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We study the quasilocal energy (QLE) and the surface geometry for Kerr spacetime in the Boyer-
Lindquist coordinates without taking the slow rotation approximation. We also consider in the region
r ≤ 2m, which is inside the ergosphere. For a certain region, r > rkðaÞ, the Gaussian curvature of the

surface with constant t, r is positive, and for r >
ffiffiffi
3

p
a the critical value of the QLE is positive. We

found that the three curves: the outer horizon r ¼ rþðaÞ, r ¼ rkðaÞ and r ¼ ffiffiffi
3

p
a intersect at the point

a ¼ ffiffiffi
3

p
m=2, which is the limit for the horizon to be isometrically embedded into R3. The numerical result

indicates that the Kerr QLE is monotonically decreasing to the ADM m from the region inside the
ergosphere to large r. Based on the second law of black hole dynamics, the QLE is increasing with respect
to the irreducible mass Mir . From the results of Chen-Wang-Yau, we conclude that in a certain region,
r > rhðaÞ, the critical value of the Kerr QLE is a global minimum.
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I. INTRODUCTION

In general relativity, due to the equivalence principle,
gravitational energy has no proper local description.
Although there is a well-known total energy defined by
Arnowitt, Deser and Misner, the ADMmass, we need some
definitions for the practical applications which involve a
finite region rather than the whole space. This leads to the
concept of quasilocal energy. There are many different
proposals for defining quasilocal quantities. Here we follow
the covariant Hamiltonian approach of Chen, Nester, and
Tung (CNT) [1–3], and use the method in [4] to determine
the reference. The physical significance of the choice of
reference is the choice of the zero-point value of energy
[[5], Sec. V A. Subtraction term]. For a survey of the
covariant Hamiltonian approach one may refer to [6]. A
major difficulty for the Hamiltonian approach is to find
a suitable way to identify the reference. Basically there
are two ways to determine the reference: The first one is
“analytic matching,” in which the reference variables are
directly restricted from the physical variables, for example,
in Schwarzschild spacetime, one can calculate the metric
and connection for the physical variables and then take the
m ¼ 0 limit to be the reference ones [7]. Although it is
sometimes convenient to do this calculation, it is not so
clear as to what is the meaning of the reference one gets; the
second method is “4D isometric matching”, which is based
on the 2-surface S isometric embedding into a reference
spacetime1 and then making an extension in the “tubular”
neighborhood of S in the normal plane. One can identify the

local 4-frame of the physical and the reference spacetime
just on S. For an asymptotic flat spacetime,2 a reasonable
choice of reference is Minkowski spacetime, and for
measuring the quasilocal energy, the corresponding dis-
placement vector field on S is the timelike vector field N
identical to the timelike Killing vector field ∂T on S̄ of the
reference spacetime through the 4D isometric matching [9].
In [9] we found that for a specific decomposition of N, the
result is the same as the Wang-Yau energy [8]. One may
refer to the surveys on the Wang-Yau energy [10–12].
The application to Kerr spacetime using this method was

considered in [4]. The results are (i) for r ≥ 2m, the critical
value of the QLE agrees with Martinez’s result [13] for the
slow rotation approximation. (ii) The numerical results
implies that the QLE is decreasing for increasing a, and
monotonically decreasing to the valuemwith respect to the
spatial radius r. (iii) The value of the quasilocal angular
momentum is the constant am. Later, Tam and one of the
authors found that this critical value of the QLE is actually
the Brown-York mass [[14], Theorem 2.1] (for a ≤ m),
and also the critical point is the unique solution in the
region rþ < r < 8m=3 for the slow rotation approximation
(the global uniqueness is still not clear). Here rþ ¼ mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
is the outer horizon of the Kerr spacetime.

In this paper, we analyze the QLE of Kerr spacetime for
unrestricted rotation and also the region inside the ergo-
sphere.3 The situation is different from the case r ≥ 2m
and slow rotation. For r less than 2m, there are limits on
the isometric embedding; for nonslow rotation, there is no
known theorem for positivity in some region.

*cjyu@stu.edu.cn
†liujl@stu.edu.cn
1We assume that the surface S and the embedded surface S̄

have the same orientation, and also that the spacetime M and the
reference spacetime M̄ have the same time orientation and space
orientation.

2The 2-surface isometric embedding into Minkowski space-
time is based on Wang and Yau [8].

3The ergosphere is the static limit, given by r ¼ mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2 cos2 θ

p
[[15], Box 33.2].
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As mentioned before, the critical value of the QLE we
considered depends on the 2-surface isometric embedding
into R3. There are limits on a for the surface’s isometric
embedding. It is known that in the Kerr spacetime, there is
no event horizon for a > m, and hence the singularity
is naked. For a ≤ m but not small, Smarr found that if
a >

ffiffiffi
3

p
m=2, the Gauss curvature is negative near the poles,

which implies that the outer horizon cannot be embeded
into R3 isometrically [16]. One can imagine that when a
grows up over that limit, the horizon “warps” out of R3

from the poles [[16], Fig. 4] until the extreme limit
(a ¼ m), and there is no horizon for a > m. Something
like tearing a sticker off a table: part of it is off but still some
part stays on the table.
We are interested in the limit not just for the horizon.

