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Scalar polynomial curvature invariant vanishing on the event horizon of any
black hole metric conformal to a static spherical metric

David D. McNutt”
Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway

Don N. Pagef

Department of Physics, University of Alberta, Edmonton, Alberta T6G 2EI, Canada
(Received 20 March 2017; published 24 April 2017)

We construct a scalar polynomial curvature invariant that transforms covariantly under a conformal
transformation from any spherically symmetric metric. This invariant has the additional property that it
vanishes on the event horizon of any black hole that is conformal to a static spherical metric.
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I. INTRODUCTION

The location of a black hole event horizon is generically
difficult to find because the horizon depends upon the
future evolution of the spacetime. However, for certain
subclasses of black hole spacetimes, the event horizon can
be located more simply. For example, if the spacetime is
stationary, then knowing the hypersurface metric and
extrinsic curvature at one time should be sufficient to
determine the entire spacetime and hence where the
horizon is.

In this particular case, if one knew the Killing vector
field that becomes the null generator on the event horizon,
one could just find out where the squared norm of this
vector vanishes, and that would include the horizon.
However, if one does not know this Killing vector field,
the squared norms of the wedge products of n linearly
independent gradients of scalar polynomial curvature
invariants (where n is the local cohomogeneity of the
spacetime) vanish at stationary horizons [1], so one can
use these invariants to find locations that include the
horizon.

For spacetimes that are not stationary, there is not a
general procedure of this form. However, since the
location of the event horizon is a conformal invariant,
it can be found by the procedure above for any black hole
spacetime metric that is conformal to a stationary metric if
the conformal factor that transforms the spacetime metric
to the corresponding stationary metric is known.
Nevertheless, if the conformal factor is not known, one
may not have a clear way to locate the horizon, analogous
to the problem of locating the event horizon of a
stationary metric when one does not know the Killing
vector that becomes null on the horizon.

One way to attempt to locate the horizon of a black
hole metric that is conformal to a stationary metric is to
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search for a scalar polynomial curvature invariant that not
only vanishes on the horizon of the stationary metric (as
do the squared norms of the wedge products of gradients
of invariants described above) but that also remains zero
on the horizon under a conformal transformation of the
metric. In particular, we would like an invariant that not
only vanishes on a stationary horizon but also under a
conformal transformation transforms as a power of the
conformal factor, with no terms from derivatives of the
conformal factor, which could be nonzero on the event
horizon.

Unfortunately, the specific invariants listed explicitly
in Ref. [1] that vanish on stationary horizons pick up
derivative terms when one makes a generic conformal
transformation of the metric, so they do not remain zero on
the horizon of a generic black hole spacetime that is
conformal to a stationary metric. Perhaps there are exam-
ples that do work in general, but we have not yet
found them.

In this paper, we solve the more restricted problem of
finding a scalar polynomial curvature invariant that van-
ishes on the horizon of any black hole metric that is
conformal to a four-dimensional spherically symmetric
static spacetime, with the conformal factor being any
smooth function over the spacetime that does not vanish
at the event horizon.

For this purpose, we start with a list of scalar polynomial
curvature invariants obtained from the Weyl tensor and its
first covariant derivative, all but 75, of which are given in
Ref. [1]:

I} = CppegC, (1)
I; = Cabcd;ecade;ev (2)
34 = Coapea:e CP, (3)

Is= 1,1, 4)
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Consider a four-dimensional spherically symmetric
static black hole spacetime that is smooth on the event
horizon, has a nonzero surface gravity «, has 2zr as the
circumference of the 2-sphere of the spherical symmetry
passing through each event, and admits a Killing vector
field /0t which is timelike outside the event horizon but
null on the event horizon at » = ry. For such a black hole
spacetime, replacing ¢ by —iz gives a Euclidean-signature
metric in which 7 becomes an angular variable with period
2z/k, and for each location on the 2-spheres of the
spherical symmetry, the horizon is replaced by a regular
center at r = ry in the (r,7) plane where the proper
circumference of the angular variable 7 goes to zero. In
a smooth orthonormal frame at this center, the gradient of
any smooth scalar polynomial curvature invariant vanishes,
as well as the first covariant derivative of any curvature
tensor such as the Weyl tensor. Therefore, the invariants /5,
I3,, and I5 vanish on the event horizon of any four-
dimensional spherically symmetric static black hole space-
time that is smooth on the event horizon and has a nonzero
surface gravity k, and they continue to vanish when one
takes the limit of zero surface gravity, so it is unnecessary to
make the restriction to x # 0.

