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We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from
cosmological data. It comes as an upgrade by Salzano, Dąbrowski, and Lazkoz [Phys. Rev. Lett.114,
101304 (2015); Phys. Rev. D 93, 063521 (2016)], where it was argued that such a signal could be detected
at a single redshift location only. Here, we show how it is possible to extract information on a VSL signal on
an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI,
WFirst-2.4 and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (baryon
acoustic oscillations) as an angular diameter distance, and the expansion rate derived from those galaxies
recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a ∼1%
VSL signal can be detected at 3σ confidence level in the redshift interval z ∈ ½0.; 1.55�. Smaller signals
(∼ 0.1%) will be hardly detected (even if some lower possibility for a 1σ detection is still possible). Finally,
we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given
present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high
confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant
speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus,
we might have a method to detect a 0.01-order curvature in the same redshift range with a very high
confidence.
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I. INTRODUCTION

The idea that fundamental constants of physics were not
properly constant, but could instead vary with time (and
possibly in space) is not a new one [1–6], but a fruitful
revival has been possible only quite recently, stimulated by
the progress achieved in observational cosmology (for a
review, see [7]). On one side, the standard big bang scenario
suffers some theoretical shortcomings, as the horizon and
flatness problems, which are at the base of the introduction
of cosmological inflation [8–13]. On the other, we have
attended the discovery of the accelerated expansion of our
Universe [14,15] and the detection of a possible variation
of the fine structure constant from quasar absorption lines
[16–34].
We have focused our attention on the possibility that the

speed of light might change in time during the evolution of
the Universe; such a scenario is generally called a varying
speed of light (VSL) theory. A serious theoretical approach
to define in the correct way a valid VSL theory is recent, and
aimed exactly at solving horizon, flatness and the accel-
eration problems, in a “more natural” way, without relying
on inflationary scenarios and the cosmological constant (the
main successful candidate to lead Universe accelerated
expansion, but also herald of many theoretical problems,
see [35] for a review). Themost exemplificative literature on
this topic includes [36–51]. In thevery ownwords of someof

its pioneers, VSL foundations are still far from fixed, and a
lot of debate is around them [52–54]. We want to stress here
an important point, in order to make our work judged with
the right perspective: we do not want to make any claim
about the VSL theoretical background. This is not the
purpose of this paper and will be postponed to future works.
Here, instead, wewill study whether, if there is a VSL signal
and whatever the way it can be explained, it can be detected
or not, by present or future observations.
In this context, recently, we have proposed a method to

measure the speed of light on cosmological scales and at
relatively high redshift [55,56] using observations from
galaxy surveys. This method should overcome some of the
criticisms related to the fact that the speed of light is,
actually, a dimensional quantity: we can measure here and
now such speed in the laboratory; we have relocated this
laboratory in the outer Universe, where observations
provide us a (cosmological) ruler and a (cosmological)
clock, which both can be employed to measure the speed
of light.
Given that we will use these rulers and clocks in this

present work, we briefly review what they are. Both of
them can be measured by a galaxy survey. The ruler is the
sound horizon measured at late times as it is imprinted in
the clustering of galaxies at cosmological scales or,
equivalently, in the baryon acoustic oscillations (BAO)
[57–71]. The sound horizon has some very important
properties: it is generally considered as a standard ruler,*enzo.salzano@wmf.univ.szczecin.pl
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because its size in comoving coordinates is constant in time
and thus can be used to calibrate/measure cosmological
distances (for alternatives, see [72]); its length can be
exactly calculated from theory [≈150 Mpc in physical
units; the best-precision value, measured by Planck, is
rsðzrecÞ ¼ 144.81� 0.24 Mpc for the baseline model [73]].
Due to the strong correlation between photons/radiation
and gas in the early times (prior to the recombination
epoch), by analyzing the galaxy correlation function now, it
is possible to infer a correlation length which, expressed in
comoving units, corresponds exactly to the sound horizon.
Generally, from galaxy distribution we can measure the
tangential and radial scales [74], respectively defined as

ytðzÞ ¼
DAðzÞ
rsðzrecÞ

and yrðzÞ ¼
c0

HðzÞrsðzrecÞ
; ð1Þ

where c0 is the speed of light (generally assumed constant); z
is the cosmological redshift; DA is the angular diameter
distance; H is the Hubble function (expansion rate); and
rsðzdecÞ is the sound horizon, evaluated at recombination (or
dragging epoch). Actually, with the present data we do not
have a strong enough signal to measure the two directions
separately, or, at least, not at the level of accuracy which
should be theoretically possible [75–80]. This will even-
tually be possiblewith future surveys, when a larger number
of galaxies is available; see, for example, forecast analysis
for the Square Kilometer Array (SKA),1 Euclid2 [81–84],
WFIRST-2.43 [85], the Baryon Oscillation Spectroscopic
Survey (BOSS) [77,79,80,86], the extended BOSS survey
(eBOSS) [87–89], the Dark Energy Spectroscopic Instru-
ment (DESI)4 [90] and the Hobby-Eberly Telescope Dark
Energy Experiment (HETDEX).5

Galaxysurveys arebeneficial for ourpurposes alsobecause
they can provide us the cosmological clocks we need for our
method to be implemented: a sample of the observed galaxies
can be targeted as cosmic chronometers. The key idea [91] is
to find a “cosmological clock,” which is able to give the
variation of the age of the Universe with redshift. If one has
this clock, then, one simply has to measure the age difference
Δt between two redshifts separated by Δz, and calculate the
derivativedz=dt ≈ Δz=Δt. Then, this quantity can be directly
related to the expansion rate (Hubble function), defined as

HðzÞ ¼ −
1

1þ z
dz
dt

: ð2Þ

It is important to note here that Eq. (2) is derived from the
more general and independent of the specific model form of
the aðtÞ definition of the expansion rate H,

HðtÞ ¼ _aðtÞ
aðtÞ ; ð3Þ

when the redshift-scale factor relation

1þ z ¼ 1

a
ð4Þ

is assumed. But Eq. (4) holds in a homogeneous and
isotropic universe described by a Friedmann-Robertson-
Walker metric. But this choice is not the most general.
For example, an inhomogeneous universe would lead to a
different relation between the redshift and the scale factor
as, for example, the model described in [92–95], or to a
position-dependent expansion rate, as in the Lemaître-
Tolman-Bondi model [96,97]. Thus, to properly use cosmic
chronometers data, we will start from this same general
assumption (and confirmed by data nowadays) for our
cosmological background, i.e. homogeneity, isotropy and
Friedmann-Robertson-Walker metric.
Actually, passively evolving early-type galaxies (ETG)

turned out to be reliable candidates to play the role of such
clocks. Since the first proposal [91], stellar population
models have been improved; a much larger number of
galaxies has been observed and collected, up to a redshift
z ∼ 2; and more precise tools to calibrate the clocks have
been introduced (e.g., the 4000 Å break in ETG spectra)
[98–103]. This scenario can still be improved using future
galaxy surveys in the optical, as Euclid and WFIRST-2.4,
which should observe at least 10 times more galaxies
compared to the present (and ETG, eventually).
Our works [55,56] have been recently questioned by

[104], where the authors point out two possible drawbacks
of our method: first, that the speed of light is measured only
at one single redshift zM; second, that we ignore the spatial
curvature contribution, which is degenerate with VSL. For
what concerns the first point, it is true, but we were
interested in the intrinsic novelty of the method. It is well
known that the angular diameter distance has a maximum at
some high redshift value, which we called maximum
redshift, zM; we found that at the maximum, the relation

DAðzMÞ ·HðzMÞ ¼ cðzMÞ ð5Þ

holds, e.g. only at the maximum redshift, the combination
of the angular diameter distance and the expansion rate is
exactly equal to the value of the speed of light at that epoch,
with a minimal number of theoretical assumptions on the
cosmological background, and with no need of any
information at all about how the speed of light should
vary or not. It is a direct measurement, albeit local. About
the second point, we have always been aware that, among
the minimal number of theoretical assumptions we needed
in order to derive Eq. (5), we have to assume a null spatial
curvature. However, we have also discussed how a non-
vanishing curvature may impact our results.

1https://www.skatelescope.org/.
2http://sci.esa.int/euclid/.
3http://wfirst.gsfc.nasa.gov/.
4http://desi.lbl.gov/.
5http://hetdex.org/.
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Thus, in this present work, we move a step forward:
using the same cosmological rulers and clocks from
[55,56], we build a new method (different from [104])
which can be employed to recover a redshift-extended VSL
signal (no more limited to zM). We also report a detailed
discussion about how a nonzero curvature can influence the
application of such a method in a VSL theory context.
Finally, we show how the method can be applied also in a
classical context, where c0 is constant in order to measure
the spatial curvature itself.
In Sec. III we describe the theoretical apparatus at the

base of our method; in Sec. IV we describe all the steps
required for our method to be built in more detail; in Sec. V
we discuss the results obtained from the application of our
method to some mock data from future galaxy surveys; and,
finally, in Sec. VI we sum up our results.

