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If a small “particle” of mass μM (with μ ≪ 1) orbits a black hole of massM, the leading-order radiation-
reaction effect is an Oðμ2Þ “self-force” acting on the particle, with a corresponding OðμÞ “self-
acceleration” of the particle away from a geodesic. Such “extreme-mass-ratio inspiral” systems are likely
to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we
consider the “toy model” problem of computing the self-force for a scalar-field particle on a bound
eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regu-
larization with a 4th-order puncture field, followed by an eimϕ (“m-mode”) Fourier decomposition and
a separate time-domain numerical evolution in 2þ 1 dimensions for each m. We introduce a finite
worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner
so that the effective source is only used within the worldtube. Viewed as a spatial region, the worldtube
moves to follow the particle’s orbital motion. We use slices of constant Boyer-Lindquist time in the
region of the particle’s motion, deformed to be asymptotically hyperboloidal and compactified near the
horizon and J þ. Our numerical evolution uses Berger-Oliger mesh refinement with 4th-order finite
differencing in space and time. Our computational scheme allows computation for highly eccentric
orbits and should be generalizable to orbital evolution in the future. Our present implementation is
restricted to equatorial geodesic orbits, but this restriction is not fundamental. We present numerical
results for a number of test cases with orbital eccentricities as high as 0.98. In some cases we find large
oscillations (“wiggles”) in the self-force on the outgoing leg of the orbit shortly after periastron passage;
these appear to be caused by the passage of the orbit through the strong-field region close to the background
Kerr black hole.
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I. INTRODUCTION

Consider a small (compact) body of mass μM (with
0 < μ ≪ 1) moving freely in an asymptotically flat back-
ground spacetime (e.g., Kerr spacetime) of mass M. This
system emits gravitational radiation, and there is a corre-
sponding radiation-reaction influence on the small body’s
motion. Self-consistently calculating this motion and the
emitted gravitational radiation (and in general, the perturbed
spacetime) is a long-standing research question in general
relativity.
There is also an astrophysical motivation for this

calculation: If a neutron star or stellar-mass black hole
of mass ∼1–100M⊙ orbits a massive black hole of mass
∼105–107M⊙,1 the resulting “extreme-mass-ratio inspiral”
(EMRI) system is expected to be a strong astrophysical
gravitational-wave (GW) source detectable by the planned
Laser Interferometer Space Array (LISA) space-based

gravitational-wave detector.2 LISA is expected to observe
many such systems, some of them at quite high signal/
noise ratios ([1–4]). The data analysis for, and indeed the
detection of, such systems will generally require matched-
filtering the detector data stream against appropriate
precomputed GW templates. The problem of computing
such templates provides the astrophysical motivation for
our calculation.
We are particularly concerned with the case where the

small body’s orbit is highly relativistic, so post-Newtonian
methods (see, for example, [5] Sec. 6.10; [6–9] and
references therein) are not reliably accurate. Since the time
scale for radiation reaction to shrink the orbit is very long
(∼μ−1M) while the required resolution near the small body
is very high (∼μM), a direct “numerical relativity” inte-
gration of the Einstein equations (see, for example, [10–14]

*jthorn@astro.indiana.edu
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1M⊙ denotes the solar mass.

2The LISA proposal has had various design and name changes
during its lifetime. For a time it was known as the New
Gravitational-Wave Observatory (NGO) or evolved LISA
(eLISA), but recently it has returned to the original name, LISA.
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and references therein) would be prohibitively expensive
(and probably insufficiently accurate) for this problem.3

Instead, we use black-hole perturbation theory, treating
the small body as an OðμÞ perturbation on the background
spacetime. For this work we attempt to calculate leading-
order radiation-reaction effects, i.e., OðμÞ field perturba-
tions and Oðμ2Þ radiation-reaction “self-forces” acting on
the small body. Because of the technical difficulty of
controlling gauge effects in gravitational perturbations,
in this work we use a scalar-field “toy model” system
with the expectation that the techniques developed and
discoveries made in the scalar case will carry over to the
gravitational case.
The obvious way to model the small body is as a small

black hole. While conceptually elegant, this approach is
technically somewhat complicated [21]. Instead, we model
the small body as a point particle. Although one may be
concerned about potential foundational issues with this
approach,4 in practice it works well and, importantly, it
agrees with rigorous derivations that do not rely on the use
of point particles.
The OðμÞ “MiSaTaQuWa” equations of motion for a

gravitational point particle in a (strong-field) curved space-
time were first derived by Mino, Sasaki, and Tanaka [24]
and Quinn andWald [25] (also see Detweiler’s analysis [26])
and have recently been rederived in a more rigorous
manner byGralla andWald [27].5 See [21,29–35] for general
reviews of gravitational radiation-reaction dynamics.
The particle’s motion may be modeled as either (i) non-

geodesic motion in the background Schwarzschild/Kerr
spacetime under the influence of a radiation-reaction “self-
force,” or (ii) geodesic motion in a perturbed spacetime.
These two perspectives (which are in some ways analogous
to Eulerian versus Lagrangian formulations of fluid dynam-
ics) are equivalent [36]; in this work we use the formulation
(i). The MiSaTaQuWa equations then give the self-force in
terms of (the gradient of) the metric perturbation due to the
particle, which must be computed using black-hole per-
turbation theory.
The computation of the field perturbation due to a point

particle is particularly difficult because the “perturbation”

is formally infinite at the particle and thus must be
regularized. There are several different, but equivalent,
regularization schemes known for this problem, notably the
“mode-sum” or “l-mode” scheme developed by Barack
and Ori [37–41], Detweiler, Messaritaki, and Whiting
[42,43], and Haas and Poisson [44]; the Green-function
approach [45–48]; and the “effective-source” scheme of
Barack and Golbourn [49] and Vega and Detweiler [50].
For a detailed presentation of the different regularization/

computation schemes and their advantages and disadvan-
tages, see [51]. In the present context we observe that for a
Kerr background the traditional mode-sum scheme
becomes less desirable because the mode equations don’t
separate: all the (infinite set of) modes remain coupled.
While the coupled modes can still be treated numerically
(see, e.g., [52]), here we adopt a different approach, the
effective-source regularization scheme.
As discussed in detail in Sec. II A, the effective-source

scheme’s basic concept is to analytically compute a “punc-
ture field” which approximates the particle’s Detweiler-
Whiting singular field [42], then numerically solve for the
difference between the actual field perturbation and
the puncture field. We have previously described many of
the details of the computation of the puncture field [53]; in
this work we focus on the application of this scheme to a
particular class of self-force computations.
Depending on how the partial differential equations

(PDEs) are solved, there are two broad classes of self-
force computations: frequency domain and time domain.
Frequency-domain computations involve a Fourier trans-
form of the PDEs in time, reducing the numerical compu-
tation to the solution of a set of ordinary differential
equations (ODEs) (see, for example, [43]). The resulting
computations are typically very efficient and accurate for
circular or near-circular particle orbits,6 but degrade rapidly
in efficiency with increasing eccentricity of the particle’s
orbit, becoming impractical for highly eccentric orbits
[58,59].7 In contrast, time-domain computations involve
a direct numerical time integration of the PDEs and are
generally less efficient and accurate than frequency-domain
computations. However, time-domain computations can

3A number of researchers have attempted direct numerical-
relativity binary-black-hole simulations for systems with “inter-
mediate” mass ratios up to 100∶1 (μ ¼ 0.01), (see, for example,
[15–20]). However, it has not (yet) been possible to extend these
results to the extreme-mass-ratio case nor to accurately evolve
even the 100∶1 case for a radiation-reaction time scale.

4Geroch and Traschen [22] have shown that point particles in
general relativity cannot consistently be described by metrics
with δ-function stress-energy tensors. More general Colombeau-
algebra methods may be able to resolve this problem [23], but the
precise meaning of the phrase “point particle” in general relativity
remains a delicate question.

5Gralla, Harte, and Wald [28] have also recently obtained a
rigorous derivation of the electromagnetic self-force in a curved
spacetime.

6As notable examples of this accuracy, Blanchet et al. [54] and
Shah et al. [55] have both recently computed the gravitational
self-force for circular geodesic orbits in Schwarzschild spacetime
to a relative accuracy of approximately one part in 1013, and
Heffernan, Ottewill, and Wardell [56] (building on earlier work
by Detweiler, Messaritaki, and Whiting [43]) have extended this
to a few parts in 1017. Johnson-McDaniel, Shah, andWhiting [57]
describe an “experimental mathematics” approach to computing
post-Newtonian expansions of various invariants (again for
circular geodesic orbits in Schwarzschild spacetime) by applying
an integer-relation algorithm to numerical results calculated using
up to 5000 decimal digits of precision.

7Barack, Ori, and Sago [60] have found an elegant solution for
some other limitations which had previously affected frequency-
domain calculations.
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accommodate arbitrary particle orbits with only modest
penalties in performance and accuracy [61], with some
complications in the numerical schemes (see, for example,
[62,63]).
In this work our goal is to consider highly eccentric

orbits,8 so we follow the time-domain approach. We use
standard Berger-Oliger mesh-refinement techniques and
compactified hyperboloidal slices for improved accuracy
and efficiency.
The remainder of this paper is organized as follows:
Section I A summarizes our notation.
Section II gives a detailed description of our theoretical

and computational formalism for self-force computations,
with subsections on the effective-source regularization
(II A), the m-mode Fourier decomposition (II B), the
worldtube (II C), moving the worldtube (II D), hyperbol-
oidal slices and compactification (II E), our reduction to a
1st-order-in-time system of evolution equations (II F), the
computation of the puncture field and effective source
(II G), the computation of the effective source close to the
particle (II H), boundary conditions (II I), initial data (II J),
how the self-force is computed from our evolved field
variables (II K), the large-m “tail series” (II L), selecting the
time interval for analysis within an evolution (II M),
selecting a “low-noise” subset of times within an evolution
(II N), how we split the self-force into dissipative and
conservative parts (II O), and a summary of our computa-
tion and data analysis (II P).
Section III presents our numerical results and compares

them to values obtained by other authors, with subsections
on our test configurations and parameters (III A), an
example of our data analysis (III B), the convergence of
our results with numerical resolution (III C), a numerical
verification that our results are independent of the choice of
worldtube and other numerical parameters (III D), com-
parison of our results with those of other researchers (III E),
an overview of our computed self-force for each configu-
ration (III F), our results for highly eccentric orbits (III G),
our results for zoom-whirl orbits (III H), and strong
oscillations (“wiggles”) in the self-force shortly after
periastron (III I).
Section IV presents a general discussion of this work, the

conclusions to be drawn from it, and some directions for
future research.
Appendix A describes the transformation between ~ϕ and

ϕ derivatives, where ~ϕ is the “untwisted” azimuthal
coordinate defined by (2.8).
Appendix B describes our computational scheme in

more detail, with subsections on the numerical computation

of rðr�Þ (B 1), the numerical integration of equatorial
eccentric Kerr geodesics (B 2), gradual turn-on of the
effective source (B 3), our algorithm for moving the
worldtube (B 4), constraints on moving the worldtube early
in the time evolution (B 5), finite differencing across the
worldtube boundary (B 6), computing the set of grid points
where adjusted finite differencing is needed (B 7), comput-
ing the set of grid points where the puncture field is needed
(B 8), the numerical time evolution using Berger-Oliger
mesh refinement (B 9), finite differencing near the particle
(B 10), and implicit-explicit (IMEX) evolution schemes
(B 11).

A. Notation

We generally follow the sign and notation conventions of
Wald [65], with G ¼ c ¼ 1 units and a ð−;þ;þ;þÞ metric
signature. We use the Penrose abstract-index notation, with
indices abcd running over spacetime coordinates, ijk
running over the spatial coordinates, l running over only
the m-mode coordinates ðt; r; θÞ, and s running over only
the spatial m-mode coordinates ðr; θÞ [in both of the latter
cases, the coordinates are defined by (1.1) below].∇a is the
(spacetime) covariant derivative operator. X ≔ Y means
that X is defined to be Y. □ ≔ ∇a∇a is the 4-dimensional
(scalar) wave operator [66,67]. conj½z� is the complex
conjugate of the complex number z. ∂S is the boundary
of the set S. ðaÞn denotes the Pochhammer symbol
Πaþn−1

k¼a k.
We use Boyer-Lindquist coordinates ðt; r; θ;ϕÞ on Kerr

spacetime, defined by the line element

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 − 4M2 ~a

r sin2θ
Σ

dt dϕ

þ Σ
Δ
dr2 þ Σdθ2

þ
�
r2 þM2 ~a2 þ 2M3 ~a2

r sin2θ
Σ

�
sin2θ dϕ2; ð1:1Þ

where M is the spacetime mass, ~a ¼ J=M2 is the dimen-
sionless spin of the black hole (limited to j ~aj < 1),
Σ ¼ r2 þM2 ~a2cos2θ, and Δ ¼ r2 − 2MrþM2 ~a2. In
Boyer-Lindquist coordinates the event horizon is the coor-
dinate sphere r¼ rh ¼ rþ ¼Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ~a2

p
Þ and the inner

horizon is the coordinate sphere r¼ r−¼Mð1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1− ~a2

p
Þ.

We take the particle to orbit in the equatorial plane in the
dϕ=dt > 0 direction, with ~a > 0 for prograde orbits and
~a < 0 for retrograde orbits. We parametrize the particle’s
(bound equatorial geodesic) orbit by the usual dimension-
less semilatus rectum p and eccentricity e; these are defined
in detail in Appendix B 2. We refer to the combination of a
spacetime and a particle orbit as a “configuration,” and
parametrize it with the triplet ð ~a; p; eÞ. We define Tr to be
the coordinate-time period of the particle’s radial motion;

8Hopman and Alexander [64] find that LISA EMRIs are likely
to have eccentricities up to e ∼ 0.8. Intermediate-mass-ratio
inspirals (where the small body has a mass 100M⊙ ≲ μM≲
104M⊙) are likely to have very high eccentricities 0.995≲
e≲ 0.998; these systems are likely much rarer than EMRIs,
but are also much stronger GW sources.
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we usually refer to Tr as the particle’s “orbital period.” We
define the “modulo time” to be the coordinate time
modulo Tr.
To aid in assessing the accuracy of our computed self-

forces, we define a positive-definite pointwise norm on
covariant or contravariant 4-vectors,

∥va∥þ ≔ ðjvtvtj þ jvivijÞ1=2 ð1:2aÞ
∥va∥þ ≔ ðjvtvtj þ jvivijÞ1=2; ð1:2bÞ

where all indices are raised and lowered with the Boyer-
Lindquist 4-metric.
We use xaparticleðtÞ to denote the particle’s worldline,

which we consider to be known in advance, i.e., we do not
consider changes to the particle’s worldline induced by the
self-force. E and L are the particle’s specific energy and
specific angular momentum (i.e., the particle’s energy and
angular momentum per unit mass).
When referring to finite-difference molecules (stencils)

we use i and j as generic integer grid coordinates in the
radial (R�) (where R� is the compactified tortise coordinate
defined by (2.16), (2.27), and (2.28)) and angular (θ)
directions, respectively. Considering a finite-difference
molecule evaluated at the grid point ði;jÞ, we define
the molecule’s “radius” in a given direction (iþ, i−, jþ,
or j−) as the maximum integer δ ≥ 0 such that the
molecule has a nonzero coefficient at i� δ or j� δ,
respectively, and we refer to these as Riþ, Ri−, Rjþ, and
Rj− respectively. For example, the usual 3-point centered
2nd-order molecule approximating the radial partial deriva-
tive ∂R� has Riþ ¼ Ri− ¼ 1 and Rjþ ¼ Rj− ¼ 0.
We use a pseudocode notation to describe algorithms:

Lines are numbered for reference, but the line numbers are
not used in the algorithm itself. # marks comment lines,
while keywords are typeset in bold font. Procedures are
marked with the keyword procedure and have bodies
delimited by “f” and “g”. Code layout and indentation are
solely for clarity and (unlike Python) do not have any
explicit semantics. Procedure names are typeset in type-
writer font. Value-returning procedures (functions)
have an explicitly declared return type (e.g., “boolean
procedure”) and return a value with a return statement.
When referring to a procedure as a noun in a figure caption
or in the main text of this paper, the procedure name is
suffixed with “()”, as in “foo()”.
Variable names are either mathematical expressions, such

as“Riþ”, or are typeset intypewriterfont.“var←X”
means that the variable var is assigned the value of the
expression X. Variables are always declared before use.
The declaration of a variable explicitly states the variable’s
type (integer, floating_point, interval, or region, the last of
these being a rectangular region in the integer plane Z × Z)
and may also be combined with the assignment of an initial
value, as in “region W←worldtube region”. Conditional
expressions have C-style syntax and semantics, condition?

expression-if-true: expression-if-false, while conditional
statements have explicit if, then, and else keywords.
In Appendix B 11 we use lower-case sans-serif letters u,

k, and ~k for state vectors, and upper-case sans-serif letters F
and G for state-vector-valued functions.

II. THEORETICAL FORMALISM

Ignoring questions of divergence and regularization near
the particle, in general the (4-vector) radiation-reaction self-
force on a scalar particle moving in an arbitrary (specified)
background spacetime is given by

Fa ¼ qð∇aΦÞjparticle; ð2:1Þ

where the particle’s scalar charge is q (which may vary
along the particle’s worldline), and the (real) scalar field Φ
satisfies the wave equation

□Φ ¼ qδðxa − xaparticleðtÞÞ; ð2:2Þ

where □ is the curved-space wave operator in the back-
ground spacetime [66].
Because of the δ-function source in (2.2), Φ diverges on

the particle’s worldline, so that some type of regularization
is essential in order to obtain a finite self-force.

A. Effective-source regularization

We use the “effective-source” or “puncture-field” regu-
larization scheme introduced by Barack and Golbourn [49]
and Vega and Detweiler [50] (see [68] for a recent review).
This regularization is based on the Detweiler-Whiting
decomposition [42] of Φ into the sum of a “singular” and
a “regular” field,Φ ¼ Φsingular þ Φregular, with the following
properties:

(i) The singular field is divergent on the particle’s
worldline but is (in a suitable sense) spherically
symmetric at the particle and hence exerts no
self-force.

(ii) The regular field is finite—in fact C∞—at the
particle and exerts the entire self-force. That is,
the correct self-force may be obtained by applying
(2.1) to the regular field,

Fa ¼ qð∇aΦregularÞjparticle: ð2:3Þ

Unfortunately, it is very difficult to compute the
exact Detweiler-Whiting singular or regular fields in
Schwarzschild or Kerr spacetime. The basic concept of
the effective-source regularization is to instead compute a
“puncture-field” approximation Φpuncture ≈ Φsingular, chosen
(in a manner to be described in detail below) so that the
“residual field”Φresidual ≔ Φ − Φpuncture is finite and “some-
what differentiable” (in our case C2) in a neighborhood of
the particle. We then have
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□Φresidual ¼□Φ−□Φpuncture

¼ qδðx−xparticleðtÞÞ−□Φpuncture

¼

8>>>><
>>>>:

0 on the particle worldline

ðour choice ofΦpuncture

will ensure thisÞ
−□Φpuncture elsewhere

ð2:4Þ

≔ Seffective; ð2:5Þ

where we define the “effective source” Seffective to be the
right-hand side of (2.4).
In more detail, we choose Φpuncture so that for some

chosen integer n ≥ 3,

Φpuncture − Φsingular ¼ Oð∥x − xparticleðtÞ∥n−1Þ ð2:6Þ

in a neighborhood of the particle. (This is equivalent to
choosingΦpuncture so that its Laurent series about the particle
position matches the first n terms of Φsingular ’s Laurent
series; both series begin with ∥x − xparticleðtÞ∥−1 terms.)
Since Φregular is C∞ at the particle and Φresidual¼Φregularþ
ðΦsingular−ΦpunctureÞ¼ΦregularþOð∥x−xparticleðtÞ∥n−1Þ in a
neighborhood of the particle, we have
ð∇ΦresidualÞjparticle ¼ ð∇ΦregularÞjparticle. By virtue of (2.3)
the radiation-reaction self-force is thus given by

Fa ¼ qð∇aΦresidualÞjparticle: ð2:7Þ

In this work we choose n ¼ 4, so that Φresidual is C2 at the
particle and Seffective is C0 at the particle. Note, however,
that the criterion (2.6) still leaves considerable freedom in
the choice (definition) of Φpuncture. We describe our choice
in detail in Sec. II G.

B. m-mode Fourier decomposition

Given the basic effective-source formalism, some
authors (e.g., [50,68–71]) choose to solve (2.5) via a direct
numerical integration in 3þ 1 dimensions. However,
following [49,72–75], we prefer to instead exploit the
axisymmetry of the background (Kerr) spacetime and
introduce an m-mode (Fourier) decomposition.
To avoid infinite twisting of the Boyer-Lindquist ϕ

coordinate at the event horizon, we follow [76] by
introducing an “untwisted” azimuthal coordinate

~ϕ ¼ ϕþ fðrÞ ð2:8Þ

with the function f chosen such that

d ~ϕ ¼ dϕþM ~a
Δ

dr: ð2:9Þ

It is straightforward to integrate this to give

fðrÞ ¼ ~a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~a2

p ln

���� r − rþ
r − r−

����þ constant: ð2:10Þ

Using the ~ϕ-derivative transformations derived in
AppendixA,□Φ can bewritten in ðt; r; θ; ~ϕÞ coordinates9 as

Σ□Φ ¼ −
�ðr2 þM2 ~a2Þ2

Δ
−M2 ~a2sin2θ

�
∂ttΦ

−
4M2 ~ar

Δ
∂t ~ϕΦþ ∂rðΔ∂rΦÞ þ 2M ~a∂r ~ϕΦ

þ ∂θθΦþ cot θ∂θΦþ 1

sin2θ
∂ ~ϕ ~ϕΦ: ð2:11Þ

We Fourier decompose the field in eim ~ϕ modes, writing

Φðt; r; θ;ϕÞ ¼
X∞

m¼−∞
eim ~ϕΨmðt; r; θÞ ð2:12Þ

and analogously for the other fields Φpuncture, Φresidual, and
Seffective. For each integer m, the (complex) m-mode fields
are given by

Ψmðt; r; θÞ ¼
1

2π

Z
π

−π
Φðt; r; θ;ϕÞe−im ~ϕd ~ϕ ð2:13Þ

and analogously for the other fields Ψpuncture;m, Ψresidual;m,
and Seffective;m. We then introduce the (complex) radial-
factored field

φm ¼ rΨm ð2:14Þ

(and analogously for φpuncture;m and φresidual;m) so that the
far-field falloffs around an asymptotically flat system are
φm ¼ Oð1Þ when Ψm ¼ Oð1=rÞ.
Following [77], we introduce the tortoise coordinate r�

defined (up to an arbitrary additive constant) by

dr�
dr

¼ r2 þM2 ~a2

Δ
: ð2:15Þ

Again following [77], we fix the additive constant by
choosing

9In an early version of our theoretical formalism we wrote the
equations using η ¼ cos θ as an angular variable. Provided that Φ
is a nonsingular function of η near the z axis, this automatically
enforces the boundary condition ∂θΦ ¼ 0 there (cf. Sec. II I).
However, ∂θθΦ ¼ sin2θ∂ηηΦ − cos θ∂ηΦ, so that on the z axis
∂θθΦ ¼ −∂ηΦ. This means that specifying ∂ηΦ on the z axis
(which should a priori be a reasonable boundary condition)
would implicitly also specify ∂θθΦ there, which should actually
be determined by the field (evolution) equations. In other words,
such a “boundary condition” would in fact overconstrain the
evolution system. To avoid the possibility of such an over-
constraint, we abandoned the η ¼ cos θ scheme.
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r� ¼ rþ 2M
rþ

rþ − r−
ln

�
r − rþ
2M

�

− 2M
r−

rþ − r−
ln

�
r − r−
2M

�
: ð2:16Þ

We describe the numerical computation of rðr�Þ in
Appendix B 1. For any scalar quantity Q we have (using
the chain rule)

∂Q
∂r ¼ r2 þM2 ~a2

Δ
∂Q
∂r� : ð2:17Þ

The scalar wave operator □Φ then becomes

□Φ ¼
X∞

m¼−∞

eim ~ϕ

r
□mφm ð2:18Þ

and each m-mode of the residual field satisfies

□mφresidual;m ¼ Seffective;m; ð2:19Þ
where

□mφ¼ −
1

rΣ

�ðr2 þM2 ~a2Þ2
Δ

−M2 ~a2sin2θ

�
∂ttφ

− 4im
M2 ~a
ΔΣ

∂tφþ ðr2 þM2 ~a2Þ2
rΔΣ

∂r�r�φ

þ
�
−2

M2 ~a2

r2Σ
þ 2imM ~a

r2 þM2 ~a2

rΔΣ

�
∂r�φ

þ 1

rΣ
∂θθφþ cot θ

rΣ
∂θφ

−
�
2

r2Σ

�
M −

M2 ~a2

r

�
þ m2

rΣsin2θ
þ 2im

M ~a
r2Σ

�
φ:

ð2:20Þ

C. The worldtube

Our construction of the puncture field and effective
source ([53] and Sec. II G) is only valid in an finite ðr; θÞ
neighborhood of the particle. Moreover, it is not clear what
far-field boundary conditions the residual field should
satisfy. Therefore, rather than solving (2.19) directly, for
each m we introduce a finite worldtube Wm chosen so that
its interior contains the particle worldline, and the puncture
field and effective source are defined everywhere in the
worldtube. [Notice thatWm logically “lives” in them-mode
ðt; r; θÞ space, not in spacetime.]
For each m we define the piecewise “numerical field”

φnum;m ¼
�
φresidual;m in the worldtube

φm outside the worldtube
: ð2:21Þ

This field has a jump discontinuity across the worldtube
boundary,

lim
xl→bl

xl∈Wm

φnum;mðxlÞ ¼
2
4 lim

xl→bl

xl∈Wm

φnum;mðxlÞ
3
5 − φpuncture;mðblÞ

ð2:22Þ
for any worldtube-boundary point bl ∈ ∂Wm, and it also
satisfies

□mφnum;m ¼
�
Seffective;m inside the worldtube

0 outside the worldtube:
ð2:23Þ

We numerically solve (2.23) via a separate Cauchy time
evolution for each m. The form of (2.23) ensures that the
effective source only needs to be computed inside the
worldtube, and (as discussed in detail in Sec. II D and
Appendices B 6 and B 8) the puncture field only needs to
be computed within a small neighborhood of the worldtube
boundary.
The precise choice of the worldtube may be made for

computational convenience; by construction, the computed
self-force is independent of this choice (see Sec. III D for a
numerical verification of this independence). The world-
tube’s size should reflect a tradeoff between numerical cost
and accuracy:

(i) A larger worldtube requires computing Seffective;m
(which is expensive) at a larger set of events.

