximum likelihood analysis

TheWashington experiment used a missing-mass torsion
balance instrument, measuring gravitational interaction
torques with extreme accuracy. The torques developed
between missing masses (holes) present in a torsion
pendulum detector and similar holes present in an attractor
ring rotating with constant angular velocity.
The differences (residuals) between the measured tor-

ques and their expected Newtonian values were recorded in
three experiments (I, II, and III) using the same detector
but different thicknesses of attractor disks. The attractor
thickness in each experiment was chosen in such a way as
to reduce systematic errors by comparing the residuals
among the three experiments. The residual torques for each
experiment as a function of detector-attractor separation
were published in three figures (one for each experiment).
Experiment I suffered a minor systematic effect (the
detector ring was found to be slightly bowed), which
was accounted for by modeling the heights of the outer
sets of holes to different heights. No such systematic effect
was present in experiments II and III.
A total of 87 residual points were shown along with three

predicted residual curves [9,11,12,95] that would arise in
the context of Yukawa-type deviations [Eq. (3.13)] from the
Newtonian potential for three pairs of ðα; λ≡ 1=mÞ. Each
point referred to the value of the residual torque (measured
value minus Newtonian prediction), the attractor-detector
distance in mm, and the 1σ error of the residual torque (see
Table II in the Appendix).
We have fit the residual torques δτ≡ τ − τN measured in

each experiment for several attractor-detector separations,
using three parametrizations:

δτ1ðα0; m0; rÞ ¼ α0; ð3:15Þ

δτ2ðα0; m0; rÞ ¼ α0e−m0r; ð3:16Þ

δτ3ðα0; m0; rÞ ¼ α0 cos
�
m0rþ 3π

4

�
; ð3:17Þ

where α0,m0 are parameters to be fit. We have fixed θ0 ¼ 3π
4
,

as it provides better fits than other phase choices. The
primes are used to avoid confusion with the corresponding
unprimed parameters of the deviations from the Newtonian
potential [e.g. Eq. (3.13)].
We have used these parametrizations to minimize

χ2ðα0; m0Þ, defined as

χ2ðα0; m0Þ ¼
XN
j¼1

ðδτðjÞ − δτiðα0; m0; rjÞÞ2
σ2j

; ð3:18Þ

where i refers to the type of parametrization [Eqs. (3.15)–
(3.17)], j refers to the jth data point as shown in Table II,
and N is the number of data points in each experiment.
The 1σ and 2σ contours for two parameters correspond
to the curves satisfying χ2ðα0; m0Þ ¼ χ2min þ 2.3 and
χ2ðα0; m0Þ ¼ χ2min þ 6.17.
The detailed connection between the parametrization

parameters α0, m0, and θ0 and the corresponding parameters
α, m, and θ of the gravitational potential requires detailed
knowledge of parameters of the experimental apparatus
which are not available to us. These parameters could be
used to obtain a quantitative estimate of the source integral
and thus of the gravitational signal. An approximate
estimate of this signal for the case of macroscopic inter-
acting disks will be obtained in what follows.
In an effort to bypass the calculation of the source

integral in the case of the Yukawa parametrization, we have
attempted to make an empirical connection between the
parametrization parameters and the gravitational signal
parameters using the published residual torque curves [with
well-defined best-fit parameters ðα0; m0Þ] that correspond to
three pairs of Yukawa potential parameters ðα; mÞ. This
empirical relation connects ðα0; m0Þ with the ðα; mÞ of a
Yukawa deviation in the potential and is discussed in detail
in the Appendix. It indicates that

m0 ¼ m; ð3:19Þ

ln

�
α0

α

�
¼ 5.65 − 3.15 lnðmÞ; ð3:20Þ

wherem is in mm−1 and α0 is in fN · m. We stress that these
relations are approximately applicable in the case of the
Yukawa parametrization and are not necessarily accurate
for the derivation of the gravitational signal in the case of
the oscillating parametrization. In what follows, however,
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we assume that Eq. (3.19) is applicable also for the
oscillating parametrization, which is justified by the approxi-
mate estimate of the source integral discussed below.
In Table I we show the best-fit χ2 values for each

