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We discuss the propagation of electromagnetic (EM) waves in the post-Newtonian approximation
of the general theory of relativity. We consider diffraction of EM waves in the static gravitational field of a
massive monopole. We develop a wave-theoretical description of the solar gravitational lens (SGL) and
show that with its enormous magnifying power of ∼1011 (for λ ¼ 1 μm) and angular resolution of
≲10−10 arcsec, the SGL may be used for direct megapixel imaging of an exoplanet.
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Nature has presented us with a powerful “instrument”
that we have yet to explore and learn how to use. The
instrument is the solar gravitational lens (SGL), which
takes advantage of the ability of the Sun’s gravitational
field to focus light from faint, distant sources of significant
scientific interest [1], such as a habitable exoplanet.
According to Einstein’s general theory of relativity (GR),
gravitation induces refractive properties on spacetime,
causing a massive object to act as a lens by bending
photon trajectories [2]. To show this, we begin by consid-
ering the gravitational field of a static spherically sym-
metric distribution of matter in the post-Newtonian
approximation of GR. In the harmonic gauge [3],
∂mð ffiffiffiffiffiffi−gp

gmnÞ ¼ 0, the line element representing the static
field of a gravitational monopole with a Schwarzschild
radius of rg ¼ 2GM=c2 may be given in spherical coor-
dinates ðr; θ;ϕÞ as follows:

ds2 ¼ u−2c2dt2 − u2ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ;
u ¼ 1þ rg

2r
þOðr2g; r−3Þ: ð1Þ

To study light ray propagation in the metric (1), one
usually [4] takes the trajectory of a photon to be
xðtÞ ¼ x0 þ kcðt − t0Þ þ xGðtÞ þOðG2Þ, where x0 is
the initial position, k is the unperturbed wave vector,
and xGðtÞ is the yet-unknown post-Newtonian term. We
define the wave vector Km ¼ dxm=dλ ¼ K0ð1; dx=dx0Þ,
with K0 ¼ dx0=dλ, where λ is the affine parameter along
the ray’s path. The wave vector obeys the geodesic equation
dKm=dλþ Γm

klK
mKl ¼ 0. Limiting discussion to the gravi-

tational monopole, we obtain the solution for xGðtÞ and,
thus, to the geodesic equation,

xðtÞ ¼ b0 þ kl − rg

�
k ln

rþ ðk · xÞ
r0 þ ðk · x0Þ

þ b0

b20
ðrþ ðk · xÞ − r0 − ðk · x0ÞÞ

�
þOðr2gÞ; ð2Þ

where l ¼ ðk · x0Þ þ cðt − t0Þ and b0 ¼ ½k × ½x0 × k�� þ
OðrgÞ is the ray’s impact parameter. Equation (2) yields the
deflection angle, δ, which, for a distant source, r ¼ jxj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

p
≫ rg, is given by δ ¼ j½k × ðdx=cdtÞ�j ¼

2rg=jb0j þOðr2gÞ.
As a result, the gravitationally deflected rays of light

passing from two sides of the lensing mass converge at a
focus. Of the solar system bodies, only the Sun is massive
enough that the focus of its gravitational lens is within
range of a realistic space mission. The effect is achromatic
and, depending on the impact parameter, the SGL’s focus is
a semi-infinite line that begins at ∼547 astronomical units
(AU) [5]. Equation (2) describes the trajectory of the light,
but it tells nothing about its intensity. Although this topic
has been discussed earlier (see [5] for review), the usual
description is based on the geometric optics approximation,
which, as expected, yields results that are divergent on the
optical axis. To investigate intensity changes due to the
gravitational amplification of light, one needs to develop a
wave-theoretical treatment of light propagation in gravity.
In this paper, we provide such a description of the SGL.
Following [6], in the spacetime (1), Maxwell’s equations,