(ii) A smaller worldtube (more precisely, one whose
complement includes points closer to the particle)
requires numerically computing—and hence finite
differencing—φm closer to its singularity at the
particle, leading to larger numerical errors.

For a given worldtube shape and size, the best accuracy is
generally obtained by choosing the worldtube to be
approximately centered on the particle.
In practice we typically choose a worldtube which is a

rectangle in ðr�; θÞ of half-width 5M in r� and approx-
imately π=8 in θ.
Since we use Berger-Oliger mesh refinement

(Appendix B 9), the question arises of how the worldtube
should interact with the mesh refinement. In particular,
should the worldtube differ from one refinement level to
another? For simplicity we have chosen a computational
scheme where this is not the case—in our scheme the
worldtube is the same at all refinement levels. This means
that the Berger-Oliger mesh-refinement algorithm does not
need to make the adjustment (2.24) when copying or
interpolating data between different refinement levels.
The worldtube boundary is effectively quantized to the
coarsest (base) grid, but we do not find this to be a problem
in practice.

D. Moving the worldtube

If the particle’s orbit has a sufficiently small eccentricity
then a reasonably sized time-independent worldtube in
ðr�; θÞ can encompass the particle’s entire orbital motion.
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However, our main interest is in the case where the
particle’s orbit is highly eccentric. This requires the
worldtube to be time dependent in order to enclose
the particle throughout the particle’s entire orbital motion.
In our computational scheme we move the worldtube in
ðr�; θÞ in discontinuous jumps so as to always keep the
worldtube’s coordinate center within a small distance
(typically ∼0.5M) of the particle position. (More precisely,
this is the case after the startup phase of the computation;
we discuss this in detail in Sec. B 5.)
When the worldtube moves, those “transition” grid

points which were formerly inside the worldtube and are
now outside, or vice versa, essentially have the computation
of □φpuncture switched between being done analytically
versus via finite differencing. In the continuum limit these
two computations agree, but at finite resolutions they differ
slightly. Therefore, moving the worldtube introduces
numerical noise into the evolved field φnum;m.
Our actual worldtube-moving algorithm (described in

detail in Appendix B 4) incorporates a number of refine-
ments to help mitigate this numerical noise and achieve the
most accurate numerical evolutions possible:

(i) Basically, the algorithm moves the worldtube any
time the particle position is “too far” from the
worldtube center.

(ii) When moving the worldtube, the algorithm places
the new worldtube center somewhat ahead of the
particle in the direction of the particle’s motion. The
algorithm includes a small amount of hysteresis so
as to avoid unnecessary back-and-forth worldtube
moves.

(iii) The algorithm limits the maximum distance the
worldtube can be moved at any one time.

(iv) The algorithm imposes a minimum time interval
between worldtube moves.

Because φnum;m has the jump discontinuity (2.22) across
the worldtube boundary, each time the worldtube is moved
the evolved fields φnum;m and Πnum;m must be adjusted at
transition grid points:

φnum;m ← φnum;m � φpuncture;m ð2:24aÞ

Πnum;m ←Πnum;m � ∂tφpuncture;m; ð2:24bÞ

where the “þ” applies to grid points which were formerly
inside the worldtube and are now outside it, and the “−”
applies to grid points which were formerly outside the
worldtube and are now inside it.

E. Hyperboloidal slices and compactification

Conceptually, (2.23) should be solved on the entire
spacetime, with outflow boundary conditions on the event
horizon and null infinity (J þ). To accomplish this com-
putationally, we use a hyperboloidal compactification

scheme developed by Zenginoğlu [78–85]. This scheme
has a number of desirable properties, including:
(1) The hyperboloidal slices reach the event horizon and

J þ, allowing pure-outflow boundary conditions to
be posed there.

(2) The transformed evolution equations do not suffer
the “infinite blue-shifting” problem (cf. the discus-
sion of [80]) in the compactification region—they
have finite and nonzero propagation speeds through-
out the computational domain, and outgoing waves
suffer at most Oð1Þ compression (blue shifting) or
expansion (red shifting) as they propagate from the
region of the particle to the event horizon and to J þ.

(3) The transformed evolution equations can be formu-
lated to be nonsingular everywhere, with all coef-
ficients having finite limiting values near to and on
both the event horizon and J þ.

(4) The (time-independent) compactification transfor-
mation can be chosen to be the identity transforma-
tion throughout a neighborhood of the entire range of
the particle’s orbital motion. This means that the
computation of the effective source and puncture
field, the various adjustments to the computations
when crossing the worldtube boundary or when
moving the worldtube, and the computation of the
self-force from the evolved field φm, are all unaf-
fected by the compactification.

(5) The scheme is easy to implement, requiring only
relatively modest modifications to our previous
(non-compactified) numerical code.

We primarily follow the version of Zenginoğlu’s
compactification scheme described in [81], although with
slightly different notation to more conveniently allow
a unified treatment of compactification near the event
horizon and near J þ.
For purposes of compactification, it is convenient to

rewrite the evolution equation (2.23) and (2.20) in the
generic form

C½∂ttφ�∂ttφþC½∂tr�φ�∂tr�φþC½∂r�r�φ�∂r�r�φ

þC½∂tφ�∂tφþC½∂r�φ�∂r�φþC½∂θθφ�∂θθφþC½∂θφ�∂θφ

þC½φ�φþC½1� ¼ 0; ð2:25Þ

where we have dropped the subscript on φm, and where the
C½·� coefficients can be read off from the evolution
equations. (C½∂tr�φ� ¼ 0 for our evolution equations, but
is included for generality.)
To make the equations nonsingular near to and on the

event horizon, we multiply (2.23) through by a factor of
rΣΔ. It is also useful for the coefficients to be finite near to
and at J þ, so we further multiply through by a factor of
ðr2 þM2 ~a2Þ−2. The resulting coefficients are

C½∂ttφ� ¼
M2 ~a2Δsin2θ
ðr2 þM2 ~a2Þ2 − 1; ð2:26aÞ
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C½∂tφ� ¼ −i
4mM2 ~ar

ðr2 þM2 ~a2Þ2 ; ð2:26bÞ

C½∂r�r�φ� ¼ 1; ð2:26cÞ

C½∂r�φ� ¼ −
2M2 ~a2Δ

rðr2 þM2 ~a2Þ2 þ i
2mM ~a

r2 þM2 ~a2
; ð2:26dÞ

C½∂θθφ� ¼
Δ

ðr2 þM2 ~a2Þ2 ; ð2:26eÞ

C½∂θφ� ¼
Δ cot θ

ðr2 þM2 ~a2Þ2 ; ð2:26fÞ

C½φ� ¼ −
2Δ

rðr2 þM2 ~a2Þ2
�
M −

M2 ~a2

r

�

−
m2Δ

ðr2 þM2 ~a2Þ2sin2θ − i
2mM ~aΔ

rðr2 þM2 ~a2Þ2 ; ð2:26gÞ

C½1� ¼
8<
:

−
rΣΔ

ðr2 þM2 ~a2Þ2 Seffective;m inside

0 outside:
ð2:26hÞ

We define the compactified radial coordinate R� by

r� ¼
R�

ΩðR�Þ
; ð2:27Þ

where we choose the (time-independent) conformal factor
Ω so that the event horizon and J þ are at the (finite) R�
coordinates Rh� and RJ þ

� respectively. More precisely, we
introduce the four parameters Rh� < R−� < 0 < Rþ� < RJ þ

� ,
chosen such that the particle and worldtube always lie
within the region R−� < R� < Rþ� (where we will choose the
compactification transformation to be the identity trans-
formation). We define

ΩðR�Þ ¼

8>>>>>><
>>>>>>:

1−
�
R−� −R�
R−� −Rh�

�
4

if R�<R−�

1 if R−� ≤R� ≤Rþ�

1−
�

R�−Rþ�
RJ þ
� −Rþ�

�
4

if R�>Rþ�

ð2:28Þ

so that the compactification transformation is indeed the
identity transformation (Ω ¼ 1 and r� ¼ R�) throughout
the region R−� < R� < Rþ� . We refer to R−� and Rþ� as the
inner and outer compactification radii, respectively. Our
numerical grid spans the full range Rh� ≤ R� ≤ RJ þ

� .
To ensure the absence of infinite blue shifting (“desirable

property” 2), the time coordinate must also be transformed.
We define the transformed time coordinate T by

T ¼ t − hðR�Þ; ð2:29Þ
where the “height” function h is given by

hðR�Þ ¼

8><
>:

R� − r� if R� < R−�
0 if R−� ≤ R� ≤ Rþ�
r� − R� if R� > Rþ�

¼

8>>>>><
>>>>>:

R�

�
1 −

1

Ω

�
if R� < R−�

0 if R−� ≤ R� ≤ Rþ�

R�

�
1

Ω
− 1

�
if R� > Rþ�

: ð2:30Þ

In order to express the equations in a simple form, it is
convenient to define the “generalized boost” function

H̄ ¼ dR�
dr�

¼ Ω2

Ω − R�Ω0 ; ð2:31Þ

where X0 ≔ dX=dR� for any quantity X, so that

H̄0 ¼ 2ΩΩ0

Ω − R�Ω0 þ
R�Ω2Ω00

ðΩ − R�Ω0Þ2 : ð2:32Þ

We define the “boost” function H by

H ¼ dh
dr�

¼

8>><
>>:

H̄ − 1 if R� < R−�
0 if R−� ≤ R� ≤ Rþ�
1 − H̄ if R� > Rþ�

ð2:33Þ

so that

H0 ¼

8>><
>>:

H̄0 if R� < R−�
0 if R−� ≤ R� ≤ Rþ�
−H̄0 if R� > Rþ�

: ð2:34Þ

Figure 1 shows an example of these quantities and the
resultant compactification.
Transforming the generic evolution equations (2.25)

from ðt; r�; θ;ϕÞ coordinates to ðT; R�; θ;ϕÞ coordinates,
we see immediately that the coefficients C½∂θθφ�, C½∂θφ�,
C½φ�, and C½1� are all unchanged by the transformation.
At all points other than the event horizon or J þ, the

nontrivially transformed coefficients are

C½∂TTφ� ¼
1

H̄
C½∂ttφ� −

H
H̄
C½∂tr�φ� þ

H2

H̄
C½∂r�r�φ�;

ð2:35aÞ
C½∂TR�φ� ¼ C½∂tr�φ� − 2HC½∂r�r�φ�; ð2:35bÞ

C½∂R�R�φ� ¼ H̄C½∂r�r�φ�; ð2:35cÞ

C½∂Tφ� ¼−H0C½∂r�r�φ�þ
1

H̄
C½∂tφ�−

H
H̄
C½∂r�φ�; ð2:35dÞ

C½∂R�φ� ¼ H̄0C½∂r�r�φ� þ C½∂r�φ�: ð2:35eÞ
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On the event horizon the limiting values of these (trans-
formed) coefficients are

C½∂TTφ� ¼ −2; ð2:36aÞ

C½∂TR�φ� ¼ þ2 ð2:36bÞ

C½∂R�R�φ� ¼ 0; ð2:36cÞ

C½∂Tφ� ¼ −i
m ~a
rh

; ð2:36dÞ

C½∂R�φ� ¼ i
2mM ~a

r2h þM2 ~a2
; ð2:36eÞ

C½∂θθφ� ¼ C½∂θφ� ¼ 0; ð2:36fÞ

C½φ� ¼ C½1� ¼ 0; ð2:36gÞ

while at J þ the limiting values are

C½∂TTφ� ¼ 2
M2 ~a2

H̄00J þ

�
Ω0J þ

RJ þ
�

�
2

sin2θ − 2; ð2:37aÞ

C½∂TR�φ� ¼ −2; ð2:37bÞ
C½∂R�R�φ� ¼ 0; ð2:37cÞ

C½∂Tφ� ¼ −i
4mM ~a

H̄00J þ

�
Ω0J þ

RJ þ
�

�
2

; ð2:37dÞ

C½∂R�φ� ¼ 0; ð2:37eÞ

C½∂θθφ� ¼
2

H̄00J þ

�
Ω0J þ

RJ þ
�

�
2

; ð2:37fÞ

C½∂θφ� ¼
2

H̄00J þ

�
Ω0J þ

RJ þ
�

�
2 1

tan θ
; ð2:37gÞ

C½φ� ¼ −
2m2

H̄00J þ

�
Ω0J þ

RJ þ
�

�
2 1

sin2θ
; ð2:37hÞ

C½1� ¼ 0; ð2:37iÞ
where

Ω0J þ ≔ lim
R�→RJþ

�
Ω0 ¼ 4

RJ þ
� − Rþ�

; ð2:38aÞ

H̄00J þ ≔ lim
R�→RJþ

�
H̄00 ¼ 2Ω0J þ

RJ þ
�

: ð2:38bÞ

While conceptually straightforward, the calculation of
H̄00J þ

is somewhat lengthy; we used the Maple sym-
bolic-algebra system (Version 18 for x86-64 Linux, [86])
to obtain the result given here.

F. 1st-order-in-time equations

To numerically solve the evolution equation (2.23) it is
convenient to introduce the auxiliary variable

Πnum;m ¼ ∂tφnum;m ð2:39Þ
so as to obtain a 1st-order-in-time evolution system. The
compactified evolution equation then becomes

C½∂TTφ�∂TΠþC½∂TR�φ�∂R�ΠþC½∂R�R�φ�∂R�R�φ

þC½∂Tφ�ΠþC½∂R�φ�∂R�φþC½∂θθφ�∂θθφþC½∂θφ�∂θφ

þC½φ�φþC½1� ¼ 0; ð2:40Þ
where we have dropped the subscripts on φnum;m
and Πnum;m.
Our final evolution system comprises (2.39) and (2.40)

using the coefficients (2.35), (2.36), and (2.37), modified
by applying L’Hopital’s rule on the z axis, applying
boundary conditions (Sec. II I), the gradual turn-on of
the effective source (Appendix B 3), the adjustment of φ

-1.0

-0.5

+0.0

+0.5

+1.0

-100 -50 0 +50 +100
R* (M)

Ω
H
–

H

-100

-50

0

50

100

-100 -50 0 +50 +100
R* (M)

h
r
r*

FIG. 1. This figure shows an example of the compactifica-
tion for a Kerr spacetime with dimensionless spin ~a ¼ 0.6.
The compactification parameters (here chosen for visual
clarity rather than optimum computational efficiency/accuracy)
are ðRh�; R−� ; Rþ� ; R

J þ
� Þ ¼ ð−100;−50;þ50;þ100ÞM. The upper

subfigure showsΩ, H̄, andH, and the lower subfigure shows h, r,
and r�, all as functions of R�. The compactification trans-
formation is only nontrivial outside the shaded region
R−� ≤ R� ≤ Rþ� ; the transformation is the identity transformation
(Ω ¼ H̄ ¼ 1, H ¼ h ¼ 0, and r� ¼ R�) in the shaded region. For
R� ≪ 0, r → rh (¼ 1.8M).
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and Π when the worldtube is moved (Sec. II D), and the
addition of numerical dissipation (Appendix B 9).

G. Computing the puncture field and effective source

There is considerable freedom in the particular choice of
puncture field used to construct an effective source. As
mentioned in Sec. II A, we work with a puncture field
which agrees with the Detweiler-Whiting singular field in
the first four orders in its expansion about the worldline.
This ensures that the computed self-force is finite and
uniquely determined, and that the numerical methods used
to compute it converge reasonably well. Other than that, we
shall exploit the freedom to modify the higher-order terms
in the expansion to adapt it to the m-mode scheme.
We begin with a coordinate series approximation for the

Detweiler-Whiting singular field of a scalar charge on an
eccentric equatorial geodesic of the Kerr spacetime, as can
be obtained using, e.g., the methods of [56,87]. Our starting
point is thus a coordinate series expansion of the form

Φ½n�
singularðx; xparticleÞ ¼

Xn
i¼1

Bað3i−3Þ

ρ2i−1
ϵi−2 þOðϵn−1Þ; ð2:41Þ

where

BaðkÞ ≡ baa1a2���akðxparticleÞΔxa1Δxa2 � � �Δxak ; ð2:42Þ
ρ2 ¼ ðgab þ uaubÞΔxaΔxb; ð2:43Þ

and gab and ua are evaluated on xparticle. Here, we introduce
ϵ ≔ 1 as a formal power-counting parameter used to
keep track of powers of distance from the particle; this
amounts to inserting a factor of ϵ for each power of Δxa ¼
½0; r − rparticleðtÞ; θ − π=2;ϕ − ϕparticleðtÞ�a appearing either
explicitly or implicitly (through powers of ρ). Since we are
choosing to include the first four orders in the expansion of
the Detweiler-Whiting singular field, we take n ¼ 4 and
our approximation neglects terms of order ϵ3 and higher.
We next make two crucial modifications that make the

puncture more amenable to analyticm-mode decomposition.
Tomotivate these modifications, consider the general form of
the function ρ in the case of equatorial orbits in Kerr
spacetime, which in Boyer-Lindquist coordinates is given by

ρ2 ¼ ðgrr þ ururÞΔr2 þ gθθΔθ2

þ ðgϕϕ þ uϕuϕÞΔϕ2 þ uruϕΔrΔϕ: ð2:44Þ
Now, the integration involved in them-modedecompositionof
the m¼0 mode of the leading-order 1=ρ term in the
expansion of the singular field almost has the form of a
complete elliptic integral of the first kind, KðkÞ≡ R π=2

0 ×
ð1 − ksin2ϕÞ−1=2dϕ, where the argument k is a function of
xaparticle, u

a, Δr and Δθ. It would be desirable to have it in the
exact form of an elliptic integral, as then it can be efficiently
evaluated without having to resort to numerical quadrature.
Fortunately, the only modifications required to turn it into

elliptic-integral formare to rewriteΔϕ2 in terms of sin2 Δϕ (or
equivalently sin2 Δϕ

2
up to an overall factor of 2 in the resulting

integral), and to eliminate theΔrΔϕ cross term. Both of these
canbedoneusingmethodspreviously used in self-force calcu-
lations; the former can be achieved using the “Q-R” scheme
described in [88], and the latter by combining this with a ra-
dially dependent changeof variable,Δϕ → Δϕ̂ − cΔr,where

c ¼ Lr30u
r

½a2 þ r0ðr0 − 2MÞ�½a2ð2M þ r0Þ þ r0ðL2 þ r20Þ�
ð2:45Þ

is chosen such that the cross term vanishes. This second trick
was first used byMino, Nakano and Sasaki [89] and later also
employed by Haas and Poisson [44].
Given these two modifications to ρ, we are then left with

an expression for ρ̂ ¼ ρþOðϵ2Þ that is of the form

ρ̂2 ¼ Aðr0; ua;Δr;ΔθÞ þ Bðr0; uaÞsin2ðΔϕ̂=2Þ; ð2:46Þ
where Aðr0; ua;Δr;ΔθÞ is a quadratic polynomial in Δr
and Δθ. Note that our manipulations introduce an addi-
tional r and t dependence hidden inside the definition of
Δϕ̂; it is important to take this into account when
computing derivatives of the puncture field, and also when
evaluating it for Δr ≠ 0. The advantage of working with ρ̂
instead of ρ is that the m ¼ 0 mode of 1=ρ̂ is analytically
given by a complete elliptic integral of the first kind,

1

2π

Z
π

−π
ρ̂−1dϕ̂ ¼ 2

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B

p K
�

B
Aþ B

�
; ð2:47Þ

and similarly them ¼ 0mode of ρ̂ is analytically given by a
complete elliptic integral of the second kind,

1

2π

Z
π

−π
ρ̂dϕ̂ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B

p

π
E
�

B
Aþ B

�
: ð2:48Þ

Returning to the problem of obtaining an m-mode
decomposed puncture field, we have to generalize this in
three ways: (i) We need to handle other integer powers of ρ̂;
(ii) We need to handle the additional dependence of Φsingular

on Δϕ̂ other than that appearing in ρ̂; (iii) We need to
handle allm ≥ 0modes (the fact that the full 4-dimensional
scalar field is real means that the m < 0 modes are trivially
related to the m > 0 modes). To make things explicit,
we use the two previously described modifications to
rewrite our approximation to the singular field, (2.41), in
the form

Φsingularðx; xparticleÞ ¼
1

ρ̂2n−1

�X3n−3
i¼0
i even

Cn;isiniðΔϕ̂=2Þ

þ 2
X3n−3
i¼0
i odd

Cn;isiniðΔϕ̂=2Þ cosðΔϕ̂=2Þ
�

þOðϵn−1Þ; ð2:49Þ
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where the coefficients Cn;i are functions of r0, ua, Δr and
Δθ, and where we have replaced R ¼ sinΔϕ̂ with the
equivalent expression 2 sinðΔϕ̂=2Þ cosðΔϕ̂=2Þ. To define
our puncture field, we truncate this expansion at order
n ¼ 4 and decompose into m-modes,