parametrization for the combined data set from all three
experiments. Notice the significant improvement in the
quality of fit by Δχ2 ≃ −15 of the oscillating parametriza-
tion obtained with m≃ 65 mm−1, which corresponds to a
wavelength λ ¼ 2π

m ≃ 0.1 mm (see Fig. 7). This scale is

surprisingly close to the dark energy scale λde ≡
ffiffiffi
4

p
hc
ρde

¼
0.085 mm, as discussed in the Introduction.
The 1σ and 2σ contours in the parameter space ðα0; m0Þ

are shown in Fig. 6 (Yukawa parametrization) and in Fig. 7

(oscillating parametrization assuming fixed θ0 ¼ 3 π
4
) for

each one of the three experiments and for the combined
data set of 87 data points.
Lines of constant α obtained using Eq. (3.20) are shown

in Fig. 6. For α ¼ 1, the line intersects the 2σ contours at
m ¼ m0 ≃ 20 mm−1 (for the “all data” plot), thus leading to
a 2σ constraint m≳ 20 mm−1 which is almost identical
with the constraint of Ref. [9]. This is a good test for the
validity of our analysis and of the empirical calibration
relations (3.20) and (3.19).
The value of χ2 as a function of m for the oscillating

parametrization (continuous blue line) and for the
Newtonian parametrization (straight red line) is shown in
Fig. 8 (left panel). For each value of the spatial frequency
m, we have minimized with respect to the amplitude and the
phase of the parametrization. Even though the most promi-
nent χ2 minimum is the one at m≃ 65 mm−1, there are
some other notable minima. Two of them have a comparable
depth with the fundamental deepest minimum at
m ¼ 65 mm−1. The spatial frequencies are close to the
third harmonic of the fundamental frequency (m≃
195 mm−1 and m≃ 202 mm−1). Even though these two
minimawould appear to be independent, their corresponding

TABLE I. The best-fit value of χ2 for each
parametrization, using the total of 87 data
points in the three experiments.

Parametrization χ2

δτ ¼ α0 85.5
δτ ¼ α0e−m0r 85.4
δτ ¼ α0 cosðm0rþ 3π

4
Þ 70.7

FIG. 6. The 1σ and 2σ contours in the parameter space ðα0; m0Þ for the Yukawa parametrization. The blue dashed line is the line α ¼ 1
3

projected onto the parameter space ðα0; m0Þ in accordance with the empirical relations (3.19) and (3.20). The red line corresponds to
α ¼ 1 obtained from (3.19) and (3.20) and intersects the 2σ contour atm≃ 20 mm−1, leading to a 2σ constraintm > 20 mm−1, in good
agreement with the published 2σ constraint on m by the Washington group [9]. This agreement is a good test for the validity of our
analysis.
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best-fit parametrizations behave as higher harmonics of the
fundamental minimum. This is demonstrated in Fig. 9,
where it can be seen that the first few roots of the best-fit
form of m≃ 202 mm−1 coincide with the corresponding
roots of the fundamental best fit at m ¼ 65 mm−1.

The effects of horizontal uncertainties on the location
and depth of the minima, assuming a fixed horizontal
error for each data point of σr ¼ 0.002 mm, are shown in
Fig. 8 (right panel). In this case, χ2 is evaluated by adding
the term ð∂δτ∂r σrÞ2 in the denominator of the expression

FIG. 7. The 1σ and 2σ contours in the parameter space ðα0; m0Þ for the oscillating parametrization with θ0 ¼ 3π
4
. Notice that experiment

III appears to have the highest constraining power with respect to the oscillating parametrization, while in experiment I the spatial
oscillations are best fit by a higher spatial frequency (we used red for the frame label of experiment I to show this distinct behavior).
However, even the data of experiment I are well fit by the same spatial frequency as the other two experiments (local minimum of χ2, as
shown in Fig. 8). For the combined data set, there is a well-defined high-quality fit at ðα0; m0Þ ¼ ð0.004; 65.3Þ corresponding to a
wavelength λ ¼ 2π

m ¼ 0.096 mm. This best fit is about 3σ away from the null Newtonian value α0 ¼ 0.

