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We construct regular rotating black hole and no-horizon spacetimes based on the recently introduced
spherically symmetric generic regular black hole spacetimes related to electric or magnetic charge under
nonlinear electrodynamics coupled to general relativity that for special values of the spacetime parameters
reduce to the Bardeen and Hayward spacetimes. We show that the weak and strong energy conditions are
violated inside the Cauchy horizons of these generic rotating black holes. We give the boundary between
the rotating black hole and no-horizon spacetimes and determine the black hole horizons and the boundary
of the ergosphere. We introduce the separated Carter equations for the geodesic motion in these rotating
spacetimes. For the most interesting new class of the regular spacetimes, corresponding for magnetic
charges to the Maxwell field in the weak field limit of the nonlinear electrodynamics, we determine the
structure of the circular geodesics and discuss their properties. We study the epicyclic motion of a neutral
particle moving along the stable circular orbits around the “Maxwellian” rotating regular black holes. We
show that epicyclic frequencies measured by the distant observers and related to the oscillatory motion of
the neutral test particle along the stable circular orbits around the rotating singular and regular Maxwellian
black holes are always smaller than ones in the Kerr spacetime.
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I. INTRODUCTION

In the standard general relativity black hole solutions
contain a physical singularity with diverging Riemann
tensor components, considered as a region governed by
quantum gravity overcoming this internal defect of general
relativity. On the other hand, families of regular black hole
solutions of Einstein’s gravity have been found where the
physical singularity is eliminated. Of course, such solutions
cannot be vacuum solutions of the Einstein equations,
but contain necessarily a properly chosen additional field
guaranteeing violation of the energy conditions related to
the existence of physical singularities [1]. Another way of
obtaining a singularity free black hole solution is modifi-
cation of the gravitational law, as in the Kehagias-Sfetsos
black hole solutions [2] in the modified Hořava quantum
gravity [3,4].
The regular black hole solution with a magnetic charge

has been proposed by Bardeen [5]. It was shown that the
magnetic charge has to be related to a nonlinear electro-
dynamics [6]. The other solution of the combined Einstein
and nonlinear electrodynamic equations has been intro-
duced by Ayon-Beato and Garcia [6–9]. A different

approach to the regular black hole solutions has been
applied by Hayward [10]. Modification of the mass
function in the Bardeen and Hayward solutions and
inclusion of the cosmological constant can be found in
the new solutions of Neves and Saa [11–13]. The regular
black hole solution in the fðTÞ gravity with nonlinear
electrodynamics has been found in [14]. All the subtleties
of the nonlinear effects were discussed in [15–18]. Rotating
regular black hole solutions have been introduced in
[19–24]. Similarly to the Kerr or Reissner-Nordström
solutions of the standard general relativity that describe
both black holes and naked singularities, the regular
solutions describe both the black hole and no-horizon
spacetimes demonstrating strong gravity effects [25–32].
Properties of the geodesic motion in the field of regular

black holes have been recently discussed in [33–36]. A
detailed discussion of the circular geodesics of the regular
Bardeen and Ayon-Beato-Garcia (ABG) black hole and
no-horizon spacetimes and its implication to simple optical
phenomena can be found in [31]. Moreover, scalar,
electromagnetic and gravitational perturbations of the
regular black holes in nonlinear electrodynamics, their
quasinormal modes and stabilities have been discussed
in several works, see for instance [37–42]. Note that the
geodesic structure of the regular black holes outside the
horizon is similar to those of the Schwarzschild or
Reissner-Nordström (RN) black hole spacetimes, but under
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the inner horizon, no circular geodesics can exist. The
geodesic structure of the no-horizon spacetimes is similar
to those of the naked singularity spacetimes of the RN type,
or the Kehagias-Sfetsos type [43–47] representing a widely
discussed asymptotically flat solution of modified Hořava
quantum gravity [2–4].
A fundamental difference between the naked singu-

larity and regular spacetimes is related to the central
region. In the regular Bardeen and ABG spacetimes the
metric is de Sitter like at the central region [31], just in
the spirit of the original ideas on the nonsingular black
hole spacetimes presented in [48,49]. In the no-horizon
spacetimes this effect has an extraordinary influence
on the character of null geodesics and related optical
phenomena [32].
Quite recently, a new class of generic regular spherically

symmetric solutions of the standard general relativity
coupled to nonlinear electrodynamics has been found for
both magnetically and electrically charged gravitational
objects [50]. For special choice of the spacetime param-
eters, this generic solution reduces to the Bardeen and
Hayward spacetimes. There is also a new interesting special
class of this solution corresponding to the Maxwell field in
the weak field limit of the nonlinear electrodynamics—this
is demanding special attention.
Here using the Newman-Janis algorithm we construct

rotating regular black hole and no-horizon spacetimes
related to the new generic class of these spacetimes. We
discuss their basic properties and give the Carter equations
of the geodesic motion. Then we give the circular geodesics
of the special new class with the magnetic Maxwell limit,
discuss their properties, and compare them to the well-
known Bardeen spacetime. We also give the frequencies of
the radial and vertical epicyclic motion, as these frequen-
cies could be relevant in explaining the high-frequency
quasiperiodic oscillations [51–53] and could thus serve as a
strong test of relevance of the regular solutions.
The paper is organized as follows: in Sec. II we briefly

describe the Newman-Janis algorithm. In Sec. III the
generic rotating black hole solution is obtained and
checked to the Einstein field equations. In Sec. IV the
weak and strong energy conditions are studied. We study
the main properties of geometry of the new rotating black
hole spacetime, such as singularity, horizon and ergoregion
in Sec. V. In Sec. VI the equations of motion and the
separation of the Hamilton-Jacobi equation are studied. In
Sec. VII general formalism for the circular orbits of the
neutral test particle around the generic rotating regular
black hole are shown. The epicyclic frequencies related to
the oscillatory motion of a neutral test particle in the stable
circular orbits around rotating “Maxwellian” black holes
are studied in Sec. VIII. Finally, we present some con-
cluding remarks in Sec. IX. Throughout the paper we use
the geometric system of units c ¼ G ¼ ℏ ¼ 1 and a
spacelike signature ð−;þ;þ;þÞ.

II. NEWMAN-JANIS ALGORITHM

In the case of the generic spacetimes introduced in [50],
in order to obtain the rotating black hole solution we do
not directly follow the standard Newman-Janis algorithm
which was used in [21–23,54], however rather we follow
the modified Newman-Janis algorithm [20,55,56] to avoid
the number of appearing inadequate properties.1

Let us consider the static, spherically symmetric line
element in the Schwarzschild coordinates given in the form

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ hðrÞðdθ2 þ sin2θdϕ2Þ: ð1Þ

At the first step, we turn the spacetime metric (1) from the
Schwarzschild coordinates (t, r, θ, ϕ) to the Eddington-
Finkelstein (EF) coordinates (u, r, θ, ϕ) by the coordinate
transformations:

du ¼ dt −
dr
f
: ð2Þ

In this way we obtain the spacetime metric in the form

ds2 ¼ −fdu2 − 2dudrþ hdθ2 þ hsin2θdϕ2: ð3Þ

Then the contravariant components of the metric tensor in
the advanced null Eddington-Finkelstein (EF) coordinates
can be expressed in the form using the null tetrad,

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ; ð4Þ

where

lμ ¼ δμr ; nμ ¼ δμu −
f
2
δμr ;

mμ ¼ 1ffiffiffiffiffiffi
2h

p δμθ þ
iffiffiffiffiffiffi

2h
p

sin θ
δμϕ;

m̄μ ¼ 1ffiffiffiffiffiffi
2h

p δμθ −
iffiffiffiffiffiffi

2h
p

sin θ
δμϕ: ð5Þ

Vectors l and n are real,m is the complex vector, and the m̄
vector is a complex conjugate of the vector m. They
satisfy orthogonality lμmμ ¼ lμm̄μ ¼ nμmμ ¼ nμm̄μ ¼ 0,
isotropic lμlμ ¼ nμnμ ¼ mμmμ ¼ m̄μm̄μ ¼ 0, and normali-
zation lμnμ ¼ 1, mμm̄μ ¼ −1 conditions.
Performing complex coordinate transformations in the

u − r plane

1Transformation functions which are introduced at the last step
of the Newman-Janis algorithm to turn into the Boyer-Lindquist
coordinates from the Eddington-Finkelstein ones are not only
r, but also θ dependent. Therefore, these coordinate transforma-
tions do not satisfy integrability condition. This creates several
issues—for details see [20].