II. PRELIMINARIES ABOUT VSL THEORIES

As we have anticipated in the Introduction, VSL theories
are quite debated today. Thus, it is noteworthy to explain
further and state clearly some points. Most of the debate
concerns breaking of the Lorentz invariance, which VSL
theories intrinsically produce, and the correctness of dis-
cussing variation of dimensional quantities, and in particu-
lar c, which has been fixed to a well-defined and constant
value in the international system of units (SI). While the
former question has some possible reliable solutions [105],
which can be freely debated theoretically, the latter one has
to be set clearly.
Actually, this problem might be circumvented in two

steps. On one hand, if we start from the beginning, i.e. from
the Lagrangian, we can introduce the speed of light as a
new scalar field, and take it into account properly in
the derivation of all the cosmologically useful equations
(as it is done in [36,51], for example). The fields always
have units (dimensions). This is a general solution for all
dimensional quantities.
On the other hand, we can fix a new system of units in

which c can be safely considered varying. In order to avoid
confusion and misunderstanding, we will define this new
system as the varying speed of light unit system (VSL-US),
to be compared with the standard SI. Moreover, we
will make a clear distinction among fundamental units,
and experimental units. We will show below that in the
VSL-US, we can properly define the fundamental units so
that c can be safely considered as a varying quantity, while
the VSL-US experimental units are completely equivalent
to the SI ones.
As pointed out in [106], there is no unique way to

introduce a VSL theory, basically because different choices
of units can lead to different varying quantities but the same
effective theory. The theoretical approach we will follow in
the next sections is derived from [38,42,45], which are
based on the assumption that the quantity Q≡ ℏ=c
is constant, together with the electron mass, me, and the

electron charge, e. Given such constants, one can easily
derive the corresponding unique set of constant fundamen-
tal units of mass (M), length (L) and time (T), namely, we
can defined the VSL-US based on

uM ¼ me;

uL ¼ Q
me

;

uT ¼ Q3=2

mee0
; ð6Þ

where e0 ¼ e=
ffiffiffiffiffiffiffiffiffiffi
4πϵ0

p
, with ϵ0 the vacuum permittivity.

It is important to notice that in this VSL-US, the length
unit is no more entangled to the constancy of c; c can be
varying, but the length unit is still constant. Thus, within
the VSL-US, we can safely consider c as a varying quantity
(and the variation of the dimensionless fine structure
constant, α, will depend on it too). Note that these newly
defined fundamental units uX, in terms of the experimental
units of the SI, would correspond to

uM ∼ 10−31 kg;

uL ∼ 10−13 m;

uT ∼ 10−20 s: ð7Þ

Thus, at least in principle, one could redefine the exper-
imental SI units (kg, m and s) in terms of the new VSL-US
fundamental ones. More clearly: this means that we can still
go on using, for example, the meter as a length unit, but, in
the VSL-US, the meter is no more defined through the
second and the (constant) speed of light, but in terms of uM.
It should be clear nowwhywe have chosen to describe units
as fundamental and experimental. The fundamental units
definition can be completely free and dictated by theoretical
requirements; experimental units are defined responding to
some criteria of reproducibility and practicality.
At this point, it is not useless to show that such a

way to proceed is by no means new, but quite customary,
even though mostly implicit. For example, let us focus
on the second, as it is defined now in the SI. From the
same official page of the Bureau International des Poids
et Mesures (BIPM), the second is the duration of
9,192,631,770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the
ground state of the caesium 133 atom.6 Such a duration
was officially defined in 1967=68, by matching the atomic
clock measurement (from microscopic scales) with the
ephemeris second (from macroscopic scales). In this case,
the frequency of the atoms is the fundamental unit; the
ephemeris second is the experimental unit. Of course, there
was an improvement in that the newly define “time

6http://www.bipm.org/en/publications/si‑brochure/second.html.
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stick/ruler,” i.e. the atomic clock, was much more stable
than the previous astronomical definition. But what has to
be taken home from this discussion is that the second, as
time interval, was the same before and after this definition
was made official.
The same reasoning applies to the meter. Since 1983 the

meter is officially defined as the length of the path travelled
by light in vacuum during a time interval of 1=299; 792; 458
of a second.7 Thus, as said above, in the SI, we need to fix the
second and assume the speed of light is constant. But in the
VSL-US,we can simply state that themeter is somemultiple
of the fundamental unit, uM. At first sight, one might claim
that such a unit violates any reasonable criterion of repro-
ducibility and practicality which we have invoked above.
But, aswe have said, at least theoretically, this new systemof
units sounds correct and, within it, the assumption of a
varying speed of light is correct.
Another consequence of such reasoning is that the speed

of light can be still considered numerically equal to the
value 299792.458 km=s that it has in SI.8 The difference is
in the implicit definition of the fundamental units, but not in
the experimental ones, i.e. the meter, which is unchanged.
The note also that, after 1973 and before 1983, the value
of the speed of light was measured as the product of the
frequency and wavelength of an electromagnetic wave is
the speed of propagation of that wave, see [107]. Avoiding
technicalities, what was practically done was to measure
the frequency (proportional to time) and the wavelength
(a length) of a well-defined laser, and from them the value
of the speed of light in vacuum was derived. Thus, a
velocity was derived from a ruler and a clock. In order to do
that, of course, you needed to define the experimental units
of the second and of the meter.
Finally, note also that even in the standard case where c

is constant (SI units) cosmological distances are calculated
indirectly by parallax, for example, as there would be no
ruler working properly both locally in our laboratories and
at such large scales. Moreover, cosmological distances are
calculated theoretically by multiplying the speed of light
with some integral of the scale factor. Then, using the
conversion factor between the parsec and the meter, which
is intrinsic to the definition of the former, one can find the
numerical value of cosmological distances in units of
parsec. The main assumption underlying cosmological-
scale measurement processes is that units (once chosen) are
invariant in time and space; if not, then, only local physics
would be correct, while all the entire cosmology would be
based on fallacies. In the c-constant scenario, the meter is
fixed by c itself; in the VSL-US we have a new length
fundamental unit, but always the same experimental unit.
Thus, we are only assuming that the conversion is between

the parsec and the meter, with the latter being defined with
respect to new fundamental units. The same consideration
holds true for cosmological times: in HðzÞ data, they are
given in terms of kmMpc−1 s−1. The second is still the
experimental unit of time, also at cosmological scales, but
defined in the new fundamental units of the VSL-US.

III. METHODOLOGY

To start, we need the observational data which is available
from future BAO galaxy surveys: the angular diameter
distance ðDAÞ and the expansion rate (H). We define as
Dreal

A and Hreal the results of such observation, i.e. the
numbers that outcome the measurement processes. Then,
we need to fix the theoretical background underlying the
implementation of our method. Our work is based on two
main and general assumptions: we assume a Friedmann-
Robertson-Walker metric and no spatial curvature. The
former is the simplest and most general assumption which
agrees with data and, up to some statistical accuracy, one of
the main ingredients of the nowadays accepted consensus
model. The latter assumption can hide a possible degeneracy
between a VSL signal and the curvature; wewill discuss this
point in a later section and we show that, sticking to the
present observational status, it is of limited concern.
Now, starting from the theoretical definition of the

angular diameter distance in a classical context, we assume9

[108,109] that in a VSL it can be generalized as

DA ≐ 1

1þ z

Z
z

0

cðz0Þ
Hðz0Þ dz

0; ð8Þ

where HðzÞ is the theoretical Hubble function; and cðzÞ is
the speed of light expressed as any possible function of
redshift. In a standard scenario, the speed of light is
constant and cðzÞ ¼ c0; in the more extended context of
a VSL approach, it can be any function, unknown to us
until we do not recover it from the data. For what concerns
HðzÞ instead, in principle it can be derived from the first
Friedmann equation (in combination with a continuity
equation) once a cosmological model is given and so
contains any possible information on the cosmological
background. Then, we proceed assuming that

DA ≡Dreal
A ≐ 1

1þ z

Z
z

0

cðz0Þ
Hrealðz0Þ dz

0; ð9Þ

i.e., that the theoreticalDA function [ignoring what is on the
right-hand side of Eq. (9)] is explicitly equal to the function
that can be directly obtained by observations. On the other
hand, we can also assume that the unknown theoretical
HðzÞ is explicitly equal to the function that can be obtained

7http://www.bipm.org/en/CGPM/db/17/1/.
8http://www.bipm.org/en/CGPM/db/15/2/; http://www.bipm

.org/en/CGPM/db/17/1/.

