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In this paper, we construct and study solutions of Einstein’s equations in a vacuum with a positive
cosmological constant which can be considered as inhomogeneous generalizations of the Nariai
cosmological model. Similar to this Nariai spacetime, our solutions are at the borderline between
gravitational collapse and de Sitter-like exponential expansion. Our studies focus in particular on the
intriguing oscillatory dynamics which we discover. Our investigations are carried out both analytically
(using heuristic mode analysis arguments) and numerically (using the numerical infrastructure recently
introduced by us).
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I. INTRODUCTION

The Nariai spacetime was discovered by Nariai in 1950
(see the reprints of the original works in [1,2]). It is the
solution of Einstein’s vacuum equations.1

Gab þ Λgab ¼ 0; ð1:1Þ

where2 Λ > 0 is the cosmological constant and Gab is the
Einstein tensor associated with the metric gab, with spatial
topology S1 × S2 and

gab ¼
1

Λ
ð−dt2 þ cosh2tdρ2 þ gS2Þ: ð1:2Þ

Here, ρ is the standard coordinate along the spatia
S1-factor and gS2 is the metric of the standard round unit
two-sphere. The time coordinate is t ∈ ð−∞;∞Þ. In the last
years, the Nariai spacetime has become an object of special
interest since Ginsparg and Perry [4] found that it can be
interpreted as a de Sitter universe containing a black hole of
“maximal size.” Thanks to its geometrical properties, the
Nariai spacetime has been used to model several situations.
One of the most remarkable applications was carried out by
Bousso and Hawking [5–8] who used this spacetime to
study the quantum pair creation of black holes during
inflation. These cosmological models, at the borderline
between inflation and gravitational collapse, restricted to
spherically symmetric perturbations of the Nariai space-
time. It was found that under certain conditions those

models asymptotically approach the de Sitter universe in
agreement with the cosmic no-hair conjecture [9,10]. It
states that this behavior is generic for inhomogeneous and
anisotropic expanding solutions of Eq. (1.1). Although
there is some mathematical evidence [11–14] that supports
the validity of this conjecture, the general case still remains
unclear. A particular property of the Nariai spacetime itself
is its peculiar time dependence which is not consistent
with this. While the spatial S1-factor expands exponentially
for large t, the geometry of the spatial S2-factor remains
constant. Thus, the expansion of this solution is very
anisotropic, and, in fact, is inconsistent with the cosmic
no-hair paradigm. In more geometric terms, this corre-
sponds to the fact, which was proven for the first time in
[15] (an alternative proof was given in [16]), that the Nariai
spacetime does not possess even a piece of a smooth
conformal boundary. If the cosmic no-hair conjecture
really holds, the Nariai spacetime must be therefore
“very special,” and hence in particular be unstable under
“generic” perturbations.
In [15] one of us has initiated the study of homogeneous

(but fully nonlinear) perturbations of the Nariai spacetime.
The Nariai solution is a member of the class of Kantowski-
Sachs spatially homogeneous (but anisotropic) solutions
[17] of Einstein’s vacuum equation with a positive cos-
mological constant. The spatial topology of all of these
models is S1 × S2. It was found there that the Nariai
solution is critical in this family in the following sense. For
all Kantowski-Sachs models, except for the Nariai solution,
we can choose the time orientation such that the solution
either collapses to the future (a big crunch characterized by
the formation of a curvature singularity and all future
inextendible causal curves are incomplete) or expands
eternally to the future in consistency with the cosmic
no-hair picture (existence of a smooth future conformal
boundary in consistency with the future asymptotics of de
Sitter space so that all future inextendible causal curves are
complete). The Nariai solution is exactly at the borderline
between these two extremes as the curvature is bounded
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1We use the signature convention ð−;þ;þ;þÞ for spacetime

metrics and the sign convention for curvature tensors in [3].
In this convention the de Sitter spacetime is a solution of Eq. (1.1)
with Λ > 0.