TOSHMATOV, STUCHLÍK, and AHMEDOV PHYSICAL REVIEW D 95, 084037 (2017)

084037-2



u → u − ia cos θ; r → r − ia cos θ; ð6Þ

we can assume that as the result of these transformations the
metric functions turn into a new form: fðrÞ → Fðr; a; θÞ,
hðrÞ → Σðr; a; θÞ. In the case a ¼ 0 new functions reduce
to initial forms. Null tetrads thus also take the form

lμ ¼ δμr ; nμ ¼ δμu −
1

2
Fδμr ;

mμ ¼ 1ffiffiffiffiffiffi
2Σ

p
�
δμθ þ ia sin θðδμu − δμrÞ þ i

sin θ
δμϕ

�
;

m̄μ ¼ 1ffiffiffiffiffiffi
2Σ

p
�
δμθ − ia sin θðδμu − δμrÞ − i

sin θ
δμϕ

�
: ð7Þ

Then we can rewrite the contravariant nonzero components
of the metric tensor gμν by using (4) as

guu ¼ a2sin2θ
Σ

; gur ¼ −1 −
a2sin2θ

Σ
; guϕ ¼ a

Σ
;

grr ¼ F þ a2sin2θ
Σ

; grϕ ¼ −
a
Σ
; gθθ ¼ 1

Σ
;

gϕϕ ¼ 1

Σsin2θ
: ð8Þ

The covariant nonzero components of the metric tensor read

guu ¼ −F; gur ¼ −1; guϕ ¼ aðF − 1Þsin2θ;
grϕ ¼ asin2θ; gθθ ¼ Σ;

gϕϕ ¼ sin2θ½Σþ a2ð2 − FÞsin2θ�: ð9Þ
The last step of the Newman-Janis algorithm is the turn back
from the EF coordinates to the Boyer-Lindquist (BL) coor-
dinates by using the following coordinate transformations:

du ¼ dtþ λðrÞdr; dϕ ¼ dϕþ χðrÞdr: ð10Þ

The transformation functions λðrÞ and χðrÞ are found due to
the requirement that all the nondiagonal components of the
metric tensor, except the coefficient gtϕ (gϕt), are equal to
zero [20,55]. Thus,

λðrÞ ¼ −
hðrÞ þ a2

fðrÞhðrÞ þ a2
; χðrÞ ¼ −

a
fðrÞhðrÞ þ a2

ð11Þ

and

Fðr; θÞ ¼ fhþ a2cos2θ
hþ a2cos2θ

: ð12Þ

Considering hðrÞ ¼ r2, and replacing (11) and (12) to (9),
we can write the rotating black hole spacetime metric in the
BL coordinates

ds2 ¼ −
r2fþ a2cos2θ
r2 þ a2cos2θ

dt2 þ r2 þ a2cos2θ
r2fþ a2

dr2

− 2asin2θ
r2ð1− fÞ

r2 þ a2cos2θ
dϕdtþ ðr2 þ a2cos2θÞdθ2

þ sin2θ

�
r2 þ a2 þ a2sin2θ

r2ð1− fÞ
r2 þ a2cos2θ

�
dϕ2: ð13Þ

III. GENERIC ROTATING REGULAR BLACK
HOLE SOLUTION OF NONLINEAR

ELECTRODYNAMICS

By introducing the new notations we rewrite the space-
time metric (13) in more compact, i.e., Kerr-like form as

ds2 ¼ −
�
1 −

2ρr
Σ

�
dt2 þ Σ

Δ
dr2 − 2asin2θ

2ρr
Σ

dϕdt

þ Σdθ2 þ sin2θ
ðr2 þ a2Þ2 − a2Δsin2θ

Σ
dϕ2; ð14Þ

or

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

½ðr2 þ a2Þdϕ − adt�2; ð15Þ

where

Σ ¼ r2 þ a2cos2θ; 2ρ ¼ rð1 − fÞ;
Δ ¼ r2f þ a2 ¼ r2 − 2ρrþ a2: ð16Þ

Nonzero components of the Einstein tensor Gμν read

Gtt ¼
2ðr4 þ a2r2 − a4sin2θcos2θÞ

Σ3
ρ0

−
4r3

Σ3
ρρ0 −

a2rsin2θ
Σ2

ρ00;

Grr ¼ −
2r2

ΣΔ
ρ0;

Gtϕ ¼ 2asin2θðr2 þ a2Þða2cos2θ − r2Þ
Σ3

ρ0

þ 4ar3sin2θ
Σ3

ρρ0 þ a2rsin2θðr2 þ a2Þ
Σ2

ρ00;

Gθθ ¼ −
2a2cos2θ

Σ
ρ0 − rρ00;

Gϕϕ ¼ −
a2sin2θðr2 þ a2Þða2 þ ð2r2 þ a2Þ cos 2θÞ

Σ3
ρ0

−
4a2r3sin4θ

Σ3
ρρ0 −

rsin2θðr2 þ a2Þ2
Σ2

ρ00: ð17Þ

The prime ( 0) stands for the derivative with respect to radial
coordinate r. One can see from the Einstein tensor (17) that
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in the case of constant mass function (ρ ¼ Const) all
components of the Einstein tensor vanish, i.e., spacetime
metric (14) represents the vacuum solution of the Einstein
field equation, namely, Kerr black hole solution. Now we
use the Einstein equations Gμν ¼ 8πTμν, where Tμν is the
energy-momentum tensor of the electromagnetic field that
can be represented by the projection to a properly chosen
tetrad of the vector and it can be represented by the
expression

TðμÞðνÞ ¼ eðμÞα eðνÞβ Tαβ: ð18Þ

The vector eðμÞα is the orthonormal basis, here being the so-
called Carter tetrad given by Eq. (15) that can be written in
the following form [57]:

eðμÞt ¼ 1ffiffiffiffiffiffiffi
ΣΔ

p ðr2 þ a2;0;0; aÞ; eðμÞθ ¼ 1ffiffiffi
Σ

p ð0;0;1;0Þ;

eðμÞr ¼
ffiffiffiffi
Δ
Σ

r
ð0;1;0;0Þ; eðμÞϕ ¼ −

1ffiffiffi
Σ

p
sinθ

ðasin2θ;0;0;1Þ:

ð19Þ

Now we determine related energy-momentum tensor Tμν of
the generic rotating regular solution. The components of
the energy-momentum tensor TðμÞðνÞ ¼ ðϵ; pr; pθ; pϕÞ read

8πϵ ¼ −eðμÞt eðνÞt Gμν; 8πpr ¼ grrGrr;

8πpθ ¼ gθθGθθ; 8πpϕ ¼ −eðμÞϕ eðνÞϕ Gμν: ð20Þ
From the above Eq. (20) we find the components of the
stress-energy tensor

