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Astrophysical black hole candidates, although long thought to have a horizon, could be horizonless
ultracompact objects. This intriguing possibility is motivated by the black hole information paradox and
a plausible fundamental connection with quantum gravity. Asymptotically free quadratic gravity is
considered here as the UV completion of general relativity. A classical theory that captures its main features
is used to search for solutions as sourced by matter. We find that sufficiently dense matter produces a novel
horizonless configuration, the 2-2-hole, which closely matches the exterior Schwarzschild solution down to
about a Planck proper length of the would-be horizon. The 2-2-hole is characterized by an interior with a
shrinking volume and a seemingly innocuous timelike curvature singularity. The interior also has a novel
scaling behavior with respect to the physical mass of the 2-2-hole. This leads to an extremely deep
gravitational potential in which particles get efficiently trapped via collisions. As a generic static solution,
the 2-2-hole may then be the nearly black end point of gravitational collapse. There is a considerable time
delay for external probes of the 2-2-hole interior, and this determines the spacing of echoes in a postmerger
gravitational wave signal.
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I. INTRODUCTION AND SUMMARY

The black hole information paradox is a significant
driver of current research, but any consensus as to its
resolution or physical meaning has yet to be attained. One
question is whether this problem is fundamental in the
sense that it requires some new input from the ultraviolet
(UV) completion of general relativity (GR). This would
appear puzzling given the small curvature near the horizon
of a large black hole. Nevertheless the interplay between
string theory in particular and black hole physics has given
many avenues of approach to the black hole information
paradox. The fuzzball proposal is one striking example
of how the physics of quantum gravity could enter to
drastically modify the very meaning of spacetime right at
the location of the would-be horizon [1]. More general
arguments from effective field theory also indicate that
something drastic must happen close to the horizon (e.g. a
firewall) if information is not to be lost [2,3].
In this paper we would like to describe another example

where a proposed UV completion of gravity leads directly to
a drasticmodification of the Schwarzschild (Schd) spacetime
starting just at the location of the would-be horizon. In this
case the metric description still holds in the interior large
curvature region where the volume of spacetime shrinks
drastically. For this gravity theory we have found what may
be the generic end point of gravitational collapse for a general
matter distribution. The vacuum Schd solution still exists,
and possibly other solutionswith a horizon, but thesemaynot
be the physically relevant, sourced-by-matter solutions.

It is the link between the absence of a horizon after
gravitational collapse and the absence of the black hole
information paradox that provides the impetus for this
work. The proposed theory of quantum gravity that under-
lies our study is far from new, and coming along with it is a
well-worn problem that needs to be faced. It could be said
that we are trading one problem for another, but we would
like to argue that these two problems are not equal in their
intractability.
Quantum quadratic gravity (QQG) is characterized by

two dimensionless couplings and one mass scale,

SQQG¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2R−

1

2f22
CμναβCμναβþ 1

3f20
R2

�
:

ð1Þ

This action was found to be perturbatively renormalizable
and asymptotically free decades ago [4–7]. In the standard
picture the running couplings remain weak at the mass scale
∼jfiMj, below which the effective description is GR with
M identified with the reduced Planck mass. Unfortunately
such a view suffers from the problem of a spin-2 ghost.
Because of the higher derivative terms the propagator for the
metric perturbation on a flat background has a massive pole
with negative residue in the spin-2 sector. It implies either
problems with the probability interpretation and unitarity or
vacuum instability. A consensus on how to deal with this
problem is still lacking.
It appears to us that the apparent intractability of this

problem is linked to the assumption of weak couplings.
Recently some thought has been given as to what happens
if the theory enters a strong phase [8,9]. In [8] we discussed
the case where M is sufficiently small, so that the
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couplings fi grow strong and another mass scale ΛQQG >
M appears. The poles in the perturbative propagator then
fall into the nonperturbative region in which case the
physical spectrum need not be the perturbative spectrum.
A similar phenomenon occurs in quantum chromodynamics
(QCD). We discussed the analogy, both the similarities and
differences, between the nonperturbative graviton propaga-
tor and the nonperturbative gluon propagator. The analogy
led to our conjecture that whenM≲ ΛQQG, the naive spin-2
ghost is removed and amass gap forms as determined byM.
Since diffeomorphism invariance (like gauge invariance in
QCD) is preserved,we further argued thatGRemerges in the
infrared (IR) in the limit of a vanishing mass gap, M → 0.
(In [9] the analogy between quadratic gravity and a con-
fining gauge theory is pursued in a somewhat different way
to also arrive at the emergence of GR.) The Planck massmPl
is then associated with ΛQQG.M ¼ 0 fits into the view that
there should be no mass parameters in the fundamental
action, with all mass scales, including the Planck mass,
arising dynamically.
In this picture QQG approaches weak limits in both the

UV and IR. In the IR the Einstein term is emerging as the
leading term of an effective action that is analogous to
the chiral Lagrangian in QCD. In the UVand in particular at
super-Planckian curvature the asymptotically free M ¼ 0
quadratic action (1) should give a good description with
small quantum corrections. This leads us to our study in this
paper of a purely classical action that has the same limits.
Namely it interpolates between GR and the quadratic
gravity description in regimes of low and high curvature,
respectively. The action of classical quadratic gravity
(CQG) is

SCQG ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðm2
PlR−αCμναβCμναβþβR2Þ: ð2Þ

Our theoretical perspective justifies not having to consider
higher powers of curvature in this classical action when
describing solutions with arbitrarily large curvatures.
We shall be able to obtain a more general understanding

of the solutions of CQG, in particular those that are sourced
by matter. These solutions can be both macroscopically
large and highly curved. As we have suggested these
solutions should be useful approximations to the corre-
sponding states in QQG. But they will differ in at least two
respects. One is that the full effects of quantum gravity
should become apparent when the curvatures are of order

the Planck scale. Such curvatures will occur in our classical
solutions in a shell with a relatively small thickness. We
consider our classical solutions as simply a way to
interpolate through such a region. The other difference is
that the classical theory has Planck mass ghost instabilities,
both around flat backgrounds as we have mentioned and
probably also around the high curvature backgrounds of
interest here. Our working assumption is that these par-
ticular instabilities are a defect of CQG, and that they do not
afflict the corresponding configurations of QQG. In other
words we are assuming that the QQG does support some
stable macroscopically large objects that serve as the end
point of gravitational collapse and that CQG provides a
window onto the main properties of such objects.
The present knowledge of the space of static spherically

symmetric solutions of CQG is still incomplete. The exact
vacuum solutions of GR are present, but other solutions are
not known analytically. The categorization of the possible
leading terms in the series expansions of the solutions
around r ¼ 0 was found long ago [10]. The (0,0) family
describes those solutions that are nonsingular at the origin,
and it has two free parameters. The (2,2) family has no
analog in GR, and it is characterized by a metric that is
vanishing at the origin. It turns out to have five free
parameters [11], and in this sense it describes the most
generic solutions. Asymptotically flat solutions will quickly
approach the Schd solution at large r, where the deviations
due to the higher derivative terms in CQG are becoming
exponentially small. As seen in the linearized theory such
corrections are generally present when the solution is
sourced by matter [10], and so the exact Schd solution does
not play the same fundamental role that it plays in GR. The
important question is then what solution is actually chosen
for a given matter distribution.
Numerical analysis is necessary to search for solutions

in the fully nonlinear theory. To help make this problem
tractable we focus on solutions induced by a thin spherical
shell of matter. The answer to the above question for a thin
shell is then as illustrated in Fig. 1. When l≳ rH ≡
2M=m2

Pl, there are the regular (0,0) solutions, which can
differ quite substantially from the corresponding GR sol-
utions for l close to rH. When l≲ rH, the (2,2) solutions
take over. These latter solutions remain horizonless, but they
resemble the exterior Schd solution sowell that the deviation
is only visible outside the would-be horizon at a proper
distance of the order of the Planck length. This feature is
also expected to apply for a more general smooth matter

FIG. 1. A schematic illustration of asymptotically flat horizonless solutions that couple to a thin shell with physical massM and shell
radius l. rH ¼ 2M=m2

Pl denotes the would-be horizon.
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distribution. So extremely high compactness is naturally
achieved in CQG as dictated by the dynamics of gravity.
In contrast the horizonless black holemimickers constructed
in GR usually rely on some fine-tuned properties in the
matter sector [12–17].We call these new horizonless objects
“2-2-holes.”
In the interior of a 2-2-hole, r≲ rH, the curvatures grow

large. As one of our main findings, the interior of large 2-2-
holes reveals a novel scaling behavior with respect to their
size or M, in the following sense. For the thin shell located
at a fixed l=M, curvature invariants are universal functions
of r=M that are independent of M. This is unusual when
compared to the Schd metric, where nonzero curvature
invariants of dimension 2n fall as 1=M2n at some fixed
r=M. The very different interior and exterior behaviors
correspond to the dominance of the quadratic and linear
curvature terms in the CQG action, respectively. The 2-2-
hole then has a nontrivial transition region connecting these
different behaviors. This region and how it depends on M
must be explored numerically. But for the interior region
we have uncovered a new spacetime that applies univer-
sally to 2-2-holes of any size. Since it involves super-
Planckian curvatures it makes sense only in our context of a
UV complete and asymptotically free theory of quantum
gravity.
The 2-2-hole interiors are characterized by a gravita-

tional potential that deepens for increasing M, and which
is thus extremely deep for M of astrophysical size. For
instance particles falling in and colliding in the interior can
yield super-Planckian center of mass energies for generic
kinematics. At the same time the deep potential gives rise to
a very efficient trapping mechanism. Through collisions,
particles will populate a phase space such that all but a tiny
fraction of the particles are trapped by an angular momen-
tum barrier.
Compared to the Schd singularity, the center of the 2-2-

hole is characterized by a less singular CμναβCμναβ, and in
fact the CQG action remains finite. The dominant tidal
forces for finite size objects are more volume squeezing
rather than shape changing, due to a more singular RμνRμν.
The existence of a timelike singularity in the 2-2-hole

indicates that the spacetime is geodesically incomplete. But
it is unclear whether this problem with the motion of
classical point particles is physically significant. We can
probe the singularity with finite energy wave packets in a
relativistic classical field theory. For example consider the
case of a flat spacetime where there is a timelike singularity
because a single spatial point is removed. Wave packets of
finite energy propagating in this spacetime would not be
affected. Within an existing mathematical formulation [18],
we find that the wave equation around the 2-2-hole
singularity shows similar behavior and finite energy waves
still have unitary evolution. This singularity does not
introduce an ambiguity but it is physically detectable. In
fact the resulting boundary condition at the origin leads to a

discrete set of localized field modes. An entropy is
associated with a thermal distribution of these modes.
We find that due to the large M scaling behavior of
the interior of a 2-2-hole, this entropy obeys an area law
when the temperature is proportional to the Hawking
temperature.
The direct detection of gravitational waves by Advanced

LIGO opens up the era of gravitational wave astronomy
[19]. Geometries around the postmerger ultracompact
object are going to be examined more closely. It was
argued recently that for a horizonless ultracompact object
there is some time delay before the inner structure of the
object can modify the standard black hole ringdown
waveform [20–24]. For the 2-2-hole the extremely high
compactness naturally indicates a relatively long time
delay. This is the time spacing between echoes of the
initial ringdown, and an initial attempt to look for echoes
with a similar time delay has already been made [25].
Future data should clarify matters. In this regard it will also
be important to develop a similarly complete picture for
rotating 2-2-holes. Such a picture would address the
question of an ergoregion, and here again the special
nature of the 2-2-hole interior has interesting implications.
The rest of the paper is organized as follows. We start

Sec. II with a brief review of the basics of static spherically
symmetric solutions in CQG. We then describe thin-shell
models and explain our numerical strategy to search for
asymptotically flat solutions in Sec. II A. Numerical results
in the fully nonlinear theory are presented in Sec. II B, which
shows the complementarity between the 2-2-hole and the
ordinary star as illustrated in Fig. 1. The novel scaling
behavior for the interior of large 2-2-holes is presented in
Sec. II C. In Sec. III we consider various physical properties
and implications of 2-2-holes.We explore the radial stability
of the 2-2-holes against movement of the shell in Sec. III A.
In Sec. III B we study point particle geodesics and collisions
inside the 2-2-hole which leads to a discussion of the
trapping mechanism. We diagnose the timelike singularity
with a focus on classical field dynamics in Sec. III C. In
Sec. III D we adapt the brick wall model for black hole
entropy to a discussion of entropy for 2-2-holes. In Sec. III E
we estimate the mass dependent time delay for 2-2-holes
and further describe thewave equation. A sketch of possible
behaviors of a rotating 2-2-hole is given in Sec. III F.