The main results of this paper are: (i) the Gauss

curvature is positive if and only if r > rkðaÞ [see
(15)], where rkðaÞ is the unique real root of
r3 þ a2r − 6a2m. This also gives the limit for the iso-
metric embedding; (ii) the integrand of the critical
value of the QLE, i.e., k0 − k, is positive if and only
if r >

ffiffiffi
3

p
a. Based on these results, we conclude that in a

certain region r > rhðaÞ [see (63)], the critical value of
the Kerr QLE is a global minimum with respect to the
isometric embedding, which follows as a corollary from
Chen-Wang-Yau’s result [17]; (iii) the numerical results
imply that the QLE is increasing with respect to the
irreducible mass of the Kerr black hole.
Note that the three curves: the outer horizon rþðaÞ, rkðaÞ

and r ¼ ffiffiffi
3

p
a intersect at the point a ¼ ffiffiffi

3
p

m=2. In the
triangle-like region (see Fig. 1), rkðaÞ ≤ r ≤

ffiffiffi
3

p
a forffiffiffi

3
p

m=2 ≤ a ≤ m, the integrand k0 − k is not always

FIG. 1. r–a figure at θ ¼ 0: rk: dashed, r ¼
ffiffiffi
3

p
a: dotted, rþ: thickness.

FIG. 2. r ≥ 2, m ¼ 1. These figures show the numerical approximation of the QLE outside r ¼ 2m. (A) agrees with the result in [4];
(B) is the result for the irreducible mass Mir .
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positive. That means we cannot use the theorem in [17] to
prove the minimizing property in that region. Also it is not
mathematically proved that the QLE is positive in that
region. However, the numerical results imply positivity and
a monotonically decreasing property. This extends the
results of [4] into the region r ≤ 2m, and also generalizes
the result of Martinez [13] to nonslow rotation.
Regarding the result that the QLE is decreasing with

respect to a, we found that if we replace a by the
irreducible mass Mir, the QLE is monotonically increas-
ing with respect to Mir (see Fig. 2). The irreducible mass
is proportional to the square root of the black hole area,
that implies that the larger the black hole, the larger
the QLE.

II. GEOMETRICAL CONSTRUCTION
OF QUASILOCAL ENERGY

Let ðM4; gÞ and ðM̄4; ḡÞ be two oriented and time-
oriented spacetimes which are considered as the physical
spacetime and the reference spacetime, respectively. Let S2

be a closed spacelike surface in M. A 4D isometric
matching reference of S is defined as a smooth embedding
φ∶ U → M̄ preserving orientations and time-orientations
on some open neighborhood U of S such that

φ�ḡ ¼ g ð1Þ
on S. Let N be a future directed timelike vector field onM.
Then, the CNT quasilocal energy (see [1–4,18–20]) of S

FIG. 3. rk ≤ r ≤ 2,m ¼ 1. The curves are for constant a and constantMir from the bottom curve to the top with the interval 0.1. They
show that (i) the QLE is decreasing with respect to a and increasing with respect to Mir . (ii) the QLE is monotonically decreasing with
respect to r.

FIG. 4. rþ < r ≤ 2, m ¼ 1. The curves are for constant a and the irreducible mass Mir from the bottom curve to the top with the
interval 0.1. They show that (i) the QLE is decreasing with respect to a and increasing with respect to Mir . (ii) the QLE is monotonic
decreasing with respect to r. Note that at a ¼ 0 (corresponding toMir ¼ m, the spherical symmetric case), the outer horizon rþ ¼ 2m is
only one point, which is QLE ¼ 2m.
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with respect to N with a 4D isometric matching reference φ
is given by

EðS;N;φÞ ¼ 1

8π

Z
S
ι�½ðωa

b − ω̄a
bÞ ∧ iNηab�: ð2Þ

Here, ωa
b and ω̄a

b are the connection forms of the Levi-
Civita connections for g and φ�ḡ respectively, ι∶ S → M is
the natural inclusion map, and

ηa
b ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
gbβϵaβμνdxμ ∧ dxν: ð3Þ

Although the 4D isometric matching reference φ is by
definition smooth on a neighborhood of S, the value of
EðS;N;φÞ depends only on the 1-jet of φ (See [9]). That is
to say,

EðS;N;φ1Þ ¼ EðS;N;φ2Þ

for any two references φ1 and φ2 with

φ1 ¼ φ2 and dφ1 ¼ dφ2

on S.
Consider the axisymmetric Kerr-like spacetime ðM; gÞ in

the Boyer-Lindquist coordinates [4]:

g ¼ Fdt2 þ 2GdtdϕþHdϕ2 þ R2dr2 þ Σ2dθ2; ð4Þ

where the components F, G, H, R, Σ are functions of r, θ.
For the Kerr spacetime, they are

