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A class of nonstationary spacetimes is obtained by means of a conformal transformation of the
Schwarzschild metric, where the conformal factor aðtÞ is an arbitrary function of the time coordinate only.
We investigate several situations including some where the final state is a central object with constant mass.
The metric is such that there is an initial big-bang type singularity and the final state depends on the chosen
conformal factor. The Misner-Sharp mass is computed and a localized central object may be identified. The
trapping horizons, geodesic and causal structure of the resulting spacetimes are investigated in detail. When
aðtÞ asymptotes to a constant in a short enough time scale, the spacetime presents an event horizon and its
analytical extension reveals black-hole or white-hole regions. On the other hand, when aðtÞ is unbounded
from above as in cosmological models, the spacetime presents no event horizons and may present null
singularities in the future. The energy-momentum content and other properties of the respective spacetimes
are also investigated.
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I. INTRODUCTION

The exact solutions of general relativity (GR) mostly used
to model realistic objects in astrophysics and in cosmology
may roughly be divided into two classes: static/stationary
vacuum solutions that model the gravitational field outside
massive objects or black holes, and homogeneous expanding
solutions that are used as models for the large scale structure
of the Universe. The first class aims to describe localized
objects while the second one describes the global scale of the
Universe. The fact that both class of solutions are successful
in so different scales highlights that those scales are
physically disconnected from each other. The interest in
joining in one single picture these two aspects of gravita-
tional physics is long standing, as is the question of how
bound gravitational systems are insensitive to the cosmo-
logical expansion in large scale. These issues can be traced to
the McVittie proposal of a metric describing a point mass in
an expanding universe in 1933 [1], the Einstein-Strauss
model [2] and the Lemaitre-Tolman-Bondi models [3,4].
Theseworks founded the three main approaches to this issue,
respectively, the crafting of analytical solutions with the
wished asymptotics, the matching between the two types of
solution, and the analysis of Einstein dynamical equations
for some specified fluid content.
The matching approach has led to the Swiss-cheese

models, that allow us to describe an expanding inhomo-
geneous universe filled with static bubbles that behave as if
they were shielded from each other. Those models are
interesting in order to study physics in an inhomogeneous
universe [5,6] but they are too rigid to be considered the
solution for the linking of local and global scales, because
they rely strongly on the isotropy of the expansion and the
spherical symmetry of the matching [7,8].

The dynamical analysis approach is the one that allows
for the most realistic description of the transient regime
between local and global scales, since a realistic fluid can
be chosen as the source of the geometry, and the dynamical
equations give the complete evolution of all physical
quantities. However, the complexity of Einstein field
equations is a formidable obstacle for the achievement
of a general understanding of the transition between the
global scale and the local scale behavior. With the sim-
plifying assumption of spherical symmetry, some advance
had been made, namely, the definition of a dynamically
motivated separating surface between the two regimes,
named matter trapping shells in the series of papers [9–13].
In the present paper we follow the McVittie lineage.

Namely, we study the properties of a class of solutions
proposed by Thakurta [14] as a model of cosmological
black-hole spacetime, which are obtained by multiplying
the Kerr solution by an expanding scale factor aðtÞ.
However, the experience with the McVittie solution shows
that identifying the content of a line element is not a simple
task and the understanding of the causal structure of
McVittie spacetimes had to wait about 80 years to be
achieved since its publication [15–21]. Moreover, the
McVittie metric was found to be richer than the original
intent, with the possibility of representing black holes and/
or white holes immersed in an expanding universe.
A possible explanation for such a lapse of time may be
the little interest in the McVittie metric, but it may also be
attributed to the lack of mathematical tools available for
studying dynamical spacetimes. However, in the last two
decades there was a great development in this field (see,
e.g., [22–27] and references there in), which has allowed
for a systematical approach in order to understand dynami-
cal solutions of GR, including cosmological black holes.
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In this paper we make use of these tools in order to study
thoroughly the nonrotating Thakurta solution, identifying
all its possible outcomes with the main objective of finding
examples of cosmological black holes. As the McVittie
solution, the Thakurta solution can show a wide range of
different properties, depending on the choice of the scale
factor aðtÞ. For increasing and unbounded aðtÞ, as in
cosmological models, we show that the Thakurta spacetime
does not describe a cosmological black hole but rather an
inhomogeneous expanding universe that may be either
future geodesically complete or may present a future null
singularity depending on the behavior of aðtÞ for large
times. On the other hand, for bounded aðtÞ, we establish
sufficient conditions on aðtÞ under which the Thakurta
metric does present an event horizon at r ¼ 2m. Moreover,
we show that such an event horizon can be a black-hole
horizon or a white-hole horizon depending on a further
condition on aðtÞ.
This paper is organized as follows. In Sec. II we review

the general properties of the Thakurta metric, analyze its
source and the Misner-Sharp mass. In Sec. III we study the
loci of coordinate and curvature singularities, the behavior
of the trapping horizons and its dependency on the choice
of aðtÞ, future and past geodesic completeness. Section IV
contains the properties of the locus given by r ¼ 2m and
study the conditions on aðtÞ that implies that this surface
can either be a future null singularity or a traversable
horizon, using this result to build cosmological black-hole
models. In Sec. V we analyze thoroughly the possible types
of conformal diagrams corresponding to different choices
of aðtÞ, including the possible analytical extensions when
the r ¼ 2m surface is traversable, and discuss the physical
content of each kind of solution. In Sec. VI we make further
comments and conclude.
Throughout the paper, derivatives with respect to the t

coordinate are denoted with an overhead dot. We use
signature ð−;þ;þ;þÞ and natural units with G ¼ 1 ¼ c.

II. THE THAKURTA METRIC

A. Overview

The proposal of this paper is to study the nonrotating
class of solutions emerging from the metric presented by
Thakurta in 1981 [14]. The metric originally was built as a
conformal transformation of Kerr rotating black-hole sol-
ution, whose conformal factor depends only on the Boyer-
Lindquist time coordinate. The Thakurta metric is given by

ds2 ¼ a2ðηÞ
�
−
Δ
Σ2

ðdη − jsin2θdϕÞ2 þ Σ2dr2

Δ
þ Σ2dθ2

þ sin2θ
Σ2

½ðr2 þ j2Þdϕ − jsin2θdη�2
�
; ð1Þ

with Σ ¼ r2 þ j2cos2θ and Δ ¼ r2 þ j2 − 2mr, where m
and j are constant parameters. In the case aðηÞ ¼ constant

metric Eq. (1) reduces to the Kerr metric, with m and j
being respectively the mass and the angular momentum
per unit mass of the Kerr black-hole metric. On the
other hand, for large r the Thakurta metric asymptotes
to the flat Friedmann-Lemaitre-Robertson-Walker (FLRW)
cosmological metric. Hence, the coordinate η and the
function aðηÞ are respectively the conformal time and
the scale factor of the asymptotic FLRW metric.
Our proposal is to analyze the nonrotating Thakurta

metric, that is, we set the angular momentum j to zero, so
that the metric assumes the form

ds2 ¼ a2ðηÞ
�
−
�
1 −

2m
r

�
dη2 þ dr2

1 − 2m
r

þ r2dΩ2

�

¼ −
�
1 −

2m
r

�
dt2 þ a2ðtÞdr2

1 − 2m
r

þ a2ðtÞr2dΩ2; ð2Þ

where the cosmological time t, defined by dt ¼ aðηÞdη,
was introduced.
It is worth to write here the Thakurta metric in terms of

the areal radius coordinate R ¼ aðtÞr,

ds2 ¼ −
�
1 −

2MðtÞ
R

−
H2ðtÞR2

1 − 2MðtÞ
R

�
dt2

þ dR2

1 − 2MðtÞ
R

−
2HðtÞRdtdR
1 − 2MðtÞ

R

þ R2dΩ2; ð3Þ

where H ¼ HðtÞ ¼ _aðtÞ=aðtÞ is the Hubble factor, with
_aðtÞ standing for the derivative of aðtÞ with respect to the
cosmological time t, and we defined

M ¼ MðtÞ ¼ maðtÞ: ð4Þ

It is interesting to compare this metric with other
proposals in the literature. For instance, in Refs. [21,28]
the spacetime metric is given by a generalization of the
McVittie solution [1], by letting the mass parameter be a
function of the time coordinate. Indeed, the metric
of Eq. (2) can be characterized as such a generalized
McVittie spacetime with a time-dependent mass parameter
mðtÞ ¼ maðtÞ. This can be verified by direct comparison
between our Eq. (3) and Eq. (9) shown in Ref. [28].
However, the analyses made and the results presented in
Refs. [21,28] do not hold integrally for the Thakurta
solution we are studying here, because a major part of
them relied on the hypothesis that _mðtÞ=mðtÞ < _aðtÞ=aðtÞ,
while for Thakurta both of such quantities are equal to
each other.
Some aspects of metric (2) were analyzed in Ref. [29]

(see also Ref. [30]). Note, however, that there has been
some confusion concerning the nonrotating Thakurta met-
ric and the Sultana-Dyer metric [31], as pointed out in
Ref. [32]. Both are conformal to the Schwarzschild metric,
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but they are not the same. The difference between them lies
in the dependence of the conformal factor a2 as a function
of the coordinates: in the former it is a function of the
conformal time η alone, while in the latter it is a function
of the Eddington-Finkelstein advanced time u ¼ ηþ
2m ln jr − 2mj. This difference is made clear by writing
both metrics in diagonal forms as in Eq. (2), when a
comparison can easily be performed [see, e.g., Ref. [33]
and compare Eq. (2.3) of that paper to our Eq. (2)].
In Ref. [29] the existence of a singularity at r ¼ 2m was

discussed, as well as a partial analysis of the causal
structure of the related spacetime, considering a scale
factor corresponding to a universe filled by dust, given
by aðtÞ ∼ t2=3, was performed. Also, in [34] a metric of the
same type of (2) is considered and some of the results
presented in Sec. II of the present work were found. In the
present work the analysis of the causal structure for the case
aðtÞ ∼ t2=3 is completed, and several other forms of the
scale factor aðtÞ are considered. In the following we
investigate the main physical and geometrical properties
of the corresponding spacetimes. Namely, we investigate
the possible matter sources, the global structure, and the
causal properties of each spacetime considering different
forms of the scale factor aðtÞ.