2In this whole paper, we consider Λ either as any positive
constant or set Λ ¼ 1.
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everywhere and all inextendible causal curves are both
future and past complete, but it nevertheless does not agree
with cosmic no-hair.
The first rigorous work in [15] on this topic has recently

been extended in [18]. The numerical studies in [19] of
Gowdy-symmetric [20,21] (see Sec. II A for more details on
Gowdy symmetry) inhomogeneous fully nonlinear pertur-
bations of the Nariai solution have revealed evidence that the
analogous critical phenomenon also exists in much larger
classes of spacetimes. In particular, it was found that all
solutions, which are obtained from initial data not too far
away from the Nariai solutions, always either globally
collapse or expand in the same manner as in the spatially
homogeneous case—with the exception of critical solutions
which are exactly at the borderline between these two cases.
In particular, it was found that in contrast to the spherically
symmetric models considered by Bousso et al. above [5],
Gowdy symmetric models never locally collapse or expand,
and the formation of cosmological black holes in this class
was therefore ruled out. Because the perturbations consid-
ered in [15] were small in some sense, the question remained
open whether this may be different for larger Gowdy
symmetric perturbations. One of the finding in our paper
here now suggests that Gowdy symmetric models indeed
never form cosmological black holes. For futurework, it will
be interesting to pose this question againwithinmore general
classes of spacetimes, for example Uð1Þ-symmetric space-
times, and study whether cosmological black holes may be
created by perturbations of the Nariai spacetime.
Before we continue, let us remind the reader about the

heuristic idea of the study of the criticality of the cosmo-
logical models in [19]. There we worked with Gowdy
symmetric initial data [which satisfy the constraint equation
implied by Eq. (1.1)] given by two real parameters μ and

Σð1Þ
× whose precise definition is irrelevant now (cf. [19] for

the details). The special choice μ ¼ Σð1Þ
× ¼ 0 corresponds

to Nariai initial data while Σð1Þ
× ¼ 0 and μ ∈ R yields a

class of spatially homogeneous models. The larger the

value of jΣð1Þ
× j is, however, the “more spatially inhomo-

geneous” the initial data are. The idea was to fix some

nonzero value of the “inhomogeneity parameter” Σð1Þ
× and

then to study a sequence of (fully nonlinear) cosmological
models given by a sequence of values of μ. On the one
hand, it was found that if μ is sufficiently large, the
corresponding model expands globally to the future; in
fact, the solution develops a smooth conformal boundary to
the future in this case and is hence fully consistent with the
cosmic no-hair conjecture3 If μ is sufficiently small on the

other hand, the model collapses globally to the future and
eventually forms a curvature singularity. At the borderline
between these two regimes corresponding to a critical value
for μ, the corresponding model neither collapses nor
expands to the future. However, no further information
about such critical models was extracted in [19].
The purpose of our present paper is manifold. Again, we

restrict to the class of Gowdy-symmetric models with a
positive cosmological constant and we revisit the same
situation, but tackle it with a more advanced approach. To
this end, we use a different class of initial data which now
depends on three parameters ϵ (which has a similar

meaning as the “inhomogeneity parameter” Σð1Þ
× above),

C (which has a similar meaning as the parameter μ above)
and an additional parameter l which essentially controls
the wave number of the inhomogeneous perturbation (the
initial data in [19] restricted to the case l ¼ 2). The details
are discussed in Sec. II C. On the one hand, we confirm and
strengthen the findings in [19] by performing a similar
numerical analysis. On the other hand, however, we shall
focus in great detail on the critical solutions here and
thereby reveal an interesting new oscillatory phenomenon
which could potentially be interpreted as gravitational
waves. The main finding of our paper are now summarized
as three main results. The purpose of this paper is to provide
the details and give justifications.
In all of what follows we shall assume4 l ≥ 2. Notice

that the well-understood [15] homogeneous case of our
models corresponds to ϵ ¼ 0. The Nariai solution is
determined by ϵ ¼ C ¼ 0. One can easily check that if
ϵ ≠ 0 or C ≠ 0, the corresponding solution of Eq. (1.1) is
not isometric to the Nariai solution by comparing the
Kretschmann scalar with the particular globally constant
value for the Nariai solution. Our first main finding is
summarized as follows.
Result 1: Pick any real value ϵ and integer l ≥ 2. Then

there is a constant Ccrit such that the solution of Eq. (1.1),
determined by initial data given by the parameter ϵ,l and any
real value C as in Sec. II C, globally collapses and forms a
curvature singularity if C > Ccrit and globally expands in
consistency with the cosmic no-hair conjecture if C < Ccrit.
For small values of ϵ, this result is in full consistency

with the findings in [19]. Here we claim now that this also
holds for large values of ϵ. As mentioned earlier, this rules
out in particular the possibility of “local” collapse and
hence there are generically indeed only two kinds cosmo-
logical models in this class. In this paper here we provide
some more refined numerical evidence complemented by a
heuristic mode analysis (see Sec. III A). We call any of

3Notice that the studies in [19] made use of Friedrich’s
conformal field equations [22] and therefore allowed us to
calculate the full conformally compactified solutions, including
the conformal boundary if it exists. Here, we will not make use of
such compactification techniques.