8>>>>>><
>>>>>>:

F ¼ − Δ−a2sin2θ
Σ2

G ¼ − 2marsin2θ
Σ2

HΣ2 ¼ sin2θððr2 þ a2Þ2 − Δa2sin2θÞ
R2Δ ¼ Σ2 ¼ r2 þ a2cos2θ

Δ ¼ r2 − 2mrþ a2:

ð5Þ

Here, we suppose 0 ≤ a ≤ m. Then the 4D isometric
matching equation for an axially symmetric embedding:

8>>><
>>>:

T ¼ Tðt; r; θÞ
X ¼ ρðt; r; θÞ cosðϕþΦðt; r; θÞÞ
Y ¼ ρðt; r; θÞ sinðϕþΦðt; r; θÞÞ
Z ¼ Zðt; r; θÞ

ð6Þ

into R1;3 of a constant radius surface

Sðt0; r0Þ ¼ fðt; r; θ;ϕÞjt ¼ t0; r ¼ r0g

is indeed explicitly solvable (see [4]). With 4D isometric
matching, there are still two degrees of freedom. These can

be taken as the two functions x and y on the 2-surface.
The critical value of the QLE is corresponding to the
solution x, y of the energy optimization. Set

�
xðθÞ ¼ Trðt0; r0; θÞ
yðθÞ ¼ Tθðt0; r0; θÞ

ð7Þ

and

N ¼ ðφ−1Þ�
∂
∂T : ð8Þ

Then,

Eðx; yÞ ≔ EðS;N;φÞ ¼ 1

4

Z
π

0

Bðx; yÞdθ ð9Þ

with (see Appendix of [14])

Bðx; yÞ ¼ −
αðHΣ2Þr
2

ffiffiffiffi
H

p
R2Σ2

−
ffiffiffiffi
H

p �
Hθθ − 2l

β
þ Rθxy

Rα

�

þ
ffiffiffiffi
H

p xy3β þHθαΣ2

lαβΣ
Σθ

þ
ffiffiffiffi
H

p
yxθ
α

þ
ffiffiffiffi
H

p
yðHθα − xyβÞ

lαβ
yθ; ð10Þ

where

8>><
>>:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Σ2 þ R2l

p

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−H2

θ þ 4Hl
q

l ¼ y2 þ Σ2:

ð11Þ

The Euler-Lagrange equation of Eðx; yÞ is
8<
:

yθ ¼ − ðΣ2HÞr
2HR2 x − ΣHθ−2HΣθ

2HΣ y

xθ ¼ Rθ
R xþ

�
ðΣ2HÞr
2HΣ2 − αβþxyHθ

2Hl

�
y

ð12Þ

which has an obvious solution x≡ y≡ 0. It was shown
in [14] that

Eð0; 0Þ ¼ mBYðSÞ: ð13Þ

Here

mBYðSÞ ≔
1

8π

Z
S
ðk0 − kÞdVs

is the Brown-York mass of S [21], where k0 and k are the
mean curvatures of S and S̄ respectively. Note that for
the Brown-York definition, S̄ is the isometric embedding
of S into R3. Here, if the constant t0, r0 surface can be
embedded into the constant T hyperplane of R1;3, then the
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critical value of the QLE is equal to the Brown-York mass,
as shown in [14].
Let Kða; r0; θÞ be the Gaussian curvature, kða; r0; θÞ be

the mean curvature of the constant radius surface with
r ¼ r0, and k0ða; r0; θÞ be the mean curvature of S̄. We
prove the following theorem in the next two sections:
Theorem 1.
1. When r > rþðaÞ ≔ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
, Kða; r; θÞ > 0

for any θ if and only if

r > rkðaÞ: ð14Þ

Here, rkðaÞ is the unique real root of the cubic
polynomial: r3 þ a2r − 6a2m,

rkðaÞ ¼ −
a2ffiffiffi

33
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27a2mþ ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
243a4m2 þ a6

p
3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27a2mþ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

243a4m2 þ a6
p

3
p

ffiffiffi
93

p ;

ð15Þ

2. when r > rþðaÞ, k0ða; r; θÞ − kða; r; θÞ > 0 for any
θ if and only if

r >
ffiffiffi
3

p
a: ð16Þ

Note that rkðaÞ is an increasing function ofa ∈ ½0; m�with
rkð0Þ ¼ 0 and rkðmÞ ≒ 1.63437m. So that 1. of Theorem 1
improves a result of [[14], Theorem 3.1].Moreover, note that
the graphs of r ¼ rkðaÞ, r ¼ rþðaÞ and r ¼

ffiffiffi
3

p
a intersect at

the point ða; rÞ ¼ ð ffiffiffi
3

p
m=2; 3m=2Þ (see Fig. 1). The triangle-

like region A is defined by

A ≔ fðr; aÞjrkðaÞ < r <
ffiffiffi
3

p
a; a ∈ ½

ffiffiffi
3

p
m=2; m�g:

As long as ða; rÞ is in this region, the constant radius surface
Sðt; rÞ is outside the outer horizon with positive Gaussian
curvature but k0 − k < 0 for some θ. Therefore there is no
known theorem to guarantee the positivity of the QLE. Later
in Sec. VI, we show numerical results which imply positivity
and the monotonically decreasing property.
By setting t ¼ m~t, r ¼ m~r, a ¼ m ~a and preserving θ and

ϕ we have ds2 ¼ m2d~s2, where

d~s2 ¼ −
~Δ
~Σ2

½d~t − ~a sin θdϕ�2 þ sin2θ
~Σ2

½ð~r2 þ ~a2Þdϕ − ~ad~t�2

þ
~Σ2

~Δ
d~r2 þ ~Σ2dθ2;

~Δ ¼ ~r2 − 2~rþ ~a2, ~Σ2 ¼ ~r2 þ ~a2 cos2 θ. So, without loss of
generality, we will simply assume that m ¼ 1 in the proofs
in the following sections.

III. GAUSSIAN CURVATURE

In the previous section, we introduced the QLE for the
surface with constant t, r in the Kerr spacetime, and the
critical value of the QLE is the Brown-York mass, which
involves the 2-surface isometric embedding into R3. It
can be solved explicitly in the Kerr case for positive
Gaussian curvature. From [14], the Gaussian curvature
K of the constant radius surface Sðt; rÞ for the Kerr-like
spacetime (4) is

K ¼ Hð4Σ4 þHθðΣ2Þθ − 2HθθΣ2Þ − Σ2ð−H2
θ þ 4HΣ2Þ

4Σ4H2
:

ð17Þ

It can be simplified as

K ¼ 1

4

HðHθðΣ2Þθ − 2HθθΣ2Þ þ Σ2H2
θ

Σ4H2

¼ HθðHΣ2Þθ − 2HθθHΣ2

4Σ4H2

¼ −
1

4

�
Hθ

�
1

HΣ2

�
θ

þ 2Hθθ
1

HΣ2

�

¼ −
1

4Hθ

�
H2

θ

�
1

HΣ2

�
θ

þ ðH2
θÞθ

1

HΣ2

�

¼ ð1 − H2
θ

4HΣ2Þθ
Hθ

: ð18Þ

Let σ ¼ sin2 θ. Then from (5) we have

HΣ2 ¼ σðða2 þ r2Þ2 − Δa2σÞ;

H ¼ σðða2 þ r2Þ2 − Δa2σÞ
ða2 þ r2Þ − a2σ

: ð19Þ

By direct computation, we have

Hσ ¼
ða2 þ r2Þ3 − 2ða2 þ r2ÞΔa2σ þ Δa4σ2

ðða2 þ r2Þ − a2σÞ2 ð20Þ

and

Hσσ ¼
4rða2 þ r2Þ2a2

ðða2 þ r2Þ − a2σÞ3 : ð21Þ

We are now ready to prove 1. of Theorem 1.
Proof of 1. in Theorem 1.—Note that

Hθ ¼ 2Hσ sin θ cos θ; ð22Þ

Hθθ ¼ 4Hσσsin2θcos2θ þ 2Hσcos2θ − 2Hσsin2θ

¼ 4Hσσσð1 − σÞ þ 2Hσð1 − 2σÞ; ð23Þ
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and by (19)

ðHΣ2Þθ ¼ 2ðHΣ2Þσ sin θ cos θ
¼ 2ðða2 þ r2Þ2 − 2Δa2σÞ sin θ cos θ: ð24Þ

Substituting these into the second equality of (18), we have

K ¼ HθðHΣ2Þθ − 2HθθHΣ2

4Σ4H2

¼ fðσÞ
½ða2 þ r2Þ2 − Δa2σ�2 ; ð25Þ

where

fðσÞ ¼ Hσ½ða2 þ r2Þ2 − Δa2�
− 2Hσσ½ða2 þ r2Þ2 − Δa2σ�ð1 − σÞ: ð26Þ

Then, by (21),

f0 ¼ Hσσ½3ða2 þ r2Þ2 þ Δa2 − 4Δa2σ�
− 2Hσσσ½ða2 þ r2Þ2 − Δa2σ�ð1 − σÞ

¼ 4rða2 þ r2Þ2a2UðσÞ
ðða2 þ r2Þ − a2σÞ4 ; ð27Þ

where

UðσÞ ¼ ðða2 þ r2Þ − a2σÞ½3ða2 þ r2Þ2 þ Δa2 − 4Δa2σ�
− 6a2½ða2 þ r2Þ2 − Δa2σ�ð1 − σÞ: ð28Þ