9We are also assuming that the redshift is defined in VSL in the
same way of the standard scenario [38,45]. For the role of c in the
metric, see [50].
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by observation, Hreal. Actually, this is much more than just
an assumption: observations always bring signatures of the
real underlying cosmological model, whose ignorance we
parametrize in many ways. For example, by introducing the
energy-matter dimensionless parameters (e.g. Ωm and
ΩDE), or the dark energy equation of state (wDE), and so
on. We want to highlight a very important point of our
approach: we do not need any cosmological assumption
(apart from the two we have stated above) for HðzÞ,
because we will directly use the output from the observa-
tions, i.e. Dreal

A ðzÞ and HrealðzÞ, in order to calculate all the
quantities we will define. This also means that, strictly
speaking, our method is quite useless from a cosmological
point of view. Generally, all the information we need is
hidden inHðzÞ: one proposes a cosmological model, which
leads to HðzÞ as a function of some parameters; and finally
one tries a fit of this model with observational data, in order
to recover some information about it. Here we use directly
the numbers coming out of observations (i.e.Hreal), without
any underlying theoretical background, so that we are
losing any possibility to recover the information on the
cosmological model. But, if we change our perspective, and
we strictly look at VSL theories, then they reveal their
benefit.
The main point here is that we do not know, a priori, if

the speed of light appearing in Eq. (9) is a constant or not.
In fact we have a question: what if we have a real VSL
signal to be detected? In this case, on one side we will have
the direct observational data,10 obtained from the derivative
of the real observed Dreal

A as

yrealr ðzÞ ≐ ∂
∂z ½ð1þ zÞDreal

A ðzÞ�≡ cðzÞ
HrealðzÞ ; ð10Þ

where, again, we have identified the unknown theoretical
HðzÞ function in Eq. (8) with the observed HrealðzÞ, as we
did in Eq. (9). On the other, we will have a reconstructed
set of

yrecr ðzÞ ≐ c0
HrealðzÞ ; ð11Þ

where we need an explicit assumption of a constant speed
of light in order to convert time observations (H) into
distances (yr). Again, if we find that

yrealr ðzÞ ¼ yrecr ðzÞ; ð12Þ

then the assumption that the speed of light is constant will
reveal to be well based. On the contrary, if

yrealr ðzÞ ≠ yrecr ðzÞ; ð13Þ

then cðzÞ ≠ c0. What is important to stress is that, by
working with yr, we can directly obtain (or reconstruct) the
redshift function cðzÞ, through the ratio:

yrealr

yrecr
¼ cðzÞ

c0
: ð14Þ

In this way we are also circumventing the “dimensionless-
dimensional measurement” debate, because we are going to
reconstruct a (dimensionless) relative variation of the speed
of light, not an absolute (dimensional) quantity.

IV. APPLICATION

Given the methodological basis of our model, we will
now describe how to apply it in the best possible way and,
in particular, we will focus on the limits of the accessible
information we should expect from future surveys. Our
method will basically consist of four steps:
(1) fiducial H and DA are obtained for a ΛCDM

cosmology with an ansatz for cðzÞ;
(2) mock survey data are created from the fiducial

values and a noise covariance matrix;
(3) some interpolating functions for H and DA are fitted

to the mock data;
(4) derivatives of the interpolating functions are used to

find the reconstructed cðzÞ and its covariance for
each of the redshift bins.

Among all these steps, one could argue if point 3 is
necessary or not. One alternative could be to use a bin
approach, but there are many caveats which make it not
feasible. The main one is that in order to calculate cðzÞ, we
need to calculate the derivatives ofDA. In the bin approach,
there would be no way to detect anything at all: we would
have too few discrete points; one could use, for example,
the finite differences methods to calculate such derivatives,
but the errors would be too large, making all the efforts
useless. Starting from this, the leading idea has been how to
improve (if possible) the use of such mock measurements,
and the best choice has been found in proposing some
functions which were as general as possible and as close as
possible to the real physical behavior of DA and H.
Actually, when ones compares a given cosmological model
expectation for DA and H with the chosen functions, one
realizes that they work quite well.

A. Mock data

The first point to be addressed is: what kind of data are
we going to use? As stated in Sec. I, our purpose is to show
how to employ future galaxy surveys for a nonstandard
cosmological analysis. From such surveys we will expect to
obtain separate information on DA (from BAO) and H
(from cosmic chronometers). At the present stage, we do

10Note that from now on we will omit the sound horizon in our
expressions for yr [compare with Eq. (1)] just for sake of
legibility, because the final quantity we are going to use [i.e.
next Eq. (14)] is basically independent of its value, and because
its contribution to the error budget is negligible.
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not have yet independent measurements on DA and H, so
we will need to produce mock data for our analysis, in the
style of [55,56]. As we have pointed out in Sec. I, there is
no uniformity in approaching a VSL scenario; but we also
want to stress that the exact choice of the VSL approach is
meaningless in our case. We are not going to have any fit, or
any test of any particular model; we only need to produce
some mock observational data with a VSL signal included.
The only requirement we will ask for is that, at least, such
mock data were compatible with the present observations
and with the present consensus model, at least in the
redshift range now covered. In such a case, clearly, the VSL
model would be indistinguishable from the standard
scenario, but still compatible with observations. This
sounds like a quite reasonable requirement: “observations
are observations,” what we measure and see is independent
of our understanding of the underlying theory. Of course, a
VSL signal can imply a different physical evolution in/of
some processes, but the measured outcomes cannot be
different from what we see now. For example, the sound
horizon can be obviously influenced by a VSL. But it can
also be measured with a very high confidence in a cosmic
microwave background experiment. Theory has to adjust to
this measurement, not vice versa. Thus, if we create a mock
VSL data set which is compatible with present observa-
tions, we are just implying that the VSL signal has to be
consistent with them.
Following [42], if a VSL is introduced with a minimal

coupling with gravity, then we have modified versions of
the first Friedmann equation and of the continuity equation
which are, respectively,

H2ðtÞ ¼ 8πG
3

ρðtÞ − k
a2ðtÞ c

2ðtÞ ð15Þ

and

_ρðtÞ þ 3HðtÞ
�
ρðtÞ þ pðtÞ

c2ðtÞ
�

¼ 3k
4πGa2ðtÞ cðtÞ_cðtÞ; ð16Þ

where ρ and p are, respectively, the mass density and the
pressure of any fluid in the Universe; aðtÞ is the scale
factor; G is the universal gravitational constant; and the
speed of light is expressed as a general function of time
(or redshift), cðtÞ. As we have anticipated before, a
degeneracy between VSL and geometry is possible: indeed,
any change produced by a VSL is connected with the
spatial curvature. We will discuss this later in more detail;
for now, we will assume that Universe is spatially flat, e.g.
k ¼ 0, which implies that no effective change is effective
in the continuity equation and, consequently, in the first
Friedmann equation (at least, in terms of the energy-mass
equations of state). On the other hand, in the calculation of
Dreal

A , the VSL also operates through the cðzÞ function
which enters the integral.

It is thus clear that, in order to produce our mock data, we
need to assume an ansatz for cðzÞ; we follow [50] and
consider the ansatz:

cðaÞ ∝ c0ð1þ a=acÞn; ð17Þ

where a≡ 1=ð1þ zÞ is the scale factor, and ac sets the
transition epoch from some cðaÞ ≠ c0 (at early times) to
cðaÞ → c0 (now).
The fiducial cosmological model used to produce the

mock data in this work is a slightly modified version of the
baseline ΛCDM model from the Planck 2015 release,11

base_plikHM_TTTEEE_lowTEB_lensing_post_
BAO. This choice seems to be the most conservative at this
stage: if we have to add new elements to our theoretical
building, it is better to start, at least, from a statistical and
mutually agreed consensus base, exactly what the ΛCDM
model is, nowadays, given our present knowledge. This
model is characterized by a dimensionless matter density
today equal to Ωm ¼ 0.31. We have to modify slightly this
parameter when introducing a VSL because a VSL can
mimic an accelerated expansion (this was the original
motivation for starting to study VSL theories) and, thus,
can be seen as a contribution to the dark energy sector.
More precisely, in a VSL context, the acceleration would
not be given by a real cosmological fluid, but would be an
implicit effect due to a varying speed of light. In any way,
this means that, when adding a VSL, the contribution from
a dark energy fluid diminishes and, consequently, in a
spatially flat Universe, Ωm might grow. In this work we
have considered two different VSL scenarios: one, given by
the parameters ac ¼ 0.05 and n ¼ −0.001, corresponds to
a redshift-increasing speed of light, with an average
variation ∼0.1% at redshift 1.5–1.6; the other, given by
the parameters ac ¼ 0.05 and n ¼ −0.01, corresponds to a
redshift-increasing speed of light, with an average variation
∼ 1% at redshift 1.5–1.6. This redshift range is used as a
reference, following the nomenclature used in [55,56]. In
order to match such VSL signals with present observations,
we have thus needed to change theΩm: in Table I of [56] we
show how both of the models can be made consistent with
present observations and with the fiducial cosmological
model from Planck, if we assume for them, respectively,
Ωm ¼ 0.314 and Ωm ¼ 0.348.12

Once we have defined our input cosmological model, we
can produce the mockHfid andDfid

A ; but in order to produce
realistic mock data, i.e., the previously defined Hreal and
Dreal

A , we still need the observational errors on these
quantities. In [110], many ongoing and future surveys

11http://wiki.cosmos.esa.int/planckpla/index.php/Cosmological_
Parameters.

12Remember this is not a proper fit, which was out of the
purpose of such work. It has to be considered more as a “by-eye”
match.
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are analyzed; the authors analyze the errors we should
expect on such quantities by each one of these surveys,
assuming redshift bins of 0.1 width. Among them, we
will focus on BOSS, DESI, and WFIRST-2.4 because, in
their respective redshift ranges, they show the best perfor-
mances. For BOSS, we will consider z ¼ 0.05; for DESI,
z ∈ ½0.15; 0.55�; for WFIRST-2.4, z ∈ ½1.95; 2.75�. For the
intermediate range z ∈ ½0.65; 1.85� we use the SKA results
from [111]; the performance of SKA will outperform the
others by at least 1 order of magnitude, thus, it will be quite
natural to expect the best results of our approach from this
redshift range.
With Hfid and Dfid

A and the corresponding errors, we can
now simulate realistic data: we randomly generate our
values of Hreal and Dreal

A from a multivariate Gaussian
centered on the fiducial values, and with a total covariance
matrix built up from the errors defined for each survey. We
also additionally assume a correlation factor between Hfid

and Dfid
A ∼ 0.4, as derived in [112].