4In this paper, we shall not be interested in the homogeneous
perturbations associated with the case l ¼ 0. The case l ¼ 1 is a
special borderline case which turns out to be not well described
by our analytic method discussed in Sec. III A. We therefore
completely disregard the case l ¼ 1 in this paper.
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our models critical if C ¼ Ccrit for any given ϵ and l, and
almost critical or close-to-critical if C ≠ Ccrit, but
jC − Ccritj ≪ 1.
The second main finding of our work which significantly

goes beyond the results in [19] is summarized as follows.
Result 2: For any nonzero value of ϵ, the critical and

close-to-critical solutions asserted in Result 1 are oscillatory.
Based on the before-mentioned heuristic analysis in

Sec. III A, we are able to derive formulas for oscillation
frequencies, amplitudes and phases and how these depend
on the initial data parameters. The only nonoscillatory
solutions correspond to the spatially homogeneous case
ϵ ¼ 0 in which the critical solution is known to coincide
with the Nariai solution (see [15]) and therefore has the
peculiar asymptotics discussed above. Our numerical work
here suggests that all the critical models, also the inho-
mogeneous ones, are Nariai-like in the following sense.
Result 3: The critical solutions behave asymptotically

as follows. While the spatial S1 -factor expands exponen-
tially, the spatial S2 -factor geometry oscillates around the
round unit 2-sphere geometry and is therefore in particular
bounded. All these models therefore violate the cosmic no-
hair picture by these highly anisotropic asymptotics.
We emphasize that our work here is not actually

concerned with the instability of the Nariai solution; this
issue is addressed elsewhere [15,18]. The point of our work
here is now to identify and describe inhomogeneous critical
models and their Nariai-like asymptotics all of which
violate the cosmic no-hair paradigm. We remark that all
our numerical studies were conducted with slight general-
izations of the numerical code presented in [23]. More
details and references regarding our numerical infrastruc-
ture are given in Sec. II B.
The paper is organized as follows. In Sec. II, we discuss

the general setup, i.e., the formulation of Einstein’s
equation in the presence of symmetries via Geroch’s
symmetry reduction, our extraction of evolution equations
with a well-posed initial value problem and of constraint
equations from this, our numerical implementation and our
particular family of initial data. Section III is devoted to
our analytical and numerical studies. First we discuss our
heuristic mode analysis which is the basis for all of what
follows. Then we provide numerical evidence for all of the
main results above.

II. SETUP: FORMULATION AND
IMPLEMENTATION OF EINSTEIN’S

EQUATIONS

A. Einstein’s vacuum equations for Gowdy symmetry
and spatial S1 × S2-topology

Geroch’s symmetry reduction—As mentioned earlier,
we shall focus here on Gowdy symmetric spacetimes
with spatial topology S1 × S2. We start by equipping the
spatial manifold S1 × S2 with coordinates ðρ; θ;φÞ where
ρ ∈ ð0; 2π� is the standard parameter on the S1-factor and

ðθ;φÞ are standard polar coordinates on the S2-factor. With
respect to these coordinates it turns out that a spacetime
with spatial S1 × S2-topology is Gowdy [or Uð1Þ × Uð1Þ-]
symmetric if the metric is invariant both under translations
along the S1-factor (i.e., is independent of ρ), and, under
rotations of the S2-factor around the polar coordinate axis
(i.e., is independent of φ). One can show that Einstein’s
equations for this class of spacetimes can be formulated in
almost exactly the same way as for the class of Gowdy
symmetric spacetimes with spatial S3-topology which was
discussed in detail in [23]. Because of the close similarity
we shall refer to that paper for all the details and only give a
quick summary of the necessary results now.
When Geroch’s symmetry reduction [24] is performed

with respect to the Gowdy Killing vector fields ξa ¼ ∂a
ρ for

any 3þ 1-dimensional Gowdy-symmetric metric gab in a
spacetime M ¼ R × S1 × S2, one finds that Einstein’s
vacuum field equations with cosmological constant (1.1)
imply the system

∇a∇aψ ¼ 1

ψ
ð∇aψ∇aψ −∇aω∇aωÞ − 2Λ;