Ψpuncture;m ¼ 1

2π

Z
π

−π
Φ½4�

singulare
−imϕ̂dϕ̂: ð2:50Þ

Writing

e−imϕ̂ ¼ e−imϕ̂0

X2m
k¼0

�
2m

k

�
ð−1Þk=2cos2m−kðΔϕ̂=2Þ

× sinkðΔϕ̂=2Þ; ð2:51Þ
and inspecting the form of the integrals, we see that (apart
from a trivial phase factor) the real part of the puncture is
determined purely by the first term in (2.49), while the
imaginary part is determined purely by the second term.
Furthermore, in all cases we are left with integrals involving
only even powers of sinðΔϕ̂=2Þ and cosðΔϕ̂=2Þ. Then, the
three generalizations listed previously can be handled
through the application of two sets of identities,Z

π

−π
sin2iðΔϕ̂=2Þcos2jðΔϕ̂=2Þρ̂kdϕ̂

¼
Z

π

−π

�
ρ̂2 − A
B

�
i
�
Aþ B − ρ̂2

B

�
j

ρ̂kdϕ̂ ð2:52Þ

andZ
π

−π
ρ̂kdϕ̂ ¼

Z
π

−π

1

Aðkþ 2ÞðAþ BÞ ½ðkþ 3Þð2Aþ BÞρ̂kþ2

− ðkþ 4Þρ̂kþ4�dϕ̂ for k < −1; ð2:53aÞZ
π

−π
ρ̂kdϕ̂ ¼

Z
π

−π

1

k
½Að2 − kÞðAþ BÞρ̂k−4 þ ðk − 1Þ

× ð2Aþ BÞρ̂k−2�dϕ̂ for k > 1: ð2:53bÞ
The first of these is a direct consequence of the definition

of ρ̂, while the second pair can be obtained from, e.g., Eq. (1)
of ([90], Sec. 1.5.27). The first identity eliminates all powers
of sinðΔϕ̂=2Þ and cosðΔϕ̂=2Þ not appearing inside ρ̂, while
the second pair of identities may be recursively applied to
rewrite arbitrary (odd integer) powers of ρ̂ in terms of ρ̂−1

and ρ̂. Thus we can reduce all cases to elliptic-integral form
and obtain analytic expressions for the puncture-fieldmodes
in terms of these easily evaluated elliptic integrals. In
practice, the expressions take the form of an m-dependent
polynomial in A

Bmultiplied byK plus a second polynomial in
A
B multiplied by E.
Given the puncture field Φpuncture, we compute the

effective source Seffective via (2.5) and then the m-mode
effective source Seffective;m via the Fourier integral (2.13).
Note that the□ operator (2.11) must be applied analytically

to the series expansion for the puncture field in order to
correctly cancel all divergent terms; a numerical calculation
of the □ operator would be insufficiently accurate. The
entire computation ofΦpuncture;m and Seffective;m takes approx-
imately 500 lines of Mathematica code. The Mathematica
notebook is included in the Supplemental Material [91].
Our final expressions forΦpuncture;m and Seffective;m involve

multivariate polynomials in Δr andΔθ, the E andK elliptic
integrals (and their derivatives for Seffective;m) and trigono-
metric polynomials. The coefficients in these expressions
are functions (only) of the particle position and 4-velocity,
so that at each distinct time at which Φpuncture;m and/or
Seffective;m need to be computed, we first precompute these
coefficients. This precomputation is done using C code and
numerical coefficients which are machine generated (once)
by the Mathematica program. The machine-generated C
code is large (∼10 megabytes) and involves very lengthy
arithmetic expressions (it contains ∼1.5 × 106 arithmetic
operations); compiling it is slow and requires large amounts
of memory. Fortunately, the execution of the code (to
actually precompute the coefficients) uses only a small
fraction of our code’s total CPU time, so this (machine-
generated) code may be compiled without optimization.
The actual evaluation of Φpuncture;m and Seffective;m at each

grid point is done using hand-written C code. In total (i.e.,
summed over all grid points andRHS-evaluation timeswhere
this evaluation is needed) this evaluation uses the majority of
our code’s total CPU time; the finite differencing and
numerical time integration are relatively minor contributors.

H. Computing the effective source close to the particle

As we have noted previously ([88] Sec. III.C.3), our
series expressions for the effective source suffer from
severe cancellations when evaluated close to the particle.
Because of the Fourier integral (2.13), Seffective;m need
not—and typically does not—vanish at the particle, so
the “interpolate along a ray” scheme we described in [88]
(Sec. III.C.3) is not valid here.
Instead, we use the following scheme. We define a

minimum-distance parameter Dmin (typically set to
0.01M), and if ðΔrÞ2 þ ðrΔθÞ2 < D2

min, then we interpolate
Seffective;m at ðΔr;ΔθÞ using a 4th-order Lagrange interpo-
lating polynomial defined by the values of Seffective;m at
the 5 points ð−2Dmin;ΔθÞ, ð−Dmin;ΔθÞ, ðþDmin;ΔθÞ,
ðþ2Dmin;ΔθÞ, and ðþ3Dmin;ΔθÞ. As shown in Fig. 2, with
this scheme the source is never evaluated closer than a
Euclidean distanceDmin from the particle. The interpolation
is only needed at at most a few points per slice, so the
computational cost is negligible.
While this scheme has proved adequate for our purposes,

it does have the weakness that if the evaluation point lies in
(or very close to) the equatorial plane θ ¼ π=2, then the
interpolation molecule crosses (or almost crosses) the
particle position, leading to reduced accuracy because
φnum;m is only C2 there.

SCALAR SELF-FORCE FOR HIGHLY ECCENTRIC … PHYSICAL REVIEW D 95, 084043 (2017)

084043-11



I. Boundary conditions

We implement boundary conditions using finite-
differencing ghost zones which lie immediately adjacent
to, but outside, the nominal problem domain. At each RHS-
evaluation time we first use the boundary conditions to
compute φnum;m and Πnum;m at all ghost-zone grid points.
We then evaluate the RHS (and use this to time-integrate
the evolution equations) at all grid points in the nominal
problem domain.

1. Physical boundary conditions

We use pure-outflow boundary conditions at the event
horizon and J þ, i.e., we apply the interior evolution
equations at these grid points, using (conceptually) 1-sided
finite-difference molecules for radial derivatives.10

2. z axis symmetry boundary conditions

As discussed by ([49] Sec. IV.C), the z axis symmetry
boundary conditions for φnum;m (and hence also Πnum;m)
depend on m.
m ¼ 0 In this case φnum;m is even across the z axis, i.e.,

∂θφnum;m¼∂θΠnum;m¼0. The m2=sin2θ term in
(2.40) vanishes identically because m ¼ 0, and

L’Hopital’s rule gives the other singular term
as limθ→0 cot θ∂θφnum;m ¼ ∂θθφnum;m.

m ≠ 0 In this case φnum;m is odd across the z axis so that
φnum;m ¼ Πnum;m ¼ 0 there. To implement this we
specify zero initial data on the z axis and replace our
evolution equations by ∂tφnum;m ¼ ∂tΠnum;m ¼ 0

there.

3. Equatorial-reflection symmetry boundary conditions

If the particle orbit is equatorial (as is the case for all the
numerical computations discussed here), then the entire
physical system has equatorial-reflection symmetry, i.e., all
fields must be even across the equator (θ ¼ π=2).

J. Initial data

The correct initial data for (2.23) are unknown (they
would represent the equilibrium field configuration around
the particle, which is what we are trying to compute).
Instead, we follow the usual practice in time-domain self-
force computations (e.g., [73]) and specify arbitrary (zero)
initial data φnum;m ¼ Πnum;m ¼ 0 on our initial slice. This
initial data is not a solution of the sourced evolution
equation (2.23), but we find that the “junk” [the deviation
of the field configuration from (2.23)] quickly radiates
away towards the inner and outer boundaries, so that after
sufficient time φnum;m relaxes to a solution of (2.23)
throughout an (expanding) neighborhood of the worldtube.
We see no sign of the persistent (nonradiative) “Jost junk
solutions” described by [92,93]. This is to be expected for
at least two reasons: (i) the source for our field equations
does not contain the derivative of a Dirac delta function,
and (ii) we are using a second-order-in-space, rather than
first-order-in-space formulation of the field equations.

K. Computing the self-force from the evolved fields

Because the physical scalar fields Φ, Φpuncture, and
Φresidual are real, the Fourier inversion (2.13) implies
that φ−m ¼ conj½φm�, and similarly for the other m-mode
fields. Hence we only need to (numerically) compute the
m-modes m ≥ 0.
We thus have

Φresidualðt; r; θ;ϕÞ ¼
X∞
m¼0

ϒðΦÞ
residual;mðt; r; θ;ϕÞ; ð2:54Þ

where the (real) field ϒðΦÞ
residual;m is given in a neighborhood

of the particle by

ϒðΦÞ
residual;mðt; r; θ;ϕÞ

≔

8>><
>>:

2Re
�
eim ~ϕ

r
φnum;mðt; r; θÞ

�
if m ≠ 0

1

r
φnum;mðt; r; θÞ if m ¼ 0:

ð2:55Þ

Seffective,m at these

input points

δr

rδθ

particle
evaluation point
interpolation uses

FIG. 2. This figure shows our interpolation scheme for com-
puting the 2-dimensional effective source Seffective;m near the
particle. We never evaluate Seffective;m at a Euclidean distance
< Dmin from the particle, i.e., within the region shown as the
shaded disk. Instead, for an evaluation point within this region we
interpolate Seffective;m using Seffective;m values computed at more
distant points.

10For ease of implementation and code organization, we
actually implement this by first extrapolating φ and Π into the
radial ghost zones using 5th-order Lagrange polynomial extrapo-
lation, then applying the interior evolution equations using our
usual centered finite-difference scheme.
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We compute the self-force by substituting (2.54) into
(2.7) and differentiating at the particle position. A straight-
forward calculation gives

Fa ¼ q
X∞
m¼0

ðϒð∂aΦÞ
residual;mÞ

���
particle

; ð2:56Þ

where the “self-force modes”ϒð∂aΦÞ
residual;m ¼ ϒð∂aΦÞ

residual;mðt; r; θÞ
are defined in a neighborhood of the particle by

ϒð∂tΦÞ
residual;m ¼

8>><
>>:

2Re

�
eim ~ϕ

r
Πnum;m

�
if m ≠ 0

1

r
Πnum;m if m ¼ 0;

ð2:57aÞ

ϒð∂sΦÞ
residual;m ¼ ∂sϒ

ðΦÞ
residual;m; ð2:57bÞ

ϒ
ð∂ϕΦÞ
residual;m ¼

8<
:

−2mIm

�
eim ~ϕ

r
φnum;m

�
if m ≠ 0

0 if m ¼ 0:

ð2:57cÞ

We compute each self-force mode at the particle by first
computing it in a finite-difference-molecule-sized region
about the particle, then interpolating it to the particle
position using the “C2” interpolating function described

in Appendix B 10. [For ϒð∂sΦÞ
residual;m, an alternative would be

to apply a “differentiating interpolator”11 directly to

ϒðΦÞ
residual;m. This would be more elegant and efficient than

interpolating a molecule-sized ϒð∂sΦÞ
residual;m grid function.

However, the cost of even the interpolate-a-molecule-
size-grid-function scheme is still only a minute fraction

of the overall self-force computation, so we did not bother
with the additional software complexity of the differentiat-
ing interpolator.]

L. The tail series

In practice we can only numerically compute a finite
number of m-modes 0 ≤ m ≤ mnum;max. We thus partition
each of the infinite sums in (2.54) and (2.56) into a finite
“numerical sum” plus an infinite “tail sum,”

X∞
m¼0

¼
Xmnum;max

m¼0

þ
X∞

m¼mnum;maxþ1

; ð2:58Þ

and account for the tail sum in much the same way as is
done in the mode-sum regularization scheme.
To estimate the tail sum for the self-force computation

(2.56),12 we use the fact that the modes have a known
power-law behavior that can be attributed to the non-
smoothness of the residual field. Explicitly, the behavior of
the modes of the residual field is given by

ðϒðΦÞ
residual;mÞ

���
particle

¼
X
α≥n
α even

kðΦÞα fðΦÞα;m þ ðϒðΦÞ
regular;mÞ

���
particle

;

ð2:59Þ
where ϒðΦÞ

regular;m comes from the C∞ regular field and falls
off faster than any power of m; it can therefore be ignored
for mnum;max sufficiently large. The remaining piece of the
tail sum is effectively an even power series in 1=m, starting
at an order, m−n, that is determined by the order of the
puncture field. In our case (n ¼ 4), the basis functions f for
the m dependence are given by

fðΦÞ4;m ¼ 1

ðm − 3
2
Þðm − 1

2
Þðmþ 1

2
Þðmþ 3

2
Þ

fðΦÞ6;m ¼ 1

ðm − 5
2
Þðm − 3

2
Þðm − 1

2
Þðmþ 1

2
Þðmþ 3

2
Þðmþ 5

2
Þ

fðΦÞ8;m ¼ 1

ðm − 7
2
Þðm − 5

2
Þðm − 3

2
Þðm − 1

2
Þðmþ 1

2
Þðmþ 3

2
Þðmþ 5

2
Þðmþ 7

2
Þ

..

.

fðΦÞα;m ¼ 1

ðm − α−1
2
Þα
; ð2:60Þ

and the coefficient functions, k, are given by the m-mode decomposition of higher-order terms (i.e., those that
have not been included in the definition of the puncture field) in the series expansion of the Detweiler-Whiting singular
field [87].

11An interpolator generally works by (conceptually) locally fitting a fitting function [in our case the C2 interpolant (B14)] to the data
points in a neighborhood of the interpolation point, then evaluating the fitting function at the interpolation point. A differentiating
interpolator instead evaluates a derivative of the fitting function at the interpolation point. This has the effect of interpolating the
corresponding derivative of the input data to the interpolation point without ever needing to form a grid function of that derivative.

12The physical scalar field Φ at the particle can also be computed by applying similar techniques to the infinite sum (2.54).
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Derivatives of the field behave in a similar manner, so
that in addition to using this approach for ϒðΦÞ

residual;m, we

may also use it for the fields ϒðXÞ
residual;m, where X is one of

∂sΦ, ∂tΦ or ∂ϕΦ. The only caveat is that them dependence
is slightly modified: the ϕ derivative introduces a factor of

m2, so f
ð∂ϕΦÞ
α;m ¼ m2fðΦÞα;m. The t derivative of the Detweiler-

Whiting singular field can be written in terms of r and ϕ

derivatives, so fð∂tΦÞα;m has both kinds of terms present.
For any given X, α and mnum;max, the infinite sum

SðXÞα;mnum;maxþ1 ≔
X∞

m¼mnum;maxþ1

fðXÞα;m ð2:61Þ

can be computed exactly. Using the facts that

X∞
m¼−∞

�
m −

α − 1

2

�
α

¼ 0 for even α ≥ 2; ð2:62Þ

X∞
m¼−∞

m2

�
m −

α − 1

2

�
α

¼ 0 for even α ≥ 4; ð2:63Þ

we obtain

SðΦÞα;mnum;maxþ1 ¼
1

ðα − 1Þðmnum;max − α−3
2
Þα−1

; ð2:64Þ

S
ð∂ϕΦÞ
α;mnum;maxþ1 ¼

mnum;maxðmnum;max þ 1Þ
ðα − 3Þðmnum;max − α−3

2
Þα−1

: ð2:65Þ

Analytical expressions for the kðXÞ4 coefficients (in this
context known as “m-mode regularization parameters”)
compatible with our choice of puncture field were given in
[87]. As they are extremely lengthy we will not repeat them
here; a Mathematica notebook for computing them is
included in the Supplemental Material [91].
While the higher-order coefficients could be analytically

determined in a similar manner, we choose instead an
alternative approach. To estimate some finite set α ∈ αtail-set
of the remaining kðXÞα coefficients, we first truncate the
series (2.59) to only the terms α ¼ 4 and α ∈ αtail-set,

ðϒðXÞ
residual;mÞjparticle ≈ kðXÞ4 fðXÞ4;m þ

X
α even

α∈αtail-set

kðXÞα fðXÞα;m: ð2:66Þ

For a specified particle position, we then estimate the

corresponding set of kðXÞα by least-squares fitting the

numerically computed ðϒðXÞ
residual;mÞjparticle with mfit;min ≤

m ≤ mfit;max to the truncated series (2.66).
13 For all analyses

reported in this paper we take αtail-set to be either empty (no

tail fit) or f6; 8g. Table III givesmfit;min andmfit;max for each
of our configurations where a tail fit is done.
Finally, we compute (estimate) each self-force compo-

nent Fa at each of these times by substituting (2.58), (2.59),
and (2.61) into (2.56), giving

Fa

q
¼

Xmnum;max

m¼0

ðϒðXÞ
residual;mÞjparticle þ kðXÞ4 SðXÞ4;mnum;maxþ1

þ
X
α even

α∈αtail-set

kðXÞα SðXÞα;mnum;maxþ1: ð2:67Þ

M. Selecting the time interval for analysis
within an evolution

Our discussion in Secs. II K and II L assumed that a
time series of the self-force modes ϒð∂aΦÞ

residual;m is available
at a suitable set of points around the orbit for each
m ¼ 0; 1; 2;…; mnum;max. However, as described in
Sec. II J, the initial part of each such time series is
contaminated by “junk” radiation. Here we describe how
we determine when this junk radiation has decayed to a
negligible level (below our numerical noise level).
The key fact which underlies our algorithm for making

this determination is that since the particle orbit is peri-
odic,14 the self-force modes should also be periodic with
the orbital period Tr.
Given a time series of some numerically computed self-

force mode ϒð∂aΦÞ
residual;m, we define its “orbit-difference” time

series by

Δ½ϒð∂aΦÞ
residual;m�ðtÞ ≔ jϒð∂aΦÞ

residual;mðtþ TrÞ −ϒð∂aΦÞ
residual;mðtÞj:

ð2:68Þ
The orbit-difference time series is one orbit shorter in
duration than the original time series.
Because of the initial junk radiation, the orbit difference

is initially large. As the junk radiation radiates away from
the particle and worldtube, the orbit-difference decays until
it eventually becomes roughly constant (at a nonzero value
due to finite differencing and other numerical errors) or, in
some cases, varying with the orbital period (since the
numerical errors are similarly periodic). (This behavior can
be seen in Fig. 3.)
It is thus quite easy to determine the time when the junk

radiation has decayed to a negligible level by visually
inspecting a graph of the orbit difference as a function of
time. Although this process could probably be automated
by searching backwards in the orbit-difference time series
for a sustained rise (in fact, we implemented such an
algorithm), we find that the visual inspection is valuable for
detecting a variety of other numerical problems that might

13For each α, we normalize fðXÞα;m to have unit magnitude at the
mean m in αtail-set. This reduces to a tolerable level what would
otherwise be severe numerical ill conditioning in the least-squares
fit [94].

14More precisely, the particle orbit is periodic modulo an
overall rotation in ϕ, which is ignorable because Kerr spacetime
is axisymmetric.
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occur, so we have chosen not to routinely use an automated
algorithm here.

N. Selecting a low-noise subset of times
within an evolution

Because of the interaction between finite differencing
and the limited differentiability of φnum at the particle, as

well as other numerical errors, there is numerical noise in

the self-force modes ϒð∂aΦÞ
residual;m. For highly eccentric orbits,

we find that the higher-m modes may be completely
dominated by numerical noise in the outer parts of the
orbit. (This can be seen in, for example, Figs. 4 and 5.)
Including these modes in the self-force sum (2.67) would

add significant numerical noise to the computed self-force
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FIG. 3. This figure shows some of the self-force modes ϒð∂rΦÞ
residual;m and their orbit differences Δ½ϒð∂rΦÞ

residual;m� for the e8 configuration,
which has ð ~a; p; eÞ ¼ ð0.6; 8; 0.8Þ. In each subplot the green vertical line marks the self-force computation starting time (when the orbit
differences have decayed to the numerical noise level). For each m the orbit differences are only defined for a time interval that is one
orbital period shorter than the self-force mode. As m increases the initial junk decays faster, so the self-force computation starting time
can be earlier in the evolution. Correspondingly, we choose shorter numerical evolutions for larger m.
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while (in many cases) not adding any significant “signal.”
Therefore, it is useful (again, in many although not all
cases) to omit the noisy modes from the self-force sum
(2.67), effectively treating these modes/times as missing
data.
To estimate the noise level at any point in an ϒð∂aΦÞ

residual;m
time series, we first define a smoothed time series

S½ϒð∂aΦÞ
residual;m� using Savitzky-Golay moving-window

smoothing [95] ([96], Sec. 14.8). For all analyses reported
in this paper we use a 6th-degree polynomial over a
current position� 10-sample moving window in the
time series.

We then define the (absolute) noise time series as

noise ½ϒð∂aΦÞ
residual;m�ðtÞ

≔ RMS
SG windowðtÞ

fϒð∂aΦÞ
residual;m − S½ϒð∂aΦÞ

residual;m�g ð2:69Þ

and the “relative noise” time series as

relative noise ½ϒð∂aΦÞ
residual;m�ðtÞ

≔ noise ½ϒð∂aΦÞ
residual;m�ðtÞ= RMS

SG windowðtÞ
fϒð∂aΦÞ

residual;mg; ð2:70Þ
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FIG. 4. This figure shows all of our numerically computed self-force modes ϒð∂rΦÞ
residual;m for the last 2.6 orbital periods for each

m ∈ ½0; 20� for the e8 configuration, which has ð ~a; p; eÞ ¼ ð0.6; 8; 0.8Þ. Compare these with the low-noise subset of modes shown in
Fig. 6.
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where RMSSG windowðtÞf� � �g is the root-mean-square value
over the Savitzky-Golay smoothing window.
Using these definitions we select a low-noise

subset of the time samples by omitting those samples from
the ϒð∂aΦÞ

residual;m time series which have m ≥ mnoise;min and

relative noise ½ϒð∂aΦÞ
residual;m� > εrelative;max, where mnoise;min is a

parameter chosen so that time intervals immediately around
zero crossings in lower-m modes are not falsely excluded,
and where εrelative;max is a parameter chosen to tune the
tolerable level of numerical noise. Table III gives mnoise;min

and εrelative;max for each of our configurations where
smoothing is done.

O. Dissipative and conservative parts
of the self-force

As well as calculating the overall self-force, it is useful to
split the self-force into dissipative and conservative con-
tributions [71,97–100]: the dissipative part affects theOðμÞ
orbital evolution while the conservative part only affects the
orbital evolution at Oðμ2Þ. As discussed by [30] (Sec. 8.1),
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FIG. 5. This figure shows some of the self-force modes ϒð∂aΦÞ
residual;m for the e8 configuration, which has ð ~a; p; eÞ ¼ ð0.6; 8; 0.8Þ. The

figure shows only data for the final orbit simulated for each m. Compare these modes with the low-noise subset of modes
shown in Fig. 7.
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for equatorial orbits these can be computed from the even-
in-time and odd-in-time parts of the self-force,15

Fdiss;t ¼ Feven;t Fcons;t ¼ Fodd;t ð2:71aÞ
Fdiss;r ¼ Fodd;r Fcons;r ¼ Feven;r ð2:71bÞ
Fdiss;ϕ ¼ Feven;ϕ Fcons;ϕ ¼ Fodd;ϕ ð2:71cÞ

where

Feven;aðtÞ ¼
1

2
½FaðtÞ þ FaðTr − tÞ� ð2:72aÞ

Fodd;aðtÞ ¼
1

2
½FaðtÞ − FaðTr − tÞ� ð2:72bÞ

with t being the modulo time.
To allow this computation without requiring time inter-

polation, we always choose our self-force computation
times to be uniformly spaced in coordinate time t, with a

spacing Δtsample which integrally divides the orbital
period Tr.