FIG. 8. The value of the minimized χ2 as a function of the spatial frequency m without including horizontal uncertainties (left panel)
and including horizontal uncertainties σr ¼ 0.002 mm at each data point (right panel). The locations of the minima are not affected,
while their depths increase at higher spatial frequencies. The red straight line corresponds to the Newtonian residual δτ ¼ 0.
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defining χ2 [Eq. (3.18)]. Thus, the definition of χ2

becomes

χ2ðα0; m0Þ ¼
XN
j¼1

ðδτðjÞ − δτðα0; m0; θ0; rjÞÞ2
σ2j þ ð∂δτ∂r σrÞ2

: ð3:21Þ

As shown in Fig. 8 (right panel), the locations of the
minima are not affected by this introduction of horizontal
errors, even though the depths of the higher-frequency
minima appear to increase. The depth and location of the
fundamental minimum at m ¼ 65 mm−1 are practically
unaffected by taking into account such horizontal errors,
since the relevant scale of these errors is much smaller.
The residual torque data along with the best-fit Yukawa

and oscillating parametrizations are shown in Fig. 10 for
each experiment separately, as well as for the combined
data set. The values of χ2 for the best fit and for the
corresponding constant fit (Newtonian plus constant offset)
are also shown in each plot.
In view of the presence of the additional minima of χ2

shown in Fig. 8, it becomes clear that the 3σ level of
significance of the m ¼ 65 mm−1 minimum that emerges
from the contour plot of Fig. 7 is an overestimate. In
order to obtain a better estimate of the level of significance
of this minimum, we have constructed 100 Monte Carlo
realizations of the Washington data assuming an underlying
Newtonian model. We used the same error bars and r
coordinates of the original data and assumed a Gaussian
distribution for each data point around a zero mean with
standard deviation equal to the data error bars. We then
fit these data sets with oscillating parametrizations in
the range 0–100 mm−1, which includes the identified

fundamental frequency 65 mm−1, by varying both the
amplitude and the phase of the parametrization for each
value of the spatial frequencym. We found that about 10% of
the deepest minima of the Monte Carlo data sets are deeper
than the observed fundamental minimum at m ¼ 65 mm−1

(see Fig. 11). Thus, even though the oscillating parametri-
zation considered is a viable fit to the data, the level of
significance of the corresponding χ2 minimum is not more
than 2σ.

2. Source integral: An estimate of the expected
gravitational signal

Our assumption of a harmonic parametrization for the fit
of the torque residual data is a simplified approximation
based on the theoretically predicted oscillating force forms
of Eqs. (3.1) and (3.2) between point particles. In the case
of realistic forces between macroscopic bodies, the pre-
dicted interaction force is expected to be modified. In the
case of the Washington experiments, the relevant macro-
scopic bodies are disks of approximate radius 2.5 mm and
thickness 1 mm corresponding to the missing mass holes of
the apparatus.
We have obtained an independent numerical approxi-

mate estimate of the residual force that would be present
between two disks in the presence of harmonic spatial
oscillations of the Newtonian potential. In this calculation
we have assumed a modified Newtonian force field
motivated by nonlocal gravity [e.g. (3.1)] and discretized
each disk to a grid with a large number of segments of
scale Δx. Assuming two disks of the same radius R with
symmetry axes parallel to the z-axis and centers at the
origin and at (x0, y0, z0), respectively, we discretize the
radius as R ¼ R̄Δx and the height as 2h ¼ 2h̄Δx, where R̄
and h̄ are integers denoting the dimensions of the disks in
units of Δx. The Newtonian force between two cubic
segments with central coordinates ðxi; yi; ziÞ [included in
the disk centered at the origin] and ðxj; yj; zjÞ [included in
the disk centered at ðx0; y0; z0Þ] is of the form

F⃗N
ij¼−Gρ1ρ2ðΔxÞ6

r⃗j− r⃗i
ððxj−xiÞ2þðyj−yiÞ2þðzj−ziÞ2Þ3=2

¼−Gρ1ρ2ðΔxÞ4
⃗̄rj− ⃗̄ri

ððx̄j− x̄iÞ2þðȳj− ȳiÞ2þðz̄j− z̄iÞ2Þ3=2

≡−Gρ1ρ2ðΔxÞ4
⃗̄rij
r̄3ij

; ð3:22Þ

where ρ1, ρ2 are the disk densities, and the “barred”
quantities are integers such that, e.g., xi ¼ x̄iΔxi. The total
force between the disks is simply approximated as