∂lFikþ∂iFklþ∂kFli¼0, ∂kð ffiffiffiffiffiffi−gp
FikÞ ¼ −ð4π=cÞ ffiffiffiffiffiffi−gp

ji,
describing the light propagation in a vacuum, reduce to the
following set of equations for physical fields ðD;BÞ:

½∇ × D� ¼ −u2
1

c
∂B
∂t þOðr2gÞ;

½∇ × B� ¼ u2
1

c
∂D
∂t þOðr2gÞ;

∇ · ðu2DÞ ¼ Oðr2gÞ; ∇ · ðu2BÞ ¼ Oðr2gÞ; ð3Þ

where ∇ is the ordinary differential operator with respect to
flat space coordinates, and Δ ¼ ∇2. For a static metric,
gα0 ¼ 0, and the electromagnetic (EM) fields are related by
D ¼ uE and B ¼ uH (see Problem in 90 of [6]).
Solution to Eqs. (3) may be given in the form of the

Debye potentials [7]. In the case of a static monopole, the
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electric and magnetic Debye potentials, (eΠ; mΠ), are
reduced to just one potential, Π [8,9]: ðeΠ; mΠÞ ¼
Πðcosϕ; sinϕÞ. As a result, the solution for the vectors
D ¼ Dðt;xÞ and B ¼ Bðt;xÞ may be given in the compact
form

�
Dr

Br

�
¼

�
cosϕ

sinϕ

�
e−iωtαðr; θÞ;

�
Dθ

Bθ

�
¼

�
cosϕ

sinϕ

�
e−iωtβðr; θÞ;

�
Dϕ

Bϕ

�
¼

�
sinϕ

− cosϕ

�
e−iωtγðr; θÞ; ð4Þ

where the quantities α, β and γ are given as

αðr;θÞ ¼−
1

u2r2
∂
∂θ

�
1

sinθ
∂
∂θ ½sinθðrΠÞ�

�
;

βðr;θÞ ¼ 1

u2r
∂2ðrΠÞ
∂r∂θ þ ikðrΠÞ

r sinθ
;

γðr;θÞ ¼−
1

u2r sinθ
∂ðrΠÞ
∂r −

ik
r
∂ðrΠÞ
∂θ ð5Þ

and the Debye potential, Π ¼ Πðr; θÞ, satisfies the follow-
ing wave equation (denoting 0 ¼ d=dr):

�
Δþ

�
k2u4 − u

�
1

u

�00���� cosϕ

sinϕ

�
Π
u

�
¼ 0

or; equivalently;�
Δþ k2

�
1þ 2rg

r

�
þ rg
r3

���
cosϕ

sinϕ

�
Π
u

�
¼ Oðr2gÞ: ð6Þ

Equations (4)–(6) provide a complete solution for the
diffraction problem. If the incident wave is known, by using
the approach developed in the Mie theory [7], one can find
the scattered wave. To find the solution for the incident
wave, we use (3) to see that, for instance, D has to obey the
following wave equation (the equation for B has an
identical form):

ΔD ¼ u4
∂2D
c2∂t2 þ ½½∇ ×D� × ∇ ln u2� − ∇ðD · ∇ ln u2Þ

þOðr2gÞ: ð7Þ

We look for a solution to (7) in the form D ¼ ψde−iωt,
where ψ ≡ ψðrÞ is some scalar function, d≡ dðrÞ is a unit
vector specifying the direction of the wave’s propagation
and its polarization, and ω is the frequency of the wave.
One can see that, for a compact source of a static weak
gravitational field described by (1) and for the case of
propagation of the high-frequency EM waves (i.e.,
k ¼ ω=c → ∞), Eq. (7) yields two equations