∇a∇aω ¼ 2

ψ
∇aψ∇aω;

Rab ¼
1

2ψ2
ð∇aψ∇bψ þ∇aω∇bωÞ þ

2Λ
ψ

hab; ð2:1Þ

on the 2þ 1-manifold S ¼ R × S2 where hab is a metric on
S with signature ð−;þ;þÞ, ∇a is its covariant derivative
and Rab is the corresponding Ricci tensor. The scalar field
ψ is defined on M as

ψ ≔ gabξaξb; ð2:2Þ
for ξa ¼ ∂a

ρ which is then projected5 to S. The other scalar
field ω is the well-defined global potential of the twist
1-form Ωa on M defined by

∇aω ¼ Ωa ≔ ϵabcdξ
bDcξd: ð2:3Þ

Here, Dc is any derivative operator (for instance the
covariant derivative associated with gab) and ϵabcd is a
volume form associated with gab. We shall often refer to ψ
as the norm and to ω as the twist of ξa respectively.
Equation (2.1) can be interpreted as the 2þ 1-dimensional
Einstein equations6 coupled to two scalar fields ψ and ω.

5In order to simplify the notation of [23] slightly, we shall not
distinguish here between quantities on S and their counterparts on
M which are obtained by a pullback along the projection map π.
In fact, all quantities, which carry a ~ in [23], shall be written
without a ~ here.

6Strictly speaking, this is only the case when Λ ¼ 0. When
Λ ≠ 0, the second term on the right-hand side of the third
equations differs from a standard cosmological constant term.
This will however not play any role in our discussions here.
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Without going into the details, see for example [23], let
us mention that once a solution ðhab;ψ ;ωÞ of Eqs. (2.1) has
been found on S, one can construct the corresponding
physical spacetime metric gab on M which then solves
Eq. (1.1). It is important to notice that gab and hab are
related as follows

ĥab ≔ gab −
1

ψ
ξaξb; ð2:4Þ

and

hab ≔ ψ ĥab: ð2:5Þ
The metric hab in Eqs. (2.1) is therefore not the physical
2þ 1-metric, but is related by the conformal transformation
Eq. (2.5) to the physical 2þ 1-metric ĥab defined by
Eq. (2.4). Both metrics hab and ĥab will play a role in
our discussion later.
The system of equations (2.1) takes care of only one of

the two Gowdy Killing vector fields ξa ¼ ∂a
ρ (i.e., trans-

lations along the spatial S1-factor) so far. It turns out that
the second Killing field ∂a

φ prevails on S, i.e., all quantities
hab, ψ and ω on S defined above are axi-symmetric and
therefore invariant under the action of ∂a

φ (i.e., under
rotations around the polar coordinate axis of S2). We
remark that one could perform Geroch’s symmetry reduc-
tion a second time, but now with respect to this Killing field
(see also [25]). This however leads to explicit singularities
at the poles of the two-sphere. As in [23], we shall therefore
work in all of what follows with axially symmetric
(i.e., φ-invariant) solutions of Eqs. (2.1) without any further
symmetry reductions.
The (generalized) wave map formalism—The next task

is to extract suitable evolution and constraint equations
from Eqs. (2.1) in order to obtain a well-posed initial value
problem. The first two equations of (2.1) are scalar wave
equations. It therefore remains to deal with the third
equation of (2.1). Since this is the 2þ 1-Einstein equation
for the metric hab with a (as one can check) divergence free
energy momentum tensor of the “matter source”, we can
apply all kinds of standard techniques which were devel-
oped for 3þ 1-Einstein’s equations. Because of its geo-
metric nature, which is particularly useful for dealing with
the spatial topology S2 of S, we work with the generalized
wave map formalism [26] here. Again, all details are
worked out in [23] and we just give a quick summary here.
The point is that the third equation in Eqs. (2.1) is a-

priori not a system of wave equations for the components of
hab (with respect to any frame) and hence the initial value
problem is in general not well-posed. This problem is
overcome when we replace Rab in that equation by the new
tensor field

R̂ab ≔ Rab þ∇ðaDbÞ; ð2:6Þ

where the components Dα of the vector field Db with
respect to any smooth local frame7 are given as

Dα ≔ ð−Γα
βγ þ Γ̄α

βγÞhβγ þ fα: ð2:7Þ

The vector field fa can be specified freely and is referred to
as a gauge source field. Its components fα with respect to
any frame are often called gauge source functions. The
connection coefficients of the covariant derivative associ-
ated with hab with respect to this frame are denoted above
by Γα