B. The energy-momentum tensor
and the energy conditions

From Eq. (2), it follows that the nonzero components of
the energy-momentum tensor Tμ

ν are given by

Tt
t ¼ −

3H2ðtÞ
8πfðRÞ ;

Tt
r ¼ −

f2ðrÞ
a2ðtÞ Tr

t ¼ MðtÞHðtÞ
4πR2aðtÞ ;

Tr
r ¼ Tθ

θ ¼ Tφ
φ ¼ −

3H2ðtÞ þ 2 _HðtÞ
8πfðRÞ ; ð5Þ

where we defined

f ¼ fðRÞ ¼ fðrÞ ¼ 1 −
2M
R

¼ 1 −
2m
r

: ð6Þ

With relations equation (5) in hand, we can define the
kinematic quantities associated to the energy-momentum
tensor of the source, which can be modeled as an imperfect
isotropic fluid. The flow vector vμ is given by

vμ ¼ ð−
ffiffiffiffiffiffiffiffiffiffi
fðRÞ

p
; 0; 0; 0Þ;

while the orthogonal projector hμν reads

hμν ¼ diagð0; a2ðtÞf−1ðRÞ; R2; R2sin2θÞ:

Using the standard definitions for the energy density ρ and
pressure p we find

ρ≡ Tμνvμvν ¼
3H2ðtÞ
8πfðRÞ ; ð7Þ

and

p≡ 1

3
Tμνhμν ¼ −

3H2ðtÞ þ 2 _HðtÞ
8πfðRÞ : ð8Þ

Also, since the energy-momentum tensor is not diagonal in
the tr sub-space, there is a heat flow in the radial direction,
whose energy flux is given by

qσ ¼ −Tμνvμhνσ ¼
�
0;−

MðtÞHðtÞ
4πaðtÞR2f3=2ðRÞ ; 0; 0

�
: ð9Þ

Therefore, as the source for the rotating Thakurta
spacetime [14], a possible source of the nonrotating
Thakurta geometry equation (2) is an isotropic fluid with
a heat flow in the radial direction. The fluid quantities
reduce to those of a homogeneous perfect fluid for large
radial coordinate values, as expected. On the other hand,
they may diverge at R ¼ 2M which would imply a
curvature singularity. This is probably the simplest source
for this geometry. However, there are other possible
sources, such as a mixture of a perfect fluid and a null
fluid, but we do not consider these other more general
sources here.
For completeness we state here the energy condition for

a fluid with nonzero energy flux. The relevant energy
conditions for the present analysis are the null (NEC), weak
(WEC) and strong (SEC) energy conditions. Then we have
(see, e.g., Ref. [35])

NEC : ρþ p ≥ 2jqj; ð10Þ

WEC : ρ − pþ Δ ≥ 0; ρþ p ≥ 2jqj; ð11Þ

SEC : ρþ p ≥ 2jqj; 2pþ Δ ≥ 0; ð12Þ

where jqj ¼ jqμqμj, and

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρþ pÞ2 − 4jqj2

q
: ð13Þ

Using metric (2) and the energy flux vector from Eq. (9) it
gives

jqj ¼ MðtÞHðtÞ
4πR2fðRÞ : ð14Þ

In the analysis of the energy conditions given below, an
interesting quantity is the ratio nðt; rÞ defined by

nðt; rÞ ¼ ρþ p
2jqj ¼ − _HðtÞR2

2MHðtÞ : ð15Þ
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As seen from the above conditions, a sufficient condition to
satisfy, for instance, the NEC is nðr; tÞ ≥ 1. Such a quantity
shall be used to analyze some of the properties of the
trapping horizons in the cases presented below.

C. The Misner-Sharp mass

The Misner-Sharp mass is a measure of the gravitational
active mass contained in a given volume of the spacetime
(see, e.g., [23]), and may furnish information about the kind
of objects enclosed in such a volume. In terms of the areal
radius, R ¼ aðtÞr, the Misner-Sharp mass inside a closed
surface of radius R is defined by [24]

MMS ¼
R
2
ð1 − ∥∇R∥2Þ: ð16Þ

For the Thakurta metric Eq. (3), it follows

∥∇R∥2 ¼ −H2ðtÞR2

�
1 −

2M
R

�
−1

þ 1 −
2M
R

: ð17Þ

Thus, substituting the last result into Eq. (16) it gives

MMS ¼ M þ H2ðtÞR3

2ð1 − 2M
R Þ : ð18Þ

Notice that this expression contains a single concentrate
mass contribution, the position-independent termM, which
is compatible with the presence of a central object, and
another contribution which depends on the radial coordi-
nate, and that can be though of as the energy related to the
fluid that fulfills the spacetime, since that second term
grows with the Hubble factor. This second contribution
resembles the McVittie case [1], with the important differ-
ence that in McVittie spacetime the energy density is a
homogeneous function.
In order to make this argument more rigorous we can use

the decomposition of the Misner-Sharp mass into its Ricci
and Weyl parts, ER and EW , where the latter is interpreted
as the source of the Coulombian part of the gravitational
field. Following, e.g., Appendix D of Ref. [36], we obtain
the following relation valid for spherically symmetric
spacetimes:

WαβμνWαβμν ¼
48E2

W

R6
; ð19Þ

where W is the Weyl tensor. Applying Eq. (19) to the line
element (2) we obtain

EW ¼ M ¼ maðtÞ; ð20Þ

in agreement with our interpretation.

D. The scale factor

In the original Thakurta model [14] the scale factor was
not specified, even though it was assumed implicitly that it
should describe an expanding cosmological model. Here
we keep such an assumption, by imposing that the aðtÞ
function implies a big-bang type expanding model.
However, since the mass of the central object increases
with aðtÞ, cf. Eq. (20), it is interesting to modify its
asymptotic behavior at late times so that the final mass is
finite, a necessary condition to have a black-hole type
solution. In view of this, we list here the main assumptions
on aðtÞ.
(1) Big-bang hypothesis: limt→0aðtÞ ¼ 0, with mono-

tonically increasing positive aðtÞ.
(2) Expanding hypothesis: _aðtÞ=aðtÞ ≥ 0.
(3) Cosmologically inspired (unbounded) models:

(a) Asymptotically de Sitter cosmological model:
aðtÞ ∼ eH0t for large t.

(b) Asymptotically CDM model: aðtÞ ∼ t2=3.
(c) Alternative models as stiff matter and cosmic

strings fluids, aðtÞ ∼ tα, α ¼ 1=3 and α ¼ 1.
(4) Bounded models aðtÞ ∼ constant at large t.

(a) Models with _aðtÞ≳e−t=τ, τ > 2m, at late times—
no black holes.

(b) Models with _aðtÞ ≲ e−t=τ, τ < 2m, large times—
black-hole solutions.

III. STRUCTURAL ANALYSIS

A. The curvature singularities

First we analyze all the possible candidates for curvature
singularities that might be present in metric (2). Similarly to
the Schwarzschild case, the metric is ill defined at r ¼ 2m
(R ¼ 2M) and r ¼ 0 (R ¼ 0). Moreover, the points where
aðtÞ vanishes also may be singular points, and a deeper
analysis is necessary in order to distinguish between
curvature and coordinate singularities.
We start by analyzing the Ricci scalar which is given by

R ¼ Rμ
μ ¼ 6

fðRÞ ð2H
2ðtÞ þ _HðtÞÞ: ð21Þ

Since fðRÞ vanishes at R ¼ 2M, it follows that there
is a curvature singularity at this point unless the factor
between parenthesis, 2H2ðtÞ þ _HðtÞ, vanishes as well.
Then, the nature of the metric singularity R ¼ 2M
depends on the explicit form of the scale factor HðtÞ.
We investigate this point in Sec. IV. Additionally, the
Ricci scalar is singular at points where HðtÞ and/or _HðtÞ
diverge, what happens, for instance, when the factor aðtÞ
vanishes at a given time, such as in big-bang cosmological
models. On the other hand, the Ricci scalar is nonsingular
at R ¼ 0, and hence the behavior of the other curvature
scalars at that point has to be analyzed.
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The Kretschmann scalar K is

K ¼ RαβγδRαβγδ ¼
12

f2ðRÞ ðH
4 þ ðH2 þ _HÞ2Þ

þ 16M2

R4

�
3

R2
−

H2

f2ðRÞ
�
; ð22Þ

showing that R ¼ 0 is a curvature singularity. Recalling
that R ¼ raðtÞ, this includes the locus where r ¼ 0 and the
points where aðtÞ ¼ 0, i.e., at the initial time in a big-bang
cosmological scenario [where also HðtÞ; _HðtÞ → ∞].
Moreover, it results that R ¼ 2M is a curvature singularity
whenever HðtÞ ≠ 0 and _HðtÞ ≠ 0.

B. Trapping horizons

Following Ref. [22], we classify any sphere of symmetry
S of the spacetime according to the expansions Θ� of the
null congruences defined by outgoing and ingoing null
rays, as follows:
(1) if ΘþΘ− < 0, we say that S is regular;
(2) ifΘþΘ− > 0, withΘ� < 0, we say that S is trapped;
(3) if ΘþΘ− > 0, with Θ� > 0, we say that S is

antitrapped;
(4) if ΘþΘ− ¼ 0, then we say that S is marginal.
This classification divides the spacetime in regions

composed by each type of sphere. When drawing figures
representing spacetime diagrams we indicate the different
regions using the signs of expansions between parenthesis.
Namely, we use (−−) to indicate trapped regions, (þ−) to
indicate regular regions, and (þþ) to indicate antitrapped
regions.
A trapping horizon is defined as the tube foliated by

marginal spheres. In the case of a spherically symmetric
metric such as Eq. (3), these are given by the solutions of
the equations

Θ� ¼ 2

R
ka�∇aR ¼ 0; ð23Þ

and we get

HðtÞR�ðtÞ �
�
1 −

2MðtÞ
R�ðtÞ

�
¼ 0; ð24Þ

where the � sign refers to outgoing (ingoing) null geo-
desics.
Taking HðtÞ > 0 it follows from Eq. (24) that in the

R > 2MðtÞ region there are real solutions only for the
ingoing expansion (minus sign) equation. Conversely, for
R < 2MðtÞ the real solutions only exist for the outgoing
expansion (plus sign) equation. Thus, only ingoing geo-
desics have vanishing expansion in the R > 2MðtÞ region,
which is the region of interest for the present analysis. The
equation for the expansion of the ingoing null geodesics

then yields two solutions for the trapping horizons, that we
denote with an overhead hat throughout this paper,

R̂�ðtÞ ¼
1

2HðtÞ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8MðtÞHðtÞ

p
Þ: ð25Þ

The subsequent study of geodesic completeness and of
causal structure is simplified by using the original coor-
dinates, i.e., in terms of the comoving radial coordinate r,
and then it is useful to write the relations defining the
trapping horizons in terms of r. Using the relations R ¼
raðtÞ andMðtÞ ¼ maðtÞ, Eq. (25) can be cast into the form

r̂� ¼ 1

2_a
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8m _a

p
Þ ¼ 4m

1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8m _a

p : ð26Þ

It is seen that r̂� are always larger than 2m, r̂� > 2m for
_a ≠ 0. In the case _a vanishes the horizon r̂− satisfies the
equality r̂− ¼ 2m while r̂þ reaches arbitrarily large values.
Here we refer to the loci defined by the images of the curves
r̂�ðtÞ as the outer (þ) and the inner (−) horizons,
respectively, since r̂−ðtÞ ≤ r̂þðtÞ, ∀ t > 0 for which the
trapping horizons exist.
Notice that both horizons only exist as long as _a < 1

8m,
which provides very different structures depending on the
behavior of the scale factor aðtÞ. Therefore, the trapping
horizons can be roughly traced to the behavior of a, that we
divide into three broad classes1:
(a) For large t, _a > 1=8m, then the trapping horizons

have a finite life span, forming a closed curve and
defining a bounded region in the ðt; rÞ plane in its
interior. For instance, considering the scale factor
a ¼ sinh2=3ð3H0t=2Þ, as an asymptoticΛCDMmodel,
as showed in Fig. 1.

(b) For large t, _a < 1=8m, then the trapping horizons are
formed some time after the big bang and remain for
arbitrarily large t, dividing first quadrant of the ðt; rÞ
plan in two open, unbounded regions. For instance,
considering the scalar factor a ¼ ðt=t0Þ2=3, as in the
dust cosmological model, as showed in Fig. 2.

(c) For large t, _a ≤ 1=8m and, moreover, _a ≤ 1=8m at
initial times, then the trapping horizons are formed at
the big bang and remain for arbitrarily large t, dividing
the first quadrant of the ðt; rÞ plan into three open,
unbounded regions. For instance, considering the
scalar factor a ¼ tanhðt=t0Þ, with t0 ≥ 8m as showed
in Fig. 3. In the case _a ¼ 1=8m for all times the two
trapping horizons coincide. This is a particular case of
linear scale factors aðtÞ ∼ t which are analyzed in the
next section.

1Here, we choose to not consider cases where _aðtÞ oscillates
between values below and above 1=8m. In those cases the
trapping horizons could form an arbitrary number of regular
bubbles dividing the spacetime in an arbitrary number of regions.
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C. Geodesic completeness

In order to characterize the spacetime described by the
Thakurta metric, we need to investigate the characteristics
of the patch covered by the given coordinates. A very
important property that we must verify is if the limits of the
region covered by the chosen coordinates are at finite or
infinite proper distance of the events at finite coordinates.
In other words, we must check the geodesic completeness.
For that we study the asymptotic behavior of the affine
parameter as the time coordinate t tends to infinity (future
behavior), and to zero (past behavior) along the null
geodesics.