P. Summary of computation and data analysis

To summarize, our overall computational and data-
analysis scheme involves a sequence of operations:

(i) For eachm, we perform a numerical evolution of the
1st-order-in-time evolution system described in
Sec. II F. Our evolution code writes out time series

of each self-force mode ϒð∂aΦÞ
residual;m, sampled at uni-

form coordinate-time intervals. We always choose
the sampling time Δtsample to be the same for each m
and (as noted in Sec. II O) to integrally divide the
period Tr of the particle’s radial motion.

(ii) For each m, we use the orbit-differences algorithm
described in Sec. II M to select a point in each of the
self-force modes’ time series when the initial junk
radiation has decayed to a level below our numerical
noise level. For all our further data analysis we use
only the modes from times ≥ this “self-force
computation start time” for each m.

(iii) For most configurations, for each m we use the
noise-estimation and low-noise-selection algorithms
described in Sec. II N to select a subset of the self-

force mode ϒð∂aΦÞ
residual;m time series which has rela-

tively low numerical noise.

TABLE I. This table summarizes the main physical parameters for the configurations presented in this paper. ð ~a; p; eÞ uniquely
characterize the spacetime and the particle orbit. E and L are the particle’s specific energy and angular momentum, respectively. “min r”
and “max r” are the particle’s periastron and apoastron coordinate radii, respectively. The orbital period is given in three forms: the
coordinate time Tr and proper time along the particle orbit τr of the radial motion, and the long-term mean coordinate-time period Tϕ

of the azimuthal (ϕ) motion (i.e., the mean coordinate time t during which ϕ advances by 2π). “δϕ per orbit” denotes the advance in ϕ
(in units of 2π) during one period of the orbit’s radial motion (i.e., during a coordinate time Tr); this is given by Tr=Tϕ and is≫ 1 orbit
for a zoom-whirl orbit.

Orbital Period δϕ per

min r max r radial azimuthal orbit

Name ~a p e E (M) L (M2) (M) (M) Tr (M) τr (M) Tϕ (M) (orbits)

ns5 0.0 7.2 0.5 0.956 876 3.622 713 4.8 14.4 405.662 317.366 134.285 3.021
n-55 −0.5 10.0 0.5 0.967 896 4.100 631 6.667 20.0 505.428 434.465 249.488 2.026
n95 0.9 10.0 0.5 0.963 778 3.489 553 6.667 20.0 378.408 333.027 293.070 1.291

e8 0.6 8.0 0.8 0.978 270 3.405 897 4.444 40.000 771.968 709.796 502.435 1.536
e8b 0.8 8.0 0.8 0.978 056 3.292 113 4.444 40.000 756.641 697.570 527.812 1.434
e9 0.99 7.0 0.9 0.986 565 3.052 860 3.684 70.000 1513.855 1442.724 1060.526 1.427
e95 0.99 5.0 0.95 0.990 315 2.699 644 2.564 100.000 2436.050 2349.870 1445.400 1.685

ze4 0.2 6.15 0.4 0.945 536 3.366 468 4.393 10.25 354.628 255.966 95.799 3.702
ze9 0.0 7.800 1 0.9 0.988 333 3.904 885 4.105 78.001 2112.079 1913.402 339.855 6.215
zze9 0.0 7.800 001 0.9 0.988 332 3.904 884 4.105 78.000 2224.815 1971.883 265.734 8.372
ze98 0.99 2.4 0.98 0.991 798 2.180 959 1.212 120.000 3304.620 3021.480 215.851 15.310

circ-ze4 0.2 4.392 857 0.0 0.943 384 3.346 263 4.392 857 4.392 857 59.106
circ-ze9 0.0 4.105 316 0.0 0.988 327 3.904 841 4.105 316 4.105 316 52.264
circ-zze9 0.0 4.105 264 0.0 0.988 332 3.904 884 4.105 264 4.105 264 52.263
circ-ze98 0.99 1.212 121 0.0 0.984 732 2.164 538 1.212 121 1.212 121 14.605

15It would be possible to similarly compute the dissipative and
conservative parts of each individual self-force mode in the
sums (2.56). This would have the advantage that the dissipative
part of the self-force could be computed very accurately (its
tail sums should converge exponentially fast), with only the
conservative part requiring the full tail-sum computation de-
scribed in Sec. II L. However, for historical reasons we have not
taken this approach.
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TABLE II. For each configuration, this table gives the number of self-force output samples per orbit (more precisely, per radial orbital
period for the eccentric-orbit configurations, and per azimuthal orbital period for the circular-orbit configurations), the sampling interval,
the maximum m of the numerically computed modes in the self-force sum (2.67), the time at which the self-force computation begins
(after the initial transients have decayed), and the time at which the numerical evolution ends (or at which the self-force computation
ends, if this is earlier). All times are coordinate times in units ofM and (except for Δtsample) are rounded to the nearest integer. For some
configurations (footnoted), some large-m evolutions use earlier starting and/or ending times (chosen to select low-numerical-noise
sections of data and/or limited by machine failures or queue-time limits). For the eccentric-orbit configurations there is always at least
one orbital period between the starting and ending times; for the circular-orbit configurations the self-force is time independent so there
is no need for an extended self-force computation interval. The circ-ze98 configuration is omitted because we were unable to obtain
stable evolutions for it for m ≥ 6.

Self-Force Computation Start Time Evolution End Time

Δtsample tinitial m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 m ≥ 4 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3 m ≥ 4

Name Nsample (M) mnum;max (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)

ns5 406 0.999 20 143 8 000 2 000 700 365 310 11 990 6 994 3 997 1 349 1 349a

n-55 506 0.999 20 183 7 200 2 700 900 480 420 10 291 5 237 3 721 1 348 1 348
n95 378 1.001 20 116 5 115 2 850 890 400 350 12 013 8 009 4 004 1 251 1 251

e8 770 1.003 20 324 7 000 2 600 1 300 800 650 11 903 6 500 4 184 2 506 2 506
e8b 760 0.996 20 289 8 700 4 200 1 900 1 025 820 11 728 7 945 5 675 3 405 3 405
e9 1 514 1.000 20 680 10 000 5 300 2 450 1 300 1 180b 15 818 8 249 5 221 3 300 3 300
e95 2 436 1.000 20 1 090 7 000 4 700 2 550 2 200 1 950 13 270 8 398 5 962 5 400 5 400

ze4 360 0.985 20 111 8 000 2 000 550 400 360 11 821 6 896 3 940 1 182 1 182
ze9 2 112 1.000 20 920 12 888 7 888 2 500 1 600 1 600 15 001 10 000 8 000 4 800 4 800a

zze9 2 224 1.000 20 1 005 10 000 5 550 3 350 1 700 1 575 22 361 14 461 12 236 7 787 7 787a

ze98 13 216 0.250 12 1 448 11 600 8 250 4 950 4 950 4 950b 18 093 14 871 14 871 13 218 10 623a

circ-ze4 60 0.982 20 0 6 000 2 000 450 315 300b 6 154 4 000 940 700 600a

circ-ze9 52 1.005 20 0 10 000 1 630 410 325 335b 10 453 1 980 950 685 425a

circ-zze9 52 1.005 20 0 10 000 1 630 410 325 335b 10 453 1 980 950 685 425a

aSome large-m evolutions end earlier.
bSome large-m evolutions start the self-force computation earlier.

TABLE III. This table shows the low-noise-selection and tail-fit
parameters used for computing the self-force for each configu-
ration presented in this paper. The circ-ze98 configuration is
omitted because we were unable to obtain stable evolutions for it
for m ≥ 6.

Low-Noise-Selection
Parameters Tail-Fit Parameters

Name mnoise;min εrelative;max mfit;min mfit;max

ns5 10 0.05 9 18
n-55 10 0.05 9 18
n95 10 0.05 9 18

e8 4 0.3 12 20
e8b 4 0.3 12 20
e9 3 0.3 12 20
e95 2 0.3 12 20

ze4 10 0.05 8 18
ze9 2 0.3 12 20
zze9 2 0.3 12 20
ze98 no low-noise selection —no tail fit—

circ-ze4 no low-noise selection 12 20
circ-ze9 no low-noise selection 12 20
circ-zze9 no low-noise selection 12 20

TABLE IV. This table shows which numerical grids were used
in simulating the configurations presented in this paper. See
Tables V and VI for details of these grids.

Numerical Grid

dro4-32 dro6-48 dro6-48 dro8-64 dro10-80
Name normal normal variant normal normal

ns5 ✓ ✓ ✓

n-55 ✓ ✓

n95 ✓ ✓ ✓

e8 ✓ ✓ ✓

e8b ✓ ✓

e9 ✓ ✓ ✓ ✓ ✓
a

e95 ✓ ✓ ✓
b

ze4 ✓ ✓

ze9 ✓ ✓

zze9 ✓ ✓ ✓

ze98 ✓ ✓ ✓ ✓

circ-ze4 ✓ ✓

circ-ze9 ✓ ✓

circ-zze9 ✓ ✓

circ-ze98 ✓ ✓

am ≤ 15 only.
bm ¼ 0, 1, and 2 only.
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(iv) For each modulo time for which we have
self-force modes (at times ≥ the self-force com-
putation start time, and with sufficiently low
estimated noise), we compute the t, r, and ϕ
components of the self-force using the mode
summation and tail-fitting algorithms described
in Secs. II K and II L.

III. NUMERICAL RESULTS

A. Configurations and parameters

Tables I–VIII summarize the main physical and
computational parameters for the configurations

TABLE V. This table shows the range of grid resolutions used
for each of our standard grid structures. Each grid structure has a
base grid and 3 refined grids, with a 2:1 refinement ratio between
adjacent refinement levels. See Table VI for the sizes and shapes
of each refinement level.

Base Grid Finest Grid

R� θ R� θ
(M) (radians) (M) (radians)

dro4-32 normal 1=4 π=72 1=32 π=576
dro6-48 normal 1=6 π=108 1=48 π=864
dro6-48 variant 1=6 π=96 1=48 π=768
dro8-64 normal 1=8 π=144 1=64 π=1152
dro10-80 normal 1=10 π=180 1=80 π=1440

TABLE VI. This table shows the size and shape of each refinement level in our numerical grids. WT_center is the R� coordinate of
the worldtube center. See Table V for the grid resolutions.

R� θ

Refinement Moves with Min Max
Grid Type Level Worldtube? Min Max (radians) (radians)

Normal 0 no Rh� RJ þ
� 0 π=2

1 yes WT center − 30M WT centerþ 30M 0 π=2
2 yes WT center − 15M WT centerþ 15M π=4 π=2
3 yes WT center − 8M WT centerþ 8M π=3 π=2

Variant 0 no Rh� RJ þ
� 0 π=2

1 yes WT center − 35M WT centerþ 40M 0 π=2
2 yes WT center − 18M WT centerþ 18M 5π=24 π=2
3 yes WT center − 6.5M WT centerþ 7.5M 5π=16 π=2

TABLE VII. This table summarizes miscellaneous computational parameters for the e8 runs.

Initial startup
initial time (tinitial) 323.825 M
particle R� at initial time 45.016 M
particle apoastron time 385.984 M
particle R� at apoastron 45.889 M
time of first worldtube move (m ¼ 2) 448.706 M
particle R� at time of first worldtube move 45.000 M
time interval from initial time to first worldtube move (m ¼ 2) 124.881 M

Worldtube
R� (radial) radius (WT_radius) 5.0 M
θ (angular) radius π=8 radians
initial value of worldtube center R� (WT_center) 45.5 M
worldtube center θ π=2 radians
move worldtube if jparticleR� − WT centerj > fmove × WT radius, where fmove ¼ …
initial startup 0.10
main evolution 0.05

when moving worldtube, place new worldtube center ahead of particle R�
(where “ahead” is defined based on sign of particle R� 3-velocity)
by fahead × fmove × WT radius, where fahead ¼ … 0.9

maximum R� distance to move worldtube at any one time ¼ fmax-move × WT radius, where fmax-move ¼ … 0.1
minimum time interval between worldtube moves 1.0 M

Overall evolution
number of worldtube moves per orbit 164
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presented here.16,17 These configurations fall into four
(overlapping) families:

(i) The ns5, n-55, n95, ze4, and e8b configurations
are ones which have also been calculated by
other researchers, allowing us to validate our
code against their results (both published and
unpublished).

(ii) The e8, e8b, e9, and e95 configurations are (non-
zoom-whirl) highly eccentric orbits.

(iii) The ze4, ze9, zze9, and ze98 configurations are
zoom-whirl orbits; of these the ze4 configuration is
of moderate eccentricity while the ze9, zze9, and
ze98 configurations are highly eccentric.

(iv) The circ-ze4, circ-ze9, circ-zze9, and circ-ze98
configurations are circular-orbit configurations with
orbital radii matching the periastrons of the corre-
sponding zoom-whirl configurations.

B. Example of data analysis

Here we give an example of the data-analysis “pipeline”
described in Sec. II P, for the e8 configuration, which
has ð ~a; p; eÞ ¼ ð0.6; 8; 0.8Þ.
Figure 3 shows a selection of the modes ϒð∂rΦÞ

residual;m and

their orbit differences Δ½ϒð∂rΦÞ
residual;m� for the entire time

span of each m’s evolution. Figure 4 shows all of the

ϒð∂rΦÞ
residual;m for the last 2.85 orbital periods for each

m ∈ ½0; 20� for the e8 configuration. Figure 5 shows a

selection of the modes ϒð∂aΦÞ
residual;m in more detail as a

function of modulo time.
After applying the low-noise-selection criteria

described in Sec. II N, Fig. 6 shows the resulting low-

noise subset of the ϒð∂rΦÞ
residual;m for the last 2.6 orbital

periods for each m ∈ ½0; 20� for the e8 configuration, and
Fig. 7 shows a selection of the low-noise modes

ϒð∂aΦÞ
residual;m in more detail as a function of modulo time.

We use these modes to compute the self-force using the
mode summation and tail-fitting algorithms described in
Secs. II K and II L.
Figure 8 shows some example tail fits of the low-noise

modes ϒð∂rΦÞ
residual;m to the tail series (2.67) for the n95 and e8

configurations.

C. Convergence of results with numerical resolution

When numerically solving partial differential
equations, the results should (must) converge to a con-
tinuum limit. More precisely (for finite-difference compu-
tations), as the grid is refined, at each event the results
should in general be convergent with the correct conver-
gence order for the finite-differencing scheme [101].
However, our numerical scheme is an exception: as the
particle moves through the grid, the limited differentiability
of our numerical fields at the particle position introduces
finite-differencing errors which fluctuate in a “bump
function” manner ([102], Appendix F) from one particle
position to another. Moreover, these fluctuations are
typically not coherent between different-resolution evolu-
tions. Correspondingly, we expect the convergence of our
numerical results to fluctuate from one modulo-time
(orbital position) sample to the next.
Figure 9 illustrates this fluctuating convergence for the

n95 and e9 configurations. As expected, the self-force

difference norms ∥FðlowÞ
a − FðhighÞ

a ∥þ and the convergence

ratio ∥FðlowÞ
a − FðmediumÞ

a ∥þ=∥F
ðmediumÞ
a − FðhighÞ

a ∥þ fluctu-
ate strongly (typically by an order of magnitude or more)
from one sample to the next. This makes it difficult to
accurately estimate an overall order of convergence.
However, several conclusions can be drawn:

(i) For both configurations there is no systematic
difference in the convergence ratio between the
ingoing and outgoing legs of the orbit at any given
radius r.

(ii) For the n95 configuration the convergence order is
roughly similar everywhere in the orbit, averaging
somewhat better than 2nd order.

(iii) For the e9 configuration the convergence averages
much better than 4th order for r≲ 10M, somewhat
worse than 2nd order for 10M ≲ r≲ 20M, and
roughly 4th order for r≳ 25M.

TABLE VIII. This table summarizes the compactification
parameters for the configurations presented in this paper.

Particle Motion Compactification

min R� max R� Rh� R−� Rþ� RJ þ
�

Name (M) (M) (M) (M) (M) (M)

ns5 4.8 14.4 −70 −45 þ70 þ95
n-55 8.370 24.395 −70 −45 þ75 þ100
n95 8.390 24.397 −70 −45 þ75 þ100

e8 4.884 45.889 −75 −50 þ125 þ150
e8b 4.884 45.889 −75 −50 þ125 þ150
e9 3.524 77.053 −75 −50 þ160 þ185
e95 0.782 107.784 −75 −50 þ190 þ215

ze4 4.756 13.085 −70 −45 þ65 þ90
ze9 4.208 85.276 −75 −50 þ135 þ160
zze9 4.208 85.275 −75 −50 þ135 þ160
ze98 −15.227 120.000 −90 −65 þ180 þ205

circ-ze4 4.756 4.756 −70 −45 þ55 þ80
circ-ze9 4.208 4.208 −70 −45 þ55 þ80
circ-zze9 4.208 4.208 −70 −45 þ55 þ80
circ-ze98 −15.227 −15.227 −90 −65 þ50 þ75

16The input parameter files and data-analysis scripts for the
highest-resolution evolutions for each configuration, as well as
for the variant-grid dro6-48 evolutions for the e9 configuration,
are included in the Supplemental Material [91].

17These simulations all used the Karst cluster at Indiana
University.
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We have not yet been able to determine the reason
for this somewhat peculiar convergence behavior.
However, since our overall finite-differencing
scheme is 4th order accurate (in both space and
time) in the bulk, achieving an average convergence
higher than this implies that one or more of the (e9)
evolutions must have insufficient resolution to be in
the asymptotic-convergence regime.
Our grid structure for these evolutions (Table VI)

moves the finest 3 refinement levels with the
worldtube, which in turn moves so that its center
is always very close to the particle. Thus, if the
particle is at a sufficiently large radius the strong-
field region close to the black hole will not be
covered by the finest grid. For example, if the
particle is at r ¼ R ¼ 10M (R� ¼ 12.8M) then
the finest grid extends inward only as far as r ¼
R ¼ 4.4M (R� ¼ 4.8M). For phenomena nearer
to the black hole than this, the local grid resolution
is lower. As we discuss in Sec. IV B 3, an

adaptive-mesh-refinement scheme might well
provide improved accuracy—and convergence—in
this situation.

On a more qualitative level, Fig. 23 shows visually
that the difference between our highest and 2nd-highest-
resolution results is very small for the near-periastron parts
of the ze4, ze9, and zze9 orbits.

D. Verification that results are independent
of the choice of worldtube and other

numerical parameters

As discussed in Sec. II C, our numerically computed
self-force should be independent of the choice of the
worldtube. To test this independence numerically, we
compare results for the e9 configuration computed using
the normal and variant dro6-48 numerical grids (these are
described in detail in Tables V and VI). As well as varying
the sizes and positions of each refined grid, these compu-
tations also use different ΔR�=Δθ grid aspect ratios
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FIG. 6. This figure shows the low-noise numerically computed self-force modes ϒð∂rΦÞ
residual;m for the last 2.6 orbital periods for each

m ∈ ½0; 20� for the e8 configuration, which has ð ~a; p; eÞ ¼ ð0.6; 8; 0.8Þ. Compare these with the full set of modes shown in Fig. 4.
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(Table V), different worldtube sizes, and different
worldtube-moving parameters fmove and max_move_
distance (these parameters are defined in Fig. 26).
Figure 10 shows a numerical comparison of the self-force
between these computations. It is apparent that changing
these parameters changes the computed self-force by only a
very small amount (similar in size to the change induced by
a factor-of-1.5 change in numerical resolution).

E. Comparison with other researchers’ results

As an external check on the accuracy of our results, we
compare these against results computed using Warburton

and Barack’s frequency-domain code [52]. Figure 11
shows this comparison for the ns5, n-55, n95, ze4, and
e8b configurations. These span a considerable range of
black-hole spins and particle orbits, including both pro-
grade and retrograde orbits, eccentricities ranging up to
e ¼ 0.8 (the e8b configuration), a zoom-whirl orbit (the ze4
configuration), and an occurrence of “wiggles” (the e8b
configuration).
For all but the e8b configuration, the two codes

agree everywhere around the orbit to within approxi-
mately one part in 105 (dissipative part) or one part in
104 (conservative part). The e8b configuration has a
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FIG. 7. This figure shows some of the low-noise self-force modes ϒð∂aΦÞ
residual;m for the final orbit for each m for the e8 configuration,

which has ð ~a; p; eÞ ¼ ð0.6; 8; 0.8Þ. Compare these modes with the full set of modes shown in Fig. 5.
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highly eccentric orbit (e ¼ 0.8) that is difficult for the
frequency-domain code to compute accurately, so the
somewhat lower accuracy is expected. The strong peaks
in the e8b difference norms in the region 8M ≲ r≲ 15M,
and also the similar but less prominent peaks in the ns5
and ze4 configurations near r ¼ 9M and 7M ≲ r≲ 8M
respectively, are probably due to the frequency-domain
code switching between “inner” and “outer” approxim-
ants [103].
Overall, the agreement between the two codes is

excellent, particularly given that they use different regu-
larizations (effective source versus mode sum), different
evolution formulations (time domain versus frequency
domain), and were/are independently programmed by

disjoint sets of researchers. This agreement gives
quite high confidence that both codes are in fact computing
correct solutions to the OðμÞ-perturbed scalar-field
equations.

F. Overview of self-forces

Figures 12–22 give an overview of the computed self-
forces for all our configurations. To facilitate comparison
between the different configurations, these figures all use a
common format (with one exception noted below):

(i) The top row of each figure shows auxiliary infor-
mation; the lower three rows show (respectively) Ft,
Fr, and Fϕ.
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FIG. 8. This figure shows sample fits of the numerically computedϒð∂rΦÞ
residual;m to the tail series (2.67) for selected times in the n95 and e8
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(ii) In the top row, the left plot shows r and ϕ as
functions of the coordinate time t, while the right
plot shows a plan view of the orbit, i.e., a parametric
plot with x ¼ rðtÞ cosðϕðtÞÞ and y ¼ rðtÞ sinðϕðtÞÞ.

(iii) The coordinate-time scale always runs from− 1
2
Tr to

þ 1
2
Tr, with t ¼ 0 corresponding to periastron. (That

is, this “coordinate time” is in fact identical to the
modulo time.)

(iv) In the lower three rows of each figure, the left
column of plots shows each Fi (in units of
10−6q2=M) as a function of coordinate time t. For
the ze4, ze9, and zze9 zoom-whirl configurations,
these plots also show the self-force for the circular-
orbit configurations (circ-ze4, circ-ze9, and circ-
zze9, respectively) with orbital radius equal to the
zoom-whirl configurations’ periastron radius.
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FIG. 9. This figure shows the convergence of the self-force with numerical resolution for the n95 and e9 configurations.
For the n95 configuration the convergence is calculated using the dro4-32, dro6-48, and dro8-64 numerical grids (labeled
by their finest ΔR� of M=32, M=48, and M=64 respectively), while for the e9 configuration the convergence is calculated using
the dro6-48, dro8-64, and dro10-80 numerical grids (labeled by their finest ΔR� of M=48, M=64, and M=80 respectively).
The top subplots in each column show the configuration’s self-force loop for the positive-definite pointwise norm of the self-

force, ∥Fa∥þ. The middle subplots show the difference norms ∥FðlowÞ
a − FðmediumÞ

a ∥þ and ∥FðmediumÞ
a − FðhighÞ

a ∥þ. The bottom

subplots show the convergence ratios ∥FðlowÞ
a − FðmediumÞ

a ∥þ=∥F
ðmediumÞ
a − FðhighÞ

a ∥þ (plotted separately for the ingoing and
outgoing legs of the orbit), along with the theoretical values of this ratio for 0th-, 2nd-, and 4th-order convergence. Notice
that there is no systematic difference in the convergence ratios between the ingoing (red symbols) and outgoing (green symbols)
legs of the orbit.
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(v) In the lower three rows of each figure, the center and
right columns of plots each show the scaled self-
force ðr=MÞ3Fi (in units of 10−3q2=M). The center
column of plots show ðr=MÞ3Fi as a a function of
coordinate time t. The right column of plots show
ðr=MÞ3Fi as a function of r, forming self-force
“loops” plots of the type introduced by [71].