However, under a conformal transformation of the
metric, I3, I3,, and I5 do not transform just by being
multiplied by powers of the conformal factor, but they also
pick up first derivatives of the conformal factor, which
generically are nonzero on the event horizon and hence
make I3, I5,, and /5 nonzero at the event horizon of a
generic metric conformal to a static spherically symmetric
black hole metric. Nevertheless, we have found a particular
combination of the invariants listed above that under a
conformal transformation of the metric does transform
purely by being multiplied by a negative power of the
conformal factor:

J4E6I]I3—161113a+]5. (5)

The invariant J, vanishes on the horizon of a static
spherically symmetric metric. Since J, transforms by being
multiplied by a negative power of the conformal factor
under a conformal transformation, so long as the conformal
factor does not vanish on the event horizon, the scalar
polynomial curvature invariant J, is zero on the event
horizon for any smooth four-dimensional metric conformal
to a static spherically symmetric black hole spacetime.
In particular, if we write such a metric as

ds? = 2Vr0) [—e () (1 — 2M(r)/r)dr?
+ (1 =2M(r)/r)"'dr?
+ 2(d6? + sin? 0dg?)]. (6)

then
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R 25 e—lOU
4:?—’-15 (r—2M)

X [2MW.2rr2 _W.zrr3 —|—2Ml//,,’,r2 _l//,r.rr3 "i_:;l//,rjw.rr2
_‘_1‘4,r.rr2 _5]‘41/[]"—’_1;”,””2 _4M,rr+6M]2
X [4r3W.rW,r.rM_2r4l//,rl//$r,r+2l//,2rr3M,r+2r3W,r.rﬁrM
- r4l//.r,r,r + 5"‘:}’l//.r,r1‘4.r + 3"‘?’l//.rj‘l.r,r + ZMV/%FZ - ZW,ZrFS
- 3]‘41:‘/,r,rr2 _l//,r.rr2 + r3M,r,r,r - 2l,l/.rM,rr2 - 3M,r.rr2

+y , r*+6M ,.r—6M)?,, (7)

which vanishes at the event horizon at r = 2M(r).

For a generic nonvacuum metric g,, which is not
conformal to a static spherically symmetric metric and a
conformally transformed metric §,, = ¢?Y g, the invariant
.74 for the metric g, is related to the invariant J, for the
metric g,;, by

Jy = e V(] + AU), (8)
where
Ay =41, — 16W¢,, + 16W, ¢, +64W°,,  (9)
and
W% = Chgep.cC9f (10)
We = Cpgeers €142 (11)

When g,, is a vacuum metric (including a possible
cosmological constant) or is spherically symmetric (and
hence also when g,;, is conformal to a spherically sym-
metric metric), it can be shown that A =0 by direct
calculation. One may use the Newman-Penrose (NP)
formalism [2] to express the Weyl tensor in terms of the
NP curvature scalars ¥;,i € [0,4], and the covariant
derivative of the Weyl tensor in a concise form.
Constructing the covector terms in A, and adding them
together shows that A, will vanish for all four-dimensional
spacetimes.

II. EXAMPLES IN FOUR DIMENSIONS

It is possible to generate new solutions of the Einstein
equation by applying a conformal transformation to a
known solution [2] and solving the ensuing differential
equations for a particular conformal factor. While con-
formally flat solutions have been explored (chapter 37 of
Ref. [2]), less is known about generation of new solutions
from conformally nonflat solutions. Starting from a Ricci-
flat but conformally nonflat solution, conformally related
solutions which admit a perfect fluid were initially studied
[3—6]. Similar approaches have led to physically acceptable
perfect fluid solutions [7] and viscous fluid solutions [8].
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Solutions generated by non-Ricci-flat solutions exist as
well and are of types N and III respectively, satisfying the
Einstein-Maxwell equations [9].