1. Future behavior of null geodesics

The outgoing null geodesics are trivially future complete
(t → ∞), since the spacetime is asymptotically FLRW as

r → ∞ and its results can be used. Therefore, we have to
verify completeness for ingoing null geodesics, which
approach r ¼ 2m. For that we consider the equation for
ingoing null geodesics in terms of the affine parameter λ,

r0− ¼ −
t0

a

�
1 −

2m
r−

�
; ð27Þ

t00 ¼
�
2m
ar2−

−H

�
t02; ð28Þ

where the prime stands for the λ-derivative.
Equation (27) can be rewritten in terms of the conformal

time dη ¼ dt=a and integrated to produce

r− þ 2m lnðr− − 2mÞ ¼ −ηþ C; ð29Þ

where C is an arbitrary constant.
In order to analyze geodesic completeness, we study

the behavior of the affine parameter as t tends to infinity
along ingoing null geodesics. Using Eq. (28) we obtain for
large t,

t00

t0
≈ K

t0

a
−

_at0

a
; ð30Þ

where we defined K ≡ 2m
r2∞
, with r∞ denoting the value

of r−ðtÞ in the limit of large times. Integrating Eq. (30)
we have

ln t0 ≈ KηðtÞ − ln aþ constant: ð31Þ

Then the parameter λ is given by the integration of
Eq. (31) as

FIG. 1. The outer (R̂þ ¼ aðtÞr̂þ) and inner (R̂− ¼ aðtÞr̂−)
horizons represented by red (solid) and blue (dashed) lines,
respectively, as given by Eq. (25). Here the scale factor is
aðtÞ ¼ sinh2=3ð3H0t=2Þ, with H0 ¼ 0.05, and the mass param-
eter was set to unity, m ¼ 1. The curve R ¼ 2maðtÞ is also
represented by the lowermost green (solid) line.

FIG. 2. The outer (R̂þ ¼ aðtÞr̂þ) and inner (R̂− ¼ aðtÞr̂−)
horizons represented by red (solid) and blue (dashed) lines,
respectively, as given by Eq. (25). Here the scale factor is
aðtÞ ¼ ðt=t0Þ2=3, with t0 ¼ 1, and the mass parameter was set
to unity,m ¼ 1. The curve R ¼ 2maðtÞ is also represented by the
lowermost green (solid) line.

FIG. 3. The outer (R̂þ ¼ aðtÞr̂þ) and inner (R̂− ¼ aðtÞr̂−)
horizons represented by red (solid) and blue (dashed) lines,
respectively, as given by Eq. (25). Here the scale factor is
aðtÞ ¼ tanhðt=t0Þ, with t0 ¼ 8m, and the mass parameter was
set tom ¼ 1.25. The curve R ¼ 2maðtÞ is also represented by the
lowermost green (solid) line.
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λðtÞ ∼
Z

t
e−KηðuÞaðuÞdu; ð32Þ

and the convergence or divergence of the last integral as
t → ∞ determines if the spacetime is geodesically incom-
plete or complete, respectively. A more cautious proof of
this result, considering the effect of subleading terms, is the
subject of Appendix C.
The convergence of the integral in Eq. (32) depends on η,

and we must consider the two aforementioned possibilities.
(i) ηðtÞ is bounded as t → ∞.
(ii) ηðtÞ is unbounded as t → ∞.
If η is bounded, case i, Eq. (29) implies that the surface

r ¼ 2m is unreachable by ingoing null geodesics. This
behavior can be seen in Fig. 4 as, for example, taking
aðtÞ ¼ sinh2=3ð3H0t=2Þ. Thus, defining η∞ ¼ limt→∞ηðtÞ
we can define r∞ ≡ r−ðη∞Þ > 2m. In terms of the areal
radius we have R−ðtÞ ∼ aðtÞr∞ for large t, which implies
that the expansion of ingoing geodesics is positive in
this limit.
Thus, we have that ηðtÞ < η∞, for all t > 0, such that

λ ∼
Z

∞
e−KηðuÞaðuÞdu > e−Kη∞

Z
∞
aðuÞdu → ∞; ð33Þ

hence, if ηðtÞ is bounded, the Thakurta spacetime is future
geodesically complete.
On the other hand, in case ii, the limit of the null ingoing

geodesics as t → ∞ is r∞ ¼ 2m. In order to address this
case we analyze the particular situation where the scale
factor is asymptotically linear, aðtÞ ∼ a0t for large t. In this
case we have, for large t,

λ ∼
Z

∞
e−

K lnðuÞ
a0 udu ¼

Z
1

u
K
a0
−1

du: ð34Þ

Therefore, the convergence depends on the difference
K
a0
− 1 ¼ 1

2a0m
− 1. Moreover, since K ≡ 2m=r2∞ we obtain

1

2a0m
− 1 ≤ 1⇔ a0m ≥ 1=4 ⇒ λ → ∞ ðcompleteÞ;

ð35Þ
1

2a0m
− 1 > 1⇔a0m < 1=4 ⇒ λ < ∞ ðincompleteÞ:

ð36Þ

By extension, we conclude that in case ii, the Thakurta
spacetime is geodesically complete if, for large t, aðtÞ > t

4m
and geodesically incomplete if aðtÞ < t

4m. In particular, this
implies that all Thakurta spacetimes with sublinear aðtÞ are
geodesically incomplete, as for example aðtÞ ¼ ðt=t0Þ2=3
showed in Fig. 5.

2. Past behavior of null geodesics

Here we show that the singularity aðtÞ ¼ 0 is always at a
finite time in the past for all models we consider in this
work. For this we study the behavior of the null geodesics
in the limit t → 0.
For ingoing null geodesics we must consider Eqs. (28)

and (29). Following a similar reasoning used in the study of
the future behavior of null geodesics, we find that if η is
bounded from below then r−ðtÞ is bounded, i.e.,
2m < r−ðtÞ < rmax, while if η is unbounded r−ðtÞ → ∞
as aðtÞ → 0, which means that, by Eq. (29), we can use the
approximation r−ðηÞ ∼ −η.
First, we consider the bounded case, for which r → rmax

as t → 0. We can choose ηðt ¼ 0Þ ¼ 0 with no loss of
generality. The procedure is analogous to the one used to
investigate completeness to the future, since the behavior is

FIG. 4. Ingoing and outgoing geodesics represented by ma-
genta (dotted) and black (dotted-dashed) lines, respectively. The
scale factor is aðtÞ ¼ sinh2=3ð3H0t=2Þ, with H0 ¼ 0.05. The
outer/inner horizons and the r ¼ 2m curve are represented
respectively by the blue (solid), red (dashed) and green (solid,
lowermost) lines. The mass parameter m has been set to unity.

FIG. 5. Ingoing and outgoing geodesics represented by ma-
genta (dotted) and black (dotted-dashed) lines, respectively, for
the case aðtÞ ¼ ðt=t0Þ2=3, with t0 ¼ 1. The outer/inner horizons
and the R ¼ 2maðtÞ curve are represented respectively by the
blue (solid), red (dashed) and green (solid, lowermost) lines. The
mass parameter m has been put to unity.
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governed by Eq. (28). Redefining K ¼ 2m
r2max

> 0 in Eq. (30)

and integrating, we obtain

Δλ ≈
Z

0

t
exp ½−KηðuÞ�aðuÞdu: ð37Þ

Since ηðtÞ ≥ 0 and K > 0, it follows exp ½−KηðuÞ� ≤ 1,
and hence

jΔλj ≤ j
Z

0

t
aðuÞduj; ð38Þ

which is always finite.
Similarly, if η is unbounded from below, limt→0ηðtÞ ¼

−∞, we obtain, instead of Eq. (37), the following relation:

Δλ ≈
Z

0

t
exp

�
2m
ηðuÞ

�
aðuÞdu; ð39Þ

which is always finite, since expð 2m
ηðuÞÞ ≤ 1 for ηðuÞ < 0.

Therefore, all the ingoing null geodesics are incomplete
to the past, which proves that the surface aðtÞ ¼ 0 is a
singularity in the past of all events in Thakurta spacetimes,
and it is justified to call it a big-bang singularity in this
context.
Using similar arguments we can also prove that the

outgoing null geodesics are incomplete to the past.

D. Conformal boundaries

In order to build the conformal diagrams of the
Thakurta spacetimes, we have to study the properties
of the conformal boundaries at the past aðtÞ → 0 and at
the future t → ∞. Using the conformal time coordinate

η ¼
Z

dt
aðtÞ and the tortoise coordinate r� ¼

Z
dr
fðrÞ, the

Thakurta metric can be written in the form

ds2 ¼ a2ðηÞfðrÞð−dη2 þ dr�2 þ r2ðr�ÞdΩÞ; ð40Þ

which is conformally flat in the ðη; r�Þ submanifold. Since
−∞ < r� < ∞, the behavior of η as t → 0 determines the
properties of the aðtÞ ¼ 0 surface in the past, as in the
FLRW models [37,38].
(1) If limaðtÞ→0ηðtÞ is finite, then the Thakurta spacetime

is conformally related to a portion of Minkowski
spacetime at the future of a constant time spacelike
hypersurface. This implies that the past conformal
boundary is spacelike.

(2) If limaðtÞ→0ηðtÞ ¼ −∞, then the past conformal
boundary of the Thakurta spacetime corresponds
to the boundary of the Minkowski spacetime and it
is null.

Analogously, we have the same two cases in the limit
t → ∞ for the future boundary:

(1) If limt→∞ηðtÞ is finite, then the Thakurta spacetime
is conformally related to a portion of the Minkowski
spacetime at the past of a constant time spacelike
surface. The future boundary is spacelike in this
case, as in the particular sample depicted in Fig. 6.

(2) If limt→∞ηðtÞ ¼ ∞, then the future conformal boun-
dary of the Thakurta spacetime corresponds to the
boundary of the Minkowski spacetime and it is null.

Therefore, by choosing the asymptotic behavior of the
function aðtÞ in the future and in the past we can build
Thakurta models with the four possible combinations in
terms of conformal boundaries. We shall show below
some examples of topologies given by different examples
of aðtÞ.

IV. THE SURFACE AT R= 2M

In Sec. III C, we stated the conditions on aðtÞ that imply
the surface r ¼ 2m is reached in a finite affine parameter by
null ingoing geodesics.
We need to evaluate the properties of that surface,

namely, if it is singular or regular. Since the Ricci scalar
is given by Eq. (21), it may diverge as t → ∞ and r → 2m.
In order to determine whether that divergence of the Ricci
scalar is physical or not, we evaluate its limit along some
classes of physical trajectories.

A. Null trajectories

The null ingoing geodesics satisfy the relation given in
Eq. (29). Near the r → 2m limit it can be approximated
by

r− ≈ 2mþ C0 exp
�
−η
2m

�
; ð41Þ

which leads to

f½r−ðηÞ� ∼
C0

2m
exp

�
−η
2m

�
: ð42Þ

FIG. 6. The causal diagram for a ΛCDM model where
aðtÞ ¼ sinh2=3ð3H0t=2Þ, with mH0 ¼ 0.03. There is a spacelike
initial singularity at t ¼ 0. Also the conformal time η is bounded
and the future infinity is spacelike. The dotted lines are not part of
the spacetime and are drawn for comparison to the other
situations.
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Therefore, the Ricci scalar is given by

R ∼ exp

�
η

2m

�
×

_a2 þ aä
a2

: ð43Þ

If we assume that aðtÞ behaves asymptotically as a power
of t, aðtÞ ∼ tα with α > 0, it follows aðηÞ ∼ η

α
1−α and thus, if

_a2 þ aä ≠ 0, R → ∞ since the exponential dominates as
η → ∞. The form of the scale function that provides _a2 þ
aä ¼ 0 is aðtÞ ¼ c1t1=2. In this case, the singularity appears
in the Kretschmann scalar (22), which in the limit r → 2m
goes as K ∼ expð ηmÞ × η−8 and that also diverges in the
limit η → ∞.
The conclusion is that the surface r ¼ 2m is singular for

lightlike geodesics if the scale factor grows as a power law
(or at a higher rate) at large cosmological times.