Note that U00 ¼ −4Δa4 < 0,

Uð0Þ ¼ ða2 þ r2Þð3ða2 þ r2Þ2 þ Δa2Þ − 6a2ða2 þ r2Þ2
≥ 3ða2 þ r2Þ2ðr2 − a2Þ ≥ 0 ð29Þ

since r > rþ ≥ a, and

Uð1Þ ¼ 3r2ðða2 þ r2Þ2 − Δa2Þ > 0: ð30Þ

So,

UðσÞ ≥ 0 ð31Þ

for any σ ∈ ½0; 1�. Then, by (27), f is increasing in [0, 1].
Moreover, note that

fð0Þ ¼ ða2 þ r2Þrðr3 þ a2r − 6a2Þ; ð32Þ

therefore by (25), we have

inf
θ
Kðθ; a; rÞ > 0 ð33Þ

when r > rþðaÞ and

r3 þ a2r − 6a2 > 0: ð34Þ

Conversely

Kð0Þ ¼ rðr3 þ a2r − 6a2Þ
ða2 þ r2Þ3 ; ð35Þ

so that if K > 0, we must have r > rkðaÞ. This completes
the proof of 1. in Theorem 1. ▪

IV. DIFFERENCE OF MEAN CURVATURES

In this section, we prove 2. of Theorem 1.
Proof.—The integrand of the critical quasilocal energy is

k0 − k. The mean curvature k [14] of the constant radius
surface Sðt; rÞ for Kerr-like spacetime (4) is

k ¼ ðHΣ2Þr
2HΣ2R

; ð36Þ

and the mean curvature k0 of Sðt; rÞ isometrically
embedded into R3 (if such an embedding exists) is

k0 ¼
HθðΣ2Þθ þ 4Σ4 − 2HθθΣ2

2Σ3ð−H2
θ þ 4HΣ2Þ1=2 : ð37Þ

Let L ¼ 1 − H2
θ

4HΣ2, from (17) we obtain

HθðΣ2Þθ þ 4Σ4 − 2HθθΣ2 ¼ 4HΣ4K þ 4Σ4L: ð38Þ

Substituting this into (37), we have

k0 ¼
ffiffiffiffi
H
L

r
K þ

ffiffiffiffi
L
H

r
: ð39Þ

From the last equality of (18) for m ¼ 1 and σ ¼ sin2 θ
we have

Lσ ¼ HσK: ð40Þ

From (36), when r > rþðaÞ, by direct computation we have

k ¼ ð2rðr2 þ a2Þ − ðr − 1Þa2σÞ ffiffiffiffi
Δ

p

ððr2 þ a2Þ2 − Δa2σÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 − a2σ

p : ð41Þ

To prove the necessary condition of 2. in Theorem 1, it is
sufficient to consider the north pole σ ¼ 0. By (40) we have

lim
σ→0

LðσÞ
HðσÞ ¼

Lσð0Þ
Hσð0Þ

¼ Kð0Þ; ð42Þ

so that k0ð0Þ ¼ Kð0Þ= ffiffiffiffiffiffiffiffiffiffi
Kð0Þp þ ffiffiffiffiffiffiffiffiffiffi

Kð0Þp ¼ 2
ffiffiffiffiffiffiffiffiffiffi
Kð0Þp

.
From (41) the mean curvature is
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kð0Þ ¼ 2r
ffiffiffiffi
Δ

p

ðr2 þ a2Þ32 : ð43Þ

Consequently, when r > rþðaÞ and r > rkðaÞ, we have

k20ð0Þ − k2ð0Þ ¼ 4Kð0Þ − k2ð0Þ ¼ 8rðr2 − 3a2Þ
ðr2 þ a2Þ3 : ð44Þ

Therefore r >
ffiffiffi
3

p
a is necessary for k0 − k > 0.

Conversely, note that the three curves r ¼ rþðaÞ,
r ¼ rkðaÞ and r ¼ ffiffiffi

3
p

a intersect at the point ða; rÞ ¼
ð ffiffiffi

3
p

=2; 3=2Þ. It is clear that

ffiffiffi
3

p
a < rkðaÞ < rþðaÞ ð45Þ

when a ∈ ð0; ffiffiffi
3

p
=2Þ, and

rþðaÞ < rkðaÞ <
ffiffiffi
3

p
a ð46Þ

for a ∈ ð ffiffiffi
3

p
=2; 1Þ. So, by 1. of Theorem 1, when r >

rþðaÞ and r >
ffiffiffi
3

p
a, we obtain K > 0 for a ∈ ð0; 1Þ. From

(39) it is not difficult to see that ðK ffiffiffiffiffiffiffiffiffiffi
H=L

p
−

ffiffiffiffiffiffiffiffiffiffi
L=H

p Þ2 ≥ 0

implies

k0 ≥ 2
ffiffiffiffi
K

p
ð47Þ

for K ≥ 0. Hence, by (25)

k20 − k2 ≥ 4K − k2 ¼ 4f − g
½ða2 þ r2Þ2 − Δa2σ�2 ; ð48Þ

where f is given in (26) and

g ¼ ð2rðr2 þ a2Þ − ðr − 1Þa2σÞ2Δ
r2 þ a2 − a2σ

¼ ððrþ 1Þðr2 þ a2Þ þ ðr − 1Þðr2 þ a2 − a2σÞÞ2Δ
r2 þ a2 − a2σ

:

ð49Þ

Let

h ¼ 4f − g: ð50Þ

By direct computation,

g0 ¼ Δa2½ðrþ 1Þ2ðr2 þ a2Þ2 − ðr − 1Þ2ðr2 þ a2 − a2σÞ2�
ðr2 þ a2 − a2σÞ2

≤
Δa2½ðrþ 1Þ2ðr2 þ a2Þ2 − ðr − 1Þ2r4�

ðr2 þ a2 − a2σÞ2

≤
Δa2½ðrþ 1Þ2ðr2 þ 1Þ2 − ðr − 1Þ2r4�

ðr2 þ a2 − a2σÞ2

¼ Δa2ð4r5 þ 2r4 þ 4r3 þ 3r2 þ 2rþ 1Þ
ðr2 þ a2 − a2σÞ2

≤
16Δa2r5

ðr2 þ a2 − a2σÞ2

≤
16Δa2r5ðr2 þ a2Þ2
ðr2 þ a2 − a2σÞ4 ð51Þ

since r > rþðaÞ ≥ 1 ≥ a. Then, by (27),

h0 ¼ 4f0 − g0

≥
16a2ðr2 þ a2Þ2rU
ðr2 þ a2 − a2σÞ4 −

16Δa2r5ðr2 þ a2Þ2
ðr2 þ a2 − a2σÞ4

¼ 16a2ðr2 þ a2Þ2rV
ðr2 þ a2 − a2σÞ4 ; ð52Þ

where

V ¼ U − Δr4 ð53Þ

with U given in (28). Note that

V 00ðσÞ ¼ −4Δa2 < 0: ð54Þ

Moreover, by (29)

Vð0Þ ¼ Uð0Þ − Δr4

≥ 3ðr2 þ a2Þ2ðr2 − a2Þ − Δr4

≥ 2r4ðr2 − a2Þ
≥ 0 ð55Þ

since Δ ¼ r2 − 2rþ a2 ≤ r2 − a2, and by (30)

Vð1Þ ¼ Uð1Þ − Δr4

¼ r2ð3ðða2 þ r2Þ2 − Δa2Þ − Δr2Þ
≥ r2ð3ða2 þ r2Þ2 − 3Δa2 − 3Δr2Þ
¼ 6r3ðr2 þ a2Þ
> 0: ð56Þ

Hence VðσÞ ≥ 0 for any σ ∈ ½0; 1�. By (52), h is increasing
on [0, 1]. By (44), we know that hð0Þ > 0 when r > rþðaÞ
and r >

ffiffiffi
3

p
a. So h > 0 on [0, 1] and hence k0 − k > 0 for

any θ. ▪
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V. THE GLOBAL MINIMUM OF KERR
QUASILOCAL ENERGY

In [9], we found that the CNT quasilocal energy is
closely related to Wang-Yau’s energy EWY [8]. More
precisely, let φ0∶ S → R1;3 be an isometric embedding
and τ be the time component of the embedding, and
suppose the mean curvature vectorH of S inM is spacelike.
Then,

EðS;N0;φÞ ¼ EWYðS; τÞ

≔
1

8π

Z
S̄

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∥∇τ∥2

p
hH̄; ē1i

þ h∇̄−∇τē1; ē0i
�
dVS̄

−
1

8π

Z
S

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∥∇τ∥2p

hH; e1i

þ h∇−∇τe1; e0i
�
dVS: ð57Þ

Here S̄ ¼ φ0ðSÞ, H and H̄ are the mean curvature vector of
S and S̄ respectively, e0 is a future-directed timelike vector
such that

hH; e0i ¼ −
Δτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∥∇τ∥2
p ; ð58Þ

e1 is orthogonal to e0 and S, and pointing outside if S
encloses a domain Ω, ē1 is pointing outside and orthogonal
to S̄ and ∂

∂T, ē0 is a future-directed timelike vector which is
orthogonal to S̄ and ē1,

N0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∥∇τ∥2

p
e0 −∇τ; ð59Þ

and φ is a 4D isometric matching extension of φ0 [9]. ∇τ
and Δτ here mean the gradient and Laplacian of τ with
respect to the induced metric on S.
By direct computation [[9], Appendix], the first equation

of (12) corresponds to

N0 ¼ ðφ−1Þ�
∂
∂T : ð60Þ

Let

EðyÞ ≔ Eðx; yÞ ð61Þ

with x decided by y from the first equation of (12). Then, by
the uniqueness of the isometric embedding into R3 and the
relation (57), we obtain

EðyÞ ¼ EWYðS; τÞ ð62Þ

where τ depends only on θ, and y ¼ dτ
dθ.