(vi) In each self-force plot (except the ze98 r3Fi plots)
the total self-force is shown in black and labeled
“total”, the dissipative part of the self-force is shown
in red and labeled “diss,” and the conservative part
of the self-force is shown in green and labeled
“cons.” The dissipative and conservative parts
are omitted in the ze98 r3Fi plots to reduce
clutter.

(vii) In each self-force plot the outgoing half of the orbit
(t ≥ 0) is shown in fully saturated color (black, red,
or green), while the ingoing half of the orbit (t ≤ 0)

is shown in partially saturated color (grey, red,
or green).

(viii) In the self-force loop plots (the right column) the
loops are labeled with arrows to show the particle’s
direction of motion. The dissipative part of Ft, the
conservative part of Fr, and the dissipative part of
Fϕ are each independent of the direction of motion.
The conservative part of Ft, the dissipative part
of Fr, and the conservative part of Fϕ typically
differ between ingoing (pre-periastron, t < 0) and
outgoing (post-periastron, t > 0) motion, forming
visible loops.

G. High-eccentricity orbits

Figures 15–18 show our computed self-force for the
e8, e8b, e9, and e95 high-eccentricity configurations,
respectively.
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FIG. 10. This figure shows a numerical verification that our computed self-force is (approximately) independent of the choice of
worldtube and other numerical parameters, for the e9 configuration [which has ð ~a; p; eÞ ¼ ð0.99; 7; 0.9Þ]. The top subplot shows
the self-force loop for the positive-definite pointwise norm of the self-force, ∥Fa∥þ, with computations using the dro6-48 and variant
dro6-48 worldtube/grids overplotted. The points all coincide visually to high accuracy. The bottom subplot shows a quantitative
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a − FðvariantM=48Þ

a ∥þ, together with the change-in-resolution difference norms ∥FðM=32Þ
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for comparison. Notice that the variant-grid change in the self-force is very small, similar in magnitude to the change-in-resolutions
change in the self-force.
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For these configurations the self-force is strongly local-
ized around the periastron passage. Even though the
particle spends most of its time at large radii, the ∼r−3
far-field scaling of the self-force with radius implies that the
orbital evolution will also be dominated by the periastron
passage.
These configurations also show strong oscillations

(“wiggles”) in the self-force shortly after the periastron
passage; we discuss these in Sec. III I.

H. Zoom-whirl orbits

Figures 19–22 give an overview of our computed
self-force for the ze4, ze9, zze9, and ze98 zoom-whirl
configurations, respectively. Figures 23 and 24 show the
self-force during the whirl phase in more detail for these
configurations.
Although the self-force is strictly speaking nonlocal,

influenced by the particle’s entire past trajectory, in
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Warburton.
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practice the influence of distant times is usually small,
i.e., the self-force is usually dominated by the effects
of the particle’s immediate past. We thus expect that
if the whirl phase of a zoom-whirl orbit is sufficiently
long, the self-force should be very close to that of a
circular orbit at the same radius. Figure 23 shows a
numerical test of this hypothesis for the ze4, ze9,
and zze9 configurations, comparing their whirl-phase
self-forces to those of the corresponding circ-ze4,

circ-ze9, and circ-zze9 circular-orbit configurations,
respectively.18 For the ze4 configuration the agreement
is only modest, presumably because of the relatively
short whirl phase. For the ze9 and zze9 configurations
the agreement is excellent.
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FIG. 12. This figure shows the self-force for the ns5 configuration, which has ð ~a; p; eÞ ¼ ð0; 7.2; 0.5Þ.

18We were unable to calculate the self-force for the circ-ze98
configuration due to numerical instabilities in our evolution code
for m ≥ 6.
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A close examination of Figs. 20 and 21 shows small
“spikes” in Fr at the entry/exit to the ze9 and zze9
configurations’ whirl phases. These can be seen at an
expanded scale in Fig. 23. At the whirl-phase entry,
these configurations’ Fr first becomes slightly negative,
then rises to slightly overshoot its whirl-phase value
(this is the “spike” visible in Figs. 20 and 21), then
decreases slightly to reach the whirl-phase value. At the
zoom-whirl exit, Fr decreases smoothly to a slightly
negative value, then rises slightly to its post-whirl

(near-zero) value.19 Haas ([62], Fig. 17) has calculated
the self-force for our ze9 configuration and finds similar
overshooting behavior. Barack [104] suggests that the
underlying cause of this behavior is the particle’s strong
radial acceleration when entering/leaving the whirl
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FIG. 13. This figure shows the self-force for the n-55 configuration, which has ð ~a; p; eÞ ¼ ð−0.5; 10; 0.5Þ.

19The visual appearance of these Fr curves in Fig. 23 some-
what resembles a step function passed through a low-pass filter,
although we make no claim that this is in any way the actual
mechanism involved.
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phase, but so far as we know no quantitative explanation
is known.
For the ze98 configuration (an extreme zoom-whirl

orbit), Fig. 24 shows quite complicated phenomenology.
(i) At the entrance to the whirl phase (times −110M ≲

t≲ −40M), Fr shows small high-frequency oscilla-
tions superimposed on a larger lower-frequency
oscillation; these oscillations last for approximately
60M (about 1=4 of the entire whirl phase’s duration).
Ft andFϕ show small overshoots of their whirl-phase
values, but no visible high-frequency oscillations.

(ii) Well before the exit from the whirl phase (times
30M ≲ t≲ 75M), while the particle is still very
close to a circular orbit, Fr increases in amplitude
by ∼5% (becoming more negative). Unfortunately,
while our highest and 2nd-highest-resolution
results agree on the overall sign of this change,
they differ by roughly a factor of 2 in its
magnitude. (This is the only time at which these
results differ significantly.) This suggests that
higher-resolution data is needed to reliably quan-
tify this feature.
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FIG. 14. This figure shows the self-force for the n95 configuration, which has ð ~a; p; eÞ ¼ ð0.9; 10; 0.5Þ.
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(iii) In this same time period (times 30M ≲ t≲ 75M) Ft
and Fϕ both decrease in amplitude.

(iv) Shortly before the exit from the whirl phase (times
75M ≲ t≲ 110M), when the particle is significantly
departing from a near-circular orbit, all components
of Fa decrease in magnitude towards their post-whirl
(small) values. None of the components shows any
visible overshoot.

(v) All components of Fa are significantly time asym-
metric about the periastron passage.

This phenomenology is generally consistent between
the dro10-80 and dro8-64 numerical resolutions. How-
ever, this configuration is a very difficult one for our
numerical evolution scheme20 and it remains possible
that some of these features are numerical artifacts. We
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FIG. 15. This figure shows the self-force for the e8 configuration, which has ð ~a; p; eÞ ¼ ð0.6; 8; 0.8Þ. The self-force loops (right
column) are plotted using a logarithmic radial scale. Notice the wiggle in the self-force on the outgoing leg of the orbit, near t ¼ 100M
past periastron, at r ≈ 16M; we discuss this in Sec. III I. Because the dissipative-conservative decomposition (2.71) and (2.72) is
nonlocal, the dissipative and conservative parts of the self-force also show wiggles before periastron.

20At lower resolutions we see numerical instabilities in the
ze98 evolutions at times close to periastron. Our numerical
evolutions are unstable for m ≥ 6 for the circ-ze98 configuration
(a circular orbit at the ze98 configuration’s periastron radius).
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will need to obtain higher-resolution data to resolve this
question.

I. Wiggles

In the configurations which combine a highly spinning
black hole and a prograde high-eccentricity orbit (the e9,
e95, and ze98 configurations, shown in Figs. 17, 18, and 22
respectively), there are prominent and rapid oscillations

(“wiggles”) in r3Fa shortly after periastron. These oscil-
lations are also visible to a lesser extent in the configura-
tions with moderate black-hole spins and prograde
moderate-eccentricity orbits, the e8 and e8b configurations
(shown in Figs. 15 and 16 respectively). Figure 25 shows
the wiggles for the e9, e95, and ze98 configurations at an
expanded scale.
Notice that (except for the ze98 configuration, discussed

in Sec. III H) the self-force varies relatively smoothly prior
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FIG. 16. This figure shows the self-force for the e8b configuration, which has ð ~a; p; eÞ ¼ ð0.8; 8; 0.8Þ. The self-force loops
(right column) are plotted using a logarithmic radial scale. Notice the wiggles in the self-force on the outgoing leg of the
orbit, between t ≈ 50M and 100M past periastron, at r ≈ 15M; we discuss this in Sec. III I. Because the dissipative-conservative
decomposition (2.71) and (2.72) is nonlocal, the dissipative and conservative parts of the self-force also show wiggles before
periastron.
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to periastron—wiggles occur only after the particle’s
periastron passage (t ¼ 0). This suggests that the wiggles
are in some way caused by the particle’s close passage by
the large black hole. We will discuss wiggles’ phenom-
enology and causal mechanisms in a following publication.

IV. DISCUSSION

A. Overall assessment

Our computational scheme combines a number of
ingredients:

(i) the initial formulation of the scalar-field toy model
for the OðμÞ-perturbed scalar-field equations, using
a point-particle source,

(ii) theBarack-Golbourn-Vega-Detweiler effective-source
regularization,

(iii) our specific choice for the puncture field,
(iv) the m-mode Fourier decomposition, and the corre-

sponding formulation of the puncture field and
effective source in terms of elliptic integrals,

(v) the introduction of aworldtube,whichmoves in ðr; θÞ
to follow the particle’s motion around the orbit,
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FIG. 17. This figure shows the self-force for the e9 configuration, which has ð ~a; p; eÞ ¼ ð0.99; 7; 0.9Þ. In the time-domain plots (left
and center columns) the central jtj ≤ 175M around periastron (marked by the vertical lines) is plotted at an expanded horizontal scale.
The self-force loops (right column) are plotted using a logarithmic radial scale. Notice the many wiggles in the self-force on the outgoing
leg of the orbit; we discuss these in Sec. III I. Because the dissipative-conservative decomposition (2.71) and (2.72) is nonlocal, the
dissipative and conservative parts of the self-force also show wiggles before periastron.
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(vi) the Zenginoğlu compactification and hyperboloidal
slices, and

(vii) a finite-difference numerical evolution using
Berger-Oliger mesh refinement and OpenMP-based
parallelization.

The initial OðμÞ perturbation formulation with a point-
particle source is clearly a reasonable starting point for the
scalar-self-force problem. We discuss possible extensions
to this in Sec. IV B 4.

The Barack-Golbourn-Vega-Detweiler effective-source
regularization scheme works well. It involves no approx-
imations [a solution of the regularized equation (2.5) is an
exact solution of the OðμÞ field equations], the analytical
computation of the singular field and effective source can
be done with symbolic-algebra software, and the resulting
regularized equation is computationally tractable.
In this work, we use a 4th-order puncture for equa-

torial orbits in Kerr spacetime. While higher-order,
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FIG. 18. This figure shows the self-force for the e95 configuration, which has ð ~a; p; eÞ ¼ ð0.99; 5; 0.95Þ. In the time-
domain plots (left and center columns) the central jtj ≤ 275M (marked by the vertical lines) is plotted at an expanded
horizontal scale. The self-force loops (right column) are plotted using a logarithmic radial scale. Notice the many wiggles in
the self-force on the outgoing leg of the orbit; we discuss these in Sec. III I. Because the dissipative-conservative
decomposition (2.71) and (2.72) is nonlocal, the dissipative and conservative parts of the self-force also show wiggles
before periastron.
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smoother punctures are available [56,87], we (like other
researchers [69,71,74,88]) find that 4th order represents a
good “sweet spot” compromise between a high-order
puncture—which enables high numerical accuracy and
fast convergence at the cost of a having a complicated
and expensive-to-evaluate source—and a low-order punc-
ture, which is simple and fast to evaluate, but yields poor
convergence and numerical accuracy. However, the com-
putation of the effective source is still computationally

expensive. Further optimization of this computation
would be very useful.
The m-mode Fourier decomposition works very well: it

provides some parallelism “for free” (each m-mode evo-
lution can be performed independently), it reduces the
dimensionality and hence the maximum CPU and memory
usage of each individual evolution, and—perhaps most
importantly—it allows different numerical techniques and/
or parameters to be used for different modes’ evolutions.
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FIG. 19. This figure shows the self-force for the ze4 configuration, which has ð ~a; p; eÞ ¼ ð0.2; 6.15; 0.4Þ. This is a mild zoom-whirl
orbit; the particle completes about 2 orbits at r ≈ 4.5M during the approximately 125M of the whirl phase. In the left column, the
horizontal blue line in each self-force subplot shows the self-force for the circ-ze4 circular-orbit configuration; this configuration has the
same orbital radius as the ze4 configuration’s periastron radius. The self-force near to and during the whirl phase is shown at an
expanded scale in Fig 23.
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This last advantage may be of great importance in extend-
ing our work to the gravitational case, where Dolan and
Barack [75] found that the m ¼ 0 and m ¼ 1 modes suffer
from gauge instabilities (they were able to control the
m ¼ 0 gauge modes, but not the m ¼ 1 modes), while the
m ≥ 2 modes are stable.
The moving-worldtube scheme works well, allowing

highly eccentric orbits to be simulated while only
requiring the (expensive) effective-source computation

in a relatively small region of spacetime. We found the
implementation of the worldtube at a finite-differencing
level to be straightforward (cf. Appendix B 6) once the
Boolean predicates for where to use adjusted finite
differencing and where to (pre)compute the puncture
field were defined correctly (cf. Appendices B 7 and
B 8). For orbits of low to moderate eccentricity, the
alternative of using a smooth blending “window” func-
tion [68,71] is also known to work well. However,

5

10

20

40

80

-3

-2

-1

0

1

2

3

-0.4 -0.2 0 0.2 0.4

r (left scale)
φ (right scale)

r 
(M

)

φ  
(o

rb
its

)

t (orbital periods)

-1000

0

1000

2000

3000

total

diss

cons

F
t (

10
-6

 q
2 /M

)

-1000

-500

0

500

1000
total

diss

cons

F
r (

10
-6

 q
2 /M

)

-20000

-10000

0

10000

-1000 -500 0 500 1000

total

diss

cons

F
φ 

(1
0-6

 q
2 /M

)

t (M)

total

diss

cons

total
diss

cons

-1000 -500 0 500 1000

total

diss

cons

t (M)

-100

-50

0

50

100

150

200

250
total
diss

cons

(r
/M

)3  F
t (

10
-3

 q
2 /M

)

-80

-60

-40

-20

0

20

40

60

80total
diss

cons

(r
/M

)3  F
r (

10
-3

 q
2 /M

)

5 10 20 40 80

-3000

-2000

-1000

0

1000
total
diss

cons

(r
/M

)3  F
φ 

(1
0-3

 q
2 /M

)
r (M)

20 40 60 80r (M)

orbit plan view

in
out

FIG. 20. This figure shows the self-force for the ze9 configuration, which has ð ~a; p; eÞ ¼ ð0.0; 7.8001; 0.9Þ. This is a strong
zoom-whirl orbit; the particle completes about 5 1

3
orbits at r ≈ 4.1M during the approximately 300M of the whirl phase.

During the whirl phase the self-force is large and nearly constant; there are also “spikes” in Fr at this phase’s entry and exit. In
the left column, the horizontal blue line in each self-force subplot shows the self-force for the circ-ze9 circular-orbit
configuration; this configuration has the same orbital radius as the ze9 configuration’s periastron radius. The self-force loops
(right column) are plotted using a logarithmic radial scale. The self-force near to and during the whirl phase is shown at an
expanded scale in Fig. 23.
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extending this to highly eccentric orbits may require
making the window function time dependent, which
would introduce additional terms into the evolution
equations.
Like other researchers (e.g., [68]), we find the

Zenginoğlu compactification and hyperboloidal slices to
work very well. They are easy to implement and provide
slices which span the entire spacetime outside the event
horizon, allowing stable and highly accurate horizon and

J þ outgoing boundary conditions. Slices which reach J þ
also allow a direct computation of the emitted radiation
reaching J þ, although for simplicity we have not done
so here.
Our numerical evolution uses finite differencing and

Berger-Oliger mesh-refinement techniques which are now
standard in numerical relativity. However, there are three
main complications which combine to make the use of
standard adaptive-mesh-refinement frameworks such as
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FIG. 21. This figure shows the self-force for the zze9 configuration, which has ð ~a; p; eÞ ¼ ð0.0; 7.800 001; 0.9Þ. This is a very
strong zoom-whirl orbit; the particle completes about 7 3

4
orbits at r ≈ 4.1M during the approximately 450M of the whirl phase.

During the whirl phase the self-force is large and nearly constant; there are also “spikes” in Fr at this phase’s entry and exit. In the
left column, the horizontal blue line in each self-force subplot shows the self-force for the circ-zze9 circular-orbit configuration;
this configuration has the same orbital radius as the zze9 configuration’s periastron radius. The self-force loops (right column)
are plotted using a logarithmic radial scale. The self-force near to and during the whirl phase is shown at an expanded
scale in Fig. 23.
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Cactus [105–107]21 more difficult and less advantageous
than would be the case in many other numerical-relativity
calculations:

(i) Our use of a worldtube, and the associated
(time-dependent) jump discontinuity in the evolved
field φm, means that interpolation and restriction
operators must “adjust” the field variables when
crossing the worldtube boundary (cf. Appendix B 6).

This means that standard mesh-refinement software
requires modification to accommodate the world-
tube scheme.

(ii) The effective source is expensive to compute, but is
only needed inside the worldtube, so the overall cost
of integrating our equations at a single grid point is
much larger inside the worldtube than outside. The
default domain-decomposition parallelization heu-
ristics used by Cactus and many other adaptive-
mesh-refinement toolkits assume a roughly uniform
level of computational cost per grid point across the
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FIG. 22. This figure shows the self-force for the ze98 configuration, which has ð ~a; p; eÞ ¼ ð0.99; 2.4; 0.98Þ. This is an extreme
zoom-whirl orbit; the particle completes about 15 orbits at r ≈ 1.2M during the approximately 220M of the whirl phase. The self-force
loops (right column) are plotted using a logarithmic radial scale. During the whirl phase the self-force is very large (more than 40 times
the peak self-force of any other configuration in this study) and shows a variety of complicated phenomenology; we discuss this in
Sec. III H. Notice the many wiggles in the self-force on the outgoing leg of the orbit; we discuss these in Sec. III I. The self-force near to
and during the whirl phase is shown at an expanded scale in Fig. 24.

21See [108] for a survey of other such frameworks.
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problem domain, and thus would give relatively
poor parallel performance on our computation.

(iii) The non-smoothness of the evolved field φm at
the puncture (particle) position limits the finite-
differencing order of accuracy attainable there.
For our 4th-order puncture, the accuracy is limited
to at best OððΔR�Þ2; ðΔθÞ2Þ because our evolution
equation (2.23) is 2nd order in space. This reduces the
benefits gained from high-order finite-differencing
schemes (which are now provided by many mesh-
refinement software libraries).

B. Possible improvements

There are a number of ways in which our results might
plausiblybe improved.While there is anaccuracy/performance

tradeoff in almost any finite-difference computation,
computational improvements can still usefully be catego-
rized into those which would improve the accuracy of the
self-force computation for a given finest-grid resolution,
versus those which would improve the efficiency of
computing results using essentially the same numerical
scheme, versus those which would improve both accuracy
and efficiency.

1. Computational improvements: Accuracy

There are several ways in which our computational
scheme might be improved so as to provide more accurate
results for the same finest-grid resolution.
As noted in Sec. II H, our interpolation scheme for

computing the effective source close to the particle uses an
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FIG. 23. This figure shows the self-force during the whirl phase for the ze4, ze9, and zze9 zoom-whirl configurations. For each
configuration the solid lines show the highest-resolution data,while the dots show the lower-resolution data (sampled approximately every
10M); these arevisually identical. The horizontal short-dashed lines show the self-force for the corresponding circular-orbit configurations
(circ-ze4, circ-ze9, and circ-zze9, respectively); these have the same orbit radii as the zoom-whirl configurations’ periastrons.
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interpolation molecule which crosses the particle position
in some cases, reducing the interpolation accuracy. An
improved interpolation scheme might improve the overall
accuracy of the computation.
As the particle moves through the grid, the limited

differentiability of φm at the puncture effectively introduces
noise into the evolution and prevents us from obtaining
proper (in our case 4th order) finite-differencing conver-
gence of our results with grid resolution [101]. One way to
eliminate this noise and obtain proper finite-differencing
convergence would be to use finite-difference operators
which specifically “know” the actual functional form of φm
near the puncture. We have experimented with several
finite-differencing schemes of this type, but so far with only
limited success. At present our code uses the “C2” scheme
described in Appendix B 10. We find that this lowers the
noise level in the computed self-force by roughly a factor of
3, but our results remain quite noisy and their overall
convergence order with respect to grid resolution is still
much lower than we would like. Further research on finite-
difference operators which incorporate more of the punc-
ture’s actual singularity structure would be useful. (We
mention one possible finite-differencing scheme of this
type in Appendix B 10, but we were not able to obtain
stable evolutions with this scheme.)
As noted in Sec. III C, for the e9 configuration we find

poor convergence at small radii (r≲ 10M). We do not yet
know the cause of this poor convergence, but fixing it
would obviously be highly desirable.
Another possible route to more accurate finite differenc-

ing near the puncturemight be to usemanymesh-refinement

levels of small grids in the puncture’s immediate neighbor-
hood, so as to obtain very high resolutions at the puncture.
Given aBerger-Oliger-stylemesh-refinement infrastructure,
this is not difficult. However, the interpolations of the fine-
grid boundary values from the coarser grids might limit the
accuracy improvement, even if buffer zones [109] are used.
Further experimentation with this type of grid structure
would be useful.
Raising the order of the puncture would improve the

smoothness of φm at the puncture, improving the finite-
differencing accuracy there. However, a higher-order
puncture would also yield a much more complicated and
expensive-to-compute effective source. Our current choice
of a 4th-order puncture seems to be a good compromise
between smoothness and computational expense.

2. Computational improvements: Efficiency

There are a number of ways in which our computational
scheme might be made more efficient.
At present our code computes the puncture field and

effective source anew at each right-hand-side evaluation
whose time coordinate differs from that of the previous
evaluation (this happens 50% of the time for the classical 4th-
order Runge-Kutta time-integration scheme we currently
use). For periodic orbits (including all equatorial orbits)
the puncture field and effective source are the same (at a given
time-past-periastron) from one orbit to the next, so a much
more efficient choice would be to cache the effective source
inmemory, reusing cached values for all of the evolution after
the first orbit. However, such a cache would use a very large
amount ofmemory andwould give no benefit for nonperiodic
orbits (including almost all nonequatorial orbits).
Simulations of this type are computationally expensive.

Our code is currently only partially parallelized, using
OpenMP to spread the computation of the singular field,
effective source, and evolution-equation right-hand-side
across multiple cores of a single processor. This is easy
to implement and typically gives a wall-clock speedup of a
factor of 12 to 13 using 16 cores. Grid-based parallelism
(ultimately based on message passing) is an obvious and
widely usedway of achieving higher parallelism, and is now
well supported by numerical-relativity adaptive-mesh-
refinement toolkits such as Cactus [105–107] and the
Einstein toolkit [110,111]. However, Cactus andmany other
adaptive-mesh-refinement toolkits generally assume that the
cost of computing a grid point is roughly constant across the
problem domain. Our worldtube scheme strongly violates
that assumption: points inside the worldtube require com-
puting the effective source and thus cost much more than
points outside the worldtube. This means that without
significant changes to the domain-decomposition heuristics,
standard toolkits would give only limited parallel speedup
for our worldtube scheme. One possibleway to sidestep this
issue is to use a domain decomposition for the calculation of
the effective source that is independent of the normal domain
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decomposition of the full computational grid; such amethod
was used (without mesh refinement), for example, in [71].
Similarly, it might be that other parallelization techniques
such as the task-based model used by the SpECTRE code
[112] would yield better parallel speedup.