B. Timelike observers

Lightlike (null) trajectories are the fastest allowed paths
for sign travel in general relativity, and hence it would be
interesting to check if the analysis performed in Sec. IVA
would give a different result if we used timelike trajectories,
that move at lower velocities.
Here it is convenient to use the conformal time η as the

time coordinate, bringing the line element to the form given
in Eq. (2).
We can parametrize the 4-velocity of any timelike

observer as

u0 ¼ dη
ds

¼ coshω

a
ffiffiffiffiffiffiffiffiffi
fðrÞp ; u1 ¼ dr

ds
¼

ffiffiffiffiffiffiffiffiffi
fðrÞp

sinhω
a

; ð44Þ

where s is the proper time of the observer and ω is its
rapidity. Therefore, we have

dr
dη

¼ u1

u0
¼ fðrÞ tanhω; ð45Þ

which gives

ηðrÞ ¼
Z

dr
fðrÞ tanhω : ð46Þ

Since we are interested in ingoing observers that reach
the r ¼ 2m surface at a finite proper time, it is appropriate
to take ω ¼ −jωj. In order to simplify the problem further,
we consider that ω is constant along the trajectory. Then we
obtain

η ¼ −
1

tanh jωj ðrþ 2m ln ðr − 2mÞÞ þ constant; ð47Þ

and hence, close to the limit r → 2m, it yields

rðηÞ ∼ C exp

�
−
η tanh jωj

2m

�
þ 2m: ð48Þ

Next we find the approximate form for the function fðrÞ
along a timelike geodesic in the limit r → 2m,

f½rðηÞ� ∼ exp

�
−
η tanh jωj

2m

�
: ð49Þ

From these results, and with the hypothesis that aðtÞ
behaves asymptotically as a power of t, it is seen that f
dominates the limit of R as η → ∞, irrespective of the
value of jωj, and the timelike geodesics hit a singularity
(R → ∞) at r ¼ 2m.
This proof also applies for ingoing observers with

variable ω provided jωj is bounded from below.

C. Building Thakurta models with a
nonsingular r = 2m surface

As seen from the previous analysis, the Thakurta metric
does not correspond to a black-hole spacetime if the scale
factor follows the standard cosmological scenario. Notice
that in order to obtain a black-hole model from that metric,
it has to be associated to an incomplete patch of the
spacetime and the locus r ¼ 2m must be a nonsingular
surface, which would be the expected locus of the event
horizon.
The above analysis suggests that, as f½rðtÞ� goes to zero

exponentially for timelike and null lines, the derivatives of
aðtÞ should also vanish exponentially fast in a time scale
shorter than that of f½rðtÞ�. This also implies that aðtÞ has to
be bound as t → ∞, and hence all models where aðtÞ is
unbounded are singular at r ¼ 2m. Then we assume here
that limt→∞aðtÞ ¼ a∞ > 0. In this case, the conformal time
behaves linearly with respect to the cosmic time, that is,
η ∼ t=a∞ for large times.
Consider now the Kretschmann scalar, which is given by

Eq. (22). The dominant term in K in the limit r → 2m is
_a2=f2½rðtÞ�. Thus, in order to have a finite K, assuming
_a ∼ e−t=τ, the constraint

1

2m
−
2

τ
< 0⇔τ < 4m; ð50Þ

must be satisfied. Therefore, a sufficient condition for the
surface r ¼ 2m being nonsingular is _a < Oðe−t=4mÞ. This
condition may be fulfilled by models with aðtÞ ¼
tanhðt=t0Þ studied in Sec. V, if t0 ¼ 2τ < 8m. In cases
like this the spacetime can be extended across the surface
r ¼ 2m and its analytical extension may be a black-hole or
white-hole spacetime.

V. ANALYSIS OF SOURCES AND
CAUSAL STRUCTURE

A. Preliminaries

Different models can be crafted for different choices of
aðtÞ. The main differences between them are related to the
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existence or not of a singularity at r ¼ 2m, and the behavior
of the geodesics going to both time boundaries (past
singularity and future time infinity). We shall then present
some examples of interesting cases with different causal
structures. In all the examples discussed in this section the
value of the mass parameter is fixed to m ¼ 1.

B. Solutions with unbounded scale factor

1. Preliminaries

Let us start with a few examples of scale factors that may
describe some phase of expanding cosmological models. In
all of the cases studied in this section the function aðtÞ starts
with zero value at t ¼ 0, a big-bang type singularity, and
growths monotonically with the cosmological time.

2. aðtÞ= sinh3=2ðt=t0Þ: A smooth ΛCDM model

The first case is a ΛCDM universe with aðtÞ ¼
sinh2=3ðt=t0Þ, t0 ¼ 2=ð3H0Þ, as the model used in
Ref. [19]. In this case the central mass MðtÞ ¼ maðtÞ
grows exponentially fast at late times. The horizons exist
only by a finite amount of time and form a bubble that does
not reach the future infinity, as represented in Fig. 1.
The causal diagram depicted in Fig. 6 summarizes the

geometrical properties of the corresponding spacetime. The
locus r ¼ 2m is beyond the future infinity and the space-
time presents a bounded conformal time η, which is
represented by the spacelike (black, solid) curve delimiting
the spacetime. The regular region lies inside the closed
surface generated by the trapping horizons, the surface t¼0
is spacelike (and singular), and the spacetime is future
geodesically complete. No black hole is present, and the
shown diagram is in fact the maximal analytical extension.
The choice aðtÞ ¼ sinh2=3ð3H0t=2Þ is motivated by

the standard cosmological scenario, which has a phase
dominated by cold dark matter (dust fluid, p ¼ 0) and
approaches a de Sitter fluid (p ¼ −ρ) at late times,
and has been used in Refs. [19,20]. The related energy
density and pressure [see Eqs. (7) and (8)] are given
respectively by

8πρ ¼ 3H2
0coth

2½3H0t=3�
fðrÞ ; 8πp ¼ −

3H2
0

fðrÞ ; ð51Þ

where fðrÞ is given by Eq. (6).
Since the pressure is time independent, the ratio

wðtÞ ¼ p=ρ, plotted in Fig. 7, indicates the time evolution
of the energy density. At early times the energy density is
large, the fluid behaves like a dust fluid, while at late times
the energy density is also a constant. The final state
is p ¼ −ρ ¼ −3H2

0=ð1 − 2m
r Þ.

The only nonzero component of the heat flow qμ is the
one along the radial direction, qr. Eq. (14) then gives

jqj ¼ 2mH0 coth ð3H0t=2Þ
r2sinh5=3ð3H0t=2ÞfðrÞ

; ð52Þ

where fðrÞ is given by Eq. (6). This energy flux decreases
with r−2, it is arbitrarily large at initial times and tends to
zero at late times.
The energy density and pressure, given by Eq. (51),

together with the energy flux (52), define the energy-
momentum content of the spacetime. Regarding to the
energy conditions [cf. Eqs. (10), (11), and (12)] the
important quantity to analyze is ratio nðt; rÞ ¼
ðρþ pÞ=2jqj, defined in Eq. (15), which in the present

case is nðt; rÞ ¼ 3H0r2

2m cschð3H0tÞsinh2=3ð3H0t=2Þ, and
so the energy conditions strongly depend on time and
radial coordinates. For small times it approaches to
nðt; rÞ ∼ 9r2H2=3

0 =ð4mt1=3Þ, while for large times it results
nðt; rÞ ∼ 3r2H0e−H0t=ð2mÞ. Hence, at very initial times and
finite r > 2m, the constraint ρþ p ≥ 2jqj holds and it can
be verified that all the energy conditions are satisfied.
Moreover, since (for fixed r) the function ρþ p vanishes
faster than the energy flux jqj, at late times (for fixed r) the
constraint ρþ p ≥ 2jqj does not hold and the NEC, the
WEC, and the SEC are violated. Such a behavior is
depicted in Fig. 7. On the other hand, since jqj falls with
1=r2, for any fixed time, at sufficiently large radial
coordinates (r → ∞), the NEC, the WEC, and the SEC
are satisfied.
We can also evaluate the energy conditions along the

trapping horizons r̂þðtÞ and r̂−ðtÞ, and investigate the
character of the trapping horizons in the spirit of
the classification and theorems of Refs. [22] and [39].
To do that properly, and to be able to compare the different
cases, we report on such a subject in Appendix D.

3. aðtÞ= ðt=t0Þ2=3: CDM (dust fluid) model

Another important example is a dust model with aðtÞ ¼
ðt=t0Þ2=3 for all t > 0. For this scale factor the trapping

FIG. 7. The curves for wðtÞ ¼ p=ρ and ðpþ ρÞ=2jqj in the case
aðtÞ ¼ sinh2=3ð3H0t=2Þ, for H0 ¼ 0.03 and r ¼ 3 ×m (we have
chosen m ¼ 1).
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horizons have similar forms to those presented in Fig. 2.
Here the conformal time η is unbounded and hence the
lightlike geodesics reach the future null infinity. At late
times both of the horizons are timelike and form a closed
curve that reaches the timelike infinity. The causal diagram
is given in Fig. 8.
Similarly to the case of the last section, the regular region

is inside the closed curved formed by the trapping horizons.
The surface t ¼ 0 is singular and spacelike. An important
difference is that here the lightlike surface r ¼ 2m belongs
to the spacetime, it is a singular boundary of the spacetime.
Moreover, the spacetime is geodesically incomplete also to
the future, for geodesics hitting the singularity at r ¼ 2m.
The Fig. 8 then shows the maximal analytical extension of
the solution.
The aðtÞ ¼ ðt=t0Þ2=3 function produces a dust back-

ground fluid with a heat flow in the radial direction,

8πρ ¼ 4

3t2
1

fðrÞ ; 8πp ¼ 0;

8πjqj ¼ 4mt2=30

3t5=3
1

r2fðrÞ ; ð53Þ

where fðrÞ is given by Eq. (6). Since the properties of this
fluid are very simple we do not show the graphs of the fluid
quantities nor of the ratio p=ρ for this case.
The energy density, the pressure, and the energy flux are

given by Eq. (53). As in the case of the last section, the
energy conditions are satisfied at early times, but the
heat flux decreases slower than the energy density and
dominates for large times. Such a behavior is depicted
in Fig. 9. In the present case Eq. (15) yields nðt; rÞ ¼
ðρþ pÞ=2jqj ¼ r2=ðmt2=30 t1=3Þ. At very initial times (and
fixed r > 2m), the constraint ρþ p ≥ 2jqj holds and it can
be verified that all the energy conditions are satisfied.
Moreover, since the function ρþ p vanishes faster than the
energy flux jqj with t, at late times (and fixed r > 2m)
the constraint ρþ p ≥ 2jqj does not hold and the NEC, the
WEC, and the SEC are violated. On the other hand, since

jqj falls with 1=r2, for any fixed time at sufficiently large
radial coordinates (r → ∞), the NEC, the WEC, and the
SEC are satisfied.
Some details of the energy conditions along the trapping

horizons and their properties are given in Appendix D.