Furthermore, by combining Theorem 1 and Theorem 3
of Chen-Wang-Yau [17], and (62) (other minimizing
properties of the Wang-Yau QLE can be found in
[22,23]), we have the following corollary:
Corollary 1.
1. When r > rhðaÞ,

EWYðτÞ ≥ EWYð0Þ;

where τ is only a function of θ such that Hdϕ2 þ
ðΣ2 þ τ2θÞdθ2 has positive Gaussian curvature;

2. when r > rhðaÞ,

EðyÞ ≥ Eð0Þ;

where y is a function of θ such that Hdϕ2 þ ðΣ2 þ
y2Þdθ2 has positive Gaussian curvature.

Here

rhðaÞ ¼
�
rþðaÞ a ≤

ffiffiffi
3

p
m=2ffiffiffi

3
p

a a >
ffiffiffi
3

p
m=2:

ð63Þ

This implies that the critical value of the Kerr QLE is
the global minimum with respect to y. An interesting
question is whether Corollary 1 is satisfied in the triangle-
like region A.
Remark. In order to use Chen-Wang-Yau’s result [17],

one should check that τ ¼ 0 is a critical point of EWY.
According to [8,22], τ ¼ 0 is a critical point of EWY if
and only if divSW ¼ 0, where W is the vector field dual to
αH, which is the connection one form defined by
αH ¼ h∇Me1; e0ig. Here e1 is the spacelike unit vector
normal to S and e0 is the future directed timelike vector
normal to the hypersurface Ω. By definition αHð∇τÞ ¼
hW;∇τig, we have

αHð∇τÞ ¼ h∇Me1; e0igð∇τÞ ¼ −ω0
1ð∇τÞ ð64Þ

which implies W ¼ −ω0
12e2 − ω0

13e3, where ωa
bc is the

connection coefficient corresponding to the orthonormal
frame e0 ¼ βð∂t þ ω∂ϕÞ, e1 ¼ ð1=RÞ∂r, e2 ¼ ð1=ΣÞ∂θ,
e3 ¼ ð1= ffiffiffiffi

H
p Þ∂ϕ. Here e0 is the locally nonrotating observer

(see the next section) with β ¼ ffiffiffiffi
H

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − FH

p
and angular

velocity ω ¼ −G=H.
The divergence of W is

divSW ¼ 1ffiffiffi
σ

p ½∂θð
ffiffiffi
σ

p
WθÞ þ ∂ϕð

ffiffiffi
σ

p
WϕÞ�; ð65Þ

where
ffiffiffi
σ

p ¼ Σ
ffiffiffiffi
H

p
is the determinant of the metric induced

on S and Wθ ¼ −ω0
12=Σ, Wϕ ¼ −ω0

13=
ffiffiffiffi
H

p
. Note that

the metric components of the Kerr spacetime in Boyer-
Lindquist coordinates depend only on r, θ so that the
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connection coefficients are independent of ϕ. This implies
that ∂ϕð

ffiffiffi
σ

p
WϕÞ vanishes. It is not difficult to find that

ω0
12 ¼ 0 and consequently divSW ¼ 0, which implies that

τ ¼ 0 is a critical point of EWY.

VI. NUMERICAL RESULTS

By 4D isometric matching, the displacement vector N is
identical to the timelike Killing vector field of the reference
spacetime: φ�N ¼ ∂T , and gðN;NÞ ¼ ḡð∂T; ∂TÞ ¼ −1 on
the 2-surface S. In the physical spacetime, although the
timelike vector ∂t becomes spacelike inside the ergosphere,
N is still timelike, with components [[4], Eq. (47)]

Nt ¼
ffiffiffiffi
H

p
αffiffiffiffiffiffi−gp ; Nr ¼ −

x
R2

;

Nθ ¼ −
y
Σ2

; Nϕ ¼ −Gαffiffiffiffiffiffi−gp ffiffiffiffi
H

p : ð66Þ

It is the locally nonrotating observer [[15], p. 896], or the
so-called ZAMO (zero angular momentum observer) at the
critical point ðx; yÞ ¼ ð0; 0Þ:

Nt ¼
ffiffiffiffi
H

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − FH

p ; Nr ¼ Nθ ¼ 0;

Nϕ ¼ −Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − FH

p ffiffiffiffi
H

p : ð67Þ

Note that this timelike N has the form β∂τ [24], where
∂τ ¼ ∂t þ ω∂ϕ with the angular velocity ω ¼ −G=H and
∂τ is timelike in the regions outside the outer horizon and
inside the inner horizon.
From the result of [4], it follows that for constant a, the