II. STATIC SPHERICALLY
SYMMETRIC SOLUTIONS

The general line element for a static, spherically sym-
metric spacetime is

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2: ð3Þ

Because of the Bianchi identity only two field equations
of the action (2) are independent. We use the tt and rr
components of the field equations, which can also be
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obtained by varying the action with respect to BðrÞ and
AðrÞ. BðrÞ is affected by a rescaling of t, and this is
reflected in field equations that depend only on the
normalized derivatives BðiÞðrÞ=BðrÞ. By convention BðrÞ
is set to unity at infinity in asymptotically flat solutions.
For generic CQG, α ≠ 0, β ≠ 0, five initial conditions are
needed to determine a solution to the field equations,
namely A00, A0, A, B00=B, B0=B at some value of r [26]. We
shall also consider the special case with β ¼ 0; in this case
there are three initial conditions, A0, A, B0=B [26].
The solutions can be classified by the series expansion

around r ¼ 0 [10].

AðrÞ ¼ asrs þ asþ1rsþ1 þ asþ2rsþ2 þ � � � ;
BðrÞ ¼ btðrt þ btþ1rtþ1 þ btþ2rtþ2 þ � � �Þ: ð4Þ

There are three families of solutions as characterized by the
powers of the first nonvanishing terms ðs; tÞ [10]. We list
properties and the free parameters of these families in
Table I. We will not include the leading coefficient bt in
parameter counting since it is determined by Bð∞Þ ¼ 1.
The remaining infinite set of coefficients are all determined,
and we illustrate this up to some order in the Appendix.
The nonsingular (0,0) family has only even power terms,

and the increase in the number of free parameters in CQG
indicates that Birkhoff’s theorem no longer applies. The
ð1;−1Þ family includes the Schd solution as a special case,
as all vacuum solutions of GR automatically satisfy the
field equations of CQG. It also includes other solutions
with a horizon as found recently [27]. Most interestingly
CQG has a new type of solution, the (2,2) family, that
has no counterpart in GR. It is characterized by five free
parameters [11], the same as the number of initial con-
ditions needed to specify a solution of the field equations.
At the origin all components of the metric gμν vanish. As we
will see later there is a subclass of the (2,2) family that
deserves special attention. Like the (0,0) family it has only
even power terms in the series expansion, and it also has the
same number of free parameters. We denote this family by
ð2;2ÞE in the last row of Table I. In our exploration of
asymptotically flat thin-shell solutions in the fully non-
linear theory we shall focus on the (0,0) and ð2;2ÞE
families.
The presence of a smooth matter distribution does not

affect the classification. But the expansion parameters of
energy density and pressure do enter the determination of

the remaining infinite set of coefficients in AðrÞ and BðrÞ.
For the (0,0) family these quantities enter at Oðr4Þ, while
for the (2,2) family they enter atOðr10Þ in generic CQG and
Oðr8Þ in β ¼ 0 CQG.
The leading behavior of four basic curvature invariants

is also useful to characterize the different families of
solutions. For comparison the Schd solution invariants in
GR are1

R ¼ 0; RμνRμν ¼ 0;

RμνρσRμνρσ ¼ CμνρσCμνρσ ¼ 48M2=r6: ð5Þ

The (0,0) family has

R ¼ 6ða2 − b2Þ;
RμνRμν ¼ 12ða22 − a2b2 þ b22Þ;

RμνρσRμνρσ ¼ 12ða22 þ b22Þ;

CμνρσCμνρσ ¼ ð18βða22 − b22Þ þm2
Plða2 þ 2b2ÞÞ2

300α2
r4; ð6Þ

and the (2,2) family has

R ¼ 27a5 þ a2ðb3ð14a2 − 2b23 þ 10b4Þ − 45b5Þ
3a22r

;

RμνRμν ¼ 12

a22r
8
; RμνρσRμνρσ ¼ 24

a22r
8
;

CμνρσCμνρσ ¼ ð2a2 − 2b4 þ b23Þ2
3a22r

4
: ð7Þ

Compared with the Schd singularity, the (2,2) singularity is
characterized by a stronger 1=r8 divergence for RμνρσRμνρσ

but a weaker 1=r4 divergence for CμνρσCμνρσ. These results
for R and C2 reflect intricate cancellations that cause more
singular terms to vanish. And in fact the Ricci scalar R is
not singular for the ð2;2ÞE family. It approaches a negative

TABLE I. Properties and free parameters for three families of solutions.

ðs; tÞ Behavior at r ¼ 0 Generic CQG β ¼ 0 CQG GR

(0,0) Nonsingular a2, b2 b2 None
ð1;−1Þ Schd-like a1, a4, b2 a1, a4 a1
(2,2)

Vanishing metric
a2, a5, b3, b4, b5 a2, b3, b4 Not applicableð2;2ÞE a2, b4 a2

1The ð1;−1Þ family in CQG has (a1 ¼ −1=2M, a4 ¼ −a41, and
b2 ¼ 0 gives Schd)

RμνρσRμνρσ ¼CμνρσCμνρσ ¼ 12

a21r
6
; R¼ 3

2a21
ð3a41þ3a4−5a1b2Þ;

RμνRμν ¼ 9

8a41
ð17b22a21−6b2a1ða41þa4Þþ9ða41þa4Þ2Þ:
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constant ð−a22 þ b24 − 9a2Þ=3a2 in generic CQG while it
identically vanishes in β ¼ 0 CQG. Since the whole metric
gμν vanishes with r2, it is the inverse metric that drives the
divergences in curvature invariants. With lowered indices
the curvature tensor Rμναβ is regular and the Weyl tensor
Cμναβ vanishes as r2.
In this paper we focus on solutions that are asymptoti-

cally flat, which guarantees the weak field approximation
at large distance. General solutions for the linearized field
equations are as follows, with AðrÞ ¼ 1þWðrÞ þOðW2Þ
and BðrÞ ¼ 1þ VðrÞ þOðV2Þ [10]:

VðrÞ¼2M
r

þC0−
e−m0r

r
þC0þ

em0r

r
þC2−

e−m2r

r
þC2þ

em2r

r
;

WðrÞ¼−
2M
r

þC0−
e−m0r

r
ð1þm0rÞþC0þ

em0r

r
ð1−m0rÞ

−
1

2
C2−

e−m2r

r
ð1þm2rÞ−

1

2
C2þ

em2r

r
ð1−m2rÞ: ð8Þ

m2
2 ¼ m2

Pl=2α and m2
0 ¼ m2

Pl=6β are the masses of addi-
tional spin-0 and spin-2 degrees of freedom. Here we see
that the linearized solution also has five free parameters,M,
C0�, C2�. This is still true in the case α ¼ 3β of interest
below where m2 ¼ m0, while for β ¼ 0 the spin-0 mode is
decoupled leaving three parameters. The asymptotic flat-
ness switches off the exponentially growing modes, i.e.
C0þ ¼ C2þ ¼ 0, and then M is the physical mass. The
solution at large r approaches the Schd solution with two
parameters C0−, C2− characterizing exponentially small
corrections, while for β ¼ 0 CQG there is one parameter
C2−. Clearly for M ∼M⊙ and m0, m2 ∼mPl and for radii
where the weak field expansion is applicable, the exponen-
tially small corrections are essentially invisible.
This discussion leaves open the question of which of

the families of solutions in CQG are actually realized as a
response to matter distributions. This question for the
linearized theory for different matter sources was studied
analytically in [26]. It was found that the exponentially
small terms are always nonzero and encode information
about the source. As for the fully nonlinear solutions, an
example of a vacuum (2,2) solution was obtained numeri-
cally in [11], as were high curvature (0,0) solutions for
incompressible matter. This leaves much room for a more
systematic study of asymptotically flat solutions that are
sourced by matter in the fully nonlinear theory. In fact our
results will significantly differ from the corresponding
attempt in [26] along these lines.
The simplest delta-function source in the fully nonlinear

theory is a spherical thin shell of radius l [28]. In Sec. II A
we describe thin-shell models in CQG and our numerical
strategy to search for asymptotically flat solutions in the
multidimensional parameter space. We present our numeri-
cal results in Sec. II B, where the ð2;2ÞE and (0,0) families
together provide a comprehensive picture of the horizonless
thin-shell solutions in the fully nonlinear theory. In

Sec. II C we find an interesting M scaling behavior of
the interior region of the ð2;2ÞE solutions for large M.