4. aðtÞ= ðt=t0Þ1=3: Stiff matter model

In some cosmological models there is a “stiff matter” era
[40], notably when dark matter is modeled as Bose-Einstein
condensates, where the equation of state is ρ ¼ p. A stiff
matter model with positive energy is considered with
aðtÞ ¼ ðt=t0Þ1=3, yielding an unbounded conformal time
η. At late times the inner trapping horizon is timelike while
the outer trapping horizons is spacelike for all times. The
inner horizon changes to the spacelike character at a given
intermediate time. The causal structure is presented in
Fig. 10. As in the last two cases, the initial singularity t ¼ 0
is spacelike. Here, as in the case of dust matter, the surface
r ¼ 2m is singular and the spacetime is also future geo-
desically incomplete.
The energy density, the pressure, and the energy flux for

stiff matter model are given respectively by

FIG. 8. The causal diagram for the dust model aðtÞ ¼ ðt=t0Þ2=3,
with t0 ¼ 1 ¼ m. There is an initial singularity at t ¼ 0, a null
singularity at r ¼ 2m. The trapping horizons are timelike for
large times. FIG. 9. The curve for ρ=2jqj in the case aðtÞ ¼ ðt=t0Þ2=3, with

t0 ¼ 1 and r ¼ 2.5 ×m (we have chosen m ¼ 1).

FIG. 10. The causal diagram for the stiff matter model with
aðtÞ ¼ ðt=t0Þ1=3, with t0 ¼ 1 ¼ m. The spacetime is geodesically
incomplete with r ¼ 2m and t ¼ 0 being singular surfaces.
At late times, the inner trapping horizon is timelike while the
outer horizon is spacelike.
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8πρ ¼ 8πp ¼ 1

t2fðrÞ ; jqj ¼ 2m

3t1=30 t4=3
1

r2fðrÞ ; ð54Þ

where fðrÞ is given by Eq. (6). The curves for ρ and p as a
function of the cosmological time (for fixed r) are shown in
Fig. 11 (they are identical). The ratio nðt; rÞ ¼ ðρþ pÞ=
2jqj ¼ r2= × ð2mt1=30 t2=3Þ is also shown in that figure.
As seen from the curves for ðρþ pÞ=2jqj in Figs. 9 and

11, the situation here is very similar to the case of dust
matter reported in the last subsection. We note that for early
times the ratio nðt; rÞ is grater than unity, and we can show
that the energy conditions are satisfied, while for late times
the ratio becomes smaller than unity, so that the condition
ðρþ pÞ − 2jqj ≥ 0 does not hold and the energy conditions
are violated. The curves shown in Fig. 11 depend also
upon the radial coordinate r, so that for very large r and
finite t the energy conditions are satisfied. For the behavior
of the energy conditions on the trapping horizons see
Appendix D.

5. aðtÞ= ðt=t0Þ: Fluid of cosmic strings model

A particularly intriguing case is when aðtÞ ¼ ðt=t0Þ,
where the mass function MðtÞ ¼ maðtÞ increases linearly
with the time t.
Taking t0 > 8m the trapping horizons are created with

the big bang at t ¼ 0 and persist for all times up to t → ∞,
being timelike for all times. The initial singularity is
lightlike, and the locus r ¼ 2m is singular, as indicated
in the causal diagram depicted in Fig. 12. The spacetime is
geodesically incomplete to the future, but all the incomplete
geodesics terminate at the singularity r ¼ 2m.
The special case with t0 ¼ 8m presents just one trapping

horizon [the two solutions r̂�ðtÞ coincide], the regular
region ðþ−Þ disappears but the conformal boundaries are
the same as for t0 > 8m, as depicted in Fig. 12. On the other
hand, for t0 < 8m there are no trapping horizons and this
situation is not considered in the present analysis.

The scale factor aðtÞ ¼ ðt=t0Þ corresponds to the cos-
mological model of a universe filled by a fluid for which
p=ρ ¼ −1=3. Historically, the equation of state of such a
form has been related to a fluid of cosmic strings [41,42].
However, with the advent of the accelerated expansion of
the Universe, a plethora of dark energy models with p=ρ <
0 have been formulated. In particular, successful scalar field
models imply in a relation ω ¼ p=ρ which varies with the
cosmological time and assumes negative values at late
times, including the ω ¼ −1=3 as a particular situation.
The energy density, the pressure, and the energy flux are,

respectively,

8πρ ¼ −8πp
3

¼ 3

t2fðrÞ ; 8πjqj ¼ 2mt0
t2

1

r2fðrÞ ; ð55Þ

where fðrÞ is given by Eq. (6). The curves for ρ, p, and for
the ratio ðρþ pÞ=2jqj as a function of the cosmological
time, for fixed r ¼ 2.5m, are shown in Fig. 13.
Here one has nðt; rÞ ¼ ðρþ pÞ=2jqj ¼ r2=ð2mt0Þ,

which depends only on the radial coordinate r, and is
smaller than unity for small r. Since the constraint ρþ p ≥
2jqj is not fulfilled, the energy conditions are violated at
small scales. For r ≥

ffiffiffiffiffiffiffiffiffiffi
2mt0

p
the NEC and the WEC are

satisfied, but the SEC is not. In fact, the SEC is violated
everywhere in the spacetime.
In the situation as in the case of Fig. 12, i.e., for

t0 > 8m, the horizons are formed at t ¼ 0 with
r̂�ðtÞ ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8m=t0
p Þ=ð2t0Þ and last forever. The

NEC and the WEC are satisfied for all times along

FIG. 11. The energy density, the pressure, and the ratio
ðρþ pÞ=2jqj from Eq. (54), with r ¼ 2.5m and m ¼ 1, for the
case aðtÞ ¼ ðt=t0Þ1=3, with t0 ¼ 1.

FIG. 12. The causal diagram for aðtÞ ¼ ðt=t0Þ. The initial
singularity is lightlike. If t0 > 8m the trapping horizons are as
shown in this plot, being timelike everywhere. Here we have used
t0 ¼ 10m, with m ¼ 1. In such a case, the locus r ¼ 2m is
singular
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r̂þðtÞ, but all the energy conditions are violated along r̂−ðtÞ.
See Appendix D for more details.

C. Solutions with bounded scale factor

1. Preliminaries

On the basis of the statement of Ref. [43] that a bound
system either completely follows the cosmological expan-
sion or is completely insensitive to it after some transient, it
is reasonable to assume that, initially, the mass of the
central object follows the expansion and grows with the
cosmological scale factor aðtÞ,M ¼ maðtÞ, but that latter it
stops to follow expansion and the mass increases in a
different rate. These conditions justify the choice of a
different function aðtÞ to describe the mass function M, at
least for late times.
Moreover, as already mentioned, an aim of the present

work is to extract black-hole solutions from the Thakurta
metric (2), and so the r ¼ 2m locus needs to be a
nonsingular surface. In order to achieve such an objective,
besides converging to a constant for large times, the study
presented in Sec. IV elucidated that the scale factor aðtÞ
must display a sufficiently fast decaying derivative _aðtÞ.
Besides the physical interpretation of the matter under

collapse, the important point here is that the choice of a
bounded scale factor aðtÞ bears the idea that the time
evolution of the “local” object depart from the evolution of
the Universe as a whole. In this instance, the function
MðtÞ ¼ maðtÞ describes the time evolution of the localized
object independently of the expansion of the Universe
which would be described by a different scale factor.

2. aðtÞ= tanh2=3ðt=t0Þ: Initial power law model with
smooth transition to vacuum

With the last comments in mind, we try the function
aðtÞ ¼ tanh2=3ðt=t0Þ. This model simulates a dust domi-
nated initial era, with aðtÞ ∼ ðt=t0Þ2=3, and a final phase
with constant aðtÞ ¼ 1.

The scale factor aðtÞ ¼ tanh2=3ðt=t0Þ yields a spacetime
whose incomplete causal diagram, for t0 ¼ 1 ¼ m, is given
in Fig. 14. The surface r ¼ 2m is nonsingular and the
resulting spacetime is future geodesically incomplete along
such a surface. Moreover, if we take t0 < 4m—note that
t0 ¼ 2τ—then this spacetime can be extended and a
possible extension is represented in Fig. 15. Taking into
account that in the limit t → ∞ these Thakurta models
converge to a Schwarszchild geometry, and that the trap-
ping horizons are everywhere spacelike, then the gluing is
made from a regular region. Therefore the extension is
made by joining a trapped Schwarszchild region, followed
by a regular Schwarszchild region, and so on. A more
detailed and rigorous argument on this point is presented in
Appendix B, where we build Kruskal-like coordinates for
the Thakurta spacetimes and discuss the conditions on its
analytical continuation.
The background energy density, pressure, and energy

flux in this case are, respectively,

8πρ ¼ 16csch2ð2t=t0Þ
3t20fðrÞ

; 8πp ¼ 8sech2ðt=t0Þ
3t20fðrÞ

;

8πjqj ¼ 4m
3r2t0

sech2ðt=t0Þ
tanh5=3ðt=t0ÞfðrÞ

; ð56Þ

FIG. 13. The energy density, the pressure, and the ratio
ðρþ pÞ=2jqj, from Eq. (55) with r ¼ 2.5m, for the case
aðtÞ ¼ t=t0, with t0 ¼ 10m and m ¼ 1.

FIG. 14. The causal diagram for aðtÞ ¼ tanh2=3 ðt=t0Þ, with
t0 ¼ 1 ¼ m. The trapping horizons are spacelike everywhere, and
the surface r ¼ 2m is nonsingular. Also there is an initial
spacelike singularity at t ¼ 0.

FIG. 15. A possible extended causal diagram for
aðtÞ ¼ tanh2=3ðt=t0Þ, with t0 ¼ 1 ¼ m. The surface r ¼ 2m is
nonsingular and corresponds to a black-hole horizon. The ellipses
indicate that the diagram is to be continued.
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where fðrÞ is given by Eq. (6). For small times it holds
aðtÞ ∼ ðt=t0Þ2=3, and so the energy density approaches the
cold dark matter cosmological model, 8πρ ∼ 4=ð3t2fðrÞÞ
but the pressure is constant with time in that regime,
8πp ∼ 8=ð3t20fðrÞÞ. For large times both the energy density
and pressure vanish, with the energy density going to zero
faster than the pressure. The ratio p=ρ gives 2 sinh2 ðt=t0Þ,
which grows with e2t=t0 at large times. This is shown
in Fig. 16.
To check the energy conditions let us then take the

ratio ðρþ pÞ=2jqj from Eq. (15), which gives, nðt; rÞ ¼
r2

2mt0
ð1þ coth2ðt=t0ÞÞtanh5=3ðt=t0Þ. For small times it

results nðt; rÞ ∼ r2=ð2mt2=30 t1=3Þ, while for large t it tends
to nðt; rÞ → r2=ðmt0Þ. Hence, at initial times and fixed
r < ∞ the constraint ðρþ pÞ ≥ 2jqj does not hold and the
energy conditions are not satisfied. On the other hand, for
large times and with fixed r2 > 2mt0 the energy flux is
always smaller than the energy density and then the
constraint ρþ p ≥ 2jqj is satisfied, which assures that
the NEC is satisfied. Moreover, owing to the fact that in
the present case one has ρþ p > 0, the WEC and the SEC
are also satisfied for large times.
The analysis of the energy conditions and properties of

the trapping horizons are presented in Appendix D.

3. aðtÞ = tanhðt=t0Þ: Cosmic strings type fluid model
with smooth transition to vacuum

Let us now analyze a case with an initial singularity that
is not spacelike and with bounded aðtÞ at large times. This
is the case for aðtÞ ¼ tanh ðt=t0Þ. At early times t → 0 the
scale factor goes as aðtÞ ¼ t=t0 and tends to unity for large
times. The ratio between pressure and energy density for
early times is p=ρ ¼ −1=3, representing a fluid of cosmic
strings [41,42]. This solution presents three possible
structures depending on the value of t0 that influence the
behavior of the horizons. The analysis of this behavior is
presented in Appendix A.

Considering t0 < 4m the horizons are spacelike at all
times as showed in Fig. 17. For 4m < t0 < 8m the horizon
r̂− is timelike at large times and the diagram is represented
in Fig. 18. Also considering t0 > 8m, represented in
Fig. 19, the horizon r̂− is timelike and both horizons exist
at all times.
In the case aðtÞ ¼ tanh ðt=t0Þ, the energy density, the

pressure, and the energy flux are given, respectively, by

FIG. 16. The energy density, the pressure, and the ratio
ðρþ pÞ=2jqj, for the case aðtÞ ¼ tanh2=3 ðt=t0Þ, with t0 ¼ m
and a fixed value of r > 2m (here, r ¼ 2.5m and m ¼ 1).