3. Computational improvements: Accuracy and efficiency

At present our computational scheme uses finite differ-
encing with Berger-Oliger mesh refinement. A discontinu-
ous Galerkin method [113] might give spectral (i.e., much
better) accuracy/efficiency even with the limited differ-
entiability of φnum at the particle. These methods have
been used successfully in other numerical-relativity and
self-force computations by a number of researchers, e.g.,
[114–116], as well as in other areas of computational
physics involving nonsmooth solutions, e.g., [112,117].
Within the general framework of finite differencing and

Berger-Oliger mesh refinement, there are a number of ways
in which our computational scheme might be enhanced to

better adjust the computations to the solution dynamics,
yielding both improved accuracy (higher effective grid
resolution) and efficiency (fewer high-resolution grid
points “wasted” on regions of spacetime where φm is
relatively slowly varying):

(i) At present our mesh-refinement scheme moves the
finer grids with the worldtube but does not otherwise
adapt to the solution’s dynamics. For an orbit with
substantial eccentricity, the field dynamics near the
particle are quite different between the particle’s
periastron and apoastron. It seems likely that an
adaptive-mesh-refinement scheme (of the type now
widely used in fully nonlinear binary-black-hole
simulations) for varying the grid structure around
the orbit would substantially improve the computa-
tion’s overall accuracy/efficiency.

(ii) At present our computational scheme keeps the
worldtube size and shape fixed throughout the
evolution. An adaptive scheme to adjust (optimize)
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these around the orbit could significantly improve
the code’s accuracy and efficiency. However, unlike
the case for adaptive mesh refinement, there are no
existing algorithms for making this adjustment.
Further research in this area would be valuable.

(iii) For a highly eccentric orbit, many of the higher-m
self-force modes are below our code’s noise level
during much of the orbit. (This can be seen, for
example, in Figs. 4 and 5.) The overall efficiency of
the computation could be greatly improved by not
computing these modes at times when they are
essentially purely noise. This would require
some means of estimating the time intervals in
question, and changes to our initial-worldtube-setup
scheme (described in Sec. B 5) to accommodate
(re)starting the computation of these modes at a time
when the particle is moving much faster than near
apoastron.

4. Extensions to more general physical systems

In this work we focus on computing the instantaneous
scalar self-force acting on the small body. One straightfor-
ward extension to this would be to also compute the scalar
field at the particle, using the method suggested in foot-
note 12. Another straightforward extension would be to
also compute the scalar field radiated to infinity (J þ).
Given our use of asymptotically hyperboloidal slices which
reach J þ, this information is readily available. We have
preliminary implementations of both of these extensions;
we will discuss their results in a following publication.
Our present results are limited to (bound, geodesic)

equatorial particle orbits. Apart from the computational
complexity of computing the effective source (which is
probably manageable with some reorganization of the
Mathematica-generated C code),22 there appears to be no
fundamental obstacle to allowing nonequatorial orbits, and
this would be a very useful extension. In particular, this
would allow direct exploration of transient θ-ϕ resonances
[118,119].
Our present results are limited to the “toy model” of a

scalar-field particle. Extending these results to a point mass
and its gravitational field perturbations would be very
interesting but also challenging. While the basic effec-
tive-source regularization scheme is already known to be
valid for the gravitational case, Dolan and Barack [75]
found that the m ¼ 1 evolutions suffered from linearly-
growing-in-time Lorenz gauge modes which they were not

able to control. Stabilizing these modes, and more generally
achieving long-time-stable evolutions for all m, is an
important area for further research.
Our present results are also limited toOðμÞ perturbations

of the (Kerr) background spacetime. LISA could benefit
from EMRI waveform templates with ∼10−8 or better
fractional orbital-phase accuracy ([120], Sec. 4), which
would require the inclusion of both Oðμ2Þ terms and
“extended-body” effects caused by the finite size and
(in general) nonzero spin of the small body (see, for
example, [121] and references therein).
In the longer term, it will also be essential to extend

self-force calculations to include orbital evolution. This is
conceptually straightforward (though computationally
demanding) if the osculating-geodesic approximation
is retained (as was done by Warburton et al. [122] in
their pioneering calculation of gravitational inspiral in
Schwarzschild spacetime over a time span of more than
75000 orbits). However, going beyond the osculating-
geodesic approximation is more difficult. Diener et al.
[70] have demonstrated that this can be done for a scalar-
field particle in Schwarzschild spacetime, but they were
only able to attain relatively modest accuracies and inte-
gration time spans (∼20 orbits). Extending their work to
higher accuracies and longer integrations is an important
area for further research.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Grant Number
1417132. B.W. was supported by Science Foundation
Ireland under Grant No. 10/RFP/PHY2847, by the John
Templeton Foundation New Frontiers Program under Grant
No. 37426 (University of Chicago) - FP050136-B (Cornell
University), and by the Irish Research Council, which is
funded under the National Development Plan for Ireland.
This material is based upon work supported by the U.S.
National Science Foundation (NSF) under Grant No. CNS-
0521433. This research was supported in part by Lilly
Endowment, Inc., through its support for the Indiana
University Pervasive Technology Institute, and in part by
the Indiana Metabolomics and Cytomics (METACyt)
Initiative. The Indiana METACyt Initiative at IU is also
supported in part by Lilly Endowment, Inc. We are grateful
to Niels Warburton for providing unpublished orbit and
self-force results from the code described in [52]. We thank
Ian Hinder for performing an eigenvalue analysis of our
evolution system, and for helpful discussions on the origin
of our evolution scheme’s very restrictive stability limit for
large m. We thank Leor Barack, Sam Dolan, and the other
participants of the Capra meetings on Radiation Reaction
for many illuminating conversations. J. T. thanks Eric Ost
for valuable assistance with a computer cluster used for
numerical calculations with early versions of our code, and
Virginia J. Vitzthum for comments on this manuscript. J. T.

22Our preliminary experiments with generalizing our current
singular field and effective source to nonequatorial orbits suggest
that the complexity of the effective-source coefficients increases
by a factor of ∼40, with a corresponding increase in the size of the
machine-generated C code for computing the coefficients. This
computation would need to be reorganized in order for it to be
practical to compile the Mathematica-generated C code. We
believe this is possible, but have not yet done so.

JONATHAN THORNBURG and BARRY WARDELL PHYSICAL REVIEW D 95, 084043 (2017)

084043-42



developed the numerical evolution and tail-fitting/mode-
sum codes, performed the numerical evolutions, and did the
main data analysis. B. W. developed the algorithms and
symbolic-algebra code for computing the puncture field
and effective source, and for machine generating the C code
for this computation. Both authors contributed to the
preparation of this manuscript.

APPENDIX A: ~ϕ DERIVATIVES

Clearly d ~ϕ ¼ dϕ if dr ¼ 0, so for any scalar quantity Q
we have

∂Q
∂ϕ

����
r
¼ ∂Q

∂ ~ϕ
����
r

; ðA1Þ

i.e., (since Q is arbitrary),

∂
∂ϕ

����
r
¼ ∂

∂ ~ϕ
����
r

: ðA2Þ

To relate ∂=∂rjϕ and ∂=∂rj ~ϕ, consider two infinitesi-
mally separated events X and Y, with coordinates

X∶ r ¼ rX; ϕ ¼ ϕX; ~ϕ ¼ ~ϕX;

Y∶ r ¼ rX þ dr; ϕ ¼ ϕX: ðA3Þ
Since ϕ is the same for events X and Y, the definition (2.9)
of ~ϕ implies that ~ϕY ¼ ~ϕX þ d ~ϕ with

d ~ϕ ¼ M ~a
Δ

dr: ðA4Þ

Thus for any scalar quantity Q we have (using the chain
rule in ðr;ϕÞ coordinates)

QY −QX ¼ dr ·
∂Q
∂r

����
ϕ

since dϕ ¼ 0: ðA5Þ

Using the chain rule in ðr; ~ϕÞ coordinates, we also have

QY −QX ¼ dr ·
∂Q
∂r

����
~ϕ

þ d ~ϕ ·
∂Q
∂ ~ϕ

����
r

ðA6Þ

¼ dr ·
∂Q
∂r

����
~ϕ

þM ~a
Δ

dr ·
∂Q
∂ ~ϕ

����
r

via ðA4Þ; ðA7Þ

so that [comparing (A5) and (A7)] we have

∂Q
∂r

����
ϕ

¼ ∂Q
∂r

����
~ϕ

þM ~a
Δ

∂Q
∂ ~ϕ

����
r

; ðA8Þ

i.e., (since Q is arbitrary),

∂
∂r

����
ϕ

¼ ∂
∂r

����
~ϕ

þM ~a
Δ

∂
∂ ~ϕ

����
r

: ðA9Þ

APPENDIX B: DETAILS OF OUR
COMPUTATIONAL SCHEME

1. Computing r(r�)

Our computational scheme uses grids which are locally
uniform in ðR�; θÞ. However, the coefficients in many of
our equations are given as explicit functions of r, so the
code needs to know the r coordinate of each grid point.
Since r�ðRÞ is given explicitly by the compactification
(2.27) and (2.28), it only remains to compute rðr�Þ.
Given an input value rðinputÞ� , the corresponding rðinputÞ

could be found by using Newton’s method to solve the

equation r�ðrÞ ¼ rðinputÞ� using the definition (2.16).
However, for positions just outside the event horizon
(r� ≪ 0) the near cancellation in computing r − rþ would
make this algorithm numerically inaccurate.
Instead, we define a new radial coordinate y by

y ¼ ln

�
r − rþ
2M

�
ðB1Þ

so that

r ¼ rþ þ 2Mey: ðB2Þ

The definition (2.16) can then be rewritten as

r� ¼ rþ 2M
rþ

rþ − r−
y − 2M

r−
rþ − r−

ln
�
rþ − r−
2M

þ ey
�
:

ðB3Þ

Given an input value rðinputÞ� , we first find the corre-
sponding yðinputÞ by using Newton’s method to solve the
equation

r�ðyÞ ¼ rðinputÞ� ðB4Þ

for y ¼ yðinputÞ, then computing rðinputÞ via (B2).
Newton’s method requires an initial guess yðinitialÞ. If

rðinputÞ� > rþ we guess rðinitialÞ ¼ r� and use (B1) to compute
yðinitialÞ. Otherwise, we approximate the right-hand side of
(B3) by its first two terms only, so that

yðinitialÞ ¼ rþ − r−
2M

�
rðinputÞ�
rþ

− 1

�
: ðB5Þ

The Newton’s-method solution is moderately expensive
for a computation which (logically) is needed at each grid
point: it typically requires 3–10 iterations, with each
iteration needing an expðÞ and a logðÞ computation as
well as ∼10 floating-point arithmetic operations. Our code
therefore precomputes and caches r for each radial grid
point.
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2. Integrating Kerr geodesics

We use the Glampedakis-Kennefick formulation [58] to
integrate the Kerr geodesic equations.23 This parametrizes
the radial motion as

r ¼ pM
1þ e cos χ

; ðB6Þ

where p is the dimensionless semilatus rectum and e the
eccentricity. To solve for the particle position we numeri-
cally integrate the ODEs

dt
dχ

¼ RHS tðχÞ ðB7aÞ

dϕ
dχ

¼ RHS ϕðχÞ ðB7bÞ

dτ
dχ

¼ ðdr=dχÞ=ðe sin χÞ
ðdr=dτÞ=ðe sin χÞ ðB7cÞ

using χ is the independent variable. The right-hand-side
functions RHS t and RHS ϕ are given by Glampedakis
and Kennefick’s equations (17) and (16) respectively, while
the right-hand side of (B7c) is computed using

dr=dχ
e sin χ

¼ pM
ð1þ e cos χÞ2 ðB8aÞ

dr=dτ
e sin χ

¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffi
~VrðχÞ

q
ðB8bÞ

with ~VrðχÞ given by Glampedakis and Kennefick’s equa-
tion (18). With this formalism the equations are nonsingular
at the radial turning points, and all square roots have their
principal values (i.e., there are no � sign ambiguities).
However, integrating to a specified coordinate time t
requires either an explicit root-finding loop around the
ODE integration or using an ODE integrator with built-in
root-finding capabilities.
We use the ODEPACK ODE integrator [123,124],

whose DLSODAR subroutine provides ODE integration
with built-in root finding. We typically set both the
DLSODAR relative and absolute error tolerances to
100ε, where ε is the floating-point “machine epsilon.”24

We set the DLSODAR MXSTEP parameter (the maximum
number of internal integration steps perDLSODAR call) to
105. This allows DLSODAR to integrate a full orbit (and
hence determine the orbital period) of an extreme zoom-
whirl orbit like our ze98 configuration in a single call.

The ODEPACK library is written in Fortran 77, which
makes its use somewhat awkward in our context. Notably,
ODEPACK keeps internal state in static storage arrays and
Fortran common blocks. In the context of Berger-Oliger
mesh refinement it is natural to use a separate (concurrent)
integration for each refinement level; in our code this
requires explicitly saving and restoring the integrator state
to multiplex the multiple concurrent integrations onto the
single-threaded ODEPACK.
The next-generation version of ODEPACK, now known

asSUNDIALS [126],25 is written inC and (alongwith other
algorithmic and computational improvements) directly sup-
ports multiple concurrent integrations. This should make it
easier to use than the Fortran version.

3. Gradual turn-on of the effective source

Because of the jump discontinuity in the right-hand side
of (2.23), the process of radiating away the initial junk
generates high-spatial-frequency noise in φnum;m in and
near to the worldtube, leading to high noise levels in the
computed self-force time series. Therefore, we use a gradual
turn-on of the effective source, replacing (2.23) with

□mφnum;m ¼
�
fðtÞSeffective;m inside the worldtube

0 outside the worldtube
;

ðB9Þ
where f is a smooth function which is very small (ideally 0)
at the initial time of an evolution and increases to asymptote
to 1 at late times. We use

fðxÞ ¼ 1

2
ð1þ erfðxÞÞ; ðB10aÞ

where the scaled time coordinate x is defined by

xðtÞ ¼ Aþ t − tinitial
B

; ðB10bÞ

where tinitial is the initial time of the time evolution, and
A ¼ −5, and B ¼ 10M.26 This gives fðtinitialÞ ≈ 8 × 10−13

(sufficiently small that the noise due to f being nonzero is
below our code’s overall numerical noise level from other
sources) and f > 0.999999 for t > tinitial þ 83.6M [so that
our evolution equation (B9) approximates (2.23) to within
one part per million for all later times].

23Note that we differ slightly from [58] in that we use a
dimensionless definition for p.

24ε is the difference between 1.0 and the next larger floating-
point number, approximately 1.1 × 10−16 for IEEE-standard
double-precision floating-point arithmetic [125].

25SUNDIALS is available at no cost from https://computation
.llnl.gov/casc/sundials/main.html.

26Note that the expression (B10a) suffers from severe numeri-
cal cancellations for x ≪ 0 (i.e., early in the evolution). Instead,
we use the equivalent expression

fðtÞ ¼
�
1 − 1

2
erfcðxÞ if x ≥ 0

1
2
erfcð−xÞ if x < 0

ðB10cÞ

which is almost entirely free of numerical cancellation.
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Using the gradual turn-on of the effective source, we find
that φnum;m is smooth throughout a neighborhood of the
worldtube [apart from being only C2 at the particle and
having the jump discontinuity (2.22) across the worldtube
boundary] once the gradual turn-on is complete and the field
configuration has had time to adjust. In practice this initial
startup phase has a duration of δtstartup ∼ 100M to 150M.

4. Moving the worldtube

Figure 26 gives our worldtube-moving algorithm in detail.
The algorithm is run at each base-grid time step, and has two
parts: determining whether or not the worldtube should be
moved at the current time and, if it should be moved,
determining the new worldtube position. Table VII gives
the parameters for this algorithm (among others). In practice,

FIG. 26. This figure shows our algorithm for moving the worldtube. The procedure should_worldtube_be_moved() is run at
each base-grid time step to determine whether or not the worldtube should be moved at the current time, and if so, the procedure
choose_worldtube_center() determines the new worldtube position.
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we find that our computed results are quite insensitive to the
precise values of these parameters (cf. Sec. III D).

5. Constraints on moving the worldtube
early in the evolution

When moving the worldtube, the grid-function adjust-
ments (2.24) implicitly assume that φnum has the jump
discontinuity (2.22) across the worldtube boundary. While
this is true once the field is in its equilibrium configuration,
it is not true for our initial data (φnum;m ¼ Πnum;m ¼ 0,
cf. Sec. II J). When the evolution begins, it takes some time
(in practice ∼100 to 150M) for the gradual turn-on of the
effective source (Sec. B 3) to be essentially complete and
for the field to relax to an equilibrium configuration where
the worldtube-boundary jump condition (2.22) is satisfied.
During this initial “startup” phase of the computation we

do not know the actual jump conditions satisfied by φnum,
so the worldtube cannot be moved. This in turn means that
the initial worldtube must encompass the entire range of
motion of the particle in ðR�; θÞ during the startup phase.
We use the following strategy to ensure this (for a
equatorial geodesic or near-geodesic particle orbit) without
requiring an excessively large worldtube:

(i) We first choose a particle apoastron time tapoastron.
Notice that the particle position R� ¼ R�ðtÞ is
locally symmetric about an (any) apoastron time.

(ii) We then choose the startup time interval to be
symmetric about tapoastron. That is, given an estimate
for the startup time interval’s duration δtstartup
(typically 100M to 150M), we begin the numerical
evolution at t ¼ tinitial ¼ tapoastron − 1

2
δtstartup, so that

the startup phase lasts until t ¼ tstartup→main ¼
tapoastron þ 1

2
δtstartup. During the startup time interval

the particle first moves outwards, then moves
back inwards, reaching its initial radius again at
tstartup→main.

(iii) We initially center the worldtube in ðR�; θÞ at (the
base-grid point nearest) the average of xiparticleðtinitialÞ
and xiparticleðtapoastronÞ, and choose the worldtube-
moving parameters so that the worldtube will not
be moved during the startup phase.

(iv) At the end of the startup phase at tstartup→main (when
the particle returns to its initial position, nowmoving
inwards), we change the worldtube-moving param-
eters to values which keep theworldtube’s coordinate
center within approximately half a coarse-grid spac-
ing of the particle for the remainder of the evolution.
The first worldtube move generally occurs immedi-
ately after the new parameters take effect.

6. Finite differencing across the worldtube boundary

We numerically implement the jump condition (2.22) on
the worldtube boundary in the same manner as Barack and
Golbourn [49] and Dolan and Barack [73]. That is, suppose

we are finite differencing the equations at an “evaluation”
grid point which is inside (outside) the worldtube, using a
finite-difference molecule which has a nonempty set S of
input grid points which are outside (inside) the worldtube.
Then instead of applying the finite-difference molecule to
the φnum;m grid function in the usual manner, we instead
copy φnum;m at all the molecule input points to a (molecule-
sized) temporary grid function φtemp

num;m, then adjust the
values of that temporary grid function to have the same
inside/outside-the-worldtube semantics as the evaluation
point via

φtemp
num;m ← φtemp

num;m ∓ φpuncture;m ðB11Þ
at each grid point in the set S, then finally apply the usual
finite-difference molecule to the adjusted values.
Notice that this “adjusted finite differencing” need only

be used for (roughly) those grid points which are within a
finite-difference molecule radius of the worldtube boun-
dary. (We discuss the precise choice of those grid points in
the following section.) Because these comprise only a tiny
fraction of all grid points, the adjusted finite differencing
does not itself significantly slow the code. Rather, its main
computational cost is the test—at each spatial grid point at
each time the evolution equations are evaluated by the time
integrator27—for whether or not adjusted finite differencing
should be used. As discussed further in the following
section, this test costs only ∼10 arithmetic and logical
operations, which is easily tolerable.

7. Computing the set of grid points where adjusted
finite differencing is needed

In developing our numerical code we found that it was (is)
much more difficult than might be expected to compute the
precise set of grid points where adjusted finite differencing
should be done. As noted in the previous section, this is
approximately the set of all grid points within a finite-
difference molecule radius of the worldtube boundary.
However, in the presence of equatorial-reflection symmetry
(cf. Sec. II I 3) this set is not quite correct: there are certain grid
points near the intersection of the worldtube boundary with
the θ ¼ π=2 equatorial-reflection symmetry plane which are
within a finite-difference molecule radius of the worldtube
boundary, but where adjusted finite differencing should
(must) not be used. Figure 27 shows an example of this.
The technique we eventually adopted involves two parts:
(1) We build up the “should this finite-difference oper-

ator be adjusted via (B11) at this grid point?”
predicate in stages via Boolean and set operations
on sets of grid points. Figure 28 shows the resulting
algorithm. With this approach, the semantics of each
individual function are very clear, which allowed us

27This evaluation typically happens several times per time step;
we discuss our time-evolution algorithms in detail in Sec. B 9.
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to develop an extensive test suite to help validate the
algorithm.

(2) When using equatorial-reflection symmetry, we use
a numerical grid which spans only the “northern
hemisphere” 0 ≤ θ ≤ π=2 radians, but we still con-
sider the worldtube to be the full region that it would
have occupied in the absence of equatorial-reflection
symmetry, i.e., (assuming an equatorial particle
orbit) we take the worldtube to be symmetric about
the equatorial plane.

8. Computing the set of grid points where the
puncture field is needed

Given that the adjustment (B11) is to be applied, there
remains the problem of computing φpuncture;m at each finite-
difference molecule input point.

In our evolution scheme there are (for 5-point centered
molecules) typically 9 molecule input points per evaluation
point,28 so there is a significant performance boost from
computing φpuncture;m only once at each grid point where it
is needed, rather than 9 times if it were (re)computed each
time it is used at a molecule input point.
[Notice that—even apart from any performance cost—we

cannot simply compute φpuncture;m at all spatial grid points
(at each evaluation time), because (a) φpuncture;m diverges at
the particle, and (b) our series expansions for φpuncture;m may
be ill-behaved (e.g., they may involve division by zero)
sufficiently far from the particle (outside the worldtube).]
There are two plausible ways of ensuring that φpuncture;m

is computed at the desired set of grid points without trying
to compute it at any point where the computation would
blow up:

(i) φpuncture;m could be stored as a “smart grid function.”
comprising a standard grid function of complex
numbers (φpuncture;m values) together with an aux-
iliary grid function of Boolean “valid” flags record-
ing whether or not φpuncture;m has already been
computed at the corresponding grid point at the
current time. On each access to the grid function, the
Boolean flag would be checked, and if φpuncture;m had
not already been computed at that grid point at the
current time, it would be computed, stored (cached)
in the corresponding grid function, and the corre-
sponding Boolean flag would be set to record that
this grid-function value was now valid, so that future
access could use the cached value.

(ii) Alternatively, we could use a standard complex grid
function to store φpuncture;m and precompute [i.e.,
compute before starting to compute the adjustment
(B11)] φpuncture;m at all the grid points where it will
be needed, storing it in the grid function. (At grid
points where φpuncture;m will not be needed, the grid
function can either be left uninitialized or be set to
dummy values—these will not affect the result of
any finite-differencing operation.) The adjustment
(B11) can then use the stored φpuncture;m values with
no further validity checking needed.