ϵ ¼ −pr ¼
2ρ0r2

8πΣ2
; pθ ¼ pϕ ¼ pr −

ρ00rþ 2ρ0

8πΣ
: ð21Þ

Thus, we have shown that the spacetime metric (14) is
compatible with the Einstein field equations.
However, the Newman-Janis algorithm for generating

rotating solutions is not always leading to true solutions of

the whole set of field equations of the theory, i.e., the
energy-momentum tensor of the rotating regular black hole
solution generated by the Newman-Janis algorithm some-
times does not correspond to the nonlinear electrodynam-
ics. Therefore, below we check validity of the resulting
energy momentum tensor in the framework of the nonlinear
electrodynamic field. It is known that the action of the
regular black holes in general relativity coupled to the
nonlinear electrodynamics reads

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − LÞ; ð22Þ

where g is the determinant of the metric tensor gμν, R is the
scalar curvature, and L represents the Lagrangian density
of the nonlinear electrodynamic field that is the function of
the nonlinear electrodynamic field strength L ¼ LðF Þwith
F ¼ FμνFμν. The equations of motion are derived from the
action (22) in the form

Tμν ¼ 2

�
LFFα

μFνα −
1

4
gμνL

�
; ð23Þ

∇μðLFFμνÞ ¼ 0; ð24Þ

where Tμν is the energy-momentum tensor of the nonlinear
electrodynamics and LF ¼ ∂L

∂F . The gauge field of the
spherically symmetric regular black hole solution with the
magnetic charge is Aμ ¼ Qm cos θδϕμ , i.e., only the last
components survives. However, in the rotating spacetimes
the gauge also changes and an extra component appears
[58]:

Aμ ¼ −
Qma cos θ

Σ
δtμ þ

Qmðr2 þ a2Þ cos θ
Σ

δϕμ : ð25Þ

Thus, by calculating the covariant and contravariant
electromagnetic field tensors we obtain

F ¼ Q2
m½a4ð3 − cos 4θÞ þ 4ð6a2r2 þ 2r4 þ a2ða2 − 6r2Þ cos 2θÞ�

4Σ4
: ð26Þ

In the case of a ¼ 0, we recover the field related to the spherically symmetric case F ¼ 2Q2
m=r4 [50].

By inserting the Einstein tensors (17) into the equations of motion (23) (Gμν ¼ Tμν), and solving them with respect to L
and LF , we obtain

L ¼ r2½ð15a4 − 8a2r2 þ 8r4 þ 4a2ð5a2 − 2r2Þ cos 2θ þ 5a4 cos 4θÞρ0 þ 16a2rcos2θΣρ00�
2Σ4

; ð27Þ
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LF ¼ 2ðr2 − a2cos2θÞρ0 − rΣρ00

2Q2
m

: ð28Þ

In the nonrotating spacetime limit, a ¼ 0, we recover
L ¼ 4ρ0=r2 and LF ¼ r2ð2ρ0 − rρ00Þ=2Q2

m [50]. In the
Maxwellian limit, namely, L ¼ F , from Eqs. (26) and
(27), by solving the differential equation, one obtains

ρðrÞ ¼ Const −
Q2

m

2r
: ð29Þ

If we put the mass function (29) into the rotating spacetime
metric (14), we arrive at the Kerr-Newman solution and as
it was pointed out in [50], that in the case of a ¼ 0 we
recover the Reissner-Nordström one.
By choosing the mass function, one can obtain several

rotating black hole solutions. In this paper we took the
spherically symmetric regular black hole spacetimes in
general relativity (GR) coupled to nonlinear electrodynam-
ics, obtained by Fan and Wang [50],

ρðrÞ ¼ M þ α−1q3rμ

ðrν þ qνÞμ=ν : ð30Þ

Here M denotes the pure Schwarzschild gravitational self-
interaction mass. The Arnowitt-Deser-Misner (ADM) mass
of the spacetime is given by the relation [50]

MADM ¼ M þMem; ð31Þ

whereMem is the electromagnetically induced gravitational
mass and it reads

Mem ¼ q3

α
; ð32Þ

and is determined by the solution of the GR Einstein
equations coupled to the nonlinear electrodynamics. The
magnetic (electric) charge is expressed by the introduced
parameters in the form [50]

Qm ¼ q2ffiffiffiffiffiffi
2α

p : ð33Þ

The nonlinear electrodynamics is governed by the dimen-
sionless constant parameter μ characterizing the degree of
nonlinearity, and the parameter α with the dimension of
length squared, governing strength of the nonlinear effects.
Parameters q and ν are free parameters governing the
magnetic (electric) charge, and character of its field in
concrete solutions—for details see [50]. In this framework
several classes of the known regular black hole solutions
can be obtained. For example, when ν ¼ 2, the function
(30) represents the mass function of the Bardeen-like black
hole spacetime,

ρðrÞ ¼ M þ α−1q3rμ

ðr2 þ q2Þμ=2 : ð34Þ

In the case of ν ¼ μ, it corresponds to the Hayward-like
black holes,

ρðrÞ ¼ M þ α−1q3rμ

rμ þ qμ
: ð35Þ

For ν ¼ 1, a new class of generic black hole solutions is
obtained,

ρðrÞ ¼ M þ α−1q3rμ

ðrþ qÞμ ; ð36Þ

which correspond to the Maxwell equations in the weak-
field limit of the nonlinear electrodynamics.
By replacing the expression (32) and turning into the

dimensionless coordinates, t=Mem → t, r=Mem → r, and
dimensionless parameters, M=Mem → M, q=Mem → q
(for the rotating solution we similarly introduce also the
dimensionless spin parameter by a=Mem → a), we rewrite
the mass function for the Bardeen-like black holes (34),

ρðrÞ ¼ M þ rμ

ðr2 þ q2Þμ=2 ; ð37Þ

for the Hayward-like black holes (35),

ρðrÞ ¼ M þ rμ

rμ þ qμ
; ð38Þ

for the new class of generic black holes (36) in the form

ρðrÞ ¼ M þ rμ

ðrþ qÞμ : ð39Þ

The dimensionless specific charge parameter reads

q ¼ 2Q2
m

M2
em

: ð40Þ

Note that we have to be careful in order to obtain the
Schwarzschild (Kerr) limit for the case of q → 0. Due to the
definition of Mem, for q → 0, there is also α → 0 in order
to keep Mem ¼ Const ≠ 0. Then q ¼ ðαMemÞ1=3 and the
charge reads Qm ¼ 21=2M2=3

em α1=6, i.e., the charge vanishes
when q → 0, while the mass parameter is fixed.
Note that existence of the Schwarzschild massM implies

for all the spacetimes mentioned above existence of an
unavoidable spacelike curvature singularity. In the case of
absence of the gravitational mass (M ¼ 0), these space-
times are regular. We address these singularity problems in
the next section.
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In the following, we concentrate on discussion of the
spacetime properties and its implications.