QLE is monotonically decreasing from r ¼ 2m to large r.
Here we analyze the QLE for the region r ≤ 2m, which has
some part of the surface inside the ergosphere. We also
recheck the results for r ≥ 2m.
These results (see Figs. 2–4) imply that: (i) for increasing

a, the QLE is decreasing and (ii) it is monotonically
decreasing with respect to r. Concerning (i), if we consider
the irreducible mass Mir [[15], p. 890]

a ¼ 2Mir

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2
ir

m2

r
; ð68Þ

then the QLE is increasing with respect to Mir, where
Mir ≤ m and the equality holds for the Schwarzschild limit
(a ¼ 0) and Mir ¼ m=

ffiffiffi
2

p
for a ¼ m. It is not difficult

to see that Mir is decreasing with respect to a. So that
0 ≤ a ≤ m respectively corresponds tom ≥ Mir ≥

ffiffiffi
2

p
m=2.

For the region r ≤ 2m, it should be considered into two
parts:

�
r > rþ∶ 0 ≤ a ≤

ffiffiffi
3

p
m=2; m ≥ Mir ≥

ffiffiffi
3

p
m=2;

r ≥ rk∶
ffiffiffi
3

p
m=2 ≤ a ≤ m;

ffiffiffi
3

p
m=2 ≥ Mir ≥

ffiffiffi
2

p
m=2.

ð69Þ

Note that for a ¼ 0, the Schwarzschild case, the irreducible
mass Mir ¼ m and the quasilocal energy at the horizon
r ¼ 2m is E ¼ 2m.
The Figs. 2–4 are the plots by the approximation of the

boundary integration (9) at ðx; yÞ ¼ ð0; 0Þ: E ≈
P

BnΔθ,
where we pick Δθ ¼ 0.001, and Bn ¼ Bjθ¼nΔθ starting
from n ¼ 0 to the last step which is θ ¼ π. Each step has
the interval Δθ ¼ 0.001. Note that Bðθ → 0; πÞ ¼ 0.

VII. CONCLUSION AND DISCUSSION

We analyze the critical value of the Kerr QLE (the
Brown-York mass) under the choice for the surface with
constant t, r in the Boyer-Lindquist coordinates. It is
known that the outer horizon of the Kerr black hole
cannot be embedded isometrically into R3 if a is too
large. We found that Sðt; rkÞ is the limit of such an
embedding: if r < rkðaÞ [see (15)] then the Gauss
curvature K is negative at the poles, whereas K > 0
implies the existence of an isometric embedding. We
consider only the region outside the outer horizon, i.e.,
r ≥ rþ, in which the embedding is guaranteed for
a <

ffiffiffi
3

p
m=2. If a >

ffiffiffi
3

p
m=2, the isometric embedding

exists only for r > rkðaÞ.
Regarding the positivity of the critical value for the Kerr

QLE, it is obvious that if the integrand k0 − k > 0 then the
positivity is satisfied. This is guaranteed for small rotation,
but not for large a. In fact, k0 − k > 0 is valid on the whole
surface only in the region r >

ffiffiffi
3

p
a. It is interesting that

the three curves, rþðaÞ, rkðaÞ and r ¼ ffiffiffi
3

p
a intersect at the

pointa ¼ ffiffiffi
3

p
m=2. This implies that k0 − k > 0 in the region

r > rhðaÞ [see (63)]. For nonslow rotation, in the region
rkðaÞ < r <

ffiffiffi
3

p
a, the integrand k0 − k is not positive every-

where on the surface, but the numerical results imply that
after integration over the surface, the QLE is positive in
the triangle-like region. Furthermore, it is monotonically
decreasing with respect to r.
To answer any concern about the decreasing QLE

corresponding to an increasing angular momentum a,
one may be inspired from the second law of black hole
dynamics, which implies that the black hole area can
never decrease. The area of a Kerr black hole is A ¼
4πðr2þ þ a2Þ ¼ 8πmrþ [[15], Box 33.4]. One may imag-
ine that there are two black holes with the same mass m
but different angular momenta, say a1 and a2, it is not
difficult to see that a1 < a2 implies A1 > A2. It is
reasonable that a larger black hole would carry larger
quasilocal energy. And also the black hole area is
proportional to the square of the irreducible mass. So,
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if we replace a by the irreducible mass Mir, the QLE
becomes increasing with respect to Mir.
By the results of Chen-Wang-Yau, the critical value of

the Kerr QLE is a global minimum (with respect to the
embedding) for the region r > rhðaÞ, and an interesting
question is whether this is also true in the trianglelike
region for nonslow rotation.
In the region r < rkðaÞ, the isometric embedding into R3

does not exist, which means one could try to find a non-
constant solution for τ. This is another interesting problem.
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