We have chosen the second option as likely being simpler
and more efficient.
The precomputation algorithm does not actually require

an exact computation of the “is φpuncture;m needed at this
grid point?” predicate: no harm is done if we precompute
φpuncture;m at some points where it will not actually be used,
so the predicate need only return true at a (possibly proper)
superset of the actual set of grid points where φpuncture;m

is needed. This suggests that the naive algorithm of
precomputing φpuncture;m at every grid point that is within

R*

θ

θ = π/2

worldtube

equatorial plane

grid points

grid points in worldtube

grid points in equatorial-reflection
 symmetry ghost zone

molecule evaluation point

molecule input points

FIG. 27. This figure shows an example where the naive
algorithm “use adjusted finite differencing at all grid points
within a finite-difference molecule radius of the worldtube
boundary” would give incorrect results. The worldtube is
shown by the shaded region; the worldtube boundary of
interest is the “equator” θ ¼ π=2 (shown by the dashed line).
The molecules being considered are 5-point centered mole-
cules in the θ direction, as would be used to approximate
∂θ or ∂θθ; these molecules have radius 2 in the �θ directions.
The molecule evaluation point shown as × is only 1 grid
point away from the worldtube boundary, so the naive
algorithm would say that adjusted finite differencing should
be used for this molecule. However, the arrowed point is
actually within the equatorial-reflection symmetry ghost
zone’s “reflection” of the worldtube, so in terms of the
adjustment (B11) this point has inside-the-worldtube seman-
tics, and hence adjusted finite differencing should not be used
for this molecule.

28There are no ∂R�θ terms in our evolution equations; if there
were, then (again assuming 5-point centered molecules) there
would be 25 molecule input points per evaluation point.
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a finite-difference molecule radius of the worldtube boun-
dary might well yield correct results.
However, for consistency and to maximize our confi-

dence that equatorial-reflection symmetry cases like the
one shown in Fig. 27 are handled correctly, we choose
instead to build up the “is φpuncture;m needed at this grid
point?” predicate in stages using Boolean and set oper-
ations on sets of grid points, in a manner very similar to our
construction of the “should adjusted finite differencing be
used at this grid point?” algorithm (Fig. 28). Figure 29
shows the resulting algorithm for determining where
φpuncture;m is needed. Like the adjusted-finite-differencing
algorithm, this algorithm has very clear semantics for each
individual function, which allowed us to develop an
extensive test suite to help validate the algorithm.

9. Numerical time evolution

We numerically solve the evolution system (2.39) and
(2.40) using themethod of lines, with locally uniform spatial
grids in ðR�; θÞ. We discretize all spatial derivatives using

(5-point) 4th-order centered finite differencing, except that
within a few grid points of the particle we use the “C2”
finite-differencing scheme described in Appendix B 10.
For all results reported here, we use the classical 4th-order
Runge-Kutta method for the time evolution.
We use Berger-Oliger mesh refinement ([127–130]) with

a 2:1 refinement ratio, full subcycling in time, and buffer
zones [109]. We use 5th-order (6-point) Lagrange poly-
nomial interpolation in space and time for the coarse-to-fine
Berger-Oliger interpolations. (This requires keeping 6 time
levels for all but the finest refinement level; the latter needs
only a single time level.) For the results reported here we
use 4 refinement levels with the finest 3 refinement levels
moved to follow the worldtube (Sec. II D and Table VI).
In the terminology of Berger-Oliger mesh refinement our
grid placement is “nonadaptive,” in that it does not depend
on the values of the field variables.
While our evolution scheme is stable on moderate time

scales, we find that long-time evolutions can be made much
less noisy by adding 6th-order Kreiss-Oliger dissipation in
the form

FIG. 28. This figure shows our algorithm for computing the “should this finite-difference operator be adjusted via (B11) at this grid
point?” predicate. Only the procedures for radial finite-difference molecules are shown; those for angular molecules are analogous.
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∂tφnum;m → ∂tφnum;m þ εðDR� ðφnum;mÞ þ Dθðφnum;mÞÞ;
ðB12aÞ

∂tΠnum;m → ∂tΠnum;m þ εðDR� ðΠnum;mÞ þ DθðΠnum;mÞÞ;
ðB12bÞ

where

ðDðgÞÞi ¼
1

64
ðΔxÞ5ðD3þD3

−gÞi

¼ 1

64Δx
ðgi−3 − 6gi−2 þ 15gi−1 − 20gi þ 15giþ1

− 6giþ2 þ giþ3Þ: ðB13Þ

To obtain stable evolutions we found it crucial to add
dissipation only at those grid points where the following 3
conditions are satisfied:

(i) The dissipation molecule does not cross the particle,
i.e., the closest grid point to the particle is not one of
the points i − 3 through iþ 3 inclusive in the
expression (B13).

(ii) The dissipation molecule does not cross the world-
tube boundary, i.e., it does not have input points both
inside and outside the worldtube.

(iii) The dissipation molecule does not have any input
points outside the union of the nominal grid and any
symmetry ghost zones. In practice this prevents dis-
sipation from being added close to mesh-refinement

FIG. 29. This figure shows our algorithm for computing the “is φpuncture;m needed at this grid point?” predicate. Apart from
puncture_fn_used_at_ij(), only the procedures for radial finite-difference molecules are shown; those for angular molecules
are analogous.
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boundaries or close to the horizon or J þ grid
boundaries.

We use ε ¼ 0.1 for the evolutions reported here.
Table IX shows the empirically determined Courant-

Friedrichs-Lewy (CFL) stability limit νmax [131] of our
evolution scheme as a function of m. Our code chooses the
base-grid time step Δt by first computing ΔtðpreliminaryÞ ¼
κνmaxΔR� (where κ ¼ 0.9 is a safety-factor parameter),
then choosing Δt to be the largest value ≤ ΔtðpreliminaryÞ
which integrally divides the output sampling time. The time
steps for all refined grids are defined by the Berger-Oliger
mesh-refinement scheme.
It is clear from Table IX that at large m our evolution

scheme has a very restrictive CFL stability limit (small νmax
and hence small Δt), making the evolution quite inefficient.
As discussed in Appendix B 11, we have experimented
with an IMEX time-evolution scheme in an attempt to
alleviate the large-m CFL restriction, but thus far these
experiments have not yielded larger stable Courant num-
bers. This remains a topic for further research.

10. Finite differencing near the particle

Because φm is only C2 at the particle, standard finite-
difference molecules do not attain their full order of
accuracy near (within roughly a molecule radius of) the
particle. One way to view this problem is to conceptualize a

finite-difference molecule as being derived by fitting a local
(sliding-window) Lagrange interpolating polynomial to the
operand grid function, then differentiating that interpolat-
ing polynomial. This suggests that one way to obtain more
accurate finite differencing near the particle might be to use
a more general interpolating function that better represents
the actual behavior of φm near the particle.
To this end, without loss of generality, we consider the

finite differencing of a (real or complex) function gwhich is
defined on a suitable neighborhood of the origin on the
real line, using a 1-dimensional numerical grid with grid
points at integer coordinates. Without loss of generality,
we assume the particle to be at the (known) position
p ∈ ½0; 1

2
�. We consider the piecewise-polynomial interpo-

lating function

IðxÞ¼ a0þa1ðx−pÞþa2ðx−pÞ2

þ
�
b3ðx−pÞ3þb4ðx−pÞ4þb5ðx−pÞ5 if x≤ 0

c3ðx−pÞ3þc4ðx−pÞ4þc5ðx−pÞ5 if x> 0:

ðB14Þ

The 9 coefficients fa0; a1; a2; b3; b4; b5; c3; c4; c5g can be
uniquely determined (as functions of the parameter p) by
requiring I to match the specified function g at the 9 adjacent
grid points in the range −4 ≤ x ≤ 4. I, dI=dx, and d2I=dx2

can then be evaluated at any desired position to obtain
finite-difference approximations to g, dg=dx, and d2g=dx2

respectively. Using a symbolic-algebra system, these finite-
difference operators can bewritten as linear combinations of
the values of g at the grid points, with coefficients depending
only on p and the evaluation position.
Figure 30 shows how we use these “C2” finite-difference

operators at various grid points near the particle. In the
present work the particle is always in the background
Kerr spacetime’s equatorial plane, and we always place a
θ ¼ constant row of grid points on the equatorial plane.
Considering the numerical grid in 2 dimensions ðR�; θÞ,
with corresponding integer grid coordinates ði; jÞ, suppose
that the closest grid point to the particle is at ðiparticle;
jequatorÞ. Then we use the C2 scheme for ∂R� and ∂R�R�
derivatives evaluated at grid points on the equator (i.e., for
grid points with j ¼ jequator) and i near iparticle, in the manner
shown in the figure.We also use this scheme in the j direction
for ∂θ and ∂θθ derivatives evaluated at grid points with
i ¼ iparticle and j near the equator. We use standard (5-point)
centered 4th-order molecules at all other grid points.
As discussed in Sec. II K, we also use the interpolating

function I directly in computing the self-force.
Overall, we find that switching from using 4th-order

centered spatial finite differencing everywhere to using the
C2 finite-difference operators near the particle reduces the
noise level in the computed self-force by about a factor
of 2 to 3.

TABLE IX. For each m ∈ ½0; 20�, this table shows the largest
Courant number ν ¼ Δt=ΔR� for which we obtain a stable
evolution. For these stability tests we use a dissipation coefficient
of ε ¼ 0.01 and a 2-refinement-level grid with base resolution
ΔR� ¼ M=4; the stability limit depends only weakly on these
parameters.

m νmax

0 0.63
1 0.65
2 0.59
3 0.48
4 0.39
5 0.33
6 0.283
7 0.246
8 0.217
9 0.195
10 0.176
11 0.160
12 0.147
13 0.136
14 0.127
15 0.118
16 0.111
17 0.105
18 0.099
19 0.094
20 0.089
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We also experimented with a more general interpolating function

IðxÞ ¼ a0 þ a1ðx − pÞ þ a2ðx − pÞ2 þ

8>>>>>>>>><
>>>>>>>>>:

b3ðx − pÞ3 þ b3lðx − pÞ3 logðKðx − pÞ2Þ
þb4ðx − pÞ4 þ b4lðx − pÞ4 logðKðx − pÞ2Þ
þb5ðx − pÞ5 þ b5lðx − pÞ5 logðKðx − pÞ2Þ if x ≤ 0

c3ðx − pÞ3 þ c3lðx − pÞ3 logðKðx − pÞ2Þ
þc4ðx − pÞ4 þ c4lðx − pÞ4 logðKðx − pÞ2Þ
þc5ðx − pÞ5 þ c5lðx − pÞ5 logðKðx − pÞ2Þ if x > 0;

ðB15Þ

where K is a scaling constant and the 15 coefficients
fai; bi; bil; ci; cilg are determined by solving a system of
15 linear equations using the values of g at 15 adjacent grid
points. (A purely symbolic solution to this linear system
proved impractical, but it is easy to solve numerically. This
needs to be done once for each choice of the grid spacing
and K.) However, we were not able to obtain stable
evolutions with this scheme.

11. IMEX evolution schemes

As discussed in Appendix B 9, when using an explicit
(Runge-Kutta) time-evolution scheme we find that the CFL

stability limit [131] is very restrictive for large m, with the
largest stable Courant number being approximately propor-
tional to 1=m. Examination of the derivative structure of
our evolution system, together with an eigenvalue analysis
kindly performed by I. Hinder, suggests that m2 coefficient
in the φ term in the scalar wave operator (2.20) may be a
major contributor to the large-m time-step restriction.
We thus consider the use of an implicit time-evolution

scheme. More precisely, we consider the use of an IMEX
time-evolution scheme. There is a large literature on these
schemes; see, for example, [132–138]. The basic concept of
an IMEX scheme is to partition the right-hand-side function
into explicit and implicit parts,

grid point

particle

molecule point

evaluation point

evaluate
at k= 0

evaluate
at k=+1

evaluate
at k=-1

evaluate
at k=+2

evaluate
at k=-2

evaluate
at k=+3

evaluate
at k=-3

evaluate
at k=+4

evaluate
at k=-4

0 +1-1 +2 3+2- 4+3--4 +5-5 +6-6 +7-7

FIG. 30. This figure shows our “C2” spatial finite-differencing scheme for use near the particle. Each row of the diagram shows the
finite-difference molecule used for a different evaluation point. k refers to the integer grid coordinate in the x direction, with the origin set
so that k ¼ 0 is the grid point closest to the particle. We use molecules based on the piecewise-polynomial interpolating function (B14)
for evaluations points −2 ≤ k ≤ þ2 and standard (5-point) centered 4th-order molecules at all other evaluation points.
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_u ¼ Fðu; tÞ þGðu; tÞ; ðB16Þ
where u is the state vector, then treat F explicitly and G
implicitly. For our application, we will place all the spatial
derivatives into the explicit term, thus avoiding having to
solve an elliptic system at each time step.
We have chosen the scheme proposed by Boscarino

[137] [in particular, his BHR(5,5,3) scheme, variant 2] as
being efficient, relatively easy to implement, and having
good accuracy (3rd-order overall) without the “order
reduction” problems of many other schemes.29

We write a generic implicit-explicit Runge-Kutta scheme
for the ODE (B16) as30

uðnþ1Þ ¼ uðnÞ þ h
Xs
i¼1

biki þ h
X~s

i¼1

~bi ~ki; ðB18Þ

where h is the time step, superscripts ðnÞ and ðnþ 1Þ refer
to time levels, subscripts refer to Runge-Kutta stages
numbered 1;…; s, and the Runge-Kutta stages are given by

ki ¼ Fðui; tðnÞ þ hciÞ; ðB19aÞ
~ki ¼ Gðui; tðnÞ þ hciÞ; ðB19bÞ

ui ¼ uðnÞ þ h
X
j<i

dijkj þ h
X
j≤i

~dij ~kj; ðB19cÞ

with the coefficients fbig, f ~big, fcig, fdijg, and f ~dijg.
For example (eliding the evaluation times for clarity), the

first few stages are

u1 ¼ uðnÞ þ h ~d11Gðu1Þ; ðB20aÞ
u2 ¼ uðnÞ þ hd21Fðu1Þ þ h ~d21Gðu1Þ þ h ~d22Gðu2Þ;

ðB20bÞ

u3 ¼ uðnÞ þ hd31Fðu1Þ þ hd32Fðu2Þ þ h ~d31Gðu1Þ
þ h ~d32Gðu2Þ þ h ~d33Gðu3Þ: ðB20cÞ

To solve the implicit equations (B19), we observe that our
state vector u is of the form

u ¼
�
φ

Π

�
; ðB21Þ

so we can write

F
�
φ

Π

�
¼

�
yðφ;ΠÞ
zðφ;ΠÞ

�
ðB22Þ

and

G
�
φ

Π

�
¼

�
0

~zðφ;ΠÞ

�
¼

�
0

αφþ βΠ

�
ðB23Þ

with known coefficients α and β. (This use of α is unrelated
to its use as a tail-series exponent in Sec. II L.)
The 2-component F function (B22) includes all the main

evolution equations (2.39), (2.40), and (B12), as well as all
spatial boundary conditions. Evaluating F requires com-
puting (or retrieving from a cache) the 2D puncture field
and effective source.31

We have considered a number of possible choices for
precisely which terms from the main evolution equa-
tion (2.40) should be treated implicitly (i.e., put into G).
Conceptually, we have α ¼ α1 þ α2 þ α3, where

α1 ¼ 0 or −
2Δ

rðr2 þM2 ~a2Þ2
�
M −

M2 ~a2

r

�
; ðB24aÞ

α2 ¼ 0 or −
m2Δ

ðr2 þM2 ~a2Þ2sin2θ ; ðB24bÞ

α3 ¼ 0 or − i
2mM ~aΔ

rðr2 þM2 ~a2Þ2 ; ðB24cÞ

and

β ¼ 0 or − i
4mM2 ~ar

ðr2 þM2 ~a2Þ2 ðB24dÞ

29We warn the reader of the following typographical errors
in [137]:

(i) Equation (4) should read

Ui ¼ Un þ h
Xi−1
j¼1

~aijFðtn þ ~cjh; UjÞ

þ h
Xi

j¼1

aij
1

ε
Gðtn þ cjh; UjÞ ðB17Þ

(ii) In theAppendix, in the left (explicit) Butcher tableau,
the b coefficients should read ½b1 0 b3 b4 γ �.

(iii) In the Appendix, in the right (implicit) Butcher
tableau, the coefficients for the last stage (the 5th
row of the matrix) should be identical to the b
coefficients, i.e., they should read ½b1 0 b3 b4 γ �.

30Our notation in the remainder of this appendix is somewhat
different from Boscarino’s; notably, we swap the tilde and
nontilde coefficients.

31Unfortunately, in all IMEX schemes of which we are aware it
is not the case that there are repeated evaluations of F with
different state vectors at the same time coordinate, so there is no
reuse possible of the puncture field and effective source from one
evaluation to the next. In contrast (as noted in Sec. IV B 2), with
the classical RK4 scheme 50% of evaluations are repeated in this
way, so—since the effective-source computation dominates the
code’s overall running time—there is an easy factor-of-two
saving in computational cost by caching and reusing the effective
source from one evaluation to the next if the evaluation time is
unchanged.
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modified by the compactification transformation (2.35),
together with the spatial boundary conditions. This gives 16
possible variant schemes, depending on which subset of
fα1; α2; α3; βg is nonzero (treated implicitly). For each of
these variants,

(i) G is linear in φ and Π at each grid point,
(ii) G may be evaluated independently at each grid

point, and
(iii) this evaluation does not require computing the 2D

puncture field or effective source.
Together, these properties make the scheme efficient and
relatively easy to implement.
Substituting the 2-component u, F, and G functions

(B21), (B22), and (B23) into the implicit Runge-Kutta
equations (B19), we have

ui ¼
�
φi

Πi

�
¼

�
φðnÞ

ΠðnÞ

�
þ h

X
j<i

dij

�
yj
zj

�

þ h
X
j<i

~dij

�
0

~zj

�
þ h ~dii

�
0

αφi þ βΠi

�
: ðB25Þ

We solve this equation at each Runge-Kutta stage by first
computing

φi ¼ φðnÞ þ h
X
j<i

dijyj ðB26aÞ

and then computing

Πi ¼
ΠðnÞ þ h

P
j<idijzj þ h

P
j<i

~dij ~zj þ h ~diiαφi

1 − h ~diiβ
:

ðB26bÞ
We have implemented these 16 variant schemes, but

unfortunately we find that all of them have CFL stability
limits which are (to within the ∼1% accuracy of our trial-
and-error estimation of the stability limit on test problems)
identical to those of the classical RK4 scheme (Table IX).
Since the RK4 scheme is simpler and offers a factor-of-two
overall speedup by caching and reusing the effective source
at repeated evaluation times, we use it for all the compu-
tations presented in this paper. We hope to further inves-
tigate different partitionings of the right-hand-side function
between F andG in the future in the hopes of alleviating the
large-m time-step restriction.

[1] J. R. Gair, L. Barack, T. Creighton, C. Cutler, S. L. Larson,
E. S. Phinney, and M. Vallisneri, Classical Quantum
Gravity 21, S1595 (2004).

[2] L. Barack and C. Cutler, Phys. Rev. D 69, 082005 (2004).
[3] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. C. Miller, I.

Mandel, C. J. Cutler, and S. Babak, Classical Quantum
Gravity 24, R113 (2007).

[4] J. R. Gair, Classical Quantum Gravity 26, 094034 (2009).
[5] T. Damour, in Three Hundred Years of Gravitation, edited

by S.W. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1987) Chap. 6, pp. 128–198.

[6] L. Blanchet, Living Rev. Relativ. 17, 2 (2014).
[7] T. Futamase and Y. Itoh, Living Rev. Relativ. 10, 2 (2007).
[8] L. Blanchet, in Mass and Motion in General Relativity,

Fundamental Theories of Physics, Vol. 162, edited by L.
Blanchet, A. Spallicci, and B. F. Whiting (Springer-Verlag,
Berlin, 2011), p. 125.

[9] G. Schäfer, in Mass and Motion in General Relativity,
Fundamental Theories of Physics, Vol. 162, edited by L.
Blanchet, A. Spallicci, and B. F. Whiting (Springer-Verlag,
Berlin, 2011), p. 167.

[10] F. Pretorius, in Relativistic Objects in Compact Binaries:
From Birth to Coalescence, edited by M. Colpi (Springer-
Verlag, Berlin, 2007).

[11] M. Hannam, S. Husa, J. G. Baker, M. Boyle, B. Brügmann,
T. Chu, N. Dorband, F. Herrmann, I. Hinder, B. J. Kelly,
L. E. Kidder, P. Laguna, K. D. Matthews, J. R. van Meter,
H. P. Pfeiffer, D. Pollney, C. Reisswig, M. A. Scheel, and
D. Shoemaker, Phys. Rev. D 79, 084025 (2009).

[12] M. Hannam, Classical Quantum Gravity 26, 114001
(2009).

[13] M. Hannam and I. Hawke, Gen. Relativ. Gravit. 43, 465
(2011).

[14] M. Campanelli, C. O. Lousto, B. C. Mundim, H. Nakano,
Y. Zlochower, and H.-P. Bischof, Classical Quantum
Gravity 27, 084034 (2010).

[15] N. T. Bishop, R. Gómez, S. Husa, L. Lehner, and J.
Winicour, Phys. Rev. D 68, 084015 (2003).

[16] N. T. Bishop, R. Gómez, L. Lehner, M. Maharaj, and J.
Winicour, Phys. Rev. D 72, 024002 (2005).

[17] C. F. Sopuerta, P. Sun, P. Laguna, and J. Xu, Classical
Quantum Gravity 23, 251 (2006).

[18] C. F. Sopuerta and P. Laguna, Phys. Rev. D 73, 044028
(2006).

[19] C. O. Lousto,H.Nakano,Y. Zlochower, andM.Campanelli,
Phys. Rev. Lett. 104, 211101 (2010).

[20] C. O. Lousto and Y. Zlochower, Phys. Rev. Lett. 106,
041101 (2011).

[21] E. Poisson, A. Pound, and I. Vega, Living Rev. Relativ. 14,
7 (2011).

[22] R. Geroch and J. Traschen, Phys. Rev. D 36, 1017 (1987).
[23] R. Steinbauer and J. A. Vickers, Classical Quantum Grav-

ity 23, R91 (2006).
[24] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457

(1997).
[25] T. C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381

(1997).
[26] S. Detweiler, Phys. Rev. Lett. 86, 1931 (2001).

SCALAR SELF-FORCE FOR HIGHLY ECCENTRIC … PHYSICAL REVIEW D 95, 084043 (2017)

084043-53

http://dx.doi.org/10.1088/0264-9381/21/20/003
http://dx.doi.org/10.1088/0264-9381/21/20/003
http://dx.doi.org/10.1103/PhysRevD.69.082005
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1088/0264-9381/24/17/R01
http://dx.doi.org/10.1088/0264-9381/26/9/094034
http://dx.doi.org/10.12942/lrr-2014-2
http://dx.doi.org/10.12942/lrr-2007-2
http://dx.doi.org/10.1103/PhysRevD.79.084025
http://dx.doi.org/10.1088/0264-9381/26/11/114001
http://dx.doi.org/10.1088/0264-9381/26/11/114001
http://dx.doi.org/10.1007/s10714-010-1008-2
http://dx.doi.org/10.1007/s10714-010-1008-2
http://dx.doi.org/10.1088/0264-9381/27/8/084034
http://dx.doi.org/10.1088/0264-9381/27/8/084034
http://dx.doi.org/10.1103/PhysRevD.68.084015
http://dx.doi.org/10.1103/PhysRevD.72.024002
http://dx.doi.org/10.1088/0264-9381/23/1/013
http://dx.doi.org/10.1088/0264-9381/23/1/013
http://dx.doi.org/10.1103/PhysRevD.73.044028
http://dx.doi.org/10.1103/PhysRevD.73.044028
http://dx.doi.org/10.1103/PhysRevLett.104.211101
http://dx.doi.org/10.1103/PhysRevLett.106.041101
http://dx.doi.org/10.1103/PhysRevLett.106.041101
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.12942/lrr-2011-7
http://dx.doi.org/10.1103/PhysRevD.36.1017
http://dx.doi.org/10.1088/0264-9381/23/10/R01
http://dx.doi.org/10.1088/0264-9381/23/10/R01
http://dx.doi.org/10.1103/PhysRevD.55.3457
http://dx.doi.org/10.1103/PhysRevD.55.3457
http://dx.doi.org/10.1103/PhysRevD.56.3381
http://dx.doi.org/10.1103/PhysRevD.56.3381
http://dx.doi.org/10.1103/PhysRevLett.86.1931


[27] S. E. Gralla and R. M. Wald, Classical Quantum Gravity
25, 205009 (2008).