We want to stress here two points. First, the errors from
[110] are not given directly in terms for H and DA but,
instead, for H · rsðz�Þ and DA=rsðz�Þ, where rsðz�Þ is the
sound horizon at the decoupling/dragging epoch. Thus, if
we want to work with H and DA derived from a BAO
survey, we need to multiply the previous defined combi-
nation by the sound horizon. Examining all the cases
covered by the Planck mission and collected in the Planck
Legacy Archive,13 it is possible to check that the depend-
ence of the sound horizon on the cosmological model is
very weak (on the other hand, if this were not the case, it
could not be considered as a standard ruler). Its dispersion
is much smaller than the observational error, which is
≈ 0.15%. Thus, the contribution of the sound horizon to the
total error budget, whatever is the value used for it, is quite
negligible.
Second, we do not have this problem for H, because we

assume it is derived from cosmic chronometers; but we lack
a forecast analysis for the errors expected on H using this
probe for future surveys. In [102] we have some estima-
tions from Euclid, with a minimum statistical error ∼ 5%
and a total systematic contribution up to ∼10%. For our
analysis we will use the H errors estimated by a BAO
survey; we have to think about them as a possible precision
goal for future surveys (next to stage IV), but they will
always give us precise indication of how feasible and
applicable is our approach.
Anyway, one could ask how a VSL theory might

influence ETG use as a cosmic chronometer ab initio.
To give an answer, we have to look at all the steps involved
in the ETG data processing, see [98] for more details.
In particular:

(1) the 4000 Å break is represented by the D4000n
index (see [98] for its definition), which is strongly
sensitive to metallicity, star formation history and
age of a stellar population. Thus, [98] creates
libraries based on two different stellar population
synthesis models, and varying both star formation
rates and metallicities;

(2) from such libraries a linear relation between the
D4000n index and the age of the stellar population is
found. The slope A of this relation is the most
fundamental parameter, because

HðzÞ ¼ −
1

1þ z
dz
dt

¼ −
A

1þ z
dz

dD4000n
; ð18Þ

(3) the value of A depends on the wavelength ranges of
D4000n, and on the metallicity of the sample. First,
A is determined from the libraries, for some char-
acteristic metallicity values and for different ranges
of D4000n. Then, these values are interpolated, as a
function of the metallicity. Finally, the A to be used
in Eq. (18) is an average hAi obtained by using a
median metallicity from the interpolated function
(more details in [98]).

This entire theoretical stuff is then applied to data. From [98]
to [103] the main improvement has been on the statistical
side, using larger galaxy data sets. The D4000n-redshift
relation, as derived from previous points, is thus applied to
observed galaxies, see Fig. 6 in [101]. The most notable
point to be stressed is that a relation involving an average
value for A is used to obtain the D4000n for each galaxy.
Then, the full sample is divided in redshift bins (regular
trends are also found out in both mass and velocity
dispersion bins); and, finally, in each redshift bin a median
value for theD4000n-redshift relation is obtained, i.e., both a
medianD4000n and amedian redshift are calculated in order
to have HðzÞ from Eq. (18).
In [102] errors expected from future Euclid survey are

estimated, in the redshift range [1.5;2.2]. The statistical
error, due to the larger number of galaxies which will be
observed, goes down to ∼5%. The systematic contribution
is only slightly improved, and still can raise the error bar up
to a total ∼15%. The nature of such a systematic con-
tribution is ascribed to some assumptions which enter each
of the previous steps as, for example, stellar formation
history dependence, the stellar population synthesis models
used, a not perfect estimation of the metallicity, and
departures from passive evolution. In terms of impact onto
cosmological parameters estimation, passive evolution
uncertainty has the largest impact; followed by metallicity
and stellar population models [98].
It seems to be clear from the above list that there are a

lot of average procedures taken both at a preliminary
theoretical stage and at the moment of analyzing data, and
leading to a quite large systematic uncertainty. Where

13http://wiki.cosmos.esa.int/planckpla/index.php/Cosmological_
Parameters.
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might a VSL signal have any influence? The ETG method
does not depend on the absolute age of the galaxies [98];
even if there is any influence of VSL on the time life of the
stellar populations, it will have no consequence on the final
HðzÞ value and error budget.
AVSL signal might have some influence on the spectra,

through variations in the fine structure constant, α. For
example, the determination of the redshift should take into
account the different response of different elements to light
interaction, through a change in their energy levels (∝ α2).
That is what exactly happens with quasar absorption lines
[16,17]. In this case, the effect of the VSL should be
detectable by comparing different elements with a different
order of magnitude dependence on α. This would help to
recover the true redshift and would serve as a direct way to
constrain VSL theories. Of course, also the determination
of the 4000 Å break would be affected: theD4000n index is
determined by the ratio of fluxes in two well determined
wavelength bands. Also in this case, the comparison of
different stellar populations at different redshifts with
synthesis models could help to constrain VSL theories.
Anyway, the final data HðzÞ, and their errors σH, are

determined by applying average relations from theory,
binning data, and taking into account full systematic
effects. Considering all these elements, it is very unlikely
that any influence of VSL might result to be detectable
(at least, for the orders of magnitude we are considering).
Actually, it might be even possible that a VSL is already
present and, in some way, it is mimicked by some of the
systematic uncertainty sources described above. But this is
not a problem for the application of our method which, as
we have explained in previous sections, points to a
constraint VSL signal through the ratio cðzÞ=H, not directly
through H only.
Thus, the real question should be: are 1% or 0.1% VSL

signals able to produce a variation in HðzÞ larger than the
15% uncertainty claimed today? A full quantitative answer
can be given only by performing ab initio (i.e. starting from
stellar models) a full detailed analysis; but this is out of the
purposes of this work. It is surely interesting and necessary,
anyway, if one wants to validate VSL theories, and we will
try to cope with it in the future. For what concerns this
work, qualitatively, we feel confident that the variations we
have considered in this work are so small that they cannot
bias HðzÞ numbers (or the D4000n-redshift relation slope)
in such a considerable way to make this analysis wrong.

B. Fitting quantities

Before using Eq. (14) in order to reconstruct a possible
VSL signal, many questions have to be addressed and
problems solved. The first one is intrinsic to our definition
of yrealr given by Eq. (10): it is the derivative with respect to
redshift of a quantity (Dreal

A ) which is represented by a
discrete set of points (observations) which have an intrinsic
dispersion around the underlying fiducial cosmological

model. The problems related to the dispersion cannot be
avoided: the dispersion is intrinsic to the measurement
process, and we can only hope to have, in the future, better
measurements which can reduce it (but its nature is not of
statistical origin only). Thus, we will always have an
intrinsic systematic error in the derivation of yrealr ; more-
over, the dispersion alters the derivative calculation and
thus, as it is known and expected, the errors on the derivated
quantity tend to explode.
Having assumed that this problem cannot be avoided, we

can rely on another property of our approach: given that we
are not interested in the explicit form ofH, because we will
directly use observations to infer a function which inter-
polates them, we are not forced to fit our quantities
following some cosmological-model-based requirements.
Thus, we can try a fit based on the best analytic functions
which can work in this situation.
In our case, we need analytic functions for fitting both

Hreal and Dreal
A , and they have different requirements. For

Hreal we have found that a simple sixth-order redshift
polynomial gives an optimal fit toHreal in the redshift range
we are covering, i.e. z ∈ ½0.05; 2.75�; higher-order poly-
nomials do not improve the fit. As only general prior, we
only ask thatHðzÞ > 0 all over the redshift range z ∈ ½0;∞Þ.
ForDreal

A a polynomial fit is unsatisfactory to describe the
peculiar property of the angular diameter distance to have a
maximum at relatively low redshift values. A better and
more flexible fit is given by the Padéapproximant:

Dreal
A ðzÞ ¼ dt1z

1þ db1zþ db2z
2
; ð19Þ

which clearly satisfies the expected conditions: Dreal
A ¼ 0

for z → 0 and z → ∞; moreover, we require that Dreal
A > 0

for z ∈ ½0;∞Þ.
Once the fits are run for both Hreal and Dreal

A , we have a
set of parameters (the parameters of the polynomial and of
the Padéapproximant), respectively, with their covariance
matrix and errors bars; after the correct propagation error
rules are applied, we end up with a set of polynomial-
reconstructed yrealr and yrecr , with related errors, from
which we can derive the cðzÞ=c0 ratio through Eq. (14).
Finally, this last quantity can also be fitted (or recon-
structed); the function we have been working with is the
Padéapproximant given by

cðzÞ
c0

¼ 1þ ct1z
1þ cb1zþ cb2z

2
; ð20Þ

imposing the conditions cðz ¼ 0Þ=c0 ¼ 1, and that cðzÞ is
always positive for z ∈ ½0;∞Þ.
We have verified that the functions we have finally

chosen to fit Hreal and Dreal
A are really good approximations

to the fiducial model all over the entire redshift range
z ∈ ½0;∞Þ, and not only in the redshift interval covered by
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next galaxy surveys. On the other hand, the function chosen
for cðzÞ has some degree of arbitrariness: it describes very
well our input VSL in the galaxy surveys redshift range, but
not at very high redshifts. But it is very general, and with
such a high level of flexibility it can be used as a testing
function to detect if a VSL signal is working or not in any
case (but any suggestion can be considered).

V. RESULTS

The first point to be examined is how good is the
reconstruction of the hidden VSL signal; then, we will
move to a much detailed analysis of the possible degeneracy
between the VSL signal and a nonzero spatial curvature.