IV. ENERGY CONDITIONS

In [50] it is mentioned that the strong energy condition
(SEC) is violated in the nonrotating case, while the weak
energy condition (WEC) is satisfied. Now we check these
energy conditions in the case of the generic rotating
regular black hole. In order to check the energy conditions
we turn to the diagonal stress-energy tensor TðaÞðbÞ ¼
diagðTð0Þð0Þ; Tð1Þð1Þ; Tð2Þð2Þ; Tð3Þð3ÞÞ by using the following
orthonormal tetrads which correspond to the standard
locally nonrotating frame (LNRF) [59]:

eðaÞμ ¼

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∓ðgtt−ΩgtϕÞ
p

0 0 0

0
ffiffiffiffiffiffiffiffiffiffi�grr

p
0 0

0 0
ffiffiffiffiffiffi
gθθ

p
0

Ω ffiffiffiffiffiffigtϕ
p

0 0
ffiffiffiffiffiffiffigϕϕ

p

1
CCCCCA
; ð41Þ

where Ω ¼ gtϕ=gϕϕ. The energy-momentum tensor is
turned to diagonal form by the relation TðaÞðbÞ ¼
eðaÞμ eðbÞν Gμν=8π. The signature of (41) reflects the consid-
ered region. We claim that the spacetime metric (14) has
two horizons: inner (Cauchy) and outer (event) horizons, in
the case of the black hole. If the considered region is
located outside the event horizon or inside the inner horizon
we choose the signature of the components of the ortho-

normal tetrads eð0Þ0 and eð1Þ1 as ð−;þÞ, respectively. In the
case the region under consideration is located between

these two horizons we take the signature of eð0Þ0 and eð1Þ1 as
ðþ;−Þ, respectively. Now we are going to check the
behavior of the energy-momentum tensor near origin,
i.e., inside the inner horizon. We do not show the full
expression of components of the energy-momentum tensor
because of their cumbersome form. For simplicity we
consider the “poles” θ ¼ 0; π. Then, the components of
the energy-momentum tensor inside the inner horizon and
outside the event horizon take the form

Tð0Þð0Þ ¼ 2r2ρ0

ðr2 þ a2Þ2 ¼ −Tð1Þð1Þ;

Tð2Þð2Þ ¼ −
rρ00

r2 þ a2
−

2a2ρ0

ðr2 þ a2Þ2 ¼ Tð3Þð3Þ;

Tð0Þð0Þ þ Tð2Þð2Þ ¼ 2ðr2 − a2Þρ0
ðr2 þ a2Þ2 −

rρ00

r2 þ a2

¼ Tð0Þð0Þ þ Tð3Þð3Þ: ð42Þ

One can see from (42) that the existence of the
Schwarzschild mass does not affect the energy conditions
of these black holes, since only derivatives of the ρ with
respect to radial coordinate appear in energy-momentum
tensor.2 According to the WEC, Tμνuμuν ≥ 0 where
uμ is the generic timelike vector, or Tð0Þð0Þ≥0 and
Tð0Þð0ÞþTðiÞðiÞ≥0, where i ¼ 1, 2, 3. One can see from
Fig. 1 that near the origin (inside the inner horizon) the
WEC is violated in the case of a ≠ 0. With increasing the
value of the parameter μ that characterizes the degree of
the nonlinearity of the electromagnetic field, a depth of the
violation of the WEC decreases however, even for the
large values of μ violation of the WEC does not vanish.
Since the behavior of all the classes of regular spacetimes
(Bardeen-like, Hayward-like and new class) is similar, in
Fig. 2 we present only the behavior of the Bardeen-like
spacetime for different values of the spacetime parame-
ters. From Fig. 2 one can see that with increasing
the values of the rotation and parameters the depth of
the violation of the WEC decreases, however, an
increase in the value of the nonlinear electromagnetic
field parameter ν the depth of the violation increases.
Since the strong energy condition (SEC) requires the
condition ðTμν − Tgμν=2Þuμuν ≥ 0, or

P
4
a¼0 T

ðaÞðaÞ ≥ 0,
violation of the WEC guarantees the violation of the
SEC too.
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FIG. 1. Radial profiles of the energy-momentum tensor in the LNRF. Plot of Tð0Þð0Þ (dashed) and Tð0Þð0Þ þ Tð2Þð2Þ (solid) for rotating
(from left to right) Bardeen-like, Hayward-like and new type of black holes with q ¼ 0.4, a ¼ 0.3, and cos2 θ ¼ 1, where μ ¼ 3—black,
μ ¼ 4—blue, μ ¼ 5—red, μ ¼ 6—green, and μ ¼ 7—cyan curves.

2Since ρ ¼ M þ rμ

ðrνþqνÞμ=ν andM vanishes in the derivative with
respect to radial coordinate r, the pure gravitational massM plays
no role in energy conditions.
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V. PROPERTIES OF THE ROTATING
REGULAR BLACK HOLE SOLUTION

A. Curvature singularity

It is well known that in general relativity (GR) there are
two types of singularities which are the points where the
spacetime metric coefficients tend to infinity: curvature
singularity which is often called a physical singularity by
the reason of that it cannot be removed by coordinate
transformations, while the second one is the coordinate
singularity (event horizon) which can be considered as a
mathematical singularity due to the possibility of elimina-
tion of it by introducing appropriate coordinate system.
Let us study first the physical singular points of the

new rotating regular black hole (14) by studying its
curvature invariants, such as curvature scalar, Ricci square,
and Kretschmann invariant. Naturally, we consider the
case of the zero Schwarzschild mass (M ¼ 0). First, we
approach the center (r ¼ 0) outside the equatorial plane:

lim
θ→½0;π�

ðlim
r→0

RÞ¼ lim
r→0

ð lim
θ→≠π=2

RÞ¼0;

lim
θ→½0;π�

ðlim
r→0

RμνRμνÞ¼ lim
r→0

ð lim
θ→≠π=2

RμνRμνÞ¼0;

lim
θ→½0;π�

ðlim
r→0

RμνρσRμνρσÞ¼ lim
r→0

ð lim
θ→≠π=2

RμνρσRμνρσÞ¼0: ð43Þ

Second, we approach the center in the equatorial plane:

lim
r→0

ð lim
θ→π=2

RÞ ¼ 24

α
rμ−3 ¼ 24

α
lim
r→0

rμ−3;

lim
r→0

ð lim
θ→π=2

RμνRμνÞ ¼ 144

α
r2μ−6 ¼ 144

α
lim
r→0

r2μ−6;

lim
r→0

ð lim
θ→π=2

RμνρσRμνρσÞ ¼ 96

α
r2μ−6 ¼ 96

α
lim
r→0

r2μ−6: ð44Þ

It follows from (44) that the rotating black hole solution
(14) with zero Schwarzschild mass is regular everywhere
only if μ ≥ 3. One can see from the curvature invariants

(43) and (44) that in the case of μ ¼ 3 the values of these
invariants are dependent on the direction we approach
toward the center and at the center there is a “de Sitter”-like
core of the nonlinear electrodynamic source. For μ > 3, the
values of these invariants are independent of the way we
approach the center.

B. Event horizons and separation of black hole
and no-horizon spacetimes in the parameter space

In the stationary case, the event horizon coincides with
the outermost apparent horizon. Its location is given by the
following second order partial differential equation [60]:

∇μnμ þ γμνKμν ¼ 0; ð45Þ

where nμ ¼ ð−α; 0; 0; 0Þ is the timelike four-vector which
is normal to the hypersurface at each event in the spacetime.
From the normalization condition on timelike four-vectors,
nμnμ ¼ −1, we find that

α ¼ 1ffiffiffiffiffiffiffiffi
−gtt

p ; ð46Þ

γμν is given by the relation

γμν ¼ gμν þ nμnν; ð47Þ

and Kμν is the extrinsic curvature which is given by the
relation [61]