βγ, while Γ̄α
βγ are the corresponding connection

coefficients associated with any freely specifiable reference
metric h̄ab on S. In total this produces a (complicated)
system of quasilinear wave equations for the components of
the metric and the fields ψ and ω:

∇a∇aψ ¼ 1

ψ
ð∇aψ∇aψ −∇aω∇aωÞ − 2Λ;

∇a∇aω ¼ 2

ψ
∇aψ∇aω;

R̂ab ¼
1

2ψ2
ð∇aψ∇bψ þ∇aω∇bωÞ þ

2Λ
ψ

hab:

In particular, the initial value problem of these evolution
equations is well-posed for suitable initial data.
Suppose now that a solution ðhab;ψ ;ωÞ of the initial

value problem of the evolution equations has been found on
S. It is clear that this is a solution of the original system
(2.1) if Da vanishes and hence R̂ab ¼ Rab on S. In this case
we say that hab is in generalized wave map gauge. We show
now that Da vanishes only if the initial data for the
evolution equations satisfies certain constraints. As dis-
cussed for example in [27], the evolution equations, the fact
that the energy momentum tensor of the matter source in
Eqs. (2.1) is divergence free, and the contracted Bianchi
identities together imply

∇b∇bDa −DbRab ¼ 0: ð2:8Þ

Since the metric hab (and hence Rab) is considered as
known at this stage, this is a linear homogeneous system of
wave equations for the unknown Da. It follows that Da

vanishes everywhere on S if and only if Da ¼ 0 and
∇aDb ¼ 0 on the initial hypersurface; these two conditions
therefore constitute constraints. The first constraint takes
the form (with respect to any smooth local frame)

0 ¼ Dν ¼ hρσðΓ̄ν
ρσ − Γν

ρσÞ þ fν; ð2:9Þ

which can be satisfied for any initial data hab, ψ and ω on
the initial hypersurface by a suitable choice of the free

7The components of tensor fields with respect to any such
frame on S ¼ R × S2 are denoted by greek indices.
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gauge source quantities fa and h̄ab. Equation (2.9) is
therefore referred to as the gauge constraint. Once we
know that the gauge constraint is satisfied, it turns out that
the second constraint above

∇μDν ¼ 0 ð2:10Þ

is equivalent to the standard Hamiltonian and Momentum
constraints which we discuss in more detail in Sec. II C. We
emphasize the surprising fact that Eq. (2.10) is not another
restriction on the gauge source quantities fa and h̄ab; these
are only constrained by the gauge constraint. Eq. (2.10)
therefore represents the “physical constraint” imposed on
the initial data for hab, ψ and ω.

B. Formulation and implementation
of the evolution equations

Choice of frame and parametrization of the metric—If t
is any time function on S and ðt; θ;φÞ are coordinates as
before, we set

Ta ≔ ∂a
t ; ma ≔

1ffiffiffi
2

p
�
∂a
θ −

i
sin θ

∂a
φ

�
: ð2:11Þ

Then we choose

ð∂a
0; ∂a

1; ∂a
2Þ ¼ ðTa;ma; m̄aÞ ð2:12Þ

as our local frame which is defined almost everywhere on
S ¼ R × S2 (excluding the poles of the two-sphere).
Notice, that this frame is in general not an orthonormal
frame with respect to hab. It is merely a particular linear
combination of the coordinate frame which is motivated by
the spin-weight formalism below. In the following we shall
express all tensor fields on S2 with respect to this frame and
its dual frame ðω0

a;ω1
a;ω2

aÞ which is given by

ω0
a ¼ ∇at; ω1

a ¼
1ffiffiffi
2

p ð∇aθ þ i sin θ∇aφÞ;

ω2
a ¼ ω̄1

a: ð2:13Þ

It terms of this frame, we can write

hab ¼ λω0
aω

0
b þ 2ω0

ðaðβω1
bÞ þ β̄ω2

bÞÞ þ 2δω1
ðaω

2
bÞ

þ ϕω1
aω

1
b þ ϕ̄ω2

aω
2
b: ð2:14Þ

For the spin-weight formalism [23,28–31] we assume
that the fields Ta, ma and m̄a have spin-weights 0, þ1 and
−1, respectively, which implies that the spin-weights of ω0