A. Pure VSL signal

In our case, we know the behavior of cðzÞ, so we can
easily check if the final reconstructed cðzÞ gives a reliable
description of this known input, thus testing if our algorithm
works well or not. In Fig. 1 we show both cases of a 1% and
of a 0.1% VSL signal, joining results from all the 103

simulations we have realized. In black, we show the 1σ
confidence level span by all the simulations for the VSL
signal in Eq. (14), i.e. the quantity cðzÞ=c0, as it comes out
from yrealr and yrecr after fitting Hreal with a sixth-order
polynomial and Dreal

A with the Padéapproximant given in
Eq. (19). In red, we plot the 1σ confidence level span by all
the simulations for theVSL signal in Eq. (14) but after fitting
the ratio yrealr =yrecr with the Padéapproximant given in
Eq. (20). If we make a parallel with, for example, dark
energy studies, we might claim that black points are “raw”
data, while red ones are obtained from a fit procedure. Thus,
the latter can be used to infer some statistical significance.
From a simple visual inspection, it can be seen that, at

least at the 1σ level, a 1% VSL signal can in principle be
detected in the redshift range [0.85, 1.35], where the
angular diameter distance from BAO and the Hubble
function from cosmic chronometers have been assumed
to have the precision actually forecast from SKA. On the

other hand, it is also clear that a 0.1% VSL signal will be
hardly detected with the same prescriptions.
A more detailed inspection of the possibility to detect a

VSL signal is given in Fig. 2: for each simulation, and in
each redshift bin, we calculate the residuals with respect to
a constant speed of light, i.e. cðzÞ=c0 ¼ 1; then, we plot the
normalized number of simulations for which such residuals
are positive, implying a clear detection of a nonconstant
cðzÞ=c0. In blue, we show results when the residuals with
respect to constant speed of light are calculated using the
best fit Padéapproximant, Eq. (20); in red, the residuals
are calculated using the lower 1σ limit derived from the
same best fit function, thus indicating a detection of the
VSL signal at 1σ confidence level; in green and yellow,
respectively, the residuals are calculated using the lower 2σ
and 3σ limits. We focused on the lower limits because our
fiducial input VSL corresponds to a speed of light higher
than c0 at higher redshift; in a more realistic case,
one should check for both positive and negative residuals
and, eventually, fix a significance threshold (e.g. P≶1 >
0.95–0.99%) for a possible detection to test if there
is any statistically clear evidence for one trend over the
other.
Looking at Fig. 2 we can now have a more clear and

precise prediction of what could happen in the next future.
The probability to detect a 1%VSLat a 3σ level is higher than
the 95% (e.g., in 95%of our simulationswe are able to detect
a 1% VSL signal at a 3σ level) approximately in the redshift
range [0.75, 1.45]. For higher redshifts, using the precision
actually forecasted for next future galaxy surveys,we see that
the signal degrades very rapidly. This point is interesting:
given our input cðzÞ, the deviation from the cðzÞ=c0 ¼ 1
limit grows with redshift. Thus, higher redshifts imply larger
deviations. But this does not automatically convert in a
clearer or easier detection: if the survey precision degrades
too fast, we are going to lose any possibility to detect the
signal at high redshift. At the same time, this is also
encouraging: given the possibly larger deviation from the
constancy of the speed of light at high redshifts (if the VSL

VSL 1
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FIG. 1. Reconstruction of cðzÞ from mock data: results. Black: 1σ confidence level from the total 103 simulations for Eq. (14); red: 1σ
confidence level from the total 103 simulations for Eq. (14) after the ratio cðzÞ=c0 is fit with Eq. (14); blue: VSL cðzÞ=c0 used as input
from Eq. (17); dashed grey line: standard constant cðzÞ=c0 ¼ 1. Different ranges are shown on the vertical axis.
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signal is a monotonical function, of course), we have a lot of
room to improve its detection in this range, because the
precision update required for future surveys at higher red-
shifts is well inside our technological possibilities.
Another interesting point to stress is that in [55,56] we

have shown how SKAwill be able to put a 3σ limit on a 1%
VSL signal at the maximum redshift in the angular diameter
distance, which should locate at z ∼ 1.55�1.65 (at least,
basing this claim on our present knowledge of the cosmo-
logical background model). In the method exposed in this
work, the detection at 3σ for a redshift ≈1.65 is possible in
80% of our simulations; still a high probability, even if quite
lower than the 95% limit assessed above. It is not surprising
that the two methods have different sensitivity at this
redshift, because they rely on different algorithms; in
particular, the maximum detection method described in
[55,56] can be pushed to a better precision, while the present
method is mainly limited by the not-perfect correspondence
of the derivatives calculated from real data with those
intrinsic to the unknown cosmological background. But,

still, the two methods are complementary, helping to extend
the final redshift range of VSL detection.
Unfortunately, from Fig. 2 it is also clear that a 0.1%

signal will be hardly detected: at the 1σ level, the
probability detection of a VSL signal of such magnitude
is ∼80% in the redshift range [0.95, 1.15]; a 3σ detection in
the same range is achieved only in 55% of our simulations,
thus making it difficult to statistically state if it can be really
reached or not.
Another important question to be stated is what level of

goodness our method has to reconstruct the real VSL
background. In order to assess this question, we calculate
the quantity:

Δi ¼
XN sim

j¼1

ðctheoðziÞ − cansðziÞÞ2
c2ansðziÞ

; ð21Þ

where N sim ¼ 103 is the total number of simulations we
have run; ctheoðziÞ is the varying speed of light given by the
resulting best Padéapproximant, Eq. (20), evaluated at each
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FIG. 2. Probability to detect positive residuals of post-fitting reconstructed cðzÞ vs cðzÞ ¼ c0. Blue: residuals calculated from the best
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redshift zi; and cansðziÞ is the fiducial speed of light given
by Eq. (17). Thus, the quantity Δi is the sum, at each
redshift and all over our simulations, of the relative squared
residuals between our final reconstructed VSL (ctheo) and
the fiducial one (cans). Smaller is its value, better is the
agreement between our reconstruction and the true under-
lying model. In this way, we have a criterium to establish if
our reconstruction is accurate or not. In Fig. 3 we plot the
logarithm of this quantity; conclusions are the same we
have derived above: in the case of a 1% VSL, it is clear that
the agreement is quite good and very similar in the redshift
range [0.75, 1.35]; then it starts to decrease, with aΔ that, at
z ∼ 1.65, is 1 order of magnitude larger than the minimum
value achieved; and things go even worse for larger redshift
values. The same is more or less valid for the 0.1% case.

B. Curvature degeneracy

As pointed out in previous sections, in the Friedmann
and continuity equations the VSL-based terms, cðtÞ and
_cðtÞ, come coupled with the spatial curvature parameter (k).
Thus, it is natural to expect some degree of degeneracy
between a possible VSL signal and what could instead be

interpreted as a geometric effect. Our main equations are
derived, as said previously, assuming that the Universe if
spatially flat, i.e. k ¼ 0. All of the most updated observa-
tions confirm such an assumption [73]; but we want to
show here that, even if we take into account curvature, still
there is a wide range of validity for our equations and, even,
our method might be generalized and used, in the standard
context of constant speed of light, as an alternative way to
measure the spatial curvature.
When taking into account spatial curvature, the main

change is in the determination of what we have defined
yreal, defined in Eq. (10) as the derivative of observational
Dreal

A with respect to redshift. If the curvature is allowed to
vary, then, the most general definition for the angular
diameter distance is

DAðzÞ ¼

8>>>>>><
>>>>>>:

DHffiffiffiffi
Ωk

p
ð1þzÞ sinh

� ffiffiffiffi
Ωk

p
DCðzÞ

DH

�
for Ωk > 0

DCðzÞ
1þz for Ωk ¼ 0

DHffiffiffiffiffiffi
jΩkj

p
ð1þzÞ sin

� ffiffiffiffiffiffi
jΩkj

p
DCðzÞ

DH

�
for Ωk < 0;

ð22Þ

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95

2.
05

2.
15

2.
25

2.
35

2.
45

2.
55

2.
65

2.
75

2.5

2.0

1.5

1.0

0.5

0.0

lo
g

V
S

L
1

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
05

1.
15

1.
25

1.
35

1.
45

1.
55

1.
65

1.
75

1.
85

1.
95

2.
05

2.
15

2.
25

2.
35

2.
45

2.
55

2.
65

2.
75

2.5

2.0

1.5

1.0

0.5

0.0

lo
g

V
S

L
1

FIG. 3. Reconstruction goodness criterium (residuals sum parameter) for the reconstruction of the underlying VSL signal.
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where Ωk ≡ kc20=H
2
0 is the dimensionless curvature

density parameter today; DH ¼ c0=H0 is the Hubble
distance; and the line-of-sight comoving distance is defined
as DCðzÞ ¼ DH

R
z
0 F cðz0Þ=Eðz0Þdz0, where we have made

use of the general ansatz cðzÞ≡ c0F cðzÞ, with F cðzÞ ¼ 1
for z ¼ 0. We are assuming here the most general case of a
varying speed of light cðzÞ; but the standard scenario can be
easily recovered simply replacing cðzÞ with c0 any time it
appears. If we now calculate yreal through the same
Eq. (10), we have

yrealr ðzÞ≡

8>>>>><
>>>>>:

cðzÞ
HðzÞ cosh

� ffiffiffiffi
Ωk

p
DCðzÞ

DH

�
for Ωk > 0

cðzÞ
HðzÞ for Ωk ¼ 0

cðzÞ
HðzÞ cos

� ffiffiffiffiffiffi
jΩkj

p
DCðzÞ

DH

�
for Ωk < 0:

ð23Þ

It is clear that even if we assume cðzÞ ¼ c0, we would
still have some contribution from the Ωk ≠ 0 term; thus
the case “VSLþ spatial flatness” would be equivalent to
“constant cðzÞ þ curvature.” We can easily quantify how
much information we might derive, and which we might
erroneously attribute to a VSL signal only, should instead
be shared with a non-null curvature signal. From the Planck
Legacy Archive, the extension of the baseline model with
a free curvature parameter, named base_plikHM_
TTTEEE_lowTEB_lensing_post_BAO, gives the
value of Ωk ¼ 0.0008� 0.002 at the 68% confidence level
(and �0.004 at the 95%). We can thus compare the
curvature-correction terms in Eq. (23) with the null
curvature hypothesis, using our ansatz for the VSL,
Eq. (17). Results are shown in Fig. 4. In order to be as
complete as possible, we have also analyzed the lower and
upper limits for the curvature parameters, i.e. Ωk ¼
−0.0012 and Ωk ¼ 0.0028.
The first possible conclusion is that a realistic contri-

bution from the spatial curvature to our method would be
≲0.06% at the maximum in DA (for a more direct and
straightforward comparison, we use the same maximum
criterium we have used to define the 1% and the 0.1%
VSL models) for both Ωk ¼ 0.0008 (solid red line) and
Ωk ¼ −0.0012 (solid blue line). Thus, it would be even
smaller than the 0.1% VSL signal (black dashed line) we
have considered so far, and would thus result, finally,
undetectable. This result, obtained in an independent and
alternative way, is also consistent with a recent attempt
described in [113]. On the other hand, the upper limit
Ωk ¼ 0.0028, would give a ∼0.15% contribution; a slightly
larger value, but still out of possible detection with SKA.
For the sake of precision, we have to stress again that,

anyway, in general, a pure VSL and a pure curvature signal
are degenerate. We can detect a total signal, without being
able to ascribe it to one or another. What we can estimate is
that, given present bounds on curvature, a 1% signal (solid
black line) could be attributed with no doubt to VSL only,

rather than to any curvature contribution. Even in the case
of assuming both a VSL and non-null curvature, given the
actual constraints on the latter one, the VSL signal might be
∼0.95% for Ωk ¼ 0.0008 (dot-dashed red line) and Ωk ¼
−0.0012 (dot-dashed blue line), and ∼0.85% for Ωk ¼
0.0028 (dot-dashed blue line), in order to have a final total
1% detection. Thus, at least at the scales which we have
shown to be directly testable in the near future, curvature
might play a negligible role. But if the total signal should
result to be less than 1%, then we could have problems and
would not be able to discriminate between them.

VI. CONCLUSIONS

In this work we have extended the method previously
described in [55,56]: while the latter made it possible to
measure the speed of light (and, incidentally, detect any
possible variation of the same quantity) only in one well-
located point (themaximumredshift), herewe showhow it is
possible to recover a redhisft-extended VSL signal on a
much larger redshift range. We have used the cosmological
observations which will be available in the near future from
galaxy surveys, i.e.: estimations of the sound horizon at
decoupling/dragging epoch, imprinted as an angular diam-
eter distance DA in the clustering of the galaxies; and the
expansion rate data H inferred from ETG galaxies desig-
nated as cosmological clocks. We have employed quite a
various number of future galaxy surveys, BOSS, DESI,
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FIG. 4. VSL vs spatial curvature degeneracy displayed using
Eq. (23). Black lines: solid—1% VSL signal from Eq. (17) plus
null curvature (Ωk ¼ 0 case in Eq. (23)); dashed—0.1% VSL
from Eq. (17) plus null curvature (Ωk ¼ 0 case in Eq. (23)). Red
lines: solid—correction from curvature term in Eq. (23) when
Ωk ¼ 0.0008 and assuming cðzÞ ¼ c0; dot-dashed—correction
from curvature term in Eq. (23) when Ωk ¼ 0.0008 and assuming
a 0.95% VSL signal. Blue lines: solid—correction from curvature
term in Eq. (23) when Ωk ¼ −0.0012 and assuming cðzÞ ¼ c0;
dot-dashed—correction from curvature term in Eq. (23) when
Ωk ¼ 0.0008 and assuming a 0.95% VSL signal. Green lines:
solid—correction from curvature term in Eq. (23) when Ωk ¼
0.0028 and assuming cðzÞ ¼ c0; dot-dashed—correction from
curvature term in Eq. (23) when Ωk ¼ 0.0008 and assuming a
0.85% VSL signal.
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WFirst-2.4 and SKA, which result to have the best perfor-
mances in different (nonoverlapping) redshift windows.
As we have discussed in Sec. IV, and as it is shown in

Fig. 2, given the sensitivities forecast for the previous
surveys, there is a quite high probability (>95%) to detect a
1% VSL signal (if any) at the 3σ confidence level in the
redshift range z ∈ ½0.; 1.55�. Smaller signals, of the order of
0.1%, will be hardly detected by the same surveys.
We have also given a more detailed discussion about the

impact that a possible non-null spatial curvature might have
on the detection of the VSL signal. In particular, we have
shown that values of the curvature compatible with the
present bounds given by Planck are absolutely negligible
with respect to a 1% VSL signal. We emphasize here that,
even if we were not considering a VSL signal, but the
classical constancy of the speed of light, then our method
would result to be useful to detect curvature-only contri-
butions. In particular, if such a contribution should result to
be ≈0.01, then it would be equivalent to a 1% VSL signal,

and all the discussion we have spent for the VSL theory
might be equivalently exported to spatial curvature mea-
surements only.
More problematic would be to disentangle smaller VSL

signals, which would result to be of the same order of
the geometrical contribution; but, as we have shown here,
such small signals are out of the detection possibilities of
currently forecast galaxy surveys for the next 15 years. In
the meantime, we may work to improve our method, and/or
find alternative ones.

ACKNOWLEDGMENTS

The author warmly thanks the anonymous referees for
their insightful reports, which have helped to improve the
general quality of the paper and have also enlightened
possible future research topics. This work is financed by the
Polish National Science Center Grant No. DEC-2012/06/A/
ST2/00395.

[1] H. Weyl, Ann. Phys. (Berlin) 59, 129 (1919).
[2] A. S. Eddington, The Mathematical Theory of Relativity

(Cambridge University Press, Cambridge, England, 1923).
[3] A. S. Eddington, New Pathways in Science (Cambridge

University Press, Cambridge, England, 1934).
[4] H. Weyl, Naturwissenschaften 22, 145 (1934).
[5] P. A. M. Dirac, Nature (London) 139, 323 (1937).
[6] P. A. M. Dirac, Proc. R. Soc. A 165, 199 (1938).
[7] J.-P. Uzan, Living Rev. Gen. Relativity 14, 2 (2011).
[8] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[9] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).

[10] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[11] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220

(1982).
[12] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[13] A. D. Linde, Phys. Lett. 129B, 177 (1983).
[14] A. G. Riess, A. V. Filippenko, P. Challis et al., Astrophys.

J. 116, 1009 (1998).
[15] S. Perlmutter, G. Aldering, G. Goldhaber et al., Astrophys.

J. 517, 565 (1999).
[16] J. K. Webb, V. V. Flambaum, C.W. Churchill, M. J.

Drinkwater, and J. D. Barrow, Phys. Rev. Lett. 82, 884
(1999).

[17] V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev.
Lett. 82, 888 (1999).

[18] M. T. Murphy, J. K. Webb, V. V. Flambaum, J. X. Prochaska,
andA.M.Wolfe,Mon.Not.R.Astron. Soc.327, 1237 (2001).

[19] M. T. Murphy, J. K. Webb, V. V. Flambaum, M. J.
Drinkwater, F. Combes, and T. Wiklind, Mon. Not. R.
Astron. Soc. 327, 1244 (2001).

[20] J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba,
J. D. Barrow, C. W. Churchill, J. X. Prochaska, and A. M.
Wolfe, Phys. Rev. Lett. 87, 091301 (2001).

[21] M. T. Murphy, J. K. Webb, and V. V. Flambaum, Mon. Not.
R. Astron. Soc. 345, 609 (2003).

[22] J. N. Bahcall, C. L. Steinhardt, and D. Schlegel, Astrophys.
J. 600, 520 (2004).

[23] H. Chand, R. Srianand, P. Petitjean, and B. Aracil, Astron.
Astrophys. 417, 853 (2004).

[24] R. Srianand, H. Chand, P. Petitjean, and B. Aracil, Phys.
Rev. Lett. 92, 121302 (2004).

[25] S. A. Levshakov, M. Centurión, P. Molaro, and M. V.
Kostina, Astron. Astrophys. 447, L21 (2006).

[26] M. T. Murphy, J. K. Webb, and V. V. Flambaum, Phys.
Rev. Lett. 99, 239001 (2007).

[27] R. Srianand, H. Chand, P. Petitjean, and B. Aracil, Phys.
Rev. Lett. 99, 239002 (2007).

[28] P. Molaro, D. Reimers, I. I. Agafonova, and S. A.
Levshakov, Eur. Phys. J. Spec. Top. 163, 173 (2008).