[28] S. E. Gralla, A. I. Harte, and R. M. Wald, Phys. Rev. D 80,
024031 (2009).

[29] S. Detweiler, Classical Quantum Gravity 22, S681 (2005).
[30] L. Barack, Classical Quantum Gravity 26, 213001 (2009).
[31] L. Barack, in Mass and Motion in General Relativity,

Fundamental Theories of Physics, Vol. 162, edited by L.
Blanchet, A. Spallicci, and B. F. Whiting (Springer-Verlag,
Berlin, 2011), p. 309.

[32] L. M. Burko, in Mass and Motion in General Relativity,
edited by L. Blanchet, A. Spallicci, and B. F. Whiting
(Springer-Verlag, Berlin, 2011), p. 395.

[33] S. Detweiler, in Mass and Motion in General Relativity,
Fundamental Theories of Physics, Vol. 162, edited by L.
Blanchet, A. Spallicci, and B. F. Whiting (Springer-Verlag,
Berlin, 2011), p. 271.

[34] E. Poisson, in Mass and Motion in General Relativity,
edited by L. Blanchet, A. Spallicci, and B. F. Whiting
(Springer-Verlag, Berlin, 2011), p. 309.

[35] R. M. Wald, in Mass and Motion in General Relativity,
Fundamental Theories of Physics, Vol. 162, edited by L.
Blanchet, A. Spallicci, and B. F. Whiting (Springer-Verlag,
Berlin, 2011), p. 253.

[36] N. Sago, L. Barack, and S. Detweiler, Phys. Rev. D 78,
124024 (2008).

[37] L. Barack and A. Ori, Phys. Rev. D 61, 061502(R) (2000).
[38] L. Barack, Phys. Rev. D 62, 084027 (2000).
[39] L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki,

Phys. Rev. Lett. 88, 091101 (2002).
[40] L. Barack and A. Ori, Phys. Rev. D 66, 084022 (2002).
[41] L. Barack and A. Ori, Phys. Rev. D 67, 024029 (2003).
[42] S. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025

(2003).
[43] S. Detweiler, E. Messaritaki, and B. F. Whiting, Phys. Rev.

D 67, 104016 (2003).
[44] R. Haas and E. Poisson, Phys. Rev. D 74, 044009 (2006).
[45] W. G. Anderson and A. G. Wiseman, Classical Quantum

Gravity 22, S783 (2005).
[46] M. Casals, S. R. Dolan, A. C. Ottewill, and B. Wardell,

Phys. Rev. D 79, 124043 (2009).
[47] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell, Phys.

Rev. D 88, 044022 (2013).
[48] B. Wardell, C. R. Galley, A. Zenginoğlu, M. Casals, S. R.

Dolan, and A. C. Ottewill, Phys. Rev. D 89, 084021
(2014).

[49] L. Barack and D. A. Golbourn, Phys. Rev. D 76, 044020
(2007).

[50] I. Vega and S. Detweiler, Phys. Rev. D 77, 084008
(2008).

[51] B. Wardell, in Equations of Motion in Relativistic Gravity,
Fundamental Theories of Physics, Vol. 179, edited by D.
Puetzfeld, C. Lmmerzahl, and B. Schutz (Springer
International Publishing, Berlin, 2015), pp. 487–522.

[52] N. Warburton and L. Barack, Phys. Rev. D 83, 124038
(2011).

[53] B. Wardell, I. Vega, J. Thornburg, and P. Diener, Phys.
Rev. D 85, 104044 (2012).

[54] L. Blanchet, S. Detweiler, A. Le Tiec, and B. F. Whiting,
Phys. Rev. D 81, 064004 (2010).

[55] A. G. Shah, T. S. Keidl, J. L. F. D.-H. Kim, and L. R. Price,
Phys. Rev. D 83, 064018 (2011).

[56] A. Heffernan, A. Ottewill, and B. Wardell, Phys. Rev. D
86, 104023 (2012).

[57] N. K. Johnson-McDaniel, A. G. Shah, and B. F. Whiting,
Phys. Rev. D 92, 044007 (2015).

[58] K. Glampedakis and D. Kennefick, Phys. Rev. D 66,
044002 (2002).

[59] L. Barack and C. O. Lousto, Phys. Rev. D 72, 104026
(2005).

[60] L. Barack, A. Ori, and N. Sago, Phys. Rev. D 78, 084021
(2008).

[61] J. L. Barton, D. J. Lazar, D. J. Kennefick, G. Khanna, and
L. M. Burko, Phys. Rev. D 78, 064042 (2008).

[62] R. Haas, Phys. Rev. D 75, 124011 (2007).
[63] L. Barack and N. Sago, Phys. Rev. D 81, 084021 (2010).
[64] C. Hopman and T. Alexander, Astrophys. J. 629, 362

(2005).
[65] R. M. Wald,General Relativity (The University of Chicago

Press, Chicago, 1984).
[66] D. R. Brill, P. L. Chrzanowski, C. M. Pereira, E. D.

Fackerell, and J. R. Ipser, Phys. Rev. D 5, 1913 (1972).
[67] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[68] I. Vega, B. Wardell, and P. Diener, Classical Quantum

Gravity 28, 134010 (2011).
[69] I. Vega, P. Diener, W. Tichy, and S. Detweiler, Phys. Rev.

D 80, 084021 (2009).
[70] P. Diener, I. Vega, B. Wardell, and S. Detweiler, Phys. Rev.

Lett. 108, 191102 (2012).
[71] I. Vega, B. Wardell, P. Diener, S. Cupp, and R. Haas, Phys.

Rev. D 88, 084021 (2013).
[72] L. Barack, D. A. Golbourn, and N. Sago, Phys. Rev. D 76,

124036 (2007).
[73] S. R. Dolan and L. Barack, Phys. Rev. D 83, 024019

(2011).
[74] S. R. Dolan, B. Wardell, and L. Barack, Phys. Rev. D 84,

084001 (2011).
[75] S. R. Dolan and L. Barack, Phys. Rev. D 87, 084066

(2013).
[76] W. Krivan, P. Laguna, and P. Papadopoulos, Phys. Rev. D

54, 4728 (1996).
[77] P. A. Sundararajan, G. Khanna, and S. A. Hughes, Phys.

Rev. D 76, 104005 (2007).
[78] A. Zenginoğlu, Classical Quantum Gravity 25, 145002

(2008).
[79] A. Zenginoğlu, Classical Quantum Gravity 25, 195025

(2008).
[80] A. Zenginoğlu, J. Comput. Phys. 230, 2286 (2011).
[81] A. Zenginoğlu and G. Khanna, Phys. Rev. X 1, 021017

(2011).
[82] A. Zenginoğlu and L. E. Kidder, Phys. Rev. D 81, 124010

(2010).
[83] A. Zenginoğlu and M. Tiglio, Phys. Rev. D 80, 024044

(2009).
[84] S. Bernuzzi, A. Nagar, and A. Zenginoğlu, Phys. Rev. D

84, 084026 (2011).
[85] S. Bernuzzi, A. Nagar, and A. Zenginoğlu, Phys. Rev. D

86, 104038 (2012).
[86] B. Char, K. O. Geddes, W.M. Gentleman, and G. H.

Gonnet, in Computer Algebra, Lecture Notes in Computer

JONATHAN THORNBURG and BARRY WARDELL PHYSICAL REVIEW D 95, 084043 (2017)

084043-54

http://dx.doi.org/10.1088/0264-9381/25/20/205009
http://dx.doi.org/10.1088/0264-9381/25/20/205009
http://dx.doi.org/10.1103/PhysRevD.80.024031
http://dx.doi.org/10.1103/PhysRevD.80.024031
http://dx.doi.org/10.1088/0264-9381/22/15/006
http://dx.doi.org/10.1088/0264-9381/26/21/213001
http://dx.doi.org/10.1103/PhysRevD.78.124024
http://dx.doi.org/10.1103/PhysRevD.78.124024
http://dx.doi.org/10.1103/PhysRevD.61.061502
http://dx.doi.org/10.1103/PhysRevD.62.084027
http://dx.doi.org/10.1103/PhysRevLett.88.091101
http://dx.doi.org/10.1103/PhysRevD.66.084022
http://dx.doi.org/10.1103/PhysRevD.67.024029
http://dx.doi.org/10.1103/PhysRevD.67.024025
http://dx.doi.org/10.1103/PhysRevD.67.024025
http://dx.doi.org/10.1103/PhysRevD.67.104016
http://dx.doi.org/10.1103/PhysRevD.67.104016
http://dx.doi.org/10.1103/PhysRevD.74.044009
http://dx.doi.org/10.1088/0264-9381/22/15/010
http://dx.doi.org/10.1088/0264-9381/22/15/010
http://dx.doi.org/10.1103/PhysRevD.79.124043
http://dx.doi.org/10.1103/PhysRevD.88.044022
http://dx.doi.org/10.1103/PhysRevD.88.044022
http://dx.doi.org/10.1103/PhysRevD.89.084021
http://dx.doi.org/10.1103/PhysRevD.89.084021
http://dx.doi.org/10.1103/PhysRevD.76.044020
http://dx.doi.org/10.1103/PhysRevD.76.044020
http://dx.doi.org/10.1103/PhysRevD.77.084008
http://dx.doi.org/10.1103/PhysRevD.77.084008
http://dx.doi.org/10.1103/PhysRevD.83.124038
http://dx.doi.org/10.1103/PhysRevD.83.124038
http://dx.doi.org/10.1103/PhysRevD.85.104044
http://dx.doi.org/10.1103/PhysRevD.85.104044
http://dx.doi.org/10.1103/PhysRevD.81.064004
http://dx.doi.org/10.1103/PhysRevD.83.064018
http://dx.doi.org/10.1103/PhysRevD.86.104023
http://dx.doi.org/10.1103/PhysRevD.86.104023
http://dx.doi.org/10.1103/PhysRevD.92.044007
http://dx.doi.org/10.1103/PhysRevD.66.044002
http://dx.doi.org/10.1103/PhysRevD.66.044002
http://dx.doi.org/10.1103/PhysRevD.72.104026
http://dx.doi.org/10.1103/PhysRevD.72.104026
http://dx.doi.org/10.1103/PhysRevD.78.084021
http://dx.doi.org/10.1103/PhysRevD.78.084021
http://dx.doi.org/10.1103/PhysRevD.78.064042
http://dx.doi.org/10.1103/PhysRevD.75.124011
http://dx.doi.org/10.1103/PhysRevD.81.084021
http://dx.doi.org/10.1086/431475
http://dx.doi.org/10.1086/431475
http://dx.doi.org/10.1103/PhysRevD.5.1913
http://dx.doi.org/10.1086/152444
http://dx.doi.org/10.1088/0264-9381/28/13/134010
http://dx.doi.org/10.1088/0264-9381/28/13/134010
http://dx.doi.org/10.1103/PhysRevD.80.084021
http://dx.doi.org/10.1103/PhysRevD.80.084021
http://dx.doi.org/10.1103/PhysRevLett.108.191102
http://dx.doi.org/10.1103/PhysRevLett.108.191102
http://dx.doi.org/10.1103/PhysRevD.88.084021
http://dx.doi.org/10.1103/PhysRevD.88.084021
http://dx.doi.org/10.1103/PhysRevD.76.124036
http://dx.doi.org/10.1103/PhysRevD.76.124036
http://dx.doi.org/10.1103/PhysRevD.83.024019
http://dx.doi.org/10.1103/PhysRevD.83.024019
http://dx.doi.org/10.1103/PhysRevD.84.084001
http://dx.doi.org/10.1103/PhysRevD.84.084001
http://dx.doi.org/10.1103/PhysRevD.87.084066
http://dx.doi.org/10.1103/PhysRevD.87.084066
http://dx.doi.org/10.1103/PhysRevD.54.4728
http://dx.doi.org/10.1103/PhysRevD.54.4728
http://dx.doi.org/10.1103/PhysRevD.76.104005
http://dx.doi.org/10.1103/PhysRevD.76.104005
http://dx.doi.org/10.1088/0264-9381/25/14/145002
http://dx.doi.org/10.1088/0264-9381/25/14/145002
http://dx.doi.org/10.1088/0264-9381/25/19/195025
http://dx.doi.org/10.1088/0264-9381/25/19/195025
http://dx.doi.org/10.1016/j.jcp.2010.12.016
http://dx.doi.org/10.1103/PhysRevX.1.021017
http://dx.doi.org/10.1103/PhysRevX.1.021017
http://dx.doi.org/10.1103/PhysRevD.81.124010
http://dx.doi.org/10.1103/PhysRevD.81.124010
http://dx.doi.org/10.1103/PhysRevD.80.024044
http://dx.doi.org/10.1103/PhysRevD.80.024044
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1103/PhysRevD.84.084026
http://dx.doi.org/10.1103/PhysRevD.86.104038
http://dx.doi.org/10.1103/PhysRevD.86.104038


Science Vol. 162, edited by J. A. van Hulzen (Springer-
Verlag, 1983) pp. 101–115.

[87] A. Heffernan, A. Ottewill, and B. Wardell, Phys. Rev. D
89, 024030 (2014).

[88] B. Wardell, I. Vega, J. Thornburg, and P. Diener, Phys.
Rev. D 85, 104044 (2012).

[89] Y. Mino, H. Nakano, and M. Sasaki, Prog. Theor. Phys.
108, 1039 (2002).

[90] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev,
Integrals and Series (Gordon and Breach, New York,
1986), Vol. 1.

[91] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.95.084043 for Mathe-
matica code deriving expressions for the puncture function
and m-mode regularization parameters.

[92] S. E. Field, J. S. Hesthaven, and S. R. Lau, Phys. Rev. D
81, 124030 (2010).

[93] J. L. Jaramillo, C. F. Sopuerta, and P. Canizares, Phys. Rev.
D 83, 061503 (2011).

[94] J. Thornburg, arXiv:1006.3788.
[95] A. Savitzky and M. J. E. Golay, Anal. Chem. 36, 1627

(1964).
[96] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and

B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge
University Press, Cambridge, 2007).

[97] Y. Mino, Phys. Rev. D 67, 084027 (2003).
[98] T. Hinderer and E. E. Flanagan, Phys. Rev. D 78, 064028

(2008).
[99] L. M. Diaz-Rivera, E. Messaritaki, B. F. Whiting, and S.

Detweiler, Phys. Rev. D 70, 124018 (2004).
[100] L. Barack and N. Sago, Phys. Rev. Lett. 102, 191101

(2009).
[101] M.W. Choptuik, Phys. Rev. D 44, 3124 (1991).
[102] J. Thornburg, Phys. Rev. D 59, 104007 (1999).
[103] N. Warburton (private communication).
[104] L. Barack, (private communication).
[105] G. Allen, T. Goodale, and E. Seidel, in 7th Symposium on

the Frontiers of Massively Parallel Computation-Frontiers
99 (IEEE, New York, 1999).

[106] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
E. Seidel, and J. Shalf, in Vector and Parallel Processing–
VECPAR’2002, 5th International Conference, Lecture
Notes in Computer Science (Springer, Berlin, 2003).

[107] Cactus developers, Cactus Computational Toolkit.
[108] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt,

G. Bryan, P. Colella, D. Graves, M. Lijewski, F. Löffler,
B. O’Shea, E. Schnetter, B. V. Straalen, and K. Weide, J.
Parallel Distrib. Comput. 74, 3217 (2014).

[109] E. Schnetter, S. H. Hawley, and I. Hawke, Classical
Quantum Gravity 21, 1465 (2004).

[110] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R.
Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G.
Allen, M. Campanelli, and P. Laguna, Classical Quantum
Gravity 29, 115001 (2012).

[111] EinsteinToolkit, Einstein Toolkit: Open software for rela-
tivistic astrophysics.

[112] L. E. Kidder, S. E. Field, F. Foucart, E. Schnetter, S. A.
Teukolsky, A. Bohn, N. Deppe, P. Diener, F. Hébert,

J. Lippuner, J. Miller, C. D. Ott, M. A. Scheel, and T.
Vincent, arXiv:1609.00098.

[113] J. S. Hesthaven and T. Warburton, Nodal Discontinuous
Galerkin Methods: Algorithms, Analysis, and Applica-
tions, Texts in Applied Mathematics (Springer, New York,
London, 2008).

[114] S. E. Field, J. S. Hesthaven, and S. R. Lau, Classical
Quantum Gravity 26, 165010 (2009).

[115] S. E. Field, J. S. Hesthaven, S. R. Lau, and A. H. Mroue,
Phys. Rev. D 82, 104051 (2010).

[116] J. D. Brown, P. Diener, S. E. Field, J. S. Hesthaven, F.
Herrmann, A. H. Mroué, O. Sarbach, E. Schnetter, M.
Tiglio, and M. Wagman, Phys. Rev. D 85, 084004 (2012).

[117] K. Fan, W. Cai, and X. Ji, J. Comput. Phys. 227, 2387
(2008).

[118] Éanna É. Flanagan and T. Hinderer, Phys. Rev. Lett. 109,
071102 (2012).

[119] J. Brink, M. Geyer, and T. Hinderer, Phys. Rev. D 91,
083001 (2015).

[120] J. Thornburg, GW Notes 5, 3 (2011).
[121] J. Vines, D. Kunst, J. Steinhoff, and T. Hinderer, Phys. Rev.

D 93, 103008 (2016).
[122] N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N.

Sago, Phys. Rev. D 85, 061501R (2012).
[123] A. C. Hindmarsh, Scientific Computing, IMACS Trans-

actions on Scientific Computing (Elsevier Science Ltd,
New York, 1983), Vol. 1.

[124] K. Radhakrishnan and A. C. Hindmarsh, in Description
and Use of LSODE, the Livermore Solver for Ordinary
Differential Equations, NASA Reference Publication
1327, Technical Report No. UCRL-ID-113855 (Lawrence
Livermore National Laboratory, Livermore, CA, 1993).

[125] D. Goldberg, ACM Comput. Surv. 23, 5 (1991).
[126] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R.

Serban, D. E. Shumaker, and C. S. Woodward, ACM
Trans. Math. Softw. 31, 363 (2005).

[127] M. J. Berger, Ph. D. thesis, Stanford University, 1982,
University Microfilms #DA 83-01196.

[128] M. J. Berger and J. Oliger, J. Comput. Phys. 53, 484
(1984).

[129] M. J. Berger, SIAM J. Sci. Stat. Comput. 7, 904 (1986).
[130] M. J. Berger and P. Colella, J. Comput. Phys. 82, 64

(1989).
[131] R. Courant, K. Friedrichs, and H. Lewy, Math. Ann. 100,

32 (1928) [(English translation IBM Journal of Research
and Development 11, 215 (1967)].

[132] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, SIAM J.
Numerical Analysis 32, 797 (1995).

[133] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Applied
Numerical Mathematics 25, 151 (1997).

[134] L. Pareschi and G. Russo, Recent Trends in Numerical
Analysis 3, 269 (2000).

[135] L. Pareschi and G. Russo, J. Sci. Comput. 25, 129 (2005).
[136] S. Boscarino, SIAM J. Num. Anal. 45, 1600 (2007).
[137] S. Boscarino, Applied Numerical Mathematics 59, 1515

(2009).
[138] S. Boscarino and G. Russo, SIAM J. Sci. Comput. 31,

1926 (2009).

SCALAR SELF-FORCE FOR HIGHLY ECCENTRIC … PHYSICAL REVIEW D 95, 084043 (2017)

084043-55

http://dx.doi.org/10.1103/PhysRevD.89.024030
http://dx.doi.org/10.1103/PhysRevD.89.024030
http://dx.doi.org/10.1103/PhysRevD.85.104044
http://dx.doi.org/10.1103/PhysRevD.85.104044
http://dx.doi.org/10.1143/PTP.108.1039
http://dx.doi.org/10.1143/PTP.108.1039
http://link.aps.org/supplemental/10.1103/PhysRevD.95.084043
http://link.aps.org/supplemental/10.1103/PhysRevD.95.084043
http://link.aps.org/supplemental/10.1103/PhysRevD.95.084043
http://link.aps.org/supplemental/10.1103/PhysRevD.95.084043
http://link.aps.org/supplemental/10.1103/PhysRevD.95.084043
http://link.aps.org/supplemental/10.1103/PhysRevD.95.084043
http://link.aps.org/supplemental/10.1103/PhysRevD.95.084043
http://dx.doi.org/10.1103/PhysRevD.81.124030
http://dx.doi.org/10.1103/PhysRevD.81.124030
http://dx.doi.org/10.1103/PhysRevD.83.061503
http://dx.doi.org/10.1103/PhysRevD.83.061503
http://arXiv.org/abs/1006.3788
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1103/PhysRevD.67.084027
http://dx.doi.org/10.1103/PhysRevD.78.064028
http://dx.doi.org/10.1103/PhysRevD.78.064028
http://dx.doi.org/10.1103/PhysRevD.70.124018
http://dx.doi.org/10.1103/PhysRevLett.102.191101
http://dx.doi.org/10.1103/PhysRevLett.102.191101
http://dx.doi.org/10.1103/PhysRevD.44.3124
http://dx.doi.org/10.1103/PhysRevD.59.104007
http://dx.doi.org/10.1016/j.jpdc.2014.07.001
http://dx.doi.org/10.1016/j.jpdc.2014.07.001
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://dx.doi.org/10.1088/0264-9381/29/11/115001
http://arXiv.org/abs/1609.00098
http://dx.doi.org/10.1088/0264-9381/26/16/165010
http://dx.doi.org/10.1088/0264-9381/26/16/165010
http://dx.doi.org/10.1103/PhysRevD.82.104051
http://dx.doi.org/10.1103/PhysRevD.85.084004
http://dx.doi.org/10.1016/j.jcp.2007.10.023
http://dx.doi.org/10.1016/j.jcp.2007.10.023
http://dx.doi.org/10.1103/PhysRevLett.109.071102
http://dx.doi.org/10.1103/PhysRevLett.109.071102
http://dx.doi.org/10.1103/PhysRevD.91.083001
http://dx.doi.org/10.1103/PhysRevD.91.083001
http://dx.doi.org/10.1103/PhysRevD.93.103008
http://dx.doi.org/10.1103/PhysRevD.93.103008
http://dx.doi.org/10.1103/PhysRevD.85.061501
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1137/0907061
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1147/rd.112.0215
http://dx.doi.org/10.1147/rd.112.0215
http://dx.doi.org/10.1137/0732037
http://dx.doi.org/10.1137/0732037
http://dx.doi.org/10.1016/S0168-9274(97)00056-1
http://dx.doi.org/10.1016/S0168-9274(97)00056-1
http://dx.doi.org/10.1007/s10915-004-4636-4
http://dx.doi.org/10.1137/060656929
http://dx.doi.org/10.1016/j.apnum.2008.10.003
http://dx.doi.org/10.1016/j.apnum.2008.10.003
http://dx.doi.org/10.1137/080713562
http://dx.doi.org/10.1137/080713562