We are interested in black hole solutions generated by a
conformal transformation from a static spherically sym-
metric metric. One of the first examples of such a solution
is the Sultana-Dyer metric which is conformally related to
the Schwarzschild solution,

2 4
ds? = 1 {-(1 ——m> i + " drdr
r r
2
N (1 _ _"1) dr? + 2 (d6 + sin20dg?) | (12)
.

which describes an expanding black hole in the asymptotic
background of the Einstein-de Sitter universe [10] with a
matter content described by a two-fluid source: null fluid
and pure dust. The event horizon for this solution is now a
conformal Killing horizon which is the image of the Killing
horizon of the Schwarzschild black hole under a conformal
transformation.

Although this is hidden by the choice of coordinates,
the Sultana-Dyer metric belongs to a subclass of metrics,
called the Thakurta metrics [11], which arise from a
conformal transformation of the Kerr solution with a
conformal factor dependent on the Boyer-Lindquist time
coordinate. Setting the rotation parameter to zero, the
metric is of the form [12]

2 dr?
ds? = &2(n) {—(1 ——m>d;12+1 T+ 2dQ?|. (13)
r —— ll4

With a cosmological time ¢ such that dr = a(n)dn, the
metric becomes

2 242
ds? = —(1 ——m) AP + T @R (14)
r -_—

This class of metrics intersects with another class of
metrics, namely, the generalized McVittie (or gMc Vittie)
metrics where the mass parameter is now a function of the
time coordinate [13—15]. Writing (14) in terms of areal
radius coordinates R = ar, the form of the metric is
identical to (9) in Ref. [15]; it is therefore a gMcVittie
spacetime with m(t) = ma(r).

The analysis of Refs. [14,15] does not carry over to (14)
due to the assumption 71(z)/m(t) < a(t)/a(t), whereas the
equality holds in (14). The analysis of a special case of this

metric [16] with a(r) ~ 7 describes a universe filled with
dust and a singularity at » = 2m. This metric is distinct
from the Sultana-Dyer metric [17].

In Ref. [12], the analysis of the causal structure of (14) is
completed, and particular examples of scale factors are
studied. It is shown that unbounded scale factors yield
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solutions describing inhomogeneous expanding universes
with no horizon, a singular surface at r =2m, and
potentially null singularities at a finite proper time in the
future. For a bounded scale factor with rapidly vanishing
time derivatives, the resulting spacetime represents an event
horizon for which the analytical extensions yield black hole
or white hole regions. The black hole solutions represent
dynamical accreting black holes, which at late times
decouple from the cosmological expansion and cease to
accrete and hence exist in effectively static bubbles of
vacuum.

III. SPHERICALLY SYMMETRIC STATIC
SPACETIMES IN HIGHER DIMENSIONS

The invariant J, can be generalized to higher dimen-
sions; however, because of the trace terms C,., C?°%,
some modification to the coefficients of /,, /5, and /5 are
required to produce an invariant J,, that actually vanishes
on the event horizon of any metric that is conformal to the
n-dimensional static spherically symmetric metric, with a
nonzero conformal factor on the horizon.

Using the algebraic Bianchi identities, the transformation
rules for the scalar polynomial curvature invariants under a
conformal transformation are

71 = €_4U11, (15)

13 = €_6U[13 - (le,a + 8Weae - 8Waee)U’a + 8U.,HU’a11
+ (41 = 8)UAU ,CapegCeP), (16)

Iy, = e OU[I3, — QWe,e + 1,4 = 2W,°, 4+ 4We,, ) U
+4U UL+ (n = 1) UU o C g CP), (17)

Is = e [I5 - 81 ,U“ + 16U ,U“L}],  (18)

where W4, and W%, are defined in Egs. (10) and (11).
From these, we may solve two linearly independent
equations for two unknowns to eliminate U ,U*“ and
U,U? from the expression. This yields an invariant that
transforms covariantly under a conformal transformation
for an n-dimensional manifold:

Jn:2(11—1)]113—8(I’l—2)1113a+(”—3>15. (19)

For a generic nonvacuum metric ¢,,, which is not
conformal to a static spherically symmetric metric, and
for a conformally transformed metric §,, = ¢*Yg,;, the

invariant J,, for the metric §,, is related to the invariant J,,
for the metric g, by

T, = eV, + A°U,), (20)

where
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Ay==4(n=3)1,—16(W¢,, —W,,)+32(n—=2)W°,,,
(21)

where W4, and W%, are defined in Eqgs. (10) and (11). If
gap describes a vacuum (possibly with a cosmological
constant) or is conformal to a spherically symmetric metric,
then A, vanishes automatically. In the case of a vacuum
metric, this can be proven using the Bianchi identities

Ca[bcd] =0 and Cab[cd;e] =0,

which give the following identities:

W, =0,4W¢, =1, and 8W¢, =1, (22)
Substituting these identities causes the vector in (21) to
vanish.