A. Thin-shell models

For genericCQGwe follow the setup of a thin-shell source
in [26], whichwe refer to as the TS1model. It is described by
the stress tensor Tμν ¼ diagðTtt; Trr; Tθθ; Tθθsin2θÞ with

TttðrÞ ¼ BðrÞρðlÞδðr − lÞ; TrrðrÞ ¼ 0: ð9Þ

TθθðrÞ is then determined by the only nontrivial conservation
law ∇μTμr ¼ 0,

TθθðrÞ ¼
r3B0ðrÞ
4B2ðrÞ TttðrÞ: ð10Þ

We can also set TθθðrÞ ¼ r2 ~pðlÞδðr − lÞ. The vacuum
solutions inside and outside the shell are matched at
r ¼ l with five conditions, where A, A0, B0=B, B00=B are
continuous whileA00 has a jump as determined by the energy
density on the shell,

A00
outðlÞ − A00

inðlÞ

¼ 2πA3ðlÞlρðlÞ ðα − 3βÞB0ðlÞl − 2ðαþ 6βÞBðlÞ
9αβBðlÞ :

ð11Þ

The derivatives arewith respect to r, evaluated atl. Thevalue
of B itself is trivially continuous at the shell.
If the shell moves from one radius to another as a

function of time, the stress tensor needs to satisfy the
energy conservation law, ∇μTμt ¼ 0, in addition to (10).
The time dependence can be factorized out as dl=dt, and
the conservation law is reduced to a constraint on how the
shell energy density depends on the shell radius,

d
dl

σðlÞ þ 2

l
ðσðlÞ þ pðlÞÞ ¼ 0: ð12Þ

Here σðlÞ≡ ffiffiffiffiffiffiffiffiffiffi
AðlÞp

ρðlÞ and pðlÞ≡ ffiffiffiffiffiffiffiffiffiffi
AðlÞp

~pðlÞ. The
factor of

ffiffiffiffiffiffiffiffiffiffi
AðlÞp

is related to defining a proper unit length
along the radial direction, and it brings agreement with the
Israel junction condition [29]. The conservation law (10)
becomes2

pðlÞ
σðlÞ ¼

lB0ðlÞ
4BðlÞ : ð13Þ

Combining (12) and (13) gives

2This relation does not apply to the thin shell in GR because a
discontinuous AðrÞ makes the form of the conservation law
different.
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d
dl

σðlÞ þ 2

l
σðlÞ

�
1þ lB0ðlÞ

4BðlÞ
�

¼ 0: ð14Þ

When we study numerical solutions in Sec. II B, we shall
indeed confirm that solutions at different l with the same
physical mass M satisfy this relation.
We find asymptotically flat thin-shell solutions by the

shooting and matching method:
(1) shooting from the outside with small deviations from

the Schd solution with a fixed M;
(2) shooting from the inside using the known series

expansion to determine initial conditions at a r0
close to 0;

(3) adjusting parameters to match at r ¼ l the four
continuous quantities A, A0, B0=B, B00=B;

(4) identify the energy density ρðlÞ on the shell from the
jump of A00 by (11).

In principle linearized solutions (8) could be used as a
starting point for shooting from the outside. But in practice
a rather large r is required to ensure the validity of the linear
approximation and numerical errors are easily accumu-
lated. Fortunately as the exact solution in GR, the Schd
solution provides a better approximation in the small
curvature region, and we can consider small deviations
from that in the initial conditions. Then we immediately
have a precise definition of M for a numerical solution.
ThusM and l are taken as inputs to specify a solution with
ρðlÞ determined by the solution through (11).
There are four quantities A, A0, B0=B, B00=B that need

matching at r ¼ l. Shooting from the outside can still be
considered to have two free parameters as suggested by the
linearized solutions in (8). Shooting from the inside has
the parameters of the series expansion and from Table I;
both (0,0) and ð2;2ÞE families have two parameters. Thus in
either case there are the needed four parameters for the
matching at r ¼ l. In [26] this type of parameter counting
was used to suggest that a (0,0) solution exists even when
the matter shell is well within the would-be horizon.
However, as we will see in Sec. II B, such an argument
is far from sufficient to ensure that any of these solutions
exist in the nonlinear regime.
In addition to the numerical study of generic CQG we

shall also develop β ¼ 0 CQG, as it leads to a simpler
numerical problem. Unfortunately it is less straightforward
to set up a thin-shell model in this case. When β ¼ 0 the
original tt and rr field equations need to be rewritten in an
equivalent form to make the differential order manifest,
namely, two second order differential equations [26]. In
analogy with the thin-shell TS1 model we want A, B0=B to
be continuous while A0 jumps across the shell. This leads to
the TS2 model where the stress tensor takes the form

TrrðrÞ ¼ AðrÞprðlÞδðr − lÞ;

TttðrÞ ¼
BðrÞ
AðrÞ ðXðrÞTrrðrÞ þ YðrÞT 0

rrðrÞÞ; ð15Þ

with X ¼ ð6B þ rB0 − 2rBA0=AÞ=ð2B − rB0Þ, Y ¼
2rB=ð2B − rB0Þ. TθθðrÞ is determined by the traceless
condition on the stress tensor

TttðrÞ=BðrÞ ¼ 2TθθðrÞ=r2 þ TrrðrÞ=AðrÞ: ð16Þ

The existence of a radial pressure and the fact that both Ttt
and Tθθ include a derivative of the delta function makes
the physical interpretation of the TS2 model somewhat
more difficult than the TS1 model.
Asymptotically flat solutions in β ¼ 0 CQG can now

be found in a similar way. For a given ðM;lÞ the metric
functions are obtained by shooting from the outside with
one parameter, and shooting from the inside with the (0,0)
or ð2;2ÞE families with one parameter, and then matching
the values of (A, B0=B) at r ¼ l. The jump for A0 then
determines the shell property prðlÞ by

A0
outðlÞ − A0

inðlÞ ¼ −8πprðlÞ
A3ðlÞl2BðlÞ

αð2BðlÞ − lB0ðlÞÞ : ð17Þ

Finally we can make a comparison to GR. The thin-shell
model in GR is similar to TS1, TttðrÞ

ffiffiffiffiffiffiffiffiffi
AðrÞp

=BðrÞ¼
σðlÞδðr−lÞ, TrrðrÞ¼0, TθθðrÞ

ffiffiffiffiffiffiffiffiffi
AðrÞp

=r2¼pðlÞδðr−lÞ.
Here pðlÞ=σðlÞ ¼ πσðlÞl=ðm2

Pl − 4πσðlÞlÞ, and it is a
jump in A that is related to the shell,

A−1=2
out ðlÞ − A−1=2

in ðlÞ ¼ −
4πσðlÞl

m2
Pl

: ð18Þ

This is all that needs to be determined according to
Birkhoff’s theorem. The matching of other continuous
quantities in CQG, which enables a rich structure in the
solution space, is simply absent in GR.

B. Asymptotically flat thin-shell solutions
in (0,0) and ð2;2ÞE families

In this section we present numerical solutions in the fully
nonlinear theory with the thin-shell model TS1 (9) in
generic CQG and with the TS2 (15) model in β ¼ 0 CQG.
Hereafter we setmPl ¼ 1. For generic CQGwe shall pick in
particular m2 ¼ m0 ¼ 1 (α ¼ 3β ¼ 1=2), and for β ¼ 0
CQG we take m2 ¼ 1. With the shooting and matching
method described in Sec. II A, we search for asymptotically
flat solutions in both the (0,0) and ð2;2ÞE families for
selected pairs of ðM;lÞ. In generic CQG (β ¼ 0 CQG) we
do parameter scans in each of the 2D (1D) spaces that
characterize shooting from both the inside and the outside,
and then determine the solution by the 4 (2) matching
conditions at r ¼ l. For β ¼ 0 CQG we shall be able to
find solutions at significantly larger values of M.
For illustration we start with small M in β ¼ 0 CQG.

Figure 2 shows how the matching works at different l for
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M ¼ 3 on the AðlÞ vs B0ðlÞ=BðlÞ plane. For there to be a
solution the red dots must intersect with either the green or
the blue dots, corresponding to the (0,0) and ð2;2ÞE families
respectively. When the shell radius l is far outside the
would-be horizon rH there are only solutions in the (0,0)
family as shown in Fig. 2(a). When l approaches
rH, solutions in the ð2;2ÞE family start to appear, and
within a range we may have solutions in both families as in
Fig. 2(b). Pushing the shell further inside rH, (0,0) solutions
no longer exist and ð2;2ÞE solutions take over as shown in
Fig. 2(c). From this it is clear that a simple counting of
parameters is far from sufficient to establish that a par-
ticular solution exists. The numerical analysis is essential to
determine which of the possible interior behaviors is the
correct one for a given l=rH. WhenM is larger, a small gap
opens up around l ∼ rH where neither type of solution can
be found, although whether this is just due to a numerical
limitation is not clear.
Finding solutions in generic CQG corresponds to

finding the intersection of 2 two-dimensional (2D) surfaces

in a four-dimensional parameter space. That such an
intersection even exists is nontrivial. We find that when
l is not much smaller than rH, the intersection successfully
determines the four parameters used in the matching. This
is true for both (0,0) and ð2;2ÞE solutions. When l becomes
small compared to rH, then a new phenomenon occurs. The
2D surface from the outside shooting becomes closer and
closer to just a one-dimensional (1D) line. The intersection
with the other 2D surface still occurs, but now because of
the finite numerical accuracy and the nearly 1D line, the
parameters governing the shooting from the outside are no
longer determined. We shall make use of the conservation
law (14) to help pin down the correct solution at small l.
Figure 3 shows examples of AðrÞ and BðrÞ solutions for

generic CQG forM ¼ 10. It shows a ð2;2ÞE solution with a
shell radius l ¼ 18.8 and a (0,0) solution with a shell
radius l ¼ 19.7. Between these two l’s we are unable to
find solutions of either type. Note that the (0,0) solution
has l < rH where a black hole would have already formed
in GR. [This was also found for a different matter source
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FIG. 2. The matching on the AðlÞ vs B0ðlÞ=BðlÞ plane at l ¼ 2, 5.7, 7 for M ¼ 3 in β ¼ 0 CQG. The red dots represent a one
parameter scan from the outside shooting, while green and blue dots are one parameter scans from the inside shooting for the (0,0) and
ð2; 2ÞE families respectively.

FIG. 3. Numerical solutions for AðrÞ and BðrÞ for M ¼ 10 in generic CQG. Left: the ð2; 2ÞE solution with shell radius l=M ¼ 1.88.
Right: the (0,0) solution with l=M ¼ 1.97. The vertical gray lines denote these l’s. The black dashed lines denote the Schd solution
while the colored dashed lines denote the series expansion solutions.
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in [11], and it is also seen in Fig. 2(b).] Both solutions
closely match the Schd solution for r > rH, for a range of r
that is finite.3 The series expansions also agree well with the
numerical solutions for most of the interior.
In the interior of the ð2;2ÞE solution, the sharp decline of

AðrÞ and BðrÞ implies a shrinking 4-volume. Also the
curvatures become super-Planckian and keep growing
toward a timelike singularity at the origin as in (7). But
since

ffiffiffiffiffiffi−gp ∼ r4, the Lagrangian density for these solutions
is finite in the whole spacetime. Figure 4 shows the r
dependence of the term

ffiffiffiffiffiffi−gp
CμνρσCμνρσ for the ð2;2ÞE and

(0,0) solutions. In the ð2;2ÞE case we see the inner structure
of the 2-2-hole that is dependent on the shell location. In
the (0,0) case curvature invariants peak at the location of
the shell. Away from the shell they approach the exterior
Schd behavior or the interior flat spacetime exponentially
quickly.
Another quantity of interest is AðrÞ=BðrÞ which defines

the tortoise coordinate, dr�=dr ¼
ffiffiffiffiffiffiffiffiffi
A=B

p
. The integration

of the tortoise coordinate determines the coordinate timeΔt
for light to traverse a certain radial distance Δr. Figure 5
(upper) shows AðrÞ=BðrÞ for the ð2;2ÞE and (0,0) solutions
at various l. For either case the ratio reaches a peak around
the radius where the deviation from the Schd solution
occurs. Inside the peak it decreases and approaches the
r ¼ 0 value, which is a2=b2 and 1=b0 for the ð2;2ÞE and
(0,0) solutions, respectively. Figure 5(lower) shows the
peak value and the r ¼ 0 value of AðrÞ=BðrÞ as functions
of the shell radius. The corresponding plots for β ¼ 0 CQG
are roughly similar.
With numerical solutions for AðrÞ and BðrÞ in generic

CQG we can obtain the conserved energy density σðlÞ
and the pressure pðlÞ from the relations (11) and (13).
These quantities are displayed in Fig. 6, and we have
confirmed that they are consistent with the conservation

law (14).4 This provides a nontrivial check of our numerical
results. For the ð2;2ÞE solution we see that for l≳ 1.25M
the dominant energy condition jpðlÞj ≤ σðlÞ is violated.
At small l, lB0ðlÞ=4BðlÞ ≈ 1=2 and so σðlÞ ∼ 1=l3. This
corresponds to Ttt and Tθθ scaling like 1=l2. For the (0,0)
solution, pðlÞ=σðlÞ quickly drops below unity for increas-
ing l, while σðlÞ approaches the prediction of the thin-
shell model in GR (18). This in turn approaches the weak
gravity limit σðlÞ ¼ M=4πl2 at large l.
In summary the thin-shell model and the special ð2;2ÞE

family nicely illustrate the complementarity between the
novel (2,2) solutions and the starlike (0,0) solutions in
describing the high and low compactness, respectively.
Also apparent are some similarities that ð2;2ÞE solutions
have with (0,0) solutions, similarities that are not shared
with black holes.