FIG. 17. The extended causal diagram for the case
aðtÞ ¼ tanh ðt=t0Þ, with t0 ¼ 3m and m ¼ 1. The initial singu-
larity is lightlike, and the surface r ¼ 2m is nonsingular and
corresponds to a black-hole horizon. The trapping horizons r̂−
and r̂þ are spacelike for all times.

FIG. 18. The extended causal diagram for the case
aðtÞ ¼ tanh ðt=t0Þ, with t0 ¼ 6m and m ¼ 1. The inner trapping
horizon is timelike for late times, but it is spacelike in a small
region of the spacetime at early times, close to the time the
horizons are formed. The outer horizon is timelike for early times
and becomes spacelike at late times. The initial singularity is
lightlike, and the surface r ¼ 2m is nonsingular corresponding to
a white-hole horizon.
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8πρ ¼ 12csch2ð2t=t0Þ
t20fðrÞ

;

8πp ¼ ½2 cosh ð2t=t0Þ − 3� 4csch
2ð2t=t0Þ

t20fðrÞ
;

8πjqj ¼ 2m
t0

csch2ðt=t0Þ
r2fðrÞ ; ð57Þ

where fðrÞ is given by Eq. (6).
As seen in Figs. 20 and 21, this scale factor gives a fluid

whose energy density and pressure diverge at t ¼ 0 and
vanish at t → ∞. As in general for the Thakurta metric, the
equation of state is such that w ¼ p=ρ depends on the

cosmological time alone. Here it is wðtÞ ¼ −1þ
2 cosh ð2t=2t0Þ=3. Function wðtÞ assumes the value p=ρ ¼
−1=3 at t → 0, the equation of state for a fluid of cosmic
strings [41,42]. The pressure grows to positive values and
decays to zero in a rate slower than the energy density, and
then the ratio wðtÞ changes signs and assumes large values
for large times, even though the fluid quantities are
vanishingly small.
The ratio ðρþ pÞ=2jqj starts with the value r2=ð2mt0Þ at

t ¼ 0 and reaches the value r2=ðmt0Þ at t → ∞. Hence, the
(NEC, WEC and SEC) energy conditions are violated for
sufficiently small radial coordinate, but they are all satisfied
for sufficiently large values of r. This implies that the
energy conditions tend to be violated along the r̂−ðtÞ
branches of the trapping horizons, and are satisfied along
the r̂þðtÞ branch. In Appendix D we perform a more
detailed analysis on such a subject.

4. Truncated scale factor

Some of the models with unbounded scale factor can
easily be modified to describe a spacetime without a
singularity at r ¼ 2m. Considering that the accretion of
matter/energy into the central object eventually ceases
because the whole matter of the surroundings has already
been exhausted, we may take a different scale factor aðtÞ
after a given sufficiently long time T. Notice that a
nonsingular surface r ¼ 2m can be formed if we choose
_aðtÞ to vanish faster than expð−t=2mÞ. The simplest choice
is to take aðtÞ ¼ constant for t > T.
For instance, in the case of dust matter studied in

Sec. V B 3 we may take

aðtÞ ¼
� ðt=t0Þ2=3; t ≤ T;

ðT=t0Þ2=3; t > T;
ð58Þ

where T is an arbitrary timescale. In this case, the mass
functionMðtÞ ¼ maðtÞ initially grows by accretion of dust
fluid (cold dark matter) at the same rate as the back-
ground expands, but suddenly stops growing at time T.

FIG. 19. The causal diagram for the case aðtÞ ¼ tanh ðt=t0Þ,
with t0 ¼ 10m and m ¼ 1. The inner horizon r̂− is timelike,
while the outer horizon r̂þ is timelike for early times and becomes
spacelike at late times. The initial singularity is lightlike, and the
surface r ¼ 2m is singular. Notice that the horizons exist since the
beginning of time.

FIG. 20. The energy density and the pressure from Eq. (57) for
the case aðtÞ ¼ tanh ðt=t0Þ, with t0 ¼ 10m, r ¼ 2.5m andm ¼ 1.

FIG. 21. The ratio p=ρ in the case aðtÞ ¼ tanh ðt=t0Þ, with
t0 ¼ 10m and m ¼ 1, as in Fig. 20.
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This parameter T is chosen as the approximate cosmo-
logical time when the evolution of local object separates
from the universal expansion. Such a time scale may be
thought of as the time when the accretion of matter by the
object becomes negligible.
The final spacetime is a white hole. In fact, the causal

diagram is similar to what is presented in Fig. 8, but now
the locus r ¼ 2m is nonsingular, the resulting geometry is
geodesically incomplete and the spacetime can be extended
as shown in Fig. 22, where the extension is made by
attaching a regular region, followed by a trapped region,
into the antitrapped region.
A second interesting example where the scale factor may

be truncated after a given time is the case considered in
Sec. V B 5. The scale factor is of the form

aðtÞ ¼
�

t=t0; t ≤ T;

T=t0; t > T;
ð59Þ

where T is an arbitrary timescale. The corresponding
conformal diagram is shown in Fig. 23.
Is is also easy to obtain a black-hole type solution in the

case of aðtÞ ¼ tanh ðt=t0Þ, with t0 ¼ 10m, studied above by
truncating the scale factor in order to make it tend to a
constant faster enough. Then, by choosing

aðtÞ ¼
�

tanh ðt=t0Þ; t ≤ T;

tanh ðT=t0Þ; t > T;
ð60Þ

where aðtÞ is a constant for t > t0, an extension of the
spacetime represented by Fig. 19 can be found. With this,
the locus r ¼ 2m, or R ¼ 2maðtÞ, is asymptotically a
nonsingular lightlike surface. The final state is a white
hole. Figure 24 shows a possible analytical continuation of
the spacetime corresponding to this truncated scale factor.

Let us stress that the models analyzed in this subsection
should be considered as first approximations to describe
the local evolution of the spacetime, with the term local
meaning the spacetime region close to central object.

FIG. 22. The extended causal diagram in the case the scale
factor is truncated as aðtÞ ¼ ðt=t0Þ2=3 for t ≤ T, and aðtÞ ¼
ðT=t0Þ2=3 ¼ constant for t > T. Here we have chosen T ¼ 50m,
t0 ¼ m, andm ¼ 1. The initial singularity t ¼ 0 is spacelike. The
locus r ¼ 2m is nonsingular and corresponds to a white-hole
horizon.

FIG. 23. A possible extension in the case aðtÞ ¼ t=t0, for
T ≤ T, and aðtÞ ¼ T=t0, for t > T. Here we have chosen
T ¼ t0 ¼ 10m, and m ¼ 1. In such a case the surface r ¼ 2m
is nonsingular and corresponds to a white-hole horizon.

FIG. 24. A possible extension for the case aðtÞ ¼ tanh ðt=t0Þ
for t < T and aðtÞ ¼ tanh ðT=t0Þ for t ≥ T, with T ¼ 50m,
t0 ¼ 10m, and m ¼ 1. The surface r ¼ 2m is nonsingular and
corresponds to a white-hole horizon.
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In fact, the truncation process causes an abrupt change in
the spacetime evolution, and may introduce surface layers
which could spoil the physical properties of the spacetime.
The alternative to avoid such layers is to replace the
constant a for t > T by a function a2ðtÞ which falls off
with t in a rate such that 0 < _a2ðtÞ < e−t=4m, and to try a
smooth match at t ¼ T. Furthermore, the conditions
aðTÞ ¼ a2ðTÞ, _aðTÞ ¼ _a2ðTÞ, and äðTÞ ¼ ä2ðTÞ assure
the continuity of the energy density, energy flux, and
pressure at t ¼ T. Then, a matching hypersurface of class
C2 is enough to avoid introducing surface layers. Such a
construction does not change substantially the global causal
structure of the spacetime, in the sense that the trapping
horizons keep the asymptotic behavior and the surface
r ¼ 2m is regular at t → ∞, as in Figs. 22, 23, and 24, and
leads to solutions with no shells/surface layers. The
resulting a2ðtÞ functions are given by cumbersome for-
mulas and then we do not preset them here.
A possible issue remains in the case aðtÞ ¼ ðt=t0Þ2=3,

because in this case the dust character of the fluid is
broken. The C2 matching inevitably introduces a nonzero
pressure for t > T, i.e., nevertheless continuous at t ¼ T,
the pressure is zero for t ≤ T but it would not be zero for
t > T anymore. In order to fix the pressure to zero also in
the region t > T, a surface layer must be present at
t ¼ T, and so the curvature scalar would acquire δ
function terms. Such a situation is of little interest for
the present analysis.

D. Further considerations

Many other examples can be constructed for different
choices of aðtÞ, however they will present essentially the
same causal structure. This is due to the fact that the causal
structure is determined by the asymptotic behavior of the
chosen scale factor aðtÞ at two limits, namely, t → 0 and
t → ∞. Therefore, we can craft any of the possible causal
structures showed here, and still other ones that combine
the possible behaviors of the big-bang singularity, the
asymptotic character of the trapping horizons and the
properties of the r ¼ 2m surface and its continuation
beyond the horizon (if it is nonsingular) by building
functions aðtÞ with the required properties at those two
limits.

VI. CONCLUSION

In this paper we performed a thorough study of the
spacetimes built by a conformal transformation of the
Schwarszchild metric in Schwarszchild coordinates, using
a time-dependent scalar factor aðtÞ. We demonstrated that
for unbounded scale factors aðtÞ, the resulting models do
not describe black holes, but inhomogeneous expanding
universes presenting a regular region with a finite lifespan
or even spacetimes with a null singularity at a finite proper
time in the future.

In order to obtain black-holes spacetimes, we had to
resort for bounded scale factors, with a rapidly vanishing
time derivative _a ∼ e−t=τ. For instance, in the models with
aðtÞ ¼ tanhðt=t0Þ the time derivative of the scale factor
goes as _a ∼ e−2t=t0 . The properties of these models, even
with similar functional forms, strongly depend on the value
of τ. We have found that
(1) For τ > 4m, the spacetime has a future null singu-

larity and is not extensible;
(2) For 2m < τ < 4m, the spacetime presents a white-

hole horizon at r ¼ 2m;
(3) For τ < 2m, the spacetime presents a black-hole

event horizon at r ¼ 2m.
The strong dependence of the causal structure on the

asymptotic form of the scale function aðtÞ is reminiscent
of the cosmological black-hole solutions based on the
McVittie metric, that can also represent white holes
depending on the chosen parameters, as recently shown
in Refs. [20,21]. The important difference here is that
black-hole models only suffer cosmological expansion
during a finite time scale given by the parameter τ, being
essentially static for large times. This behavior may seem
unphysical at first glance, but it can be thought of as a
decoupling model of an initially bound system that, after a
transient, decouples from the cosmological expansion,
similar to the behavior of the classical atom studied in
Ref. [43]. Therefore, this can be an interesting model for
dynamical, accreting black holes, that after the accretion
time decouples from the cosmological expansion and
ceases to accrete, and that at late times lives in an
effectively static and empty bubble.
This analysis leads us to realize how subtle the inter-

pretation of apparently simple solutions of general rela-
tivity may be and provides examples of black holes and
white holes with time-dependent mass and dynamical
horizons. These results indicate that this construction of
dynamical solutions from static ones can be used for other
classes of black-hole solutions, as Thakurta’s original
attempt using Kerr line element. It is important to remark
that this method of construction using a time-dependent
conformal factor is dependent on the choice of the
coordinates in the original metric. For example, in the
case of Schwarszchild metric, a different choice of coor-
dinates leads to the Sultana-Dyer construction [31].
Finally, we wonder that this method of building dynami-

cal black holes from static ones may be employed to
produce new solutions in a number of applications in black-
hole physics, such as the AdS=CFT correspondence, black-
hole thermodynamics and properties of general relativity in
the strong field regime.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF
THE TRAPPING HORIZONS