Kμν ¼ −∇μnν − nμnσ∇σnν: ð48Þ

Simplifying Eq. (45) we derive the relation

gμν þ nμnν ¼ 0: ð49Þ

From Eq. (49) one can easily obtain that the horizon of the
spacetime metric (15) is defined by the equations
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FIG. 2. Radial profiles of the energy-momentum tensor in the LNRF. Plot of Tð0Þð0Þ (dashed) and Tð0Þð0Þ þ Tð2Þð2Þ (solid) for rotating
regular Bardeen-like black holes for the values of the parameters. Left panel: μ ¼ 3, ν ¼ 2, a ¼ 0.3, and cos2 θ ¼ 1 for the values of the
charge parameter: q ¼ 0.4—black, q ¼ 0.6—blue, q ¼ 0.8—red, q ¼ 1.0—green, and q ¼ 1.4—cyan curves. Middle panel: μ ¼ 3,
ν ¼ 2, q ¼ 0.4, and cos2 θ ¼ 1 for the values of the rotation parameter: a ¼ 0.2—black, a ¼ 0.4—blue, a ¼ 0.7—red, a ¼ 1.0—green,
and a ¼ 1.3—cyan curves. Right panel: μ ¼ 3, a ¼ 0.4, q ¼ 0.4, and cos2 θ ¼ 1 for the values of ν: ν ¼ 2—black, ν ¼ 3—blue,
ν ¼ 4—red, ν ¼ 5—green, and ν ¼ 6—cyan curves.
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grr ¼ 0; ðgtϕÞ2 − gttgϕϕ ¼ 0: ð50Þ

In (50) the latter equation is equivalent to the first one.
Thus, the coordinate singularity giving the event horizon of
the black hole is determined by the relation grr ¼ 0, i.e.,

Δ ¼ r2þ − 2ρþrþ þ a2 ¼ 0; ð51Þ

or r2þfðrþÞ þ a2 ¼ 0. It is well known that the spacetime
(14) can represent several scenarios, such as regular black
hole, singular black hole, no-horizon and naked singularity
spacetimes. Regular black hole and no-horizon spacetimes
are represented by the same line elements, while singular
black hole and naked singularity spacetimes are represented
by the different alternate spacetimes. The black hole and
no-horizon or naked singularity spacetimes are separated
by the extremal horizon of the black hole. The extremality
condition of the black hole horizon is defined by the
relation

Δ ¼ 0; Δ0 ¼ 0: ð52Þ

For the current black hole

rðρ − rρ0Þ − a2 ¼ 0; ð53Þ

or

r

�
M þ rμðrν − qνðμ − 1ÞÞ

ðrν þ qνÞμ=νþ1

�
− a2 ¼ 0: ð54Þ

In Fig. 3 the conditions of the black hole and the no-horizon
spacetimes in terms of the values of the characteristic
parameters of the spacetime metric are given for the generic
rotating regular black hole with zero Schwarzschild mass
(M ¼ 0) (top panel) and the spacelike singular black hole
with the nonzero gravitational mass M (bottom panel) for
the case μ ¼ 3 and some special values of the parameter ν.
Moreover, as in the case of the Kerr, Kerr-Newman or other
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rotating regular black holes [22], with increasing value of
the specific magnetic (electric) charge parameter, the radius
of the black hole decreases. Interestingly, irrespective of
the value of the magnetic (electric) charge parameter, all
classes (Bardeen-like, Hayward-like and new type) of
generic rotating black holes with the nonzero gravitational
mass M always have nonvanishing two horizons for the
value of the rotation parameter a=M < 1, i.e., rotating
singular black hole with rotation parameter a=M < 1,
naked singularity does not exist regardless the value of
the specific charge parameter. In the case of the rotating
regular black holes (M ¼ 0), existence of the horizons is
strongly dependent on the charge parameter. As in the case
of the rotating Hayward [24], Bardeen [62] and ABG [22]
nonsingular spacetimes, in the case of the current rotating
regular black holes, there are the upper limits on the values
of the specific charge and rotation parameters in order
for the spacetimes to represent black holes. Let us denote
these limiting values as critical values, qcr and acr, which
correspond to the border of the black hole (shaded) and no-
horizon (white) regions in the top panel of Fig. 3: at these
critical values of the charge parameter black holes have the
minimum horizon rmin. For the greater values of the charge
parameter or rotation parameter than these critical values,
q > qcr or a > acr horizons vanish and the line element
represents the no-horizon spacetimes. One can see from
Fig. 3 that rotating regular black holes can have a smaller
value of the specific charge parameter than the nonrotating
one. With increasing the rotation parameter a, the possible
value of the specific charge parameter qcr decreases and
when the rotation parameter reaches its maximum value,
a ¼ 1, in the case of the black hole, the charge parameter
vanishes. In Fig. 3 it has been shown that among these three
classes of regular black holes, the rotating Hayward-like
regular black holes have the greatest critical value of the
specific charge, qcr ≈ 1.06, while the new type of rotating

regular black holes have the smallest value of the specific
charge, qcr ≈ 0.3. Moreover, with increasing the value of μ
possible values of the specific charge and rotation param-
eters decrease.
The horizon area of the generic rotating black hole takes

the standard form

Aþ ¼
Z

2π

0

dϕ
Z

π

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgϕϕ

p ¼ 4πðr2þ þ a2Þ: ð55Þ

C. Ergosphere

The static limit of the black hole is the one in which the
timelike Killing vector kμ ¼ ð1; 0; 0; 0Þ becomes null. The
static limit is determined by the relation

gttðrslÞ ¼ r2sl − 2ρðrslÞrsl þ a2cos2θ ¼ 0: ð56Þ

One can see from (51) and (56) that at the poles θ ¼ 0, π the
event horizon and static limit surface coincide (rþ ¼ rsl).
The region between event horizon and static limit surface is
called ergosphere or ergoregion. In Fig. 4 the ergoregion of
the generic rotating Bardeen-like, Hayward-like and new
type of regular black hole has been plotted. One can see
from Fig. 4 that with increasing the value of the charge
parameter q, radii of the horizon and static limit, as well as
the volume of the ergoregion decrease.

VI. SEPARABILITY OF VARIABLES IN THE
HAMILTON-JACOBI EQUATION FOR NEUTRAL
TEST PARTICLE AND CARTER EQUATIONS

The test particles (photons) move along the spacetime
geodesics. The motion is governed by the Hamilton-Jacobi
equation that reads
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FIG. 4. Outer horizon (solid curves) and static limit (dashed curves) giving boundary of the ergosphere of the (from left to right)
Bardeen-like, Hayward-like, and new type of rotating regular black holes are given for the values of the parameters μ ¼ 3, a ¼ 0.3, and
q as depicted in the figures.
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gμν
∂S
∂xμ

∂S
∂xν ¼ −m2; ð57Þ

where m is the mass of the test particle. Due to the
stationarity and axial symmetry of the spacetime, we can
introduce two integrals of the motion, energy E ¼ −pt, and
axial angular momentum L ¼ pϕ. Then we can write the
Hamilton-Jacobi action function S in the following sepa-
rated form:

S ¼ −
1

2
m2τ − Etþ Lϕþ SrðrÞ þ SθðθÞ; ð58Þ

where m2 ¼ 0, þ1 is considered for null and timelike
geodesics, respectively, τ is the proper time of the test
particle with m2 ¼ þ1. Contravariant components of the
metric tensor of the spacetime (14) have the form

gtt ¼ −
ðr2 þ a2Þ2 − a2Δsin2θ

ΔΣ
; gtϕ ¼ −

2aρr
ΔΣ

;

grr ¼ Δ
Σ
; gθθ ¼ 1

Σ
; gϕϕ ¼ Δ − a2sin2θ

ΔΣsin2θ
: ð59Þ

Substituting (58) and (59) to (57), we obtain

−
�ðr2 þ a2Þ2

Δ
− a2sin2θ

�
E2 þ 4aρr

Δ
ELþ

�
1

sin2θ
−
a2

Δ

�
L2

þ Δ
�∂S
∂r

�
2

þ
�∂S
∂θ

�
2

þm2Σ ¼ 0: ð60Þ

Simplifying the equation (60), introducing separation
constant K representing an additional constant of the
motion, and a new constant of the motion through the
relation Q ¼ K − ðL − aEÞ, we arrive to