C. Large M and scaling behavior

To make a connection with astrophysical black hole
candidates we need to know the general behavior of 2-2-
holes for enormously larger masses, M ∼M⊙ ∼ 1038mPl.
To get some flavor we obtained ð2;2ÞE solutions for
M ∈ ½10; 104� in β ¼ 0 CQG and also for M ¼ 15 and
20 in generic CQG, for some values of l. These larger M
solutions continue to have features similar to what
we have presented above. But the peak in AðrÞ=BðrÞ
continues to grow and the deviation from the Schd
solution occurs closer and closer to rH. In Sec. III E we
shall study this nontrivial behavior in the peak region more
closely.
The study of these larger M solutions was sufficient to

uncover an interesting result for the interior of a 2-2-hole.
This interior, where r is at least somewhat smaller than
rH, is governed by a simple scaling law. For a given l=M
and for different masses M and ϱM, the metric functions

FIG. 4. The Weyl term
ffiffiffiffiffiffi−gp

CμνρσCμνρσ in the CQG Lagrangian for the ð2; 2ÞE (left) and (0,0) (right) solutions for M ¼ 10 in
generic CQG.

3The range is finite because one cannot ensure that the
exponentially growing modes are identically zero in a numerical
approach.

4As we have mentioned before, when l is small compared to
rH we actually use (14) to help determine the solution.
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AðrÞ, BðrÞ and any curvature invariant IðrÞ are related as
follows:

AMðrÞ ¼ ϱ2AϱMðrϱÞ; BMðrÞ ¼ ϱ2BϱMðrϱÞ;
IMðrÞ ¼ IϱMðrϱÞ: ð19Þ
With increasing M the scaling region expands so that it
applies to r=M closer and closer to rH=M ¼ 2. This
scaling is in contrast to the behavior of the Schd solution
which has AMðrÞ ¼ AϱMðrϱÞ, BMðrÞ ¼ BϱMðrϱÞ, and
IMðrÞ ¼ ϱ2nIϱMðrϱÞ, where the dimension of IðrÞ is 2n.

So given the l dependent 2-2-hole solutions at oneM, we
now know the 2-2-hole interior solutions for any largeM. We
find thatρ andpr that appear in the two thin-shellmodels scale
asM, as canbe seenbyapplying the scalingof (19) to the jump
conditions (11) and (17), respectively. The conserved energy
density σ then scales asM0 and is thus only a function ofl=M
[the l=M dependence is further constrained by (14)]. This
is quite unlike the weak gravity result σ ¼ M=4πl2 ∼M−1

for fixed l=M. Equation (19) also implies that the ratio
AðrÞ=BðrÞ and the volume element factor

ffiffiffiffiffiffi−gp
, as functions

of r=M inside the 2-2-hole, are independent of M.

FIG. 5. Upper: the ratio AðrÞ=BðrÞ with M ¼ 10 at different l for the ð2; 2ÞE and (0,0) solutions in generic CQG. Lower: the peak
value and the interior constant value of the ratio as a function of l.

FIG. 6. The energy density σðlÞ and the ratio pðlÞ=σðlÞ with M ¼ 10 for the ð2; 2ÞE and (0,0) solutions in generic CQG.
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The scaling behavior (19) also determines the M scaling
of the coefficients in the series expansion of AðrÞ and BðrÞ
such that a2, b2 ∼M−4 and ai∼b2bi∼M−i−2 for i > 2. This
then determines the leading in 1=M contributions to various
quantities that are calculated in terms of these coefficients.
We show the series expansions in this limit for generic
and β ¼ 0 CQG in the Appendix. A few reference values
are ½l=M;a2M4;b2M4;b4M2�¼½0.6;0.053;6.0×10−4;0.48�,
[1.8, 0.104, 1.1 × 10−4, 0.34] for generic CQG and
½l=M;a2M4;b2M4� ¼ ½0.4;0.048;6.1×10−4�, [1.8, 0.009,
1.4 × 10−4] for β ¼ 0 CQG.
The surprisingly simple scaling behavior (19) may be

related to the dynamics around rH, at which the drastic
change of behavior of curvature invariants occurs. Outside
rH, curvature invariants follow the Schd prediction and
are highly suppressed at large M. Around rH, quadratic
terms in the Lagrangian become comparable to the linear
one, and curvature invariants start to respond to the
dynamical scale mPl. Inside rH, since AðrÞ; BðrÞ ≪ 1,
curvature invariants with dimension 2n can be well
approximated as 1=ðAðrÞr2Þn times a function of the
quantities riAðiÞðrÞ=AðrÞ, rjBðjÞðrÞ=BðrÞ. The fact that
curvature invariants around rH are mainly determined
by the Planck scale dynamics suggests that AðrHÞr2H
should be quite independent of rH. This provides
some hint for the behavior of AðrÞ and IðrÞ in (19). As
for BðrÞ, although its overall scale is undetermined by
field equations, its derivatives enter similarly to those
of AðrÞ.
Since we have a static configuration, we can consider a

4-volume that is a time interval T times the integration over
some spatial region C, i.e. V ≡ R

C drdθdϕ
ffiffiffiffiffiffi−gp

. Then (19)
implies that the interior region contribution to V only grows
with M. As an indication of how small the interior volume
is, we find that a sphere centered at the origin having only
one Planck volume has quite a large radius r ∼ 2.6M4=5.
Another indication is that the proper distance from the
origin out to a radius of 1.8M is only about one Planck

length.5 We have mentioned that the vanishing volume is
related to the finiteness of the action for the 2-2-hole. The
scaling law implies that SCQG ∼ TM, and we find that the
coefficient is close to unity.
Finally it is interesting to see how curvature invariants

behave around rH and how they depend on M. We can
zoom in on this region by using the tortoise coordinate r�.
Figure 7 shows

ffiffiffiffiffiffi−gp
CμναβCμναβ,

ffiffiffiffiffiffi−gp
RμναβRμναβ in generic

CQG (left) and β ¼ 0 CQG (right). At a particular radius
outside of rH the Weyl tensor square drops zero. The two
theories clearly differ in the interior, and some of this
difference is due to the different thin-shell models. At rH
the curvature invariants are significantly below the Planck
size for β ¼ 0 CQG, and the same is also true for generic
CQG when the shell radius l is smaller. In the full quantum
theory, QQG, it could be that quantum effects only become
very significant for a small radial range that is inside rH
where the curvatures are not much smaller or larger than
Planck size. At the location of the AðrÞ=BðrÞ peak,
quantum effects may still not be very significant. And
for the rapidly growing curvatures in the deep interior the
difference between the constant couplings of CQG and the
running couplings of QQG should be of minor importance.
Thus it could be that many of the properties of 2-2-holes
that we have been discussing in CQG will continue to hold,
in some approximation, in QQG.

III. PHYSICAL PROPERTIES OF 2-2-HOLES

The 2-2-hole may be the generic end point of gravita-
tional collapse in quadratic gravity. In this section we
explore some physical properties of 2-2-holes as the first
step to relate them to astrophysical black hole candidates.
In some of the discussion we shall be assuming that the
thin-shell solutions generalize to solutions with more
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FIG. 7.
ffiffiffiffiffiffi−gp

CμναβCμναβ,
ffiffiffiffiffiffi−gp

RμναβRμναβ as functions of r�=M for l=M ¼ 1.8 with differentM in generic CQG (left) and β ¼ 0 CQG
(right). The vertical gray lines denote rH for each case. r� ¼ 0 corresponds to the origin r ¼ 0.

5The fact that the “radial size” of a 2-2-hole isOðΛQQGÞ brings
a closer analogy to QCD where the size of hadronic states are
characterized by the QCD scale.
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general matter distributions. One indication that this holds
is the mild effect that a smooth matter distribution has on
the series expansion of the (2,2) family. More details and
other topics will have to be left for elsewhere.

A. Radial stability

Since we are studying the question of stability here, we
need to mention again that CQG has an intrinsic instability
due to the presence of a Planck mass spin-2 ghost. But as we
have discussed in Sec. I we are assuming that this is not a
feature of QQG in both the low and the high curvature
regimes. ThusweonlyuseCQGto study stabilitywith respect
to the large scale perturbations in the matter distribution,
which in our casewe take to be a radialmovement of the shell.
As a common practice in GR the stability of a back-

ground solution against radial perturbations can be studied
as a variational problem, and we shall carry over this
procedure to CQG. For the thin-shell model the two field
equations can be reformulated as two equivalent equations.
One specifies the physical mass as a function of the shell
energy density and the shell radius, i.e. M ¼ Mðσ;lÞ. The
other can be derived from the first variation ofMðσ;lÞ after
implementing the conservation law (12),

δM ¼ ∂M
∂σ δσ þ ∂M

∂l δl ¼ δσ

�∂M
∂σ −

l
2ðσ þ pÞ

∂M
∂l

�
¼ 0:

ð20Þ

Then the radial stability can be inferred from the second
variation of M, i.e. whether δ2M > 0. It depends on the
speed of sound c2s ≡ ∂p=∂σ of the shell matter. If δ2M > 0

with c2s ∈ ð0; 1Þ, then a radially stable configuration can be
supported by some reasonable matter. We implement the
analysis for the (0,0) and ð2;2ÞE families, respectively, each
of which has a one-to-one mapping between M and σ for
the respective range of l.
Here we focus on the TS1 model in generic CQG. From

(20) the second variation of M is

δ2M ¼ δσ2
l

2ðσ þ pÞ2
∂M
∂l c2s þ � � � ¼ δσ2

σ þ p
∂M
∂σ c2s þ � � � ;

ð21Þ
where � � � represents terms independent of the speed of
sound. In the second step the coefficient of c2s is simplified
by (20). With only numerical solutions we have no access
to the full expression Mðσ;lÞ, and the bound on c2s cannot
be derived analytically from δ2M > 0. However, we do
know how p and σ change if the variation is restricted
within the solution space for a given M. This defines the
critical speed of sound c2s0, where δ

2M ¼ 0 when c2s ¼ c2s0,

c2s0 ¼
∂p
∂σ

����
M
¼ dp=dl

dσ=dl
¼ p

σ
þ σ

dσ=dl
d
dl

�
p
σ

�
: ð22Þ

c2s0 can be inferred from the l dependence of σ and p=σ
from numerical solutions with a givenM as in Fig. 6. Since
σ, p, and ∂M=∂σ are all positive, the radial stability
condition δ2M > 0 sets a lower bound on the speed of
sound for the shell matter from (21), i.e. c2s > c2s0. If
c2s0 < 1, then it is possible that reasonable matter can
support the 2-2-hole in a way that is stable against radial
perturbations.
Figure 8 shows the critical speed of sound (22). For the

ð2;2ÞE case c2s0 < 1 holds at any l that we can find a
solution. Around the origin c2s0 ≈ lB0ðlÞ=4BðlÞ ≈ 1=2 is
derived from the general form of the series expansion. The
term with the gradient of p=σ in (22) gives a negative
contribution to c2s0 and causes c2s0 to drop down quickly at
larger l. For large 2-2-holes the scaling law with respect
toM shows that σ and p=σ are only functions of l=M, and
so the form of c2s0 in Fig. 8 should apply for any M. The
(0,0) solution with l not much larger than rH has c2s0 > 1,
which implies radial instability for any reasonable
matter. c2s0 decreases monotonically and approaches the
GR prediction at large l. The condition c2s0 < 1 can be
achieved at l=M ≳ 2.3.