Δψ þ k2
�
1þ 2rg

r

�
ψ ¼Oðr2gÞ; ð8Þ

ð∇ψ ·∇Þd¼ rg
r3

�
ðd ·xÞ∇ψ −

1

2
ð∇ψ ·xÞd

�
þOðr2gÞ: ð9Þ

Equations (8) and (9) provide a complete description of an
EM wave propagating in weak, static gravity. Equation (8)
determines the change in the intensity of the EM radiation,
while Eq. (9) determines the change in the direction of the
wave propagation and describes the polarization changes of
the EM wave along the path.
To establish the wave properties of light, we need to go

beyond (2), which describes light as a massless particle
traveling along a geodesic, and solve equations (9). Thus,
the problem of image formation by the SGL amounts to
solving (9) for astronomically relevant conditions. We
begin with the left of Eq. (9), which is formally similar
to the time-independent Schrödinger equation [10]. This
equation has a solution regular at the origin in the form of

ψðrÞ ¼ ψ0eikl1F1ðikrg; 1; ikðr − zÞÞ; ð10Þ

where 1F1ðα; β; zÞ is the confluent hypergeometric function
of the first kind, ψ0 ¼ e

π
2
krgΓð1 − ikrgÞ is the normalization

constant, such that ψ2 → 1, while kðr − zÞ → ∞. This
solution is for a wave coming from a large distance along
the z axis. It generalizes the plane wave solution ψ0ðrÞ ¼
eikz that is used to describe EM wave propagation in
Euclidean spacetime. All the important corrections to ψ due
to weak gravity are contained in the 1F1 function. For large
distances from the deflector, Eq. (10) has the following
asymptotic form (see [10] and with the help of [11]):

ψ ¼ eikðz−rg ln kðr−zÞÞ þ rg
r − z

Γð1 − ikrgÞ
Γð1þ ikrgÞ

× eikðrþrg ln kðr−zÞÞ þOðr2gÞ; ð11Þ

where the first term represents an incident Coulomb-
modified wave [10], while the second term is the scattered
wave.
Given the solution for the amplitude of the incident

wave from (11), we can proceed to solve Eq. (9). The
parameter l introduced in (2) along the unper-
turbed direction of the ray’s path allows to represent this
equation as

dd
dl

¼ rg
r3

�
ðd · xÞk −

1

2
ðk · xÞd

�
þOðr2gÞ: ð12Þ

Similarly to (2), we write d ¼ djjkþ d⊥0 þ dG þOðr2gÞ,
where djj0 ¼ ðd · kÞ þOðrgÞ and d⊥0 ¼ ½k × ½d × k�� þ
OðrgÞ and dG is the post-Newtonian part of vector d. As a
result, Eq. (12) takes the form
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ddG

dl
¼ rg

ðb20 þ l2Þ3=2
��

1

2
djj0lþ ðd⊥0 · b0Þ

�
k −

1

2
ld⊥0

�

þOðr2gÞ: ð13Þ

We introduce a heliocentric Cartesian coordinate system
ðx; y; zÞ with unit vectors ðex; ey; ezÞ. We take the z axis to
be directed along the vector k, while the x and y axes
directed along the vectors e ¼ ½½k × n� × k� and
p ¼ ½k × n�, correspondingly, where n ¼ x=r; in other
words ðex; ey; ezÞ≡ ðe;p;kÞ. In this coordinate system,
djj0 ¼ dz0, d⊥0 ¼ ðdx0; dy0; 0Þ, b0 ¼ ½k × ½x × k�� ¼
ðx; y; 0Þ þOðrgÞ, and, thus, ðd⊥0 · b0Þ ¼ dx0xþ dy0yþ
OðrgÞ. We choose the components of the incident wave
so that it represents a transverse-electric wave requiring:
dz0 ¼ dy0 ¼ 0 and dx0 ¼ 1. We determine the components
of the incident D field in the heliocentric spherical
coordinate system ðr; θ;ϕÞ,

fDinc
r ;Dinc

θ ;Dinc
ϕ g¼

�
−
cosϕ
iukr

∂ψ i

∂θ ;u−1cosϕ

�
cosθ−

rg
r

�
ψ i;