[29] M. T. Murphy, J. K. Webb, and V. V. Flambaum, Mon. Not.
R. Astron. Soc. 384, 1053 (2008).

[30] I. I. Agafonova, P. Molaro, S. A. Levshakov, and J. L. Hou,
Astron. Astrophys. 529, A28 (2011).

[31] J. C. Berengut, V. V. Flambaum, J. A. King, S. J. Curran,
and J. K. Webb, Phys. Rev. D 83, 123506 (2011).

[32] J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum,
R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. 107,
191101 (2011).

[33] P. Molaro, M. Centurión, J. B. Whitmore et al., Astron.
Astrophys. 555, A68 (2013).

[34] H. Rahmani, N. Maheshwari, and R. Srianand, Mon. Not.
R. Astron. Soc. 439, L70 (2014).

[35] P. Bull, Y. Akrami, J. Adamek et al., Phys. Dark Univ. 12,
56 (2016).

[36] J. Moffat, Int. J. Mod. Phys. D 02, 351 (1993).
[37] J. Moffat, Found. Phys. 23, 411 (1993).

RECOVERING A REDSHIFT-EXTENDED VARYING SPEED … PHYSICAL REVIEW D 95, 084035 (2017)

084035-13

https://doi.org/10.1007/BF01494783
https://doi.org/10.1038/139323a0
https://doi.org/10.1098/rspa.1938.0053
https://doi.org/10.12942/lrr-2011-2
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(83)90837-7
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1086/307221
https://doi.org/10.1103/PhysRevLett.82.884
https://doi.org/10.1103/PhysRevLett.82.884
https://doi.org/10.1103/PhysRevLett.82.888
https://doi.org/10.1103/PhysRevLett.82.888
https://doi.org/10.1046/j.1365-8711.2001.04842.x
https://doi.org/10.1046/j.1365-8711.2001.04843.x
https://doi.org/10.1046/j.1365-8711.2001.04843.x
https://doi.org/10.1103/PhysRevLett.87.091301
https://doi.org/10.1046/j.1365-8711.2003.06970.x
https://doi.org/10.1046/j.1365-8711.2003.06970.x
https://doi.org/10.1086/379971
https://doi.org/10.1086/379971
https://doi.org/10.1051/0004-6361:20035701
https://doi.org/10.1051/0004-6361:20035701
https://doi.org/10.1103/PhysRevLett.92.121302
https://doi.org/10.1103/PhysRevLett.92.121302
https://doi.org/10.1051/0004-6361:200600001
https://doi.org/10.1103/PhysRevLett.99.239001
https://doi.org/10.1103/PhysRevLett.99.239001
https://doi.org/10.1103/PhysRevLett.99.239002
https://doi.org/10.1103/PhysRevLett.99.239002
https://doi.org/10.1140/epjst/e2008-00818-4
https://doi.org/10.1111/j.1365-2966.2007.12695.x
https://doi.org/10.1111/j.1365-2966.2007.12695.x
https://doi.org/10.1051/0004-6361/201016194
https://doi.org/10.1103/PhysRevD.83.123506
https://doi.org/10.1103/PhysRevLett.107.191101
https://doi.org/10.1103/PhysRevLett.107.191101
https://doi.org/10.1051/0004-6361/201321351
https://doi.org/10.1051/0004-6361/201321351
https://doi.org/10.1093/mnrasl/slt183
https://doi.org/10.1093/mnrasl/slt183
https://doi.org/10.1016/j.dark.2016.02.001
https://doi.org/10.1016/j.dark.2016.02.001
https://doi.org/10.1142/S0218271893000246
https://doi.org/10.1007/BF01883721


[38] A. Albrecht and J. Magueijo, Phys. Rev. D 59, 043516
(1999).

[39] J. D. Barrow, Phys. Rev. D 59, 043515 (1999).
[40] P. P. Avelino and C. J. A. P. Martins, Phys. Lett. B 459, 468

(1999).
[41] J. D. Barrow and J. Magueijo, Phys. Lett. B 443, 104

(1998).
[42] J. D. Barrow and J. Magueijo, Phys. Lett. B 447, 246

(1999).
[43] J. D. Barrow and J. Magueijo, Classical Quantum Gravity

16, 1435 (1999).
[44] M. A. Clayton and J. W. Moffat, Phys. Lett. B 460, 263

(1999).
[45] J. D. Barrow and J. Magueijo, Astrophys. J. Lett. 532, L87

(2000).
[46] M. A. Clayton and J. W. Moffat, Phys. Lett. B 477, 269

(2000).
[47] B. A. Bassett, S. Liberati, C. Molina-Paris, and M. Visser,

Phys. Rev. D 62, 103518 (2000).
[48] M. A. Clayton and J. W. Moffat, Phys. Lett. B 506, 177

(2001).
[49] M. A. Clayton and J. W. Moffat, Int. J. Mod. Phys. D 11,

187 (2002).
[50] J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003).
[51] J. W. Moffat, Eur. Phys. J. C 76, 130 (2016).
[52] G. F. R. Ellis and J.-P. Uzan, Am. J. Phys. 73, 240

(2005).
[53] G. F. R. Ellis, Gen. Relativ. Gravit. 39, 511 (2007).
[54] J. Magueijo and J. W. Moffat, Gen. Relativ. Gravit. 40,

1797 (2008).
[55] V. Salzano, M. P. Dąbrowski, and R. Lazkoz, Phys. Rev.

Lett. 114, 101304 (2015).
[56] V. Salzano, M. P. Dąbrowski, and R. Lazkoz, Phys. Rev. D

93, 063521 (2016).
[57] P. J. E. Peebles and J. T. Yu, Astrophys. J. 162, 815

(1970).
[58] R. A. Sunyaev and Ya. B. Zeldovich, Astrophys. Space

Sci. 7, 3 (1970).
[59] A. G. Doroshkevich, Ya. B. Zeldovich, and R. A. Sunyaev,

Sov. Astron. 22, 523 (1978).
[60] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998).
[61] D. J. Eisenstein, W. Hu, and M. Tegmark, Astrophys. J.

504, L57 (1998).
[62] A. Cooray, W. Hu, D. Huterer, and M. Joffre, Astrophys. J.

557, L7 (2001).
[63] C. Blake and K. Glazebrook, Astrophys. J. 594, 665

(2003).
[64] W. Hu and Z. Haiman, Phys. Rev. D 68, 063004 (2003).
[65] H.-J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720

(2003).
[66] D. J. Eisenstein, New Astron. Rev. 49, 360 (2005).
[67] D. J. Eisenstein, I. Zehavi, D. W. Hogg et al., Astrophys. J.

633, 560 (2005).
[68] H.-J. Seo and D. J. Eisenstein, Astrophys. J. 633, 575

(2005).
[69] D. J. Eisenstein, H.-J. Seo, and M. White, Astrophys. J.

664, 660 (2007).
[70] B. Bassett and R. Hlozek, Dark Energy: Observational

and Theoretical Approaches, edited by P. Ruiz-Lapuente
(Cambridge University Press, Cambridge, England, 2010).

[71] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C.
Hirata, A. G. Riess, and E. Rozo, Phys. Rep. 530, 87
(2013).

[72] S. Anselmi, G. D. Starkman, and R. K. Sheth, Mon. Not.
R. Astron. Soc. 455, 2474 (2016).

[73] P. A. R. Ade, N. Aghanim, M. Arnaud et al. (Planck
Collaboration), Astron. Astrophys. 594, A13 (2016).

[74] C. Blake, D. Parkinson, B. Bassett, K. Glazebrook, M.
Kunz, and R. C. Nichol, Mon. Not. R. Astron. Soc. 365,
255 (2006).

[75] C. Blake, E. A. Kazin, F. Beutler et al., Mon. Not. R.
Astron. Soc. 418, 1707 (2011).

[76] C. Blake, S. Brough, M. Colless et al., Mon. Not. R.
Astron. Soc. 425, 405 (2012).

[77] L. Anderson, E. Aubourg, S. Bailey et al., Mon. Not. R.
Astron. Soc. 441, 24 (2014).

[78] E. A. Kazin, J. Koda, C. Blake et al., Mon. Not. R. Astron.
Soc. 441, 3524 (2014).

[79] L. Samushia, B. A. Reid, M. White et al., Mon. Not. R.
Astron. Soc. 439, 3504 (2014).

[80] T. Delubac, J. E. Bautista, N. G. Busca et al., Astron.
Astrophys. 574, A59 (2015).

[81] L. Amendola, S. Appleby, D. Bacon et al., Living Rev.
Relativ. 16, 6 (2013).

[82] R. Laureijs et al. (Euclid Collaboration), arXiv:0912.0914.
[83] A. Refregier et al., arXiv:1001.0061.
[84] R. Laureijs et al. (Euclid Collaboration), arXiv:1110.3193.
[85] D. Spergel, N. Gehrels, J. Breckinridge et al., arXiv:1305

.5422.
[86] K. S. Dawson, D. J. Schegel, C. P. Ahn et al., Astron. J.

145, 10 (2013).
[87] J. Comparat, T. Delubac, S. Jouvel et al., Astron.

Astrophys. 592, A121 (2016).
[88] A. Prakash and J. Newman (SDSS-IV/eBOSS Collabora-

tion) (2015).
[89] J. Tinker (SDSS-IV Collaboration), AAS Meeting 225,

Seattle, Washington, 2015 (American Astronomical Soci-
ety, 2015), 125:06.