F⃗N
tot ¼

Xzimax

zimin

Xzjmax

zjmin

Xximax

ximin

Xyimax

yimin

Xxjmax

xjmin

Xyjmax

yjmin

F⃗N
ij; ð3:23Þ

FIG. 9. The best-fit oscillating forms corresponding to the two
deepest χ2 minima (m≃ 65 mm−1 and m≃ 202 mm−1). The
blue curve, with the larger wavelength, corresponds to a spatial
frequency m ¼ 65 mm−1 with wavelength λ ¼ 2π=m≃
0.097 mm ¼ 97 μm. The (approximate) higher harmonic (brown
curve) corresponds to a spatial frequency m ¼ 202 mm−1 with
wavelength λ ¼ 2π=m≃ 0.031 mm. The roots and maxima of
the two curves are correlated, and the second curve (brown)
appears as a higher harmonic of the first (blue).
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where the summation limits corresponding to the pair of
disks described above are obtained as (in what follows, we
omit the “bars”)

zimin ¼ −h; ð3:24Þ

zimax ¼ h; ð3:25Þ

ximin ¼ −R; ð3:26Þ

ximax ¼ R; ð3:27Þ

yimin ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2i

q
; ð3:28Þ

yimax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ x2i

q
; ð3:29Þ

zjmin ¼ z0 − h; ð3:30Þ

zjmax ¼ z0 þ h; ð3:31Þ

xjmin ¼ x0 − R; ð3:32Þ

xjmax ¼ x0 þ R; ð3:33Þ

yjmin ¼
�
y0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ðx0 − xiÞ2

q �
; ð3:34Þ

yjmax ¼
�
y0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðx0 − xiÞ2

q �
: ð3:35Þ

The generalized gravitational force predicted by nonlocal
gravity theories is nonzero only for mr > 1, and it is of the
form

FIG. 11. The χ2 differences between the deepest χ2 in the range
m ∈ ½0; 100� and the corresponding Newtonian value of χ2 in 100
Monte Carlo data sets created under the assumption of zero
residuals (Newtonian model).

FIG. 10. The residual torque data along with the best-fit Yukawa (thick pink line) and oscillating parametrizations (thin blue line). The
Newtonian (with offset) best-fit value and corresponding χ2 for each best-fit parametrization are also shown.

SUBMILLIMETER SPATIAL OSCILLATIONS OF … PHYSICAL REVIEW D 95, 084050 (2017)

084050-13



F⃗O¼−r̂
Gmimj

r2

�
1þ2α2cosðmrþθÞ

mr
þα2 sinðmrþθÞ

�

ð3:36Þ

¼ −Gρ1ρ2ðΔxÞ4
r⃗ij
r3ij

�
1þ 2α2 cosðmrij þ θÞ

mrij

þ α2 sinðmrij þ θÞ
�
; ð3:37Þ

where m ¼ 2π
λ is the fundamental scale of the theory, and

the theoretically predicted parameter values were evaluated
in Sec. II as α2 ¼ 0.572 and θ ¼ 0.885π. The predicted
residual x-component of the force for this class of models
may be obtained in dimensionless form as

FxRes ≡ FO
x − FN

x

FN
x

; ð3:38Þ

and similarly for the y- and z-components. Using these
definitions, we evaluate FxRes and FzRes as functions of the
center of the second disk coordinates z0 and x0 for y0 ¼ 0.
We have set R ¼ 10, λ ¼ 5, and h ¼ 0. The assumed unit
is Δx. For example, for λ ¼ 100 μm, we would have
Δx ¼ 20 μm and R ¼ 200 μm.
For disks with a radius of R ¼ 2 mm and thickness

2h ¼ 1 mm, we would have to set up a grid with R ¼ 100
and h ¼ 25 for the same value of Δx which is needed for
proper probing of the oscillations (at least 5 grid points
per spatial oscillation wavelength). This calculation would
take 50002 times longer to run than the calculation for
the parameters used above, which makes such a choice
impractical. The above implemented choice of dimensions,
however, also provides fairly useful insight about the pre-
dicted signal.