−usinϕψ i

�
e−iωtþOðr2gÞ; ð14Þ

where ψ i ¼ eikðr cos θ−rg ln krð1−cos θÞÞ is the incident wave
from (11). We can obtain a similar solution for Binc.
We now need to find the EM field, which for r → ∞,

θ ∼ π has the same asymptotic behavior as the incident field
(14), but which is regular everywhere, for all values of θ
and r. As the wave function (10) gives the correct
asymptotic expression at small angles, the required field
may be constructed using (10). To determine Π, we use the
expressions for the incident wave (14) and relate them to
(4). One of Eqs. (4) needs to be solved, e.g.,Dr. To find the
solution in all regions we extend (14) by taking, instead of
ψ i, the entire solution for ψ from (10). The exact solution
(10) should differ from the incident wave (14) only for the
outgoing waves. The amplitudes of incident waves should
be equal. Equations (14) indicate thatDr ¼ −e−iωt cosϕiukr

∂ψ
∂θ is

a suitable definition of the wanted regular field. From (4)
and (14), this yields

Dr ¼ −e−iωt
cosϕ
u2r2

∂
∂θ

�
1

sin θ
∂
∂θ ½sin θðrΠÞ�

�

¼ −e−iωt
cosϕ
iukr

∂ψ
∂θ ; ð15Þ

where ψ has the form (10). As a result, (15) yields an
equation to determine the Debye potential Π,

∂
∂θ

�
1

sin θ
∂
∂θ ½sin θΠ�

�
¼ −

iu
k
∂ψ
∂θ þOðr2gÞ: ð16Þ

After integrating this equation with respect to θ, we obtain
the solution for the Debye potential as

ΠðrÞ¼−ψ0

iu
k
1− cosθ
sinθ

eikzð1F1½1þ ikrg;2; ikrð1− cosθÞ�
− 1F1½1þ ikrg;2;2ikr�ÞþOðr2gÞ; ð17Þ

which gives the Debye potential in terms of the Coulomb
wave function ψ (10), i.e., essentially in terms of the
confluent hypergeometric series. It can be shown that the
second term in (17) is negligible. The EM field and
the Poynting vector due to this term are orders of magnitude
(factor 1=

ffiffiffiffiffiffiffi
krg

p
) smaller than those originating from the

first term. This term makes it possible to avoid singular
behavior of Π at the axis θ ¼ π and is important only near
this axis [9].
Using the solution for Π from (17), one can now

compute all the quantities in (5). To discuss the relevant
results, it is convenient to introduce another, cylindrical
coordinate system ðρ;ϕ; zÞ. In the far field, r ≫ rg, we do
this by introducing ρ ¼ R sin θ, ϕ ¼ ϕ, z ¼ R cos θ, with
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
, θ ¼ arctanðρ=zÞ, and the corresponding

line element

ds2 ¼ u−2c2dt2 − ðdρ2 þ ρ2dϕ2 þ u2dz2Þ þOðr2gÞ: ð18Þ

In this coordinate system, the components of the EM
field are

�
Dρ

Bρ

�
¼

�
cosϕ

sinϕ

�
e−iωtaðr; θÞ;

�
Dz

Bz

�
¼

�
cosϕ

sinϕ

�
e−iωtbðr; θÞ;

�
Dϕ

Bϕ

�
¼

�
sinϕ

− cosϕ

�
e−iωtγðr; θÞ; ð19Þ

with aðr; θÞ ¼ u−1 sin θαðr; θÞ þ cos θβðr; θÞ, bðr; θÞ ¼
cos θαðr; θÞ − u sin θβðr; θÞ. Using (5) and (17) and refer-
ring to [11] for the properties of the confluent hyper-
geometric functions, the solutions for functions a, b, γ take
the form