Δ
�
dS
dr

�
2

¼ RðrÞ
Δ

; ð61Þ
�
dS
dθ

�
2

¼ ΘðθÞ; ð62Þ

where

RðrÞ ¼ ½ðr2 þ a2ÞE − aL�2
− Δ½ðaE − LÞ2 þm2r2 þQ�; ð63Þ

ΘðθÞ ¼ Q −
�

L2

sin2θ
þ a2ðm2 − E2Þ

�
cos2θ: ð64Þ

We can write the Hamilton-Jacobi action (58) in terms of
these functions as

S ¼ 1

2
m2τ − Etþ Lϕþ

Z
r

ffiffiffiffiffiffiffiffiffi
RðrÞp
Δ

þ
Z

θ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð65Þ

and obtain the modified Carter equations for the generic
regular rotating spacetimes,

Σ_t ¼ r2 þ a2

Δ
½Eðr2 þ a2Þ − aL� − aðaEsin2θ − LÞ; ð66Þ

Σ_r ¼
ffiffiffiffi
R

p
; ð67Þ

Σ_θ ¼
ffiffiffiffi
Θ

p
; ð68Þ

Σ _ϕ ¼ a
Δ
½Eðr2 þ a2Þ − aL� −

�
aE −

L
sin2θ

�
; ð69Þ

where the overdot (_) stands for the derivative with respect
to the proper time τ (affine parameter for photons).

VII. CIRCULAR ORBITS AROUND GENERIC
ROTATING REGULAR BLACK HOLES

In this section we aim to study the circular motion of the
test particles around generic rotating regular black holes.
As is well known in the rotating axially symmetric and
stationary spacetimes of the type considered here, the
circular geodesic orbits have to be confined to the equa-
torial plane (θ ¼ π=2). Therefore, the velocity of the
particle along θ coordinate is zero (_θ ¼ 0), consequently,
the constant of motion related to the θ coordinate _Q ¼ 0.
The circular orbits of the particles around the black hole are
determined by the conditions

RðrÞ ¼ 0;
dRðrÞ
dr

¼ 0: ð70Þ

By solving the above equations one can find the specific
energy and the specific angular momentum of the test
particle moving along the circular orbits around the generic
rotating regular black hole in the general form

E ¼ � gtt þ gtϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ 2gtϕΩþ gϕϕΩ2Þ

q ; ð71Þ

L ¼ ∓ gtϕ þ gϕϕΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðgtt þ 2gtϕΩþ gϕϕΩ2Þ

q ; ð72Þ

Ω ¼
−gtϕ;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ;r − gtt;rgϕϕ;r

q
gϕϕ;r

; ð73Þ

where þ and − signs represent corotating and counter-
rotating particles relative to the spacetime rotation, respec-
tively, andΩ ¼ dϕ=dt is the angular velocity of the particle
relative to the distant observers. By using the generic
rotating regular black hole (M ¼ 0) line element (14), we
rewrite Eqs. (71)–(73) as follows:
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E ¼ � r − 2ρþ a
ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 3ρþ 2a

ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p þ rρ0Þ
q ; ð74Þ

L ¼ ∓ 2aρ − ðr2 þ a2Þ ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 3ρþ 2a

ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p þ rρ0Þ
q ; ð75Þ

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p
a

ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p � r
: ð76Þ

From Eqs. (74)–(76) one can see that for the particles
moving along the circular orbits the following conditions
must be satisfied:

ρ

r
− ρ0 ≥ 0; ð77Þ

r − 3ρþ 2a

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ

r
− ρ0

r
þ rρ0 > 0: ð78Þ

By simplifying (78), one can see that the solution of
inequality (78) fully satisfies the condition (77).
Therefore, we conclude that the condition for existence
of circular orbits around the generic rotating regular black
hole (14) (for r > 0) reads

ρ − rρ0 ≥ 0; ð79Þ

or f0ðrÞ > 0. For the generic rotating regular black holes
one can write the condition (79) in the more explicit form,

r ≥ qðμ − 1Þ1=ν: ð80Þ

Interestingly, the rotation of the black hole does not play a
role in the condition giving limit on the existence of the
circular orbits. One can see from (79) that in the Kerr
spacetime (ρ ¼ M) M=r > 0 is the limiting condition for
existence of circular orbits; the circular orbits can approach
both zero and infinity; of course there exist also limits given
by circular photon orbits. In the case of the Kerr–de Sitter
[63] or quintessential [56] black holes, the spacetimes have
de Sitter behavior at infinity (at large distances) and
consequently, there exists the static radius limit at large
distances depending on the value of the field parameter and
circular orbits can exist below the static radius (r < rs)
[64]. In the case of the rotating regular black holes, on no-
horizon spacetimes the spacetimes have de-Sitter–like
behavior near the center. Therefore, there exists a static
radius limit near the center, and the circular orbits can
appear at larger distances from it (r > rs).
From the astrophysical point of view, the most relevant

among the circular orbits are those giving limits governing
the optical appearance and accretion phenomena, i.e.,
the photon circular orbits and marginally stable circular

geodesics. In the photon circular orbit the specific energy
and angular momentum of the particles diverge. So from
(74) and (75) we can get the expression for the photon
orbit as

r½1 − ðr2 þ a2ÞΩ2� − 2ð1 − aΩÞ2ρ ¼ 0: ð81Þ

By inserting (76) to the above equation and solving it with
respect to the rotation parameter, we obtained the condition
of the loci of the photon orbits around generic rotating
regular black holes in the form

a2ps ≡ rðr − 3ρþ rρ0Þ2
4ðρ − rρ0Þ : ð82Þ

Stable circular orbits are defined by the condition

d2RðrÞ
dr2

≥ 0 ð83Þ

that has to be satisfied simultaneously with the conditions
(70). Marginally stable circular orbits are determined by the
equality in the above given condition. Due to the cumber-
some form of the expression of the marginally stable orbits
or innermost stable circular orbit (ISCO), we write it as
follows:

a2ms� ≡ A� 16
ffiffiffiffi
B

p

C
; ð84Þ

where

A ¼ 2r½14ρ3 þ ρ2ð3r − 48rρ0Þ þ 2r2ρð27ρ02
þ rρ00ðrρ00 − 1Þ þ ρ0ð2rρ00 − 3ÞÞ − r3ð20ρ03
− 2rρ0ρ00 þ r2ρ002 þ ρ02ð4rρ00 − 3ÞÞ�;

B ¼ r2ðrρ0 − ρÞ3½−3rρ2 þ 2ρ3 − 2r2ρð3ρ02
þ rρ00ðrρ00 − 1Þ þ ρ0ð2rρ00 − 3ÞÞ þ r3ð4ρ03
− 2rρ0ρ00 þ r2ρ002 þ ρ02ð4rρ00 − 3ÞÞ�;

C ¼ 2½3ρþ rðrρ00 − 3ρ0Þ�2: ð85Þ

From the expression (84) one can see that to have
stable circular orbits the condition B ≥ 0 must be satisfied
together with the condition for existence of circular orbits
(79). Then, we arrive to the condition

− 3rρ2 þ 2ρ3 − 2r2ρð3ρ02 þ rρ00ðrρ00 − 1Þ þ ρ0ð2rρ00 − 3ÞÞ
þ r3ð4ρ03 − 2rρ0ρ00 þ r2ρ002 þ ρ02ð4rρ00 − 3ÞÞ ≤ 0: ð86Þ