While in four dimensions the vector A¢ vanishes for
any spacetime, it is not clear whether A* = 0 for a generic
higher-dimensional spacetime. This vector appears to
vanish for a large class of spacetimes; notably, A¢
vanishes for the Kerr—NUT—(anti)-de Sitter solution
[18], the rotating black ring solution [19], and the
supersymmetric black ring solution [20], all of which
admit stationary regions containing event horizons. Both
of the black ring solutions are of algebraic type I;
according to the alignment classification [19,21], and
the supersymmetric black ring is nonvacuum. This sug-
gests that the invariant J, transforms in a covariant
manner for a larger class of metrics than the spherically
symmetric metrics or vacuum metrics. We expect any
proof that A, generically vanishes in higher dimensions
will rely on the identities C%y,. =0 and Cgpeq =0,
possibly using a decomposition of the Weyl tensor that
generalizes the NP formalism [22]. Because of the
difference in the cohomogeneity for such stationary
solutions, one can no longer assure that the invariant
J, will detect the event horizon.

To illustrate the use of J,, consider a conformal trans-
formation on the five-dimensional static spherically sym-
metric metric [23]

ds? = 7 2U(.r0,.0:.9) [—u(r)dt* + v(r)dr?
+ r*d63 + r? sin0,d0, + r* sin 0, sin 6,d¢?],

u(r) = ew<r><1 _2M2(’)>, o(r) = <1 —ZMZ,(’”))_I.

r r
(23)

Then, the invariant
J5:811]3—241113a+215 (24)

PHYSICAL REVIEW D 95, 084044 (2017)

will transform in the desired manner and vanish when
r> =2M(r). Relative to the coordinate system, Js takes
the form

e—lOU

JS:ZS-T(rZ—ZM)

X [l//.zrr4 + l//.r,rr4 + Zw,zrrzM - 2ll/,r.erM - 3l//.r]‘4,rr2

—y, P+ 8y Mr—M, r*+6M,r—12M)?

X (2w, 7+ Ay M 29 M P - 2y
Wt Y M =yt 2y M

+ 31//’,M_,’,r3 - 81//',’er3 - 81//!,M,rr2 +y,r
+M,,.r*+ 8y, Mr—6M,,.r*+ 18M ,r — 24M)?,

(25)
which vanishes on the event horizon > = 2M.

IV. CONCLUSIONS

By studying the effect of a conformal transformation
on the spherically symmetric metrics, we have found an
invariant, J,, for which the effect of a conformal trans-
formation causes the invariant to be multiplied by a
power of the conformal factor. For any metric confor-
mally related to a static spherically symmetric metric
admitting an event horizon, J, will detect the event
horizon of the original metric [1] and hence will detect
the horizon of the event horizon of the conformally
related solution.

In four dimensions this invariant transforms in this
manner for any spacetime, while in higher dimensions,
we have argued that this invariant transforms covariantly
under a conformal transformation for a larger class of
spacetimes than vacuum or spherically symmetric metrics.
By direct computation, it has been verified that J,
transforms covariantly for the five-dimensional Kerr—
NUT—(anti)-de Sitter [18] and the stationary regions of
the rotating black ring solution and supersymmetric black
ring [19-21]. However, because of the difference in
cohomogeneity, one can no longer assure that this
invariant will detect the horizon of these stationary
solutions.

Despite its limitations, the invariant provides a helpful
tool for determining the event horizon for dynamical
black hole solutions that are conformally related to static
spherically symmetric black hole solutions, such as the
Schwarzschild solution [10-12]. Motivated by the
Thakurta metric [11], it would be worthwhile to construct
another functionally independent invariant with the same
transformation property as J,,, say K,. Using Iy, J,, and
K,, one may apply the results of Ref. [1] to construct an
invariant that detects the event horizons of any black
hole conformally related to Kerr, or more generally the
Kerr—NUT—(anti)-de Sitter solution [18].
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