In order to determine the character of the horizons
hypersurfaces we investigate the character of the normal
vector nμ ¼ ∂μr̂�. We consider only cases where _a → 0 as
t → ∞. In the cases where _a↛0 the horizons have a finite
span in the R × t subspace and do not exist for sufficiently
large times. The case _a tends to a nonzero constant as
t → ∞ requires a separated study. The hypothesis _a → 0
allows us to greatly simplify the expressions for the
horizons by means of series expansions in terms of _a.
Equation (26) can be approximated by

r̂þ ¼ 1

_a
þOð _aÞ; ðA1Þ

r̂− ¼ 2mð1þ 2m _aÞ þOð _a2Þ: ðA2Þ

Therefore, the normal vectors to the trapping horizons r̂�
are given respectively by

nðþÞ ¼ ä
_a2
dtþ dr; ðA3Þ

nð−Þ ¼ −4m2ädtþ dr: ðA4Þ

Taking the (squared) norm of nð−Þ, for the inner horizon
r̂−, we get

jnð−Þj2 ¼ −
ð4m2Þ2ä2
f½r̂−ðtÞ�Þ

þ a−2f½r̂−ðtÞ�

¼ −
ð4m2Þ2ä2
2m _a

þ 2m _a
a2

; ðA5Þ

where we used the approximation

f½r̂−ðtÞ� ≈ 2m _a: ðA6Þ

Similarly, for the outer horizon r̂þ it follows

jnðþÞj2 ¼ −
1

1 − 2m _a
ä2

_a4
þ a−2ð1 − 2m _aÞ

¼ ð1þOð _aÞÞ
�
1

a2
−
ä2

_a4

�
; ðA7Þ

where the approximation

f½r̂þðtÞ� ≈ 1 − 2m _a; ðA8Þ
was used.
With Eqs. (A5) and (A7) at hand, in order to determine

the asymptotic character of the trapping horizons, we only
need to determine the sign of the normal to the horizon
surfaces for a given asymptotic behavior of the scale
factor aðtÞ.
For scale factors of the type aðtÞ ∼ tα, with 0 < α < 1,

one has ä2

_a4 ∼ 1, ä
2

_a2 ∼ t−2, and 1
a2 ∼ t−2α. Applying this result

to Eq. (A5) we obtain jnð−Þj2 > 0 for large t. Therefore,
(1) r̂− is timelike for large t if 0 < α < 1.
On the other hand, still for power law scale factors with

aðtÞ ∼ tα, the nature of the outer horizon depends upon α.
From Eq. (A7) we obtain that
(1) r̂þ is timelike for large t if α > 1=2,
(2) r̂þ is spacelike for large t if α < 1=2.
In the case of models with a nonsingular surface at

r ¼ 2m, typically, the scale factor is such that _a ∼ e−t=τ.
With no loss of generality, we can set a∞ ¼ 1, since we can
always achieve that by a rescaling r → r

a∞
, m → m

a∞
. Using

Eqs. (A5) and (A7), it can be shown that for large times r̂−
and r̂þ behave as follows:
(1) r̂− is spacelike if τ < 2m,
(2) r̂− is timelike if τ > 2m,
(3) r̂þ is always spacelike.

APPENDIX B: THE NATURE OF THE
HORIZON AT r= 2m

As seen above there are cases where the surface at
r ¼ 2m is a null horizon and the metric at that locus has
the Schwarzschild form. In order to build an analytical
continuation, we have to determine the kind of horizon it
is. Since the metric is conformal to Schwarzschild, we
can use Kruskal-like coordinates in order to extend it.
Let U and V be such coordinates, defined by

U ¼ exp
�
ηþ r�

2m

�
;

V ¼ − exp

�
−ηþ r�

2m

�
; ðB1Þ

so that the metric (40) can be cast in the form

ds2 ¼ a2ðηÞ e
−r=2m

r
ð−dUdV þ � � �Þ; ðB2Þ

which is well behaved at r ¼ 2m, that is given by
V ¼ 0 in ðU;VÞ coordinates. The null expansions at
r ¼ 2m are

Θþjr¼2m ¼ V;

Θ−jr¼2m ¼ U: ðB3Þ
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Note that the null surface r ¼ 2m is also a trapping
horizon since Θþ ¼ 0 there. Since Θþ > 0 in the region
covered by ðt; rÞ coordinates with r > 2m, by continuity it
follows that Θþ < 0 for r < 2m. This implies that the
surface r ¼ 2m of the Thakurta model should be identified
to the U axis of the half of a Schwarszchild spacetime
defined by V < 0.
In order to determine to which quadrant of the

Schwarzschild maximal extension we can continue the
Thakurta nonsingular models, we have to analyze the sign
of the expansion of ingoing rays as they reach the horizon.
Using ðt; rÞ coordinates again, we obtain

Θ− ¼ 2

ar
kμð−Þ∇μðarÞ ¼

2

r
½ _ar − fðrÞ�; ðB4Þ

which, evaluated for r ¼ r−ðtÞ and large t, gives

Θ− ≈
1

m
ð2m _a − e−t=2mÞ: ðB5Þ

Hence, assuming _a ∼ e−t=τ, Eq. (B5) implies in
(1) Θ− < 0 if τ < 2m,
(2) Θ− > 0 if τ > 2m,

which are the same conditions found for the asymptotic
character of the inner trapping horizon r̂− in Appendix A.
In the case where Θ− < 0 as r− → 2m, the horizon at

r ¼ 2m is the boundary of a regular region, and hence the
analytical continuation must be into a trapped region of the
Schwarzschild spacetime, corresponding to the region II
(V < 0, U < 0) of its maximal extension.
In the case where Θ− > 0 as r− → 2m, the horizon at

r ¼ 2m is the boundary of an antitrapped region, and hence
the analytical continuation must be into a regular region of
the Schwarszchild spacetime, corresponding to the region I
(V < 0, U > 0) of its maximal extension.
This argument justifies the analytical continuations of

Thakurta spacetimes presented in Figs. 15, 17, 18, 22, 23,
and 24.

APPENDIX C: GEODESIC COMPLETENESS
CONSIDERING SUBLEADING TERMS

Here we extend the analysis of the geodesic complete-
ness made in Sec. III C including the contribution of
subleading terms.
We start definingΔðtÞ ¼ r− − 2m so that Eq. (28) can be

written in terms of ΔðtÞ as

t00 ¼
�

1

2ma

�
1þ r− þ 2m

r2−
ΔðtÞ

�
−

_a
a

�
t02; ðC1Þ

which gives, instead of Eq. (31),

ln t0 ¼ η

2m
− ln aþ 1

2m

Z
t ðr−ðsÞ þ 2mÞ

aðsÞr−ðsÞ
ΔðsÞdsþ c1;

ðC2Þ

where c1 is an arbitrary integration constant. Let us stress
that Eq. (C2) is an exact relation. Therefore, instead of
Eq. (32), we find for the affine parameter

Δλ ¼ c2

Z
t

t0

e−
ηðuÞ
2m aðuÞe−JðuÞdu ðC3Þ

where c2 is another integration constant and we defined

JðuÞ ¼ 1

2m

Z
u

t0

ðr−ðsÞ þ 2mÞ
aðsÞr−ðsÞ

ΔðsÞds: ðC4Þ

The crucial difference between Eq. (C3) and Eq. (32) is the
presence of the second exponential term in the integrand,

e−JðuÞ. The first exponential term, e−
ηðuÞ
2m , is essentially the

same as in Eq. (32) (taking K ¼ 1=2m they become
identical) and then, to complete the analysis including
subleading terms, just the behavior of the second expo-
nential term as t → ∞ must be studied here.
We first notice that, since r−ðtÞ > 2m, ∀ t > 0, it

follows that ΔðtÞ ≥ 0 and the ratio ðr− þ 2mÞ=r− is
bounded, more precisely one has 1 < r−þ2m

r−
< 2,

∀ t > 0. Therefore, it suffices to study the properties of
the simpler expression

IðuÞ ¼ exp

�
1

2m

Z
u

t0

ΔðsÞ
aðsÞ ds

�
: ðC5Þ

Now it is convenient to consider separately the two
possibilities,
(1) limt→∞ΔðtÞ > 0, which corresponds to η bounded

from above.
(2) limt→∞ΔðtÞ ¼ 0, which corresponds to η unbounded

from above.
In the first case, if Δ tends to a finite positive value,

then, for any s in the time interval considered ðt0; uÞ, there
exist constants Δb, Δa such that 0 < Δb ≤ ΔðsÞ ≤ Δa,
implying in

½ηðuÞ − ηðt0Þ�Δb ≤
Z

u

t0

ΔðsÞ
aðsÞ ds ≤ ½ηðuÞ − ηðt0Þ�Δa: ðC6Þ

Taking the limit u → ∞ and applying to IðuÞ we finally
obtain

0 < exp

�
−
Δa

2m
ðη∞ − ηðt0ÞÞ

�
< lim

u→∞
IðuÞ

< exp

�
−
Δb

2m
ðη∞ − ηðt0ÞÞ

�
; ðC7Þ
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which demonstrates that IðuÞ is bounded by two strictly
positive constant values, and so the subleading terms give
no relevant contribution to the convergence properties
of Δλ. This fact guarantees that the study of Eq. (32) as
the criterion for convergence performed in Sec. III C is a
strong result.
Now we examine the case where ΔðtÞ → 0 as t → ∞. As

in Sec. III C we take a linear scale factor aðtÞ ¼ a0t, a0
being a constant parameter. In this case we have to review
the argument since there is no Δb > 0 that bounds
ΔðtÞ from below. However, Eq. (29) can be expressed in
terms of Δ to find

e1þ
ΔðtÞ
2mΔðtÞ ¼

�
t
t0

�
− 1
2ma0 : ðC8Þ

Replacing the last result into Eq. (C5) yields

IðuÞ ¼ exp

�
1

2m

Z
u

t0

e1þ
ΔðsÞ
2m

t1=2ma0
0

s1þ1=2ma0
ds

�
; ðC9Þ

which is convergent in the limit u → ∞. Therefore,
taking into account the bounded character of IðuÞ, 0 <
limu→∞IðuÞ < c3 for some constant c3 > 0, the conver-
gence of Δλ is determined by the first exponential term
e−η=2m as in Eq. (32), recovering the results obtained in
Sec. III C.

APPENDIX D: THE ENERGY CONDITIONS AND
THE NATURE OF THE TRAPPING HORIZONS

Here we investigate in some detail the character of the
horizons within the models presented in Sec. V.
A trapping horizon h is defined from the condition

Θ−jh ¼ 0. Correspondingly (following Ref. [22]), h is said

to be a past (future) trapping horizon if Θþjh > 0

(Θþjh < 0). The horizon is outer (inner) if LþΘ−jh <

0 (LþΘ−jh > 0), where Lþ stands for the Lie derivative
along the outgoing null geodesic lines.
The present analysis is based on the studies of

Refs. [22,39], which present theorems that relate the
chronological character of the trapping horizons to the
null energy condition. Here, for the sake of simplicity,
we stick to the statement given in Ref. [22], though it is
weaker in general than the one presented in [39]. In the
present models, however, since metric and horizons
are spherically symmetric, they are equivalent. The
statement is
Theorem I.—If the null energy condition holds, then an

outer (inner) trapping horizon is spacelike (timelike), and a
trapping horizon is null if and only if, additionally, the
internal shear and normal energy density (energy flux)
vanish.