FIG. 8. The critical speed of sound at different shell radii withM ¼ 10 for the ð2; 2ÞE and (0,0) solutions. The dashed line denotes the
GR prediction.
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Although we focus on the subclass ð2;2ÞE in this work,
the issue of stability raises the question of the existence of
solutions in the (2,2) family outside of ð2;2ÞE. In the case of
β ¼ 0 CQG we were able to find some examples of such
solutions, where again l≲ rH. So it may be the case that
there is more than one solution for some given matter, each
with a differentM. Presumably only the one with the lowest
M can be stable. We leave a study of this extended solution
space and its implications for stability for later.
The radial stability analysis in the thin-shell model

provides some hint to how gravitational collapse proceeds
in quadratic gravity. The (0,0) solution with l ≫ rH
corresponds to a normal stable star. With more matter
added onto the star an instability can develop, as we found
for a shell when l approaches rH. A gravitation collapse
occurs, concentrating matter further such that (0,0) solu-
tions no longer exist. With such dense matter and the
existence of the horizonless ð2;2ÞE solution, the object can
turn into a 2-2-hole. Instead of metric components chang-
ing sign as for a black hole, a timelike singularity appears.
And instead of matter moving inexorably toward the
singularity of the black hole, an extended matter distribu-
tion can remain in the 2-2-hole. But while the 2-2-hole does
seem to present a less pathological collapse scenario,
certainly much more is needed to show that this is what
actually occurs.

B. Point particle geodesics and trapping

Point particles geodesics provide the simplest way to
probe a curved spacetime. On a static, spherically sym-
metric spacetime (3) it suffices to study the geodesic on the
equatorial plane θ ¼ π

2
. The motion is governed by two

conservation laws,

dt
dζ

¼ E
BðrÞ ;

dϕ
dζ

¼ L
r2
: ð23Þ

The only nontrivial geodesic equation is for the radial
motion,

AðrÞBðrÞ
�
dr
dζ

�
2

þ BðrÞ
�
L2

r2
þ ϑ

�
¼ E2: ð24Þ

For massive (massless) particles ϑ ¼ 1ð0Þ, ζ is the proper
time τ (the affine parameter ζ). Since AðrÞ, BðrÞ remain
regular and positive for the horizonless object, the quali-
tative features of the radial motion can be determined by the
potential terms BðrÞðL2=r2 þ ϑÞ in (24).
We compare the r dependence of the two terms in the

potential, BðrÞ=r2 and BðrÞ, in Fig. 9(a). The second
term is only present for massive particles, and it only
dominates at large r. We compare different asymptotically
flat spacetimes, the negative mass Schd (NMS) space-
time, the Reissner-Nordström spacetime with a naked
singularity (RNN) with Q ¼ 1.5M, and the gravastar with
R ¼ 2.001M, Mv ¼ 0.8M.6 For the 2-2-hole we use β ¼ 0
CQG with M ¼ 10, 100 with l=M ¼ 0.4. The various
potentials BðrÞ=r2 differ drastically at small radius. For the
RNN, NMS, and gravastar spacetimes the diverging poten-
tial corresponds to the centrifugal repulsion for a particle
with nonzero angular momentum. In contrast any geodesic
that enters the 2-2-hole will go through the origin, as the
potential inside rH drops down quickly and approaches a
small constant at the origin, i.e. BðrÞ=r2jr¼0 ¼ b2. A 2-2-
hole with astrophysical size is then characterized by an
extremely deep gravitational potential since b2 ∼ 1=M4. A
gravastar would need extreme fine-tuning to achieve a
potential this deep.
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FIG. 9. (a) The angular momentum potentialM2BðrÞ=r2 (solid curves) and the mass contribution BðrÞ (dotted curves) in the geodesic
equation for different types of spacetime. (b) The values of E and L=M for which the turning point of massive particles is larger than 3M.
Black lines have turning points 3M and ð3þ 10pÞM for p ¼ −1, −0.5, 0, 0.5, 1, 1.5, 2 from left to right. Below the red straight line
massless particles can escape to infinity.

6The metric for the NMS: BðrÞ ¼ AðrÞ−1 ¼ 1þ 2M=r with
M > 0. The metric for the RNN: BðrÞ ¼ AðrÞ−1 ¼ 1�2M=rþ
Q2=r2 with Q > M > 0. The metric for the gravastar [16]:
BðrÞ ¼ AðrÞ−1 ¼ 1–2M=r when r > R; BðrÞ ¼ cAðrÞ−1 ¼
cð1 − 2Mvr2=R3Þ when r≤R, with c¼ð1−2M=RÞ=ð1−2Mv=RÞ
and M > 0.
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Circular orbits for massless particles, i.e. light rings, exist
if dr=dζ ¼ 0 and d2r=dζ2 ¼ 0, i.e. 2BðrcÞ ¼ rcB0ðrcÞ,
E2=L2 ¼ BðrcÞ=r2c. The NMS and RNN spacetimes do
not have any light rings. The Schd metric has an unstable
light ring (the maximum of the potential) at rc=M ¼ 3 with
M2BðrcÞ=r2c ¼ 1=27, as denoted by the vertical line in
Fig. 9(a). Massless particles with L2=E2 < 27M2 can pass
over the angular momentum barrier, from both the outside
and the inside. As examples of ultracompact objects, both
the gravastar and the 2-2-hole closely resemble the Schd
solution down to the would-be horizon and possess the
same unstable light ring. The gravastar has another stable
light ring at a smaller radius due to the potential having a
minimum before diverging at the origin. This is a common
feature of ultracompact stars, which implies the existence
of long-lived modes and various types of instabilities [30].
Since rB0ðrÞ > 2BðrÞ for r≲ rH, the 2-2-hole has no

additional light rings or circular orbits for massive particles
in addition to what the Schd black hole has.
The geodesics inside a 2-2-hole are far from circular.

From the two conservation laws the angular velocity of a
geodesic in coordinate time is dϕ=dt ¼ LBðrÞ=Er2. But
L2=E2 is bounded from above by r2=BðrÞ. (This bound can
be achieved for massless particles at a turning point, where
dr=dζ ¼ 0 and d2r=dζ2 < 0.) Thus for geodesics inside
the 2-2-hole dϕ=dt≲ ffiffiffiffiffi

b2
p

∼ 1=M2. Meanwhile the radial
velocity is dr=dt ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ=AðrÞp

away from the turning
point of the geodesic. Then for largeM the radial velocity is
much larger than the angular velocity rdϕ=dt, and so away
from the turning points the paths of geodesics in the interior
are nearly straight lines (in this coordinate system).
What happens when particles of momentum pμ

1 and pμ
2

collide inside the 2-2-hole? The center of mass energy for a
two particle collision is

E2
cm ¼ gμνðpμ

1þpμ
2Þðpν

1þpν
2Þ¼m2

1þm2
2þ

2

BðrÞ

2
64E1E2− κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1−BðrÞ

�
m2

1þ
L2
1

r2

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2−BðrÞ

�
m2

2þ
L2
2

r2

�s
−L1L2

BðrÞ
r2

3
75;
ð25Þ

where pμ ¼ mdxμ=dτ, E ¼ mE, L ¼ mL for massive
particles and pμ ¼ dxμ=dζ, E ¼ E, L ¼ L for massless
particles. κ ¼ 1, −1 denotes whether the radial velocities
of two particles are in the same or opposite direction. The
center of mass energy can easily be enormous. For
example a collision of radially moving particles with κ ¼
−1 results in a center of mass energy E2

cm ≈ 4E1E2=BðrÞ.
This could be super-Planckian even at a radius r that is
not very close to the origin, due to the extreme smallness
of BðrÞ for a large 2-2-hole. Thus gravitation in the form
of a 2-2-hole can yield a robust ultrahigh energy particle
collider.7

Supermassive particles and particles in hidden sectors
can be created. While massless particles might escape to
infinity (but see below), massive particles with E < 1
cannot. Note that the enormous center of mass energies
can result in large parton showers that dramatically increase
the particle number and reduce the typical energy per unit
mass E. This traps the massive particles by shifting the E
distribution lower. Particles on the high energy tail could
still be observed in trapped noncircular orbits that extend
outside of r ¼ rH and even the light ring r ¼ 3

2
rH. The

values of E and L=M for which the turning point is outside
the light ring are shown in Fig. 9(b).