aðr; θÞ ¼ 1

u
ψ0eikz

�
F½1�

�
1 −

rg
2r

sin2θ

�

þ F½2�
�
1 − cos θ
sin2θ

cos θ

�
1 − cos θ þ rg

r

�

− ikrgð1 − cos θÞ
�
þOðr2gÞ; ð20Þ

bðr; θÞ ¼ −
1

u
ψ0eikz sin θ

�
F½1� rg

2r
cos θ

þ F½2�
�
1 − cos θ
sin2θ

u

�
1 − cos θ þ rg

r

�
þ ikrg

��

þOðr2gÞ; ð21Þ
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γðr;θÞ¼−uψ0eikz
�
F½1�þF½2�1−cosθ

sin2θ

�
1−cosθ−

rg
r

��

þOðr2gÞ; ð22Þ

where we defined F½1�≡ 1F1½ikrg; 1; ikrð1 − cos θÞ�
and F½2�≡ 1F1½1þ ikrg; 2; ikrð1 − cos θÞ�.
The components of the Poynting vector, S ¼ ½E ×H� ¼

u−2½ReðDÞ × ReðBÞ�, in cylindrical coordinates are

Sρ ¼ u−2Reðe−iωtγÞReðe−iωtbÞ;
Sz ¼ −u−2Reðe−iωtγÞReðe−iωtaÞ; Sϕ ¼ 0: ð23Þ

Using Eqs. (20)–(22), after time averaging, we get the
Poynting vector (23) for high frequencies, kr → ∞, as

S̄ρ ¼ u−2
1

2
ψ2
0 sinθ

�
F½1�F�½1� rg

2r
cosθ

þF½2�F�½2�
�
1− cosθ
sin2θ

�
2

uð1− cosθÞ2þ 1

2
ðF½1�F�½2�

þF�½1�F½2�Þ1− cosθ
sin2θ

�
1− cosθþ rg

2r
sin2θ

�

−
1

2
iðF½1�F�½2�−F�½1�F½2�Þkrg

�
; ð24Þ

S̄z ¼ u−2
1

2
ψ2
0

�
F½1�F�½1�

�
1 −

rg
2r

sin2θ

�

þ F½2�F�½2�
�
1 − cos θ
sin2θ

�
2

ð1 − cos θÞ2 cos θ

þ 1

2
ðF½1�F�½2� þ F�½1�F½2�Þ

�
1 −

rg
2r

ð1 − cos θÞ
�

× ð1 − cos θÞ þ 1

2
iðF½1�F�½2�

− F�½1�F½2�Þkrgð1 − cos θÞ
�
; ð25Þ

where S̄z, S̄ρ, and S̄ϕ ¼ 0 are the time-averaged compo-
nents of the Poynting vector in the coordinate system (18)
and are all accurate to Oðr2g; ðkrÞ−1Þ; also, F� denotes
complex conjugate of F.
All properties of the diffraction field are contained in the

formulas (24)–(25), covering all distances and angles
around the Sun. Extracting these properties is somewhat
complicated, because too many parameters enter into the
structure of this interference pattern: the radial distance
r ∼ z, the distance ρ ¼ r sin θ from the axis θ ¼ 0 in the
image plane, the frequency ω, and, if we ask for the visual
image of an exoplanet, the aperture of our telescope. We
therefore confine ourselves to the most interesting results in
the interference region in the vicinity of the optical axis.

Consider the hypergeometric series F½1� at small angles
θ ≈ ρ=z ≪ 1: for kr ≫ 1, from [11] we have F½1� ¼
J0ð2

ffiffiffi
x

p Þ þOððkrgÞ−1Þ and F½2� ¼ ð1= ffiffiffi
x

p ÞJ1ð2
ffiffiffi
x

p Þþ
OððkrgÞ−1Þ, where J0 and J1 are the Bessel functions of
order 0 and 1, respectively, and x ¼ k2rrgð1 − cos θÞ. To
evaluate ψ0 ¼ e