The choice of disk parameters used corresponds to the
division of each disk into a grid with more than 300
segments while thickness is ignored. The assumed spatial
wavelength of the oscillating potential is half the radius of
the disk. These assumptions allow this simple code to give
results in a relatively short time for a wide range of relative
positions between the disks. These results are shown in
Figs. 12 and 13. In Fig. 12, we show a density plot of the
predicted residual force x- and z-components, while in
Fig. 13, we show the same components when the second
disk is placed along particular spatial directions parallel to
the axes of the disks (z-direction). Despite the qualitative
nature of this approach, it leads to four interesting
conclusions:
(1) The predicted signal for the force between macro-

scopic bodies remains oscillatory, but for distances
comparable to the disk dimensions, it is not a
harmonic function with constant amplitude.

(2) The amplitude of the oscillating force on scales
smaller than the macroscopic bodies is suppressed
compared to the amplitude of the fundamental
potential oscillations.

(3) The spatial frequency of the macroscopic force is
about the same as the frequency of the fundamental
oscillations.

(4) The magnitude of the residual of the oscillating
force defined in Eq. (3.38) tends to increase slowly
with distance. We have verified that the magnitude
of the oscillating force tends to its pointlike value
(a2 ¼ 0.572) at large distances between the disks,
as expected. As shown in Figs. 12 and 13, the signal
also exists off axis even though it is reduced
compared to the signal when the symmetry axes
of the two disks coincide.

FIG. 12. The residual x (left) and z (right) dimensionless force components for disk radius R ¼ 10Δx and oscillation wavelength
λ ¼ 5Δx. The axes’ units are Δx.
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Based on the above conclusions, an experiment designed
to detect spatial oscillations of the gravitational potential
should focus on relatively large source-detector distances but
vary these distances by small steps comparable to the
targeted oscillation wavelength. In this manner the relative
residual magnitude of the signal is maximized while the
spatial frequency of the signal is properly probed.

IV. CONCLUSIONS-DISCUSSION

We have shown that the presence of submillimeter
oscillations of the gravitational potential is a viable pos-
sibility at both the theoretical level and the observational/
experimental level.
At the theoretical level, we showed that gravitational

potential oscillations appear generically in stable extended
gravitational theories like nonlocal ghost-free gravity. Even
in theories where such oscillations are generic but unstable,
we showed that there is potential for stabilization mech-
anisms induced by nonperturbative effects.
At the macroscopic observational level, we showed that

even though these spatial oscillations do not have a strict
Newtonian limit, they are consistent with observations
and gravitational experiments for small enough values of
the wavelength. In fact, we presented evidence that such
oscillating parametrizations may provide a better fit to
torsion balance data than the Newtonian potential para-
metrization even though the level of significance of this
improvement is not more than 2σ. Our data analysis
involved several assumptions and simplifications, espe-
cially in the estimate of the source integral. The goal of our
data analysis has not been the quantitative estimate of a
statistically significant oscillating signature of modified
gravity on submilimeter scales. Instead, it has been the

demonstration of the existence of a peculiar oscillating
signal in the data which may be statistically significant.
This signal could be due to three possible effects:
(1) A statistical fluctuation of the data which is more

prominent in experiment III of Ref. [9], as shown
in Fig. 7.

(2) A periodic distance-dependent systematic feature in
the data. Such an unnoticed class of systematics
would not be of wide interest, but it would be
notable and useful for the short-distance force
measurement community.2

(3) An early signal for a short-distance modification
of GR. The verification of this possibility would
require an extensive, detailed search of short-
distance force measurement groups, which will hope-
fully be motivated by our analysis. Other indications
of such oscillating short-distance forces may be seen
by eye on the recent data plots (Fig. 3) of Ref. [96].