We concentrate our attention to the special case of regular
spacetimes representing the physically interesting limit.
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A. Circular orbits around rotating
Maxwellian regular black hole

In this subsection we study in detail the circular orbits of
the test particles around the rotating regular black holes
related to the Maxwell weak field limit of the nonlinear
electrodynamics, i.e., the new type of regular black hole
classes with ν ¼ 1 (36).3 In this case the condition for
existence of the circular orbits (80) is written in the form

rs ≥ qðμ − 1Þ ¼ 2Q2
em

M2
em

ðμ − 1Þ: ð87Þ

If we take the minimum value μ ¼ 3 for the black hole to be
regular and compare the result, r ≥ 2q, with Fig. 3, we
obtain the amazing result that this condition is the same as
the existence condition of the black holes (54) in the case
of a ¼ 0. This condition is satisfied in the region of the
generic rotating black hole too (see the last plot of the top
panel of Fig. 3).
For the case of ν ¼ 1, the location of the circular photon

orbit can be expressed by the relation

a2 ¼ a2ps ≡ ½rðrþ qÞμþ1 þ rμðqμ − 3ðrþ qÞÞ�2
4rμ−1ðrþ q − qμÞðrþ qÞμþ1

: ð88Þ

In the special case of μ ¼ 3, we obtain the condition for the
radius of the photon circular orbit in the form

a2ps ≡ ½q2ð6r2 þ 4qrþ q2Þ þ ð4q − 3Þr3 þ r4�2
4ðr − 2qÞðrþ qÞ4 : ð89Þ

In order to study the stability of the circular orbits around
the rotating Maxwellian regular black hole we write the
inequality (86) in the form

Fðr; qms−ðrÞÞðq − qmsþðrÞÞ ≤ 0; ð90Þ

with

qmsþðrÞ ¼
μþ 2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μð5μþ 4Þp
2ðμ2 − 1Þ r; ð91Þ

and

F ¼ 2rμððrþ qÞ2 − qμðqμþ rÞÞ
− rðrþ qÞμð3r2 þ qrð6 − 5μÞ þ q2ðμ − 3Þðμ − 1ÞÞ:

ð92Þ

The condition (79) (q − r=2 < 0) guarantees the expression
q − qmsþðrÞ to be negative (q − qmsþðrÞ < 0). Therefore,
the condition Fðq; qms−ðrÞÞ > 0must be satisfied. In Fig. 5
we summarize all conditions and give the parametric region
for existence of stable circular orbit for the different values
of parameter μ. One can see from Fig. 5 that stable circular
orbits are restricted only by the conditions qs and qms−. In
the case of μ ¼ 3 these curves intersect at q ≈ 0.296 and
r ≈ 0.593 which represents the nonrotating extreme new
type of regular black hole (see Fig. 3). Starting from this
point (q ≥ 0.593), the spacetimes represent the rotating
no-horizon spacetimes. Comparing Figs. 3 and 5, one can
deduce that for the no-horizon spacetimes the stable
circular orbits can exist everywhere, even near the center.
With increasing the value of μ, the parametric region for
the existence of stable circular orbits decreases. A detailed
study of the no-horizon rotating regular spacetimes is
postponed for a future paper.
In Fig. 6 we show illustrative plots for the location of

the main characteristic radii of the circular orbits: horizon,
photon orbit and marginally stable orbits are given for
different values of the charge parameter q of the new
type of the rotating regular black hole with ν ¼ 1, μ ¼ 3.
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FIG. 5. Condition for the existence of the stable circular orbits in parametric space of the generic rotating new type of regular black
hole with ν ¼ 1 for different values of μ. Where solid, dashed and dotted lines represents the static radius qs, lower qms− and upper qmsþ
limit of the condition for marginally stable circular orbits, respectively. The stable circular orbits can exist in shaded region.

3In this case ρðrÞ ¼ M þ rμ
ðrþqÞμ. Since we are considering the

regular black hole, M ¼ 0.
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One can see from Fig. 6 that with increasing value of the
specific charge parameter not only radii of all characteristic
orbits, but also the possible values of the rotation parameter
of the black hole for the existence of these circular orbits
decreases as well.

VIII. HARMONIC OSCILLATIONS
OF NEUTRAL TEST PARTICLE

It is known that the stable circular orbits of the neutral
test particles are located at the minima of the radial function
R (63). If particles deviate slightly from the stable circular
orbit it starts to oscillate around its equilibrium realizing an
epicyclic motion. These oscillating motions of the particle
are governed by the epicyclic frequencies. Let us consider
the deviations of the particle from the stable circular orbit at
r0 and θ0 ¼ π=2 which corresponds to the minimum of the
radial function R. The radii of the oscillatory motion are
denoted as r ¼ r0 þ δr and θ ¼ θ0 þ δθ. Then, evolution
of these deviations is described by the equations [65,66]

δ̈rþ ω2
rδr ¼ 0; δ̈θ þ ω2

θδθ ¼ 0; ð93Þ

where the overdot stands for the derivative with respect
to the proper time of the particle, ωr and ωθ are locally
measured radial and latitudinal epicyclic frequencies with
respect to the proper time of a comoving observer. They are
defined by the relations [65]

ω2
r ¼ −

1

2grr

∂2Veff

∂r2 ; ω2
θ ¼ −

1

2gθθ

∂2Veff

∂θ2 ; ð94Þ

where the effective potential Veff is given by the particle
circular motion parameters E, L through the relation

Veff ¼
gϕϕE2 þ 2gtϕELþ gttL2

g2tϕ − gttgϕϕ
− 1: ð95Þ

Moreover, there is another very important angular fre-
quency of the circular epicyclic motion of the particle,
namely the azimuthal frequency of the circular motion in
the equatorial plane, defined by the relation

ωϕ ¼ _ϕ ¼ 2aEρþ Lðr − 2ρÞ
rΔ

: ð96Þ

Of course, astrophysically relevant are the epicyclic
frequencies related to the distant static observers. These
are given by the frequencies related to the proper time of the
oscillatory particle, modified by the redshift factor

_t ¼ rþ a
ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 3ρþ 2a

ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p þ rρ0Þ
q : ð97Þ

The radial and vertical epicyclic frequencies with respect to
the coordinate time t related to the observers at rest very far
from the source are then given by the relations

Ω2
r ¼

ω2
r

_t2
; Ω2

θ ¼
ω2
θ

_t2
: ð98Þ

The Keplerian (azimuthal) frequency Ωϕ is given by the
relation (76) and for the corotating particle it reads

Ωϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p
rþ a

ffiffiffiffiffiffiffiffiffiffiffiρ
r − ρ0

p : ð99Þ

By inserting (95), (94) and (97) into Eq. (98) we
obtain the radial and latitudinal epicyclic frequencies of
the neutral particle in the epicyclic motion around the
circular equatorial orbits (θ ¼ π=2) in the form

Ω2
r ¼

½rðL2 − E2ðr2 þ a2ÞÞ − 2ðaE − LÞ2ρ�Δ02

r½Erðr2 þ a2Þ þ 2aðaE − LÞρ�2

−
Δ2½E2r3 þ ðaE − LÞ2ð2ρþ rðrρ00 − 2ρ0ÞÞ�

r3½Erðr2 þ a2Þ þ 2aðaE − LÞρ�2

−
2Δ½−E2r3 þ ðaE − LÞ2ðρ − rρ0Þ�Δ0

r2½Erðr2 þ a2Þ þ 2aðaE − LÞρ�2

þ Δ½rð−L2 þ E2ðr2 þ a2ÞÞ þ 2ðaE − LÞ2ρ�Δ00

2r½Erðr2 þ a2Þ þ 2aðaE − LÞρ�2 ;