π
2
krgΓð1 − ikrgÞ, from [11], we use the

identity Γð1 − ikrgÞΓð1þ ikrgÞ ¼ πkrg=sinh πkrg, yield-
ing ψ2

0 ¼ 2πkrg=ð1 − e−2πkrgÞ. Next, we express the
argument x in cylindrical coordinates (18) as

ffiffiffi
x

p ¼
ðπρ=λÞ ffiffiffiffiffiffiffiffiffiffiffi

2rg=z
p þOðr2g; ρ3Þ. For all practical purposes

rg=r ≪ 1; thus, neglecting the corresponding terms and
taking into account krg ≫ 1, we present (24)–(25) in the
most relevant form,

S̄z ¼ 2π2
rg
λ
J20

�
2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r �
þOðr2g; ðkrÞ−1Þ;

S̄ρ ¼ S̄ϕ ¼ Oðr2g; ðkrÞ−1Þ: ð26Þ

As the Poynting vector of a plane EM wave is S̄0 ¼ 1
2
[7],

we may introduce the magnification factor of the SGL as
μ ¼ S̄=S̄0 ¼ 4π2ðrg=λÞJ20ðð2πρ=λÞ

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z

p Þ, which is valid
for small angles θ ≲ ffiffiffiffiffiffiffiffiffiffiffi

2rg=z
p

, i.e., in the immediate vicinity
of the optical axis [2]. This result represents the SGL’s point
spread function (PSF), which is a sharply falling and
rapidly oscillating function of ρ [5,9]. As such, it extends
the earlier derivations (e.g., [1]) valid only at the optical
axis, where ρ ¼ 0, and provides important details on the
structure of the PSF in the interference region of the SGL.
The wave-optical treatment of the SGL may now be

used to consider practical aspects of designing a solar
gravitational telescope. Equation (26) suggests that,
by naturally focusing light from a distant source, the
SGL provides a major brightness amplification (on the
focal line μ ∼ 1.2 × 1011 at λ ¼ 1 μm) and extreme angular
resolution (≲1 × 10−10 arcsec) in a narrow field of view
(≲3.5 arcsec) [5]. In fact, starting at 547 AU, the SGL
forms a folded caustic, where, in the pencil-sharp region
along the optical axis [9], its amplification and angular
resolution stay almost unchanged well beyond 103 AU.
An Earth-like planet at 30 parsecs (pc) has an angular

diameter of 1.4 × 10−11 rad. A diffraction-limited telescope
comparable in magnifying power to a 1-m telescope placed
on the optical axis of the SGL at 750 AU from the Sun
would have a diameter of ∼57 km. But even this telescope
would resolve the disk of the planet only barely. To resolve
the planet with 103 pixels across its diameter, one needs a
telescope array with a diameter of ∼4 × 105 km (∼16R⊕),
which is impractical. Building an imaging optical interfer-
ometer with a set of such baselines is not feasible. The SGL
holds the promise of providing the conditions necessary for
a direct megapixel imaging of an exo-Earth.
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A modest telescope equipped with a coronagraph could
operate at the SGL’s focus to provide a direct high-
resolution image and spectroscopy of an exoplanet. The
image of an exo-Earth is compressed by the SGL into a
small region with diameter of ≲5 km in the immediate
vicinity of the focal line. While all currently envisioned
NASA exoplanetary concepts1 aim at getting just a single
pixel to study an exoplanet, a mission to the SGL focus
opens up the breathtaking possibility of direct imaging (at
103 × 103 linear pixels, or ∼10 km in resolution) and
spectroscopy of an Earth-like planet up to 30 pc away,
enough to see its surface features and signs of habitability.
Such a possibility is truly unique and should be studied in
the context of a realistic deep space mission.

In conclusion, a mission to the deep outer regions of the
solar system may be able to exploit the remarkable optical
properties of the SGL and provide direct megapixel-
resolution imaging and spectroscopy of a potentially hab-
itable exoplanet. Although the technical challenges are
formidable and have not yet been addressed, the theoretical
feasibility and the profound significance of such measure-
ments shall serve as strong motivation to consider the
engineering aspects of developing such a mission.
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