The deep gravitational potential implies another phe-
nomenon that shrouds this particle accelerator from
outside observers even more. For example a particle
with mostly radial momentum before the collision can be
scattered to have mostly angular momentum after the
collision. From (25) and conservation of momentum,
L2=E2 of the final particle can be as large as ∼r2=BðrÞ.
Since the latter scales like b−12 ∼M4 and a massless
particle needs L2=E2 < 27M2 to escape, this particle now
faces an enormous angular momentum barrier that
prevents escape. The range of L=M shown in Fig. 9(b)
thus represents just a tiny fraction, of order 1=M, of the
range of possible L=M.
The escape probability can be estimated in the

center-of-mass frame of the particle collision. The
propagation direction of a particle in the final state
can be defined by the angle χ with respect to the radial
direction in the orthonormal basis. Ignoring the par-
ticle’s mass this is

tan χ ¼ rdϕffiffiffiffiffiffiffiffiffi
AðrÞp

dr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2BðrÞ=E2r2

1 − L2BðrÞ=E2r2

s
: ð26Þ

The escape condition L2=E2 < 27M2 then implies that
j sin χj < 3

ffiffiffiffiffiffiffiffiffiffiffiffi
3BðrÞp

M=r. The ordinary velocity vector
must lie in a small cone of solid angle πχ2 around
the radial direction. For an isotropic distribution of the
final state particles, the portion of phase space where

7There have been similar considerations for a rapidly rotating
Kerr black hole when collisions take place near the horizon with
fine-tuned kinematics [31]. Collisions in horizonless spacetimes
with regions of small BðrÞ were considered in [32].
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escape can occur is then tiny, χ2 ∼ b2M2 ∼ 1=M2.8 This
shows an efficient trapping mechanism. A particle
falling into a 2-2-hole is easily pushed outside the
escape cone through collisions with matter already in
the interior, making it effectively trapped.
We can consider the effect of this trapping on the

massless particles, since massive particles can be effec-
tively trapped by the energy barrier. The time it takes for a
significant fraction of the massless particles to escape is the
cooling time. If there was no trapping of massless particles,
then this cooling time may be roughly the crossing time that
is of order M. The trapping means that only the massless
particles in a tiny part of phase space at any given time
can escape. This suggests that the actual cooling time is
increased by a factor of orderM2. Thus a rough estimate of
the cooling time of a 2-2-hole isM3=m4

Pl after reintroducing
the factors of mPl. This is an enormous time since it is of
the same order as the lifetime of a similarly sized black
hole.9 It also implies that the luminosity of a 2-2-hole is
extremely small.
During a gravitational collapse a 2-2-hole may be formed

when enough mass falls inside a would-be horizon. Then
internal collisions populates a large trapped phase space as
we have described. A tiny fraction of the particles can
exist on orbits that temporarily escape the 2-2-hole and fall
back in, to form a trapped cloud. But the cloud of massive
particles that could exist outside the light ring should
disappear due to degradation of typical E’s from inelastic
collisions. Any later accretion of matter onto the 2-2-hole
would seem to be effectively absorbed with very little
induced emission due to the trapping mechanism.
Accretion would simply cause an increase in the 2-2-hole
mass. If so, then the 2-2-hole is more like a black hole
in this respect and it may escape constraints on surface
emission [33,34].

C. Regular field dynamics

We have seen that interior geodesics end at the origin
within a finite proper time. The geodesic incompleteness is
a common way to define a singularity, and it plays an
important role in the proof of the singularity theorem in
GR. But this may or may not point to an actual physical
ambiguity. Because of the asymptotically free nature of

QQG, probing the timelike singularity in the high curvature
region should be addressed within quantum field theory
(QFT) in curved spacetime. The probes are then the particle
states of the QFT. These states include the graviton as well
as particles in the matter sector that also may well be
asymptotically free. But before dealing with QFT we
should first confirm that relativistic classical field theory
is well defined. And within classical field theory we can
consider finite energy wave packets as the probes of
interest. Indeed, the nonrelativistic Schrodinger equation
seems not to be very useful here since, as we have seen,
particles tend to be highly relativistic around the
singularity.
Here we consider the Klein-Gordon equation for the

massless spin-0 scalar field. With the line element (3),
□φ ¼ 0 becomes

∂2
tψ l ¼

B
A
∂2
rψ l þ

B
A

�
2

r
þ B0

2B
−

A0

2A

�
∂rψ l

− B
lðlþ 1Þ

r2
ψ l ≡Aψ l: ð27Þ

The angular variables are separated using spherical har-
monics φ ¼ P

lmψ lðr; tÞYlmðθ;ϕÞ. The spacetime could
be defined with the singular point at r ¼ 0 removed.
Approaching the problem naively, one could still examine
the behavior of solutions of (27) around the origin. Any
solution that has diverging energy as r → 0 could be
discarded on physical grounds. If for each l there is a
unique remaining solution, then it would appear that the
evolution of classical fields proceeds without ambiguity.
We can put this in the context of an existing mathemati-

cal procedure for defining the field dynamics on a singular
and so-called inextendible spacetime, as introduced by
Wald [18]. Here A is viewed as an operator on a Hilbert
space of fields on a constant time hypersurface Σ. The
problem is to see whether there is a unique positive self-
adjoint extension of the operator A on the Hilbert space, as
denoted by AE. This “essentially self-adjoint” operator
[35], if it exists, generates a solution from the initial data via
a time translation using A1=2

E . The initial value problem of
the wave equation (27) is then well-posed and the singu-
larity has introduced no ambiguity.
The existence of AE is tied to the appropriate choice of

the Hilbert space. We follow [36] to define the Hilbert
space as the first Sobolev space H1. This requires that
both the field and its first derivative be square integrable.
In particular the Sobolev norm is chosen such that its
finiteness is equivalent to the finiteness of the energy
E ¼ R

Σ dΣnμT
μνξν.

10 This energy is conserved for a static
background due to the existence of the timelike Killing

8Similar effects occur for the Schd metric. For example the
escape cone for radiation from some surface located at radius
r ¼ rH þ lPl has a solid angle χ2 ¼ 27BðrH þ lPlÞ=4 ∼ 1=M
[33]. Or consider radiation from an object located far from a black
hole, R ≫ rH . Only a tiny portion of the radiation falls into the
black hole because typically L2=E2 ∼ R2 ≫ 27M2.

9Even if the use of the crossing time is not correct and the
cooling time is a factor ofmPl=M smaller, it is still many orders of
magnitude larger than the age of the universe for M ∼M⊙. Also
the picture we have described here assumes that an interacting
gas of particles is an appropriate description of matter inside the
2-2-hole.

10nμ ¼
ffiffiffiffi
B

p
δtμ is the unit normal vector to Σ. The induced

metric on Σ is hij¼diagðAðrÞ;r2;r2sinθ2Þ and dΣ¼ ffiffiffi
h

p
drdθdϕ.
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vector ξν and the fact that Tμνξν is a conserved current.
Thus the Hilbert space of finite energy configurations is
consistent with the time evolution. In fact a conserved
energy was used in [37] to prove that the mathematical
procedure in [18] represents the only possible way to define
the dynamics of a scalar field in a static, nonglobally
hyperbolic spacetime.
The Sobolev norm can be chosen to be

kfk2¼ 1

2

Z
Σ
dΣB−1=2f�fþ1

2

Z
Σ
dΣB1=2hijDif�Djf: ð28Þ

For the test scalar field, after separation of angular
variables, this becomes

kφk2 ¼
X
l

Z
∞

0

drr2
�
1

2

ffiffiffiffi
A
B

r
ψ2
l þ

1

2

ffiffiffiffi
B
A

r
ðψ 0

lÞ2
�
: ð29Þ

The essential self-adjointness is guaranteed if only one
solution of A ¼ 0 as defined in (27) has a finite Sobolev
norm in the small r region.11 We compare the 2-2-hole with
the gravastar and the singular NMS and RNN spacetimes
around the origin in Table II. This shows the behavior of
two linearly independent solutions at small r, and the
number of solutions with a finite norm in the final column.
For the first three spacetimes the second solution ψ l2ðr; tÞ is
not Sobolev finite. Thus for these spacetimes AE exists and
the timelike singularity is regular as probed by finite energy
wave packets.
For the 2-2-hole we see that the small r behavior of

waves is independent of angular momentum; indeed they
all behave like the S wave on a nonsingular spacetime. We
have already seen that geodesics do not see an angular
momentum barrier at the origin. Also, only for the 2-2-hole,
ψl1ðr; tÞ actually satisfies a Neumann boundary condition
at r ¼ 0, namely ∂ψl1ðr; tÞ=∂rjr¼0 ¼ 0 for any l.
For the RNN spacetime the operator AE does not exist.

The problem is also apparent by seeing that the allowed
solutions in this case can imply a loss of unitarity (a net
flux in or out of the singularity). To obtain a sensible
boundary condition for the RNN spacetime one might
impose unitarity as an external constraint [38]. This is not
necessary for the other spacetimes.

We note that both the NMS and RNN spacetimes are
exact vacuum solutions of CQG. But like the Schd solution,
none of these exact solutions are sourced by matter. Since
the theory provides another set of solutions, the (2,2)
solutions, which along with the (0,0) solutions show
how spacetime actually responds to matter, these exact
singular solutions are relegated to providing useful approx-
imations in vacuum regions where the CQG corrections are
exponentially small. (The NMS solution may not even have
this role to play or otherwise there would presumably be a
vacuum instability [39].)
We only briefly speculate about how states as described

by QFT would interact with the 2-2-hole background. The
problem here is somewhat analogous to the treatment of
Rutherford scattering as an external field problem in QFT.
But there are complications. We have seen that particles can
be accelerated to Planckian energies as they fall in. Thus
when there is a momentum transfer between the back-
ground field and the particle, this momentum may also be
Planckian in size. But with Planckian momentum transfers
the effective graviton-matter coupling is of order one. Thus
rather than simply scattering, the particle may initiate a type
of graviton parton shower in the 2-2-hole interior.

D. A brick wall and entropy

Here we consider the statistical mechanics of a quantized
scalar field in the background of a 2-2-hole. It proves to be
very simple to carry over the analysis initiated in [40] and
further interpreted in [41], for the brick wall model of the
black hole entropy. In this model the scalar wave equation
on the Schd background is considered with a Dirichlet
boundary condition at the “brick wall” located just slightly
outside the black hole horizon. This gives a discrete set of
modes when the fields are also required to vanish at a large
radius L ≫ rH. The 2-2-hole gives a very similar problem
where we can return to the scalar equation (27) and use the
Neumann boundary condition ψ 0

lð0Þ ¼ 0 that we have
already motivated. Now the “brick wall” is at the origin12

and the result is again a discrete set of modes. The WKB
approximation used in [40,41] can also be carried over.
Since the analysis remains so similar we just give the
results. The entropy S and total thermal energy U are

S ¼ ð2πÞ3
45

Z
L

0

TðrÞ3AðrÞ1=2r2dr; ð30Þ

U ¼ 3

4
T∞S: ð31Þ

TðrÞ≡ T∞=
ffiffiffiffiffiffiffiffiffi
BðrÞp

is the local temperature. The large
volume contribution to S that scales like L3 is not of
interest here. Compared to the original results, the inverse

TABLE II. Near origin behaviors for different spacetimes.

Spacetime AðrÞ BðrÞ ψ l1ðr; tÞ ψ l2ðr; tÞ Num

2-2-hole r2 r2 1 r−1 1
Gravastar r0 r0 rl r−ðlþ1Þ 1
NMS r r−1 1 ln r 1
RNN r2 r−2 1 r 2

11The mathematical procedure is to study Aψ l ¼ �iψ l, but
the iψ l term will be irrelevant at small r. The same is true for a
mass term.