In view of the possible future verification of the last
possibility, the following challenging question needs to be
addressed: What is the precise form and amplitude of the
theoretically predicted oscillating signal in the context
of the Washington experiment? In order to address this
question, a calculation of the torque between the pendulum
disk and upper attractor for several separations is needed.
In the present analysis, we have made some progress for
addressing this question at a qualitative level (Sec. III B 2), but
the detailed quantitative answer is a challenging issue that
remains open andwill be addressed in a separate forthcoming
analysis. The challenging nature of this question emerges not
only because of the small grid spacing required compared to
the oscillation wavelength (for which a much larger grid is

FIG. 13. The residual x (left) and z (right) dimensionless force components for disk radius R ¼ 10Δx, λ ¼ 5Δx. The axes’ units are
Δx. The blue line for the x-component (left panel) corresponds to x0 ¼ 1, while the red line corresponds to x0 ¼ 10. The blue line for the
z-component (right panel) corresponds to x0 ¼ 0, while the red line corresponds to x0 ¼ 10. The black line corresponds to the naively
expected signal a cosð0.5z0 þ θÞ. (We used θ ¼ 3π=4 for the z-component, which seems to fit both the theoretically predicted and the
observed signal.) Notice the predicted suppression of the signal at low distances z0 and its slow increase of the predicted residual with
distance. It may be shown that the amplitude grows up to the maximum value of 0.57 as expected, since at large distances the disks
behave as pointlike particles.

2I thank the referee for pointing this out.
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required), but also due to the nonlocal nature of the signal that
requires the lower attractor of the Washington experiment to
be included in any full calculation.
Our results may have a few interesting implications:
(1) They may be viewed as early evidence for emerging

signatures of nonlocal gravity in experimental data.
The idea of nonlocal gravity provides one of the very
few self-consistent approaches for curing the singu-
larity problems of general relativity while being
naturally motivated by the demand of consistency
with quantum mechanics. It is remarkable that such
a well-motivated extension of general relativity
generically predicts the presence of submillimeter
spatial oscillations of Newton’s constant. The pre-
diction for these oscillations was documented clearly
in Ref. [41] and was also seen in Refs. [42,48].

(2) They indicate that oscillating parametrizations for
deviations from the Newtonian gravitational poten-
tial should be considered along with Yukawa and
power-law parametrizations, because they are well
motivated theoretically and consistent with macro-
scopic observations.

(3) They indicate that the stability of fðRÞ theories that
are unstable at the perturbative level could be
reexamined by taking into account nontrivial back-
grounds and the backreaction from nonlinear terms
that act at the nonperturbative level.

Interesting extensions of the present work include the
following:
(1) A more detailed analysis of the existence and stability

of theoretical models that predict the existence of
submillimeter oscillations of the gravitational poten-
tial and of Newton’s constant. In addition to the
models discussed in the present analysis, such models
may include the presence of compact timelike extra
dimensions [97], brane-world models, etc.

(2) A detailed analysis of the macroscopic effects of
submillimeter oscillations of Newton’s constant,
including possible effects on Solar System scales
and/or lunar ranging experiments.

(3) The cosmological effects of such oscillations could
also be of significant interest, especially in view
of the experimental indications that they may exist
with a wavelength close to the dark energy scale. For
example, oscillations of Newton’s constant in time
are generically present in stable scalar-tensor theo-
ries and theories with compact extra dimensions and
have been shown [86,87] to have interesting cos-
mological features, including their possible role as
dark energy candidates.

(4) The use of alternative parametrizations to fit the
torque residual data. It may be possible to find
alternative parametrizations that provide better fits,
which may provide hints for the construction of new
theoretical models. It is also important, however, to

identify possible sources of systematics in the data
that may induce spurious nonphysical features. For
example, the minor systematic effect in experiment
I coming from the slightly bowed detector ring
could be the origin of the difference of the best-fit
spatial wavelength by a factor of 2 found in the data
analysis of experiment I.

(5) If the observed signal in the Washington group data
is physically interesting, it should leave a signature
on other experiments which have the required
sensitivity to see the signal (e.g., Refs. [95,96,
98–101]). It is therefore important to extend this
analysis to other data sets in an effort to identify
similar signatures in other data sets. An investigation
along these lines is currently in progress.

In conclusion, we have presented a novel and potentially
important result that could motivate further work in the
active field of theoretical and experimental searches for the
modification of GR.
Numerical Analysis: The Mathematica file that led to

the production of the figures may be downloaded from
Supplemental Material [102].
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APPENDIX: DATA AND ANALYSIS

In this appendix, we describe the derivation of the
empirical relations (3.19) and (3.20), and we show the
residual torque data used for the fit of the parametrizations
considered.