[90] M. Levi, C. Bebek, T. Beers et al., arXiv:1308.0847.
[91] R. Jimenez and A. Loeb, Astrophys. J. 573, 37 (2002).
[92] H. Stephani, Commun. Math. Phys. 4, 137 (1967).
[93] M. P. Dąbrowski, J. Math. Phys. (N.Y.) 34, 1447

(1993).
[94] M. P. Dąbrowski, Astrophys. J. 447, 43 (1995).
[95] A. Balcerzak, M. P. Dąbrowski, T. Denkiewicz, D.

Polarski, and D. Puy, Phys. Rev. D 91, 083506 (2015).
[96] K. Enqvist, Gen. Relativ. Gravit. 40, 451 (2008).
[97] J. Garcia-Bellido and T. Haugboelle, J. Cosmol. Astropart.

Phys. 04 (2008) 003.
[98] M. Moresco, R. Jimenez, A. Cimatti, and L. Pozzetti,

J. Cosmol. Astropart. Phys. 03 (2011) 045.
[99] R. Jimenez, P. Talavera, L. Verde, M. Moresco, A. Cimatti,

and L. Pozzetti, J. Cosmol. Astropart. Phys. 03 (2012) 014.
[100] M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, and A.

Cimatti, J. Cosmol. Astropart. Phys. 07 (2012) 053.
[101] M. Moresco, R. Jimenez, A. Cimatti et al., J. Cosmol.

Astropart. Phys. 08 (2012) 006.
[102] M. Moresco, Mon. Not. R. Astron. Soc. 450, L16 (2015).
[103] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C.

Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro,

VINCENZO SALZANO PHYSICAL REVIEW D 95, 084035 (2017)

084035-14

https://doi.org/10.1103/PhysRevD.59.043516
https://doi.org/10.1103/PhysRevD.59.043516
https://doi.org/10.1103/PhysRevD.59.043515
https://doi.org/10.1016/S0370-2693(99)00694-2
https://doi.org/10.1016/S0370-2693(99)00694-2
https://doi.org/10.1016/S0370-2693(98)01294-5
https://doi.org/10.1016/S0370-2693(98)01294-5
https://doi.org/10.1016/S0370-2693(99)00008-8
https://doi.org/10.1016/S0370-2693(99)00008-8
https://doi.org/10.1088/0264-9381/16/4/030
https://doi.org/10.1088/0264-9381/16/4/030
https://doi.org/10.1016/S0370-2693(99)00774-1
https://doi.org/10.1016/S0370-2693(99)00774-1
https://doi.org/10.1086/312572
https://doi.org/10.1086/312572
https://doi.org/10.1016/S0370-2693(00)00192-1
https://doi.org/10.1016/S0370-2693(00)00192-1
https://doi.org/10.1103/PhysRevD.62.103518
https://doi.org/10.1016/S0370-2693(01)00414-2
https://doi.org/10.1016/S0370-2693(01)00414-2
https://doi.org/10.1142/S0218271802001457
https://doi.org/10.1142/S0218271802001457
https://doi.org/10.1088/0034-4885/66/11/R04
https://doi.org/10.1140/epjc/s10052-016-3971-6
https://doi.org/10.1119/1.1819929
https://doi.org/10.1119/1.1819929
https://doi.org/10.1007/s10714-007-0396-4
https://doi.org/10.1007/s10714-007-0568-2
https://doi.org/10.1007/s10714-007-0568-2
https://doi.org/10.1103/PhysRevLett.114.101304
https://doi.org/10.1103/PhysRevLett.114.101304
https://doi.org/10.1103/PhysRevD.93.063521
https://doi.org/10.1103/PhysRevD.93.063521
https://doi.org/10.1086/150713
https://doi.org/10.1086/150713
https://doi.org/10.1007/BF00653471
https://doi.org/10.1007/BF00653471
https://doi.org/10.1086/305424
https://doi.org/10.1086/311582
https://doi.org/10.1086/311582
https://doi.org/10.1086/323323
https://doi.org/10.1086/323323
https://doi.org/10.1086/376983
https://doi.org/10.1086/376983
https://doi.org/10.1103/PhysRevD.68.063004
https://doi.org/10.1086/379122
https://doi.org/10.1086/379122
https://doi.org/10.1016/j.newar.2005.08.005
https://doi.org/10.1086/466512
https://doi.org/10.1086/466512
https://doi.org/10.1086/491599
https://doi.org/10.1086/491599
https://doi.org/10.1086/518755
https://doi.org/10.1086/518755
https://doi.org/10.1016/j.physrep.2013.05.001
https://doi.org/10.1016/j.physrep.2013.05.001
https://doi.org/10.1093/mnras/stv2436
https://doi.org/10.1093/mnras/stv2436
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1111/j.1365-2966.2005.09706.x
https://doi.org/10.1111/j.1365-2966.2005.09706.x
https://doi.org/10.1111/j.1365-2966.2011.19592.x
https://doi.org/10.1111/j.1365-2966.2011.19592.x
https://doi.org/10.1111/j.1365-2966.2012.21473.x
https://doi.org/10.1111/j.1365-2966.2012.21473.x
https://doi.org/10.1093/mnras/stu523
https://doi.org/10.1093/mnras/stu523
https://doi.org/10.1093/mnras/stu778
https://doi.org/10.1093/mnras/stu778
https://doi.org/10.1093/mnras/stu197
https://doi.org/10.1093/mnras/stu197
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.12942/lrr-2013-6
https://doi.org/10.12942/lrr-2013-6
http://arXiv.org/abs/0912.0914
http://arXiv.org/abs/1001.0061
http://arXiv.org/abs/1110.3193
http://arXiv.org/abs/1305.5422
http://arXiv.org/abs/1305.5422
https://doi.org/10.1088/0004-6256/145/1/10
https://doi.org/10.1088/0004-6256/145/1/10
https://doi.org/10.1051/0004-6361/201527377
https://doi.org/10.1051/0004-6361/201527377
http://arXiv.org/abs/1308.0847
https://doi.org/10.1086/340549
https://doi.org/10.1007/BF01645757
https://doi.org/10.1063/1.530166
https://doi.org/10.1063/1.530166
https://doi.org/10.1086/175855
https://doi.org/10.1103/PhysRevD.91.083506
https://doi.org/10.1007/s10714-007-0553-9
https://doi.org/10.1088/1475-7516/2008/04/003
https://doi.org/10.1088/1475-7516/2008/04/003
https://doi.org/10.1088/1475-7516/2011/03/045
https://doi.org/10.1088/1475-7516/2012/03/014
https://doi.org/10.1088/1475-7516/2012/07/053
https://doi.org/10.1088/1475-7516/2012/08/006
https://doi.org/10.1088/1475-7516/2012/08/006
https://doi.org/10.1093/mnrasl/slv037


and D. Wilkinson, J. Cosmol. Astropart. Phys. 05 (2016)
014.

[104] R.-G. Cai, Z.-K. Guo, and T. Yang, J. Cosmol. Astropart.
Phys. 08 (2016) 016.

[105] J. Magueijo, Phys. Rev. D 62, 103521 (2000).
[106] P. P. Avelino, C. J. A. P. Martins, and G. Rocha, Phys. Lett.

B 483, 210 (2000).
[107] K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson,

G.W. Day, R. L. Barger, and J. L. Hall, Phys. Rev. Lett. 29,
1346 (1972).

[108] A. Balcerzak and M. P. Dąbrowski, Phys. Lett. B 728, 15
(2014).

[109] A. Balcerzak and M. P. Dąbrowski, J. Cosmol. Astropart.
Phys. 06 (2014) 035.

[110] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J.
Seo, and A. Slosar, J. Cosmol. Astropart. Phys. 05 (2014)
023.

[111] S. Yahya, P. Bull, M. G. Santos, M. Silva, R. Maartens, P.
Okouma, and B. Bassett, Mon. Not. R. Astron. Soc. 450,
2251 (2015).

[112] H.-J. Seo and D. J. Eisenstein, Astrophys. J. 665, 14
(2007).

[113] M. Takada and O. Doré, Phys. Rev. D 92, 123518
(2015).

RECOVERING A REDSHIFT-EXTENDED VARYING SPEED … PHYSICAL REVIEW D 95, 084035 (2017)

084035-15

https://doi.org/10.1088/1475-7516/2016/05/014
https://doi.org/10.1088/1475-7516/2016/05/014
https://doi.org/10.1088/1475-7516/2016/08/016
https://doi.org/10.1088/1475-7516/2016/08/016
https://doi.org/10.1103/PhysRevD.62.103521
https://doi.org/10.1016/S0370-2693(00)00567-0
https://doi.org/10.1016/S0370-2693(00)00567-0
https://doi.org/10.1103/PhysRevLett.29.1346
https://doi.org/10.1103/PhysRevLett.29.1346
https://doi.org/10.1016/j.physletb.2013.11.029
https://doi.org/10.1016/j.physletb.2013.11.029
https://doi.org/10.1088/1475-7516/2014/06/035
https://doi.org/10.1088/1475-7516/2014/06/035
https://doi.org/10.1088/1475-7516/2014/05/023
https://doi.org/10.1088/1475-7516/2014/05/023
https://doi.org/10.1093/mnras/stv695
https://doi.org/10.1093/mnras/stv695
https://doi.org/10.1086/519549
https://doi.org/10.1086/519549
https://doi.org/10.1103/PhysRevD.92.123518
https://doi.org/10.1103/PhysRevD.92.123518