12In both problems the wall is at a finite value of the tortoise
coordinate r�.
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relationship between AðrÞ and BðrÞ that is assumed in
[40,41] has been relaxed and the r integral now ranges
down to zero.
The observation from [41] is that there is another

contribution to the local energy density that should appear
in the field equations, and that is the background dependent
renormalized vacuum energy density. Since the metric is
horizonless and static, the fields are naturally quantized
with respect to the Killing time. This leads to the negative
Boulware vacuum energy density. For an appropriate
T∞ and in the region where TðrÞ is reaching its highest
values, the two contributions to the energy density can be
made to cancel. In the case of [41] this occurs when
T∞ ¼ THawking ≡ 1=8πM. Then for this temperature the
sumof these two energy densities causes negligible orminor
backreaction on the metric, and in this way the temperature
is determined in a self-consistent way.
In the respective calculations of the thermal and vacuum

energy densities, very similar mode sums are being
performed. Their cancellation in the region where each
are receiving large small wavelength contributions indi-
cates that the effective UV cutoff TðrÞ in the thermal case is
being chosen to match the effective UV cutoff in the
renormalized vacuum energy calculation. We expect that
the same arrangement can be made for the 2-2-hole
background for some T∞ ∝ THawking. For the 2-2-hole a
third contribution to the energy density is the nonthermal
matter component, as represented in our solutions by the
thin shell of matter. When the vacuum and thermal
components largely cancel, then we can expect the metric
solution to be very similar to what we already have. But
even if they do not largely cancel, there may still be other,
less similar 2-2-hole solutions.
Let us focus on the M dependence of the entropy in the

case T∞ ∝ THawking. We have

S¼
�

T∞

THawking

�
3 1

2880

1

M3

Z
L

0

AðrÞ1=2BðrÞ−3=2r2dr: ð32Þ

Besides the trivial L3 contribution, the dominant contribu-
tion comes from the interior of the 2-2-hole where the large
M scaling law for AðrÞ and BðrÞ applies. The integrand in
(32) is quite uniform in r in the interior, and it gives a
contribution to the integral that scales like M5. This results
in an area law for the entropy of a 2-2-hole, S ∝ M2.
This entropy due to a single scalar field with T∞ ≈

THawking turns out to be similar in size to the Bekenstein-
Hawking entropy. In the original brick wall model the
wall location has to be tuned to obtain such a value. Our
numerical solutions also show that the contribution to S
from the region r > rH where AðrÞ, BðrÞ still differ
significantly from unity is 3 or 4 orders of magnitude
smaller. And this contribution is even less significant in our
extrapolation to very large 2-2-holes as long as the power η
discussed in the next section is not greater than 2.

Thus we have found an intriguing connection between
the scaling behavior of the interior 2-2-hole solution and
an area law for entropy. Also for T∞ ≈ THawking the total
thermal energy U is of order M. The local temperature of
this thermal component in the deep interior is super-
Planckian, TðrÞ≳M=r, and so the timelike singularity
is effectively shrouded by its own fireball.

E. A time delay to probe the internal structure

Recently it has been argued that whether an horizonless
ultracompact object or a black hole is formed from a compact
binary coalescence, the early stage of the postmerger ring-
down phase of the gravitational waves can be identical
[20,21]. This was seen by studying some toy models of
metric and scalar perturbations for various ultracompact
objects. The initial ringdownwaveform is associatedwith the
excitation of the unstable light ring. But unlike a black hole,
the resulting wave that enters the compact object can be
reflected back by the interior. We have seen that the 2-2-hole
has such a reflecting type of boundary condition at r ¼ 0.
The wave coming back out can then be partially reflected
back in due to the light ring barrier. The result is a series of
echoes of the initial ringdown. In principle some information
about the oscillation modes of the interior can be imprinted
on these echoes. But the numerical examples in [21] seem to
suggest that at least for the first few echoes, the light ring
modes are simply being reexcited after each round trip of the
interior traveling wave. It is the time delay between echoes
that may provide the most accessible information about
the interior. Our main interest here then is to estimate what
this time delay is for an astrophysical 2-2-hole. We shall also
look at some more features of the wave equation that are
peculiar to the 2-2-hole.
The time delay is roughly the coordinate time that light

takes to traverse through the ultracompact object starting
from the light-ring radius of r ¼ 3M. Since the radial speed
of light in coordinate time is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ=AðrÞp

, the time delay is

Δt ¼ 2

Z
3M

0

ffiffiffiffiffiffiffiffiffi
AðrÞ
BðrÞ

s
dr ¼ 2

Z
r�ð3MÞ

r�ð0Þ
dr�: ð33Þ

In other words, it is twice the range of the tortoise
coordinate from the origin to the light ring. For the 2-2-
hole with large M, the ratio AðrÞ=BðrÞ reaches a narrow
peak around rH before sharply dropping to a constant in the
interior. We find that Δt is quite sensitive to the behavior
of solutions around the peak region. To explore this we
use the thin-shell solutions found in β ¼ 0 CQG with
M ∈ ½10; 104� and l=M ¼ 0.4 for the extrapolation to an
astrophysical 2-2-hole.
Figure 10(a) shows the growth of the peak offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ=BðrÞp

near rH for increasingM. Assuming the peak
value occurs at a radius rpeak ¼ rHð1þ δÞ that is also close
to where the deviation from the Schd metric occurs, then
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ffiffiffiffiffiffiffiffiffi
A=B

p
peak ∼ ð1 − rH=rpeakÞ−1 ≈ 1=δ. Our numerical results

are used to determine the power η in δ ∼ 1=Mη. We find η to
be slowly increasing up toM ∼ 104, where η ≈ 1.75, and that
it appears consistent to have an asymptotic value around
2 (or at least to be around 2 for an astrophysical sized M).
The proper distance from the peak to the would-be horizon
is roughly

ffiffiffiffi
A

p
peakðrpeak − rHÞ ∼ rH

ffiffiffi
δ

p
∼M1−η=2. Thus our

estimatewith η ≈ 2 turns out to be consistent with the proper
distance being of order the Planck length.
To see howΔt varies withM, we split the integration into

three regions: Δt1 for ½0;M�, Δt2 for ½M; rpeak�, and Δt3 for
½rpeak; 3M�. The outer contribution Δt3 turns out to be the
largest, and it is closely approximated by an integration
of 1 − 2M=r from rpeak to 3M which gives Δt3=M ∼
4 ln δ−1 ∼ 4η lnM. For our extrapolation of Δt3 we use η ¼
1.75 and 2 to set the lower and upper bounds, respectively.
The integration from ½0;M� is roughly a constant, with
Δt1=M ∼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
a2=b2

p
, whereas the integration from ½M; rpeak�

also includes the inner part of the peak. The latter can be
defined by Δt2 − Δt1 and is found to increase gradually.
Figure 10(b) shows that Δt2 − Δt1 grows slower than Δt3,
which can also be seen from the asymmetric shape of
the peak in Fig. 10(a). We assume that the extrapolation of
Δt2 − Δt1 is bounded by two straight lines as functions
of lnM, one with zero slope and the other with the slope of
Δt2 − Δt1 atM ¼ 104. Combining the various contributions
our estimate for the time delay is

700þ 7 ln
M

30 M⊙
≲ Δt

M
≲ 860þ 9 ln

M
30 M⊙

: ð34Þ

For M ∼ 30 M⊙ the time decay Δt is in the 100–125 ms
range. It should be noted that this estimate is obtained for a
particular l=M within β ¼ 0 CQG. But it indicates that an
astrophysical 2-2-hole naturally has a time delay Δt sig-
nificantly longer than the black hole ringdown damping time
of a few ms. An initial analysis of Advanced LIGO data has
already looked for echoes of the ringdown with time delays
that are similar to our estimate [25].

Next we explore more features of the wave equation. It is
convenient to rewrite the radial equation (27) to make it
resemble the Schrodinger equation. The linear derivative
term is eliminated by defining ψ lðr; tÞ ¼ e−iωtΨlðrÞ=r and
by using the tortoise coordinate,

ð∂2
r� þ ω2 − VlðrÞÞΨl ¼ 0;

VlðrÞ ¼ BðrÞ lðlþ 1Þ
r2

þ 1

2r
BðrÞ
AðrÞ

�
B0ðrÞ
BðrÞ −

A0ðrÞ
AðrÞ

�
: ð35Þ

For the 2-2-hole and the black hole, VlðrÞ is the same until
r is very close to rH. For the black hole, VlðrHÞ ¼ 0 where
rH corresponds to r� ¼ −∞. For the 2-2-hole r extends
down to r ¼ 0which now corresponds to a finite value of r�
and where Vlð0Þ is finite. We can then choose r�ð0Þ ¼ 0.
For the NMS and RNN spacetimes, VlðrÞ in contrast has a
singular 1=r2� behavior.
In Fig. 11 we display the potential M2VlðrÞ of the 2-2-

hole, for various M and for l ¼ 1 and 0. When l ≠ 0, the
potential at the large radius is dominated by the unstable light
ring peak at r ¼ 3M withM2VlðrÞ ≈ l2=27. We see that the
main effect of increasingM is just to shift the peak position to
larger r�. This corresponds to the increase in Δt=M that we
have just discussed. The contribution fromΔt3 to the shift in
the peak occurs in the region where there is still agreement
with the Schd solution. This is becoming more evident for
the larger values of M in agreement with Fig. 10(b).
At small r,VlðrÞ becomes independent of l, and sowe see

again that waves of different l behave like S waves in the
interior. In fact in the interior region the l-independent term
inVlðrÞ is of orderM2 times larger than the l-dependent term
according to the scaling law. Around the origin the potential
approaches a negative value

Vlð0Þ ≈ −
b2
a2

�
b4=3; generic CQGffiffiffiffiffiffiffiffiffiffiffi
a2m2

2

p
; β ¼ 0 CQG

: ð36Þ

As seen in Fig. 11(a), this value turns out to be relatively
small compared to the peak value of the potential at the light
ring even for l ¼ 1.
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FIG. 10. (a)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ=BðrÞp

around rH=M ¼ 2 forM ¼ 100, 200, 400, 1000, 2000, 5000 with l=M ¼ 0.4 from bottom to top. (b)Δt=M
as a function of M, with Δt1 (black line), Δt2 (blue line), Δt3 (red line) for the integration within ½0;M�, ½M; rpeak�, ½rpeak; 3M�,
respectively (the blue dashed line denotes Δt2 − Δt1).
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From Fig. 11(b) we see that the significantly negative part
of the potential M2Vl has a shape (depth and width) that
becomes independent of M at large M. That is it falls well
within the scaling region. A negative potential leads one to
wonder whether there is an eigenmode with negative ω2

which could indicate an instability. Because of the boundary
conditionΨð0Þ ¼ 0, such an eigenmode is not guaranteed to
exist. Its absence requires that the negative part of the
potential be sufficiently small in terms of itswidth and depth.
For example if VðrÞ is −v for r < a and zero for r > a, then
va2 ≲ 2.47 is required. Fromour numerical solutions in both
β ¼ 0 and generic CQGwe find that the negative potential is
sufficiently small, although curiously not by a wide margin.