ð100Þ
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FIG. 6. Locations of horizon (solid), photon orbit (dashed) and ISCO (dotted) for different values of the magnetic (electric) charge
parameter with ν ¼ 1, μ ¼ 3.
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Ω2
θ ¼

Δ½L2r3 þ 2ρðaE − LÞða2ðaE − LÞ þ r2ðaEþ LÞÞ�
r3½Erðr2 þ a2Þ þ 2aðaE − LÞρ�2 ;

ð101Þ

where E and L represent the values of energy and angular
momentum of the particle moving along the stable circular
orbits, given by Eqs. (74)–(76). It is worth noting that the
radial epicyclic frequency vanishes at ISCO. We derive the
epicyclic frequencies measured by the distant observer for
the particles moving along the circular stable orbits around
several black holes:

(i) ρ ¼ M, a ¼ 0—Schwarzschild spacetimes;
(ii) ρ ¼ M—Kerr spacetimes;
(iii) ρ ¼ M þ rμ

ðrþqÞμ, a ¼ 0—nonrotating Maxwellian
singular spacetimes;

(iv) ρ ¼ rμ
ðrþqÞμ, a ¼ 0—nonrotating Maxwellian regular

spacetimes;
(v) ρ ¼ M þ rμ

ðrþqÞμ—rotating Maxwellian singular
spacetimes;

(vi) ρ¼ rμ
ðrþqÞμ —rotating Maxwellian regular spacetimes.

In order to compare the epicyclic frequencies measured by
distant observer for the above-mentioned spacetimes, we
show the behaviors of them in the left panel of Fig. 7. In
Fig. 7 we present the behavior of the epicyclic frequencies
measured by distant observers for the oscillatory motion of
the neutral test particle moving along the epicyclic orbits
around rotating Maxwellian regular black holes. We give
the radial profiles of the epicyclic frequencies for character-
istic values of charge parameter q and spin a. Near the
ISCO, the effect of the gravitational field of the black hole
is strong and the Ωϕ and latitudinal Ωθ epicyclic frequen-
cies are almost equal for the small values of rotation
parameter a and they are always much bigger than the
radial Ωr epicyclic frequency, Ωθ;Ωϕ ≫ Ωr. At large

distances all characteristic frequencies tend to zero due
to weakening of the gravitational field.
From the left panel of Fig. 7 one can deduce that rotation

of the black hole pulls the ISCO toward the black hole and
increases the epicyclic frequencies. However, the charge
parameters of the Maxwellian regular and singular black
hole spacetimes play an inverse role in comparison to the
role of the rotation parameter, i.e., it increases the ISCO and
decreases the values of the epicyclic frequencies (see the
right panel of Fig. 7). For example, in both the rotating
Maxwellian singular (Ωr;Ms) and regular (Ωr;Mr) black hole
spacetimes, the values of the radial epicyclic frequencies
measured by the distant observer cannot be as big as in the
Kerr black hole spacetime (Ωr;K), while the latitudinal and
azimuthal epicyclic frequencies do not differ substantially.
When the Maxwellian singular and regular black holes
have the same values of the charge q and rotation a
parameters, the epicyclic frequencies in the regular one
with smaller ISCO radius is bigger than in the singular
one—see the left panel of Fig. 7. Thus, the comparisons of
the epicyclic frequencies in the above-mentioned space-
times have shown that Ωr;K > Ωr;Mr > Ωr;Ms.

IX. CONCLUSION

In the present paper we introduce the generic rotating
black hole solutions in general relativity coupled to the
nonlinear electrodynamics. We thus generalize the spheri-
cally symmetric black hole solution obtained by Fan and
Wang [50] using the method based partly on the Newman-
Janis algorithm. In our model one can construct exact
black hole solutions by choosing appropriate values for
the characteristic parameters μ and ν as in the case of the
nonrotating case, when the known solutions can be
obtained for fixed values of the parameters: ν ¼ 2—
Bardeen-like black holes, ν ¼ 3—Hayward-like black
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FIG. 7. Radial profiles of epicyclic frequencies measured by the distant observer (Ωr—solid, Ωθ—dashed, Ωϕ—dotted curves) for the
neutral test particle moving along the stable circular orbit around: Left panel: The Schwarzschild black hole—black, the Kerr black hole
with a=M ¼ 0.4—blue, nonrotating Maxwellian singular black hole with μ ¼ 3 and q=M ¼ 0.2—cyan, rotating Maxwellian singular
black hole with μ ¼ 3, a=M ¼ 0.4 and q=M ¼ 0.2—red, nonrotating Maxwellian regular black hole with μ ¼ 3 and q ¼ 0.2—magenta,
rotating Maxwellian regular black hole with μ ¼ 3, a ¼ 0.4, and q ¼ 0.2—green. Vertical dotted lines represent the loci of ISCO.
Middle panel: Rotating regular Maxwellian black hole with μ ¼ 3 and q ¼ 0.1 for different values of the specific charge parameter:
a ¼ 0—black, a ¼ 0.4—blue, a ¼ 0.6—red, a ¼ 0.7—green. Right panel: The same as the middle panel but for the fixed rotation
parameter a ¼ 0.4 and different values of the specific charge parameter: q ¼ 0.05—black, q ¼ 0.1—blue, q ¼ 0.15—red,
q ¼ 0.2—green.
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holes, and ν ¼ 1—new type of black hole solution which
approaches the Maxwell field in a weak field limit.
Moreover, we have shown that some main properties of
these rotating black holes are almost the same as those
occurring in the nonrotating case which was discussed in
[50]. Especially, in the case of zero gravitational mass black
hole, M ¼ 0, the μ ≥ 3 spacetimes are the regular (non-
singular) ones. Furthermore, we have shown that the
presence of the gravitational mass does not affect the
energy conditions and the fact that the obtained solutions
violate the WEC and SEC. Though an increase in the value
of μ decreases the depth of the violation of energy
conditions, the violations are always preserved even for
the large values of μ.
It has been shown that as the standard (rotating) Bardeen,

Hayward and ABG regular black holes there is a upper limit
on the value of the charge parameter for existence of
horizon, i.e., spacetime to represent the black hole. For
greater values of the charge parameter than these critical
values, q > qcr, spacetimes represent no-horizon ones. The
rotating singular black hole with gravitational mass M has
always two horizons for a=M < 1 irrespective of the value
of the charge parameter q and with increasing the value of
the charge parameter q the radius of horizon increases.
Furthermore, we have shown that these new solutions

can be written in the Kerr-like form and give separable
Hamilton-Jacobi equations of the geodesic equations for
motion of neutral test particles. Circular orbits of the test
particle around rotating regular black holes have been
studied and it has been shown that the condition for
existence of the circular orbits (static radius rs) does not
depend on the rotation of the black hole as in the Kerr, Kerr-
Newman, Kerr–de Sitter and quintessential Kerr black
holes. However, unlike the case of the Kerr–de Sitter
[63] and quintessential Kerr [56] black holes, where

rcirc < rs, in the field of these rotating regular black holes
the static radius is located near the black hole and circular
orbits can exist above the static radius, r > rs. As a special
case we have shown the characteristic circular orbits,
namely, the photon orbit and ISCO around the new type
of regular black holes where the nonlinear electrodynamic
field tends to the Maxwell field in the weak field limit. We
have discussed the stable circular orbits in the field of the
Maxwellian rotating regular black hole and give the radial
and vertical frequencies of the epicyclic motion. The
character of the radial profiles of the epicyclic frequencies
indicates possibility to find signatures of the Maxwellian
rotating regular black holes in high frequency quasiperiodic
oscillations observed in some microquasars.
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