1. The case of Sec. V B 2

In the situation of Fig. 6, the horizons are formed at
t ¼ ti ≃ 0.31, with values r̂�ðtiÞ ¼ 4.0 and disappear at
t ¼ tf ≃ 62.82 also with values r̂�ðtiÞ ¼ 4.0. We have
calculated the ratio nðt; rÞ [see Eq. (15)] for r ¼ r̂�ðtÞ and
checked the energy conditions along both horizons.
(1) Along r̂þðtÞ: The NEC, the WEC and the SEC are

satisfied since it is formed, but all the energy
conditions are violated along r̂þðtÞ for times close
to tf. In particular, the NEC is satisfied up to
tc ≃ 38.73. Close to the initial time ti ≃ 0.31 one
has LþΘ− < 0, but it becomes positive for times
greater than t1 ≃ 0.44. Hence, given that Θþ > 0
and qðt; rþðtÞÞ ≠ 0, according to Theorem I, r̂þðtÞ is
a past outer spacelike horizon in the region
t ∈ ½ti; 0.44�. For later times, one has LþΘ− > 0
[r̂þðtÞ changes character from outer to inner] and so
it becomes a past inner timelike (Lorentzian) horizon
in that region (i.e., for t ∈ ½t1 ≃ 0.44; tc ≃ 38.73�),
as predicted from the mentioned theorem. For times
later than tc ≃ 38.73 the NEC is not fulfilled in r̂þðtÞ
and Theorem I does not apply. But, we verify that it
changes back to spacelike character close to t ¼ tf.
More precisely, it is an outer spacelike horizon in the
interval t ∈ ½tc; tf�.

(2) Along r̂−ðtÞ: The energy conditions are satisfied just
very close to the initial ti, and are all violated for
later times (t > t2 ≃ 0.35 with the data of Fig. 6).
Given thatΘþ > 0,LþΘ− < 0, and q ≠ 0, it follows
that r̂−ðtÞ is a past outer spacelike horizon in the
region t ∈ ½0.31; 0.35�. For later times the NEC is
violated and so Theorem I does not apply. However,
it can be shown that r̂−ðtÞ is a past outer timelike
horizon for intermediate times, in the interval
t ∈ ½0.35; 58.99�, changing back to inner spacelike
character close to tf, in the interval t ∈ ½59.0; 62.82�.

2. The case of Sec. V B 3

In the case of dust matter, the ratio nðt; rþðtÞÞ [see
Eq. (15)], is larger than unity for all times after the horizon
formation along r ¼ r̂þðtÞ, while nðt; r̂−ðtÞÞ is larger than
unity just for very early times after horizons formation.
In the situation of Fig. 8, the horizons are formed at
t ¼ ti ¼ 4096m3=27t20 ≃ 151.70, with values r̂�ðtiÞ ¼ 4.0
and last forever. In fact, r̂þðtÞ → 3t0ðt=t0Þ1=3=2 and r̂−ðtÞ
tends to 2m as t → ∞.
(1) Along r̂þðtÞ: The NEC, the WEC and the SEC are

satisfied all along r̂þðtÞ. The Lie derivative

LþΘ−jr̂þðtÞ changes sign at tc ¼ 216.0. Close to

ti, more precisely, in the interval ½ti; tc�, the condition
LþΘ− < 0 holds (besides Θþ > 0 and q ≠ 0) and
then r̂þðtÞ is a past outer spacelike horizon in that
region. For later times, LþΘ− > 0 and so, in the
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interval t ∈ ½tc;∞Þ, the r̂þðtÞ branch changes char-
acter to a past inner timelike horizon, as predicted
from Theorem I.

(2) Along r̂−ðtÞ: The energy conditions are satisfied just
close to the initial (tiÞ, and are all violated for late
times (t > tm ≃ 172.47with the data of Fig. 6).Given
that Θþ > 0, LþΘ− < 0, and q ≠ 0, r̂−ðtÞ is a past
outer spacelike horizons in the region t ∈ ½ti; tm�. For
times larger than tm, theNEC is violated andTheorem
I does not apply, but it can be shown that r̂−ðtÞ is a past
outer timelike horizon for all times after tc.

3. The case of Sec. V B 4

In the case of stiff matter, the ratio nðt; rþðtÞÞ, along
r ¼ r̂þðtÞ, is larger than unity for all times after the horizon
formation, while nðt; r̂−ðtÞÞ is larger than unity just at early
times after horizons formation. In the situation of Fig. 10,
the horizons are formed a t t ¼ ti ≃ 4.35, with values
r̂�ðtiÞ ¼ 4.0 and last forever. In the limit of very large times
r̂þðtÞ goes as 3t0ðt=t0Þ2=3=2 while r−ðtÞ → 2m.
(1) Along r̂þðtÞ: The NEC and theWEC are satisfied for

all times on r̂þðtÞ since it is formed, but we can show
that the SEC is not satisfied along it. Once the NEC
is satisfied and, moreover, Θþ > 0, LþΘ− < 0, and
q ≠ 0 all along r̂þðtÞ, according to Theorem I, it is a
past outer spacelike horizon (see Fig. 10).

(2) Along r̂−ðtÞ: The NEC and the WEC are satisfied at
the beginning (t≳ ti), but all energy conditions are
violated for times larger that tc ≃ 6.70. As in the
case of the last section, at times close to ti one has
LþΘ− < 0 and q ≠ 0, and since the NEC is satisfied
along r̂−ðtÞ, Theorem I implies it is a past outer
spacelike horizon in the region t ∈ ½4; 6.70�. For
later times, the NEC is violated and so the hypoth-
esis of the above mentioned theorem is not fulfilled,
but it is verified that r̂−ðtÞ is a past outer timelike
horizon in that region.

4. The case of Sec. V B 5

In this case, aðtÞ ¼ t=t0, if t0 ≥ 8m the trapping horizons
are formed at t ¼ 0 and persist for all times with constant
values. In the particular case of Fig. 12, where t0 ¼ 10m,
m ¼ 1, the values are r̂þðtÞ≃ 7.24 and r̂−ðtÞ≃ 2.76.
(1) Along r̂þðtÞ: The NEC is satisfied for all times, and,

moreover, considering that Θþ > 0, LþΘ− > 0, and
q ≠ 0 at all times on r̂þðtÞ. Thus, according to the
relevant theorem one has that it is a past inner
timelike horizon (see Fig. 12).

(2) Along r̂−ðtÞ: The NEC is violated at all times along
this branch of the trapping horizon and the predic-
tions of Theorem I cannot be applied. However,
since one has Θþ ¼ 0 and LþΘ− < 0 it results that
r̂−ðtÞ is a past outer horizon, and it can also be
shown that it is everywhere timelike.

5. The case of Sec. V C 2

In the situation of Fig. 14, the horizons r̂�ðtÞ are formed
at t≃ 1.498 with values r̂� ¼ 4.0, and last forever. Their
asymptotic values for large times are r̂−ðtÞ ¼ 2m and
r̂þðtÞ ¼ 3t0e2t=t0=2. For such a case, we have shown that
nðt; r̂þðtÞÞ ≥ 1, and that the NEC, the WEC and the SEC
are obeyed all along rþðtÞ. The same holds along r̂−ðtÞ.
(1) Along r̂þðtÞ: The NEC is satisfied for all times, and,

moreover, considering that Θþ > 0, LþΘ− < 0, and
q ≥ 0 at all times on r̂þðtÞ, according to Theorem I it
is a past outer spacelike horizon.

(2) Along r̂−ðtÞ: The NEC holds at all times along this
branch of the trapping horizon and the predictions of
the mentioned theorem, together with the conditions
LþΘ− < 0 and q ≠ 0 on r̂−ðtÞ, imply it is a past
outer spacelike horizon (see Fig. 14).

6. The cases of Sec. V C 3

For aðtÞ ¼ tanh ðt=t0Þ it is convenient to split the
analysis into three different classes according to the values
of t0: (a) t0 < 4m; (b) 4m < t0 < 8m; and (c) t0 > 8m.

a. The case t0 < 4m

In the situation of Fig. 17, with t0 ¼ 3m, m ¼ 1, the
horizons are formed at ti ≃ 3.22 with values r̂�ðtiÞ ¼ 4.0
and last forever. In the limit t → ∞, r̂þðtÞ tends to t0e2t=t0
while r̂−ðtÞ tends to 2m.
(1) Along r̂þðtÞ: The NEC is satisfied for all times, and,

moreover, considering that q ≠ 0 and LþΘ− < 0 at
all times on r̂þðtÞ, according to the relevant theorem
it is a past outer spacelike horizon.

(2) Along r̂−ðtÞ: The NEC holds at all times along this
branch of the trapping horizon and the predictions
Theorem I, together with the conditions q ≠ 0 and
LþΘ− < 0 on r̂−ðtÞ, which are fulfilled at all times
on r̂−ðtÞ imply it is a past outer spacelike horizon.
In the limit t → ∞ it tends to the lightlike horizon
r ¼ 2m (see Fig. 17).

b. The case 4m < t0 < 8m

In the situation of Fig. 18, with t0 ¼ 6m, m ¼ 1, the
horizons are formed at ti ≃ 3.30 with values r̂�ðtiÞ ¼ 4.0
and last forever. In the limit t → ∞, r̂þðtÞ tends to t0e2t=t0 ,
while r̂−ðtÞ tends to 2m.
(1) Along r̂þðtÞ: The NEC is satisfied for all times and

so Theorem I applies. Considering that q ≠ 0 and
LþΘ− < 0 at all times on r̂þðtÞ the result is a past
outer spacelike horizon.

(2) Along r̂−ðtÞ: The NEC holds at initial times after
horizons formation, from ti ≃ 3.30 to tc ≃ 3.95
along this branch of the trapping horizon. Moreover,
one has the conditions q ≠ 0 and LþΘ− > 0 on
r̂−ðtÞ, which implies that it is a past outer spacelike
horizon (see Fig. 18) in that region. Later than
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t≃ 3.95 the NEC is violated and the horizon
changes character to timelike, being a past outer
horizon in the interval t ∈ ½tc;∞Þ. In the limit
t → ∞ it asymptotes the lightlike horizon r ¼ 2m,
a region where the NEC holds also on r̂−ðtÞ.

c. The case t0 > 8m

In the situation of Fig. 19, with t0 ¼ 10m, m ¼ 1, the
horizons are formed at ti ¼ 0.0 with values r̂þðtiÞ≃ 7.2
and r−ðtiÞ≃ 2.8 and last forever. In the limit t → ∞, r̂þðtÞ
tends to t0e2t=t0 , while r̂−ðtÞ tends to 2m.
(1) Along r̂þðtÞ: The NEC is satisfied for all times

and Theorem I can be applied. The Lie derivative
LþΘ− is positive at initial times but changes to
negative values at t ¼ tc ≃ 5.93. Then, r̂þðtÞ is a
past outer timelike horizon in the interval t ∈ ½0; tc�,
and is a past inner spacelike horizon in the re-
gion t ∈ ½tc;∞Þ.

(2) Along r̂−ðtÞ: The energy conditions are violated. In
particular the NEC does not hold along this branch
of the trapping horizon and the predictions of the
mentioned theorem do not apply here. However, it is

verified that q ≠ 0 and LþΘ− < 0 all along r̂−ðtÞ
and so it is a past outer timelike horizon.

7. The cases of Sec. V C 4

As commented at the end of Sec. V C 4, these are
approximate models that have been implemented to sim-
ulate a phase change on the accreting process onto the
central object. As a first approximation, we truncated the
scale factor in such a way its rate _aðtÞ vanishes at very late
times. With such a choice, the character of the trapping
horizons remains roughly the same as the original models.
Moreover, even in these crudely approximated models we
used to draw the causal diagrams, the horizon functions
r̂�ðtÞ have no jumps with time. The modifications happen
just in the limit t → ∞. For instance, in the model of
Eq. (58) the only change is in the final value of r̂þðtÞ which
tends to infinity in the original model, while it approaches a
constant (though with a very large value) in the modified
model. The energy conditions on it and the chronological
character, compatible with Theorem I, do not change. Also,
the character of the branch r̂−ðtÞ remains the same.
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