a,
ω1
a, ω2

a are 0, −1 andþ1, respectively. The quantities λ, δ, β
and ϕ in Eq. (2.14) therefore have spin-weights 0, 0, þ1,
þ2, respectively, and the complex conjugates carry the
corresponding negative spin-weights. It is of fundamental
importance for all of what follows that once the gauge

freedom in terms of the smooth quantities fa and h̄ab has
been fixed, the whole system of evolution equations can be
written as a quasilinear coupled system of six complex
wave equations for the six complex unknowns λ, δ, β, ϕ, ψ
and ω. Moreover, once all directional derivatives along ma

and m̄a have been replaced by the so-called ð- and
ð̄-operators via Eq. (A4), each term in each equation of
this system has a consistent well-defined spin-weight
and is explicitly regular at the poles θ ¼ 0 and θ ¼ π
of the 2-sphere. Indeed, this explicit regularization of the
“pole problem” is the main advantage of the spin-weight
formalism.
We recall that Gowdy symmetry implies that ∂a

φ is a
Killing vector field on S. Since ∂a

φ commutes with each of
the fields in Eqs. (2.11) and (2.13), it follows that hab, as
given by Eq. (2.14), is invariant under the action of ∂a

φ if
and only if all the quantities λ, δ, β and ϕ are functions of t
and θ only. This means in particular that all these functions
can be expanded in terms of axi-symmetric spin-weighted
spherical harmonics, see Sec. A. We also know that all
quantities with spin-weight 0 must be real, while other
quantities could in principle be complex. However, in the
particular representation in ðθ;φÞ-coordinates used exclu-
sively in this whole paper, one can show that if all unknown
quantities (and their time derivatives) in the evolution
equations are real at the initial time, if all gauge source
quantities

f0 ¼ faTa; f1 ¼ fama; f2 ¼ fam̄a

are real for all times, and, if the background metric h̄ab is
once and for all chosen as

h̄ab ¼ −ω0
aω

0
b þ 2ω1

ðaω
2
bÞ ð2:15Þ

for all times, then all unknown quantities are real for all
times. Below we see that this restriction to real quantities is
purely a gauge restriction. In summary, without further
notice we shall assume in all of what follows that all
quantities λ, δ, β, ϕ, ψ , ω, f0, f1 ¼ f2 are real and only
depend on t and θ.
Gauge drivers and conformal time gauge—Instead of

fixing the gauge freedom by choosing the gauge source
quantities f0 and f1 ¼ f2 as outlined in the previous
section, it may sometimes be advantageous numerically
to fix the gauge by choosing the “lapse” and “shift” of the
2þ 1-dimensional metric hab. The equations which then
determine f0 and f1 are often called gauge drivers. Even
though this approach has been used successfully in some
situations (see for instance [32,33]), it may cause numerical
instabilities. The reason lies in the fact that the resulting
total system of evolution equations (including the gauge
drivers) may not have a well-posed initial value problem
despite the fact that the original evolution equations in the
wave gauge formalism do. Some general proposals for
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gauge drivers which do not suffer from this problem can be
found in [34,35]. In this work here now, we will construct
particular gauge drivers now and then show that the total
system of evolution equations is strongly hyperbolic.
To start with, we consider the unit normal vector to the

t ¼ const-surfaces (recall that β is assumed to be real)

na ¼ 1

α
ðTa − βðma þ m̄aÞÞ; na ¼ −αω0

a;

recall Eqs. (2.11), (2.13) and (2.14), where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
β2 − λ

q
:

We can therefore interpret β as the shift8 and α as the lapse.
The induced metric on the t ¼ const-hypersurfaces is
therefore (recall that ϕ is assumed to be real)

γab ¼ hab þ nanb ¼ β2ω0
aω

0
b þ 2βω0

ðaðω1
bÞ þ ω2

bÞÞ
þ 2δω1

ðaω
2
bÞ þ ϕðω1

aω
1
b þ ω2

aω
2
bÞ; ð2:16Þ

cf. Eq. (2.14). Now, according to our discussion of gauge
drivers above, let us attempt to fix the gauge by picking

α ¼ δ; β ¼ 0; ð2:17Þ

during the whole evolution. This corresponds to

λ ¼ −δ; β ¼ 0: ð2:18Þ

Heuristically, the idea is that the lapse is proportional to the
area δ of the spatial 2-sphere. From the point of view of any
Eulerian observer, the coordinate clock will therefore tick
faster or slower depending on whether the 2þ 1-spacetime
is expanding or collapsing. An important consequence is