FIG. 14. The curve describing a Yukawa deviation from the
Newtonian potential in the torque residuals (thick dots) is fit well
as an exponential with the same value of m (continuous line).
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In order to calibrate the measured torque residuals and
connect them with the parameters of the deviations from
the Newtonian potential [α and m of Eq. (3.13)], we use
the published residual torque curves that correspond to
Yukawa-type Newtonian deviations for specific parameter
values. We find that these residual curves are very well fit
by exponentials with the same exponents as the exponents
of the Yukawa Newtonian potential deviations. This is
consistent with Eq. (3.14), which implies that the dominant
residual torque for mr > 1 is

τ − τN ∼ e−mr: ðA1Þ
This exponential behavior of the residual torque is verified in
Fig. 14, where we show the form published in Ref. [12] of
the residual torque (thick dots) corresponding to a Yukawa
deviation with α ¼ 1 and λ≡m−1 ¼ 0.25 mm superposed
with the best-fit exponential α0e−r=λ0 . As expected, we find
an excellent fit for λ0 ¼ λ ¼ 0.25 mm. Also, since α ¼ 1 and
the best fit is α0 ¼ 4.6, we have α0

α ¼ 4.6.
Using also the other two similar residual torque curves

of Ref. [9] for ðα; m−1Þ ¼ ð1; 0.08 mmÞ and ðα; m−1Þ ¼
ð105; 0.01 mmÞ, we evaluate the corresponding ratios λ

λ0 and
α0
α and thus construct Fig. 15. Using a proper fit to these
points, we derive the empirical relations (3.20), (3.19),
which relate ðα; mÞ with ðα0; m0Þ.
Finally, in Table II, we show the data points used to find

the best fit for the three parametrizations (3.15), (3.16), and
(3.17). These data points, obtained from Figs. 3, 4, and 5 of
Ref. [9] using plot-digitizer software,3 are shown in
Table II. The uncertainties in the measurement of r in
the data of Table II is in the range of 0.002–0.005 mm,
which is much smaller than the scale of the oscillation
signal. As shown in Fig. 8, the uncertainties of r in this
range leave the χ2 minima in the range around m ∈
½0; 100� mm−1 practically unaffected.

FIG. 15. Using three plots like the one shown in Fig. 14, we may relate the parameters ðα; mÞ of the potential deviations with the
corresponding parameters ðα0; m0Þ in the space of torque residuals fit with the same parametrization. These plots demonstrate the validity
of Eqs. (3.19) and (3.20) (continuous lines through points).

TABLE II. The residual torque 87 data points used for the χ2

analysis.

rmm τ − τN (fN · m) 1σðτ − τNÞ Experiment

0.062 0.039 0.036 I
0.065 0.036 0.023 I
0.067 −0.008 0.014 I
0.068 −0.007 0.006 I
0.07 −0.018 0.012 I
0.073 −0.002 0.01 I
0.077 0.032 0.014 I
0.084 0.009 0.007 I
0.095 0.005 0.006 I
0.106 −0.004 0.008 I
0.114 −0.006 0.005 I
0.146 −0.001 0.006 I
0.237 0.002 0.006 I
0.379 0.007 0.006 I
0.577 −0.007 0.003 I
0.915 0. 0.007 I
1.301 0.003 0.005 I
1.995 0.004 0.006 I
3.021 0.008 0.006 I
4.027 0. 0.005 I
5.04 0.001 0.004 I
8.512 0.001 0.004 I
0.065 0.012 0.018 II
0.067 0.016 0.027 II
0.069 0.029 0.035 II
0.069 −0.021 0.015 II
0.072 0.014 0.012 II
0.075 0.009 0.02 II
0.079 0.01 0.014 II
0.082 −0.023 0.01 II
0.085 0.011 0.029 II
0.087 0.011 0.017 II
0.089 −0.002 0.009 II
0.091 0.012 0.014 II
0.095 0.001 0.01 II

(Table continued)3http://arohatgi.info/WebPlotDigitizer/
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