F. A sketch of the rotating 2-2-hole

It is a general result that a stationary, axisymmetric metric
describing rotation and with a horizon must have an
ergoregion, a region where gtt only has a changed sign,
that exists outside the horizon. The Kerr metric is the prime
example. But there is no such requirement for an ergoregion
when there is no horizon. From our experience with a
nonrotating case, we might expect that the metric of the
rotating 2-2-hole should match the Kerr metric down to the
radii where the higher curvature terms in the action suddenly
become important. The question is at what radii does this
occur. One possibility is that the strong gravity region
extends out to the infinite redshift surface of the Kerr metric.
Then gtt becomes small but does not vanish, and then not
only the horizon but also the exterior ergoregion of the Kerr
metric is replaced by something else.13 This is similar to a
nonrotating 2-2-hole where strong gravity extends out to
where gtt would vanish in the Schdmetric. The difference in
the rotating case is that grr is not becoming as large as 1=gtt at
the radii where the curvatures are becoming large.
Let us consider some possible approximations to the

interior of a rotating 2-2-hole. The following stationary and

axisymmetric metric displays a rotation parametrized by a
function ωðrÞ:

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dθ2

þ r2sin2θ½dϕ − ωðrÞdt�2: ð37Þ
An interesting feature of this metric is that the vacuum field
equations are independent of ωðrÞ when it is a constant,
ωðrÞ ¼ ω0. Here ω0 could be set equal to the angular
velocity of the rotating shell of matter, and AðrÞ and BðrÞ in
the interior would be the same as for the nonrotating
2-2-hole. Outside the 2-2-hole ωðrÞ should have a 1=r3

behavior to match the asymptotic Kerr metric. Then there
would have to be a transition region between the interior
and the exterior regions where a nontrivial θ dependence
would have to enter the metric.
For this metric in the interior, gtt ¼ −BðrÞ þ sin2 θω2

0r
2

where ω0M ≲ 1. In the interior BðrÞ quickly falls to values
where BðrÞ=r2 ∼ 1=M4, and so for any appreciable rotation
gtt will change sign and then remain positive down to
r ¼ 0. Thus in this picture most of the interior of a rotating
2-2-hole is an ergoregion, except for a tiny cone around the
poles (sin θ ≲ 1=M).
But we may also ask whether ωðrÞ could vary in the

interior, and perhaps instead fall to zero at r ¼ 0, in such a
way as to avoid an ergoregion. The t − ϕ field equation has
only odd powers in ωðrÞ while the other field equations
have even powers. We can treat ωðrÞ as small in the interior
and study the t − ϕ equation at linear order in ωðrÞ. We
may use our series expansions of AðrÞ and BðrÞ to find a
series expansion solution for ωðrÞ. As we shall see, a series
expansion solution that starts with the highest possible
power of r is of interest, which turns out to be of the form

ωðrÞ ¼ wðr3 þ b4r5 þOðr7ÞÞ: ð38Þ

In order for gtt not to change sign, ωðrÞ2r2 must not exceed
BðrÞ, which implies that w ∼ 1=M5 or smaller.
We can now insert this series expansion for ωðrÞ into the

other field equations. We find that the series expansions of
the new terms in these equations, the terms quadratic inωðrÞ,
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FIG. 11. The potentialM2VlðrÞ with (a) l ¼ 1 and (b) l ¼ 0 as a function of r�=M withM ¼ 10, 100, 1000, 104 from left to right and
l=M ¼ 0.4 in β ¼ 0 CQG. The black dotted lines denote the Schd solution with r� shifted to match the peaks.

13Note that for the Kerr metric with rapid rotation the light ring
falls into the ergoregion. A modification of the latter by the strong
gravity may have impact on the image of the object.
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startwith the samepower of r as the expansion of the original
terms. [If the leading power inωðrÞ had been less than three,
then it would have led to correctionswith a lower power of r,
thus ruining the original (2,2) family classification.] Most
importantly the new terms are subdominant in powers of
1=M as compared to the original terms. Additional θ
dependence shows up in these small corrections. Again
there would have to be a transition region that matches such
an interior solution to the exterior solution. From this
discussion it seems possible for a rotating 2-2-hole to have
no ergoregion and for the interiorAðrÞ andBðrÞ functions to
be little changed from the nonrotating case.
We now turn to the geodesics in a rotating 2-2-hole for

the two possibilities of the interior region that we have
considered. For the geodesics confined to the equatorial
plane, the geodesic equation for a general ωðrÞ can be
reduced to the following:

dϕ
dζ

¼ L
r2

þ ωðrÞE − ωðrÞL
BðrÞ ; ð39Þ

dt
dζ

¼ E − ωðrÞL
BðrÞ ; ð40Þ

�
dr
dζ

�
2

¼ 1

AðrÞ
�ðE − ωðrÞLÞ2

BðrÞ −
L2

r2
− ϑ

�
: ð41Þ

Since we can require that coordinate time moves forward
for a particle moving along a geodesic, we have dt=dζ > 0.
The angular velocity in coordinate time is

dϕ
dt

¼ L
E − ωðrÞL

BðrÞ
r2

þ ωðrÞ: ð42Þ

We first consider the case of no ergoregion where ωðrÞ is
of the form of (38). From dt=dζ > 0 and the vanishing of
ωðrÞ at the origin we see that E > 0. Also E≳ jωðrÞLj
since ωðrÞ2 < BðrÞ=r2 for no ergoregion and E2=L2 ≈
BðrÞ=r2 when r is the turning point of a bound interior
orbit. The positivity of (41) further constrains E. In (42)
ωðrÞ shows up as a simple frame dragging effect (second
term) and also as a distortion of the original term. The two
terms can be of the same order of magnitude and of equal or
opposite sign. Depending on the sign of the LωðrÞ term in
(41), the radius of the turning point in the orbit can also
increase or decrease. Thus the orbits are affected, but since
dϕ=dt still scales like 1=M2, the original near straight line
motion still persists in the large M limit.
The case where ωðrÞ ¼ ω0 and there is an interior

ergoregion is quite different. Now ω0 scales like 1=M
and so jEj ≪ jω0Lj. Then ω0L < 0 to have dt=dζ > 0
while now the energy E can have either sign. With large ω0

in (42) the frame dragging effect completely dominates.
Thus the interior orbits can now significantly depart from
near straight line motion. But there are still no interior
circular orbits. Their absence for the nonrotating 2-2-hole is

due to the form of BðrÞ, and the introduction of the ω0

constant does not change this because it effectively just
produces a shift in the constant E in (41).
For ultracompact stars the interior stable light rings are

associated with resonant negative energy modes in wave
equations when there is rotation. This leads to issues with
the ergoregion instability that renders some ultracompact
stars too short lived [30,42–44]. For a rotating 2-2-hole
with an interior ergoregion we have found only noncircular
orbits with negative energy. The relation that these have to
any ergoregion instability remains to be studied. But if
there exists a rotating 2-2-hole solution with no ergoregion
anywhere, as our discussion has hinted, then it could be the
preferred stable configuration.
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APPENDIX: SERIES EXPANSIONS

1. Generic CQG

We list explicit forms of the series expansion for generic
CQG with the action parameters α ≠ 0, β ≠ 0. The expres-
sions can be simplified withm2

2¼m2
Pl=2α andm

2
0 ¼ m2

Pl=6β.
The (0,0) family is characterized by two free parameters
ða2; b2Þ,

AðrÞ ¼ 1þ a2r2 þ
r4

30
½3a22ð10þm2

2=m
2
0Þ

þ a2ð2m2
0 þm2

2 − 6b2Þ
− b2ð2ðm2

0 −m2
2Þ þ 3b2ð2þm2

2=m
2
0ÞÞ� þOðr6Þ;

BðrÞ
b0

¼ 1þ b2r2 þ
r4

60
½3a22m2

2=m
2
0 þ a2ðm2

2 −m2
0 þ 18b2Þ

þ b2ðm2
0 þ 2m2

2 þ 3b2ð6 −m2
2=m

2
0ÞÞ� þOðr6Þ:

ðA1Þ
The series expansion starts to be sensitive to the action
at Oðr4Þ. The (2,2) family is characterized by five free
parameters ða2; a5; b3; b4; b5Þ,

AðrÞ ¼ a2r2 þ a2r3 −
a2
6
ð2a2 − 8b4 þ b23Þr4

þ a5r5 þOðr6Þ;
BðrÞ
b2

¼ r2 þ b3r3 þ b4r4 þ b5r5 þOðr6Þ: ðA2Þ

Here the dependence on the action is delayed toOðr6Þ. The
ð2;2ÞE family can be derived by simply taking a2nþ1 ¼ 0,
which then leaves two free parameters ða2; b4Þ,
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AðrÞ
a2

¼ r2 −
1

3
ða2 − 4b4Þr4

−
1

36
½a22m2

0=m
2
2 þ 3a2ð10b4 þ 3m2

0Þ
− b24ð54þm2

0=m
2
2Þ�r6 þOðr8Þ;

BðrÞ
b2

¼ r2 þ b4r4 −
1

18
ð2a2b4 þ a22 − 15b24Þr6 þOðr8Þ:

ðA3Þ

Ar largeM we need only keep the leading order terms in the
1=M expansion,

AðrÞ
a2

¼ r2 þ 4

3
b4r4 −

1

36
ð9a2m2

0 − b24ð54þm2
0=m

2
2ÞÞr6

−
19b4
810

ð27a2m2
0 − b24ð70þ 3m2

0=m
2
2ÞÞr8 þOðr10Þ;

BðrÞ
b2

¼ r2 þ b4r4 þ
5

6
b24r

6

−
b4
180

ð9a2m2
0 − b24ð125þm2

0=m
2
2ÞÞr8 þOðr10Þ:

ðA4Þ

We see that the dependence onmPl still survives in this limit.
If one considered avanishingmPl, then onewould be leftwith
a dependence on the combinations b4r2 and α=β.

2. β= 0 CQG

With m2
2 ¼ m2

Pl=2α, the (0,0) family is characterized by
one free parameter b2,

AðrÞ ¼ 1þ b2r2 þ
b2
10

ð6b2 þm2
2Þr4

þ b2
280

ð80b22 þ 50b2m2
2 þm4

2Þr6 þOðr8Þ;
BðrÞ
b0

¼ 1þ b2r2 þ
b2
20

ð12b2 þm2
2Þr4

þ b2
840

ð240b22 þ 72b2m2
2 þm4

2Þr6 þOðr8Þ: ðA5Þ

The (2,2) family is characterized by three free parame-
ters ða2; b3; b4Þ,

AðrÞ
a2

¼ r2 þ b3r3 −
1

6
ð2a2 − 8b4 þ b23Þr4 þ

1

18b3
ð10a22 þ a2ð11b23 þ 90m2

2Þ þ 12b43 − 25b4b23 − 10b24Þr5 þOðr6Þ;
BðrÞ
b2

¼ r2 þ b3r3 þ b4r4 −
1

18b3
ð6a22 þ a2ðb23 þ 54m2

2Þ þ 8b43 − 19b4b23 − 6b24Þr5 þOðr8Þ: ðA6Þ

The series expansion starts to be sensitive to the action at Oðr5Þ. As b3 appears in the denominator, we cannot derive
the ð2;2ÞE family by directly switching off the odd terms. Instead the ð2;2ÞE family is characterized by only one free
parameter a2,

AðrÞ
a2

¼ r2 −
r4

3
½a2 − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ 9m2

2Þ
q

� þ a2
6
½9a2 þ 81m2

2 − 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ 9m2

2Þ
q

�r6 þOðr8Þ;
BðrÞ
b2

¼ r2 þ r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ 9m2

2Þ
q

þ a2
18

½−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ða2 þ 9m2

2Þ
q

þ 14a2 þ 135m2
2�r6 þOðr8Þ: ðA7Þ

The series expansion in the large M limit is

AðrÞ
a2

¼ r2
�
1þ 4ða2m2

2r
4Þ1=2 þ 27

2
a2m2

2r
4 þ 133

3
ða2m2

2r
4Þ3=2 þOðr8Þ

�
;

BðrÞ
b2

¼ r2
�
1þ 3ða2m2

2r
4Þ1=2 þ 15

2
a2m2

2r
4 þ 75

4
ða2m2

2r
4Þ3=2 þOðr8Þ

�
: ðA8Þ

The essential mPl dependence here is related to the conformal invariance of the theory with vanishing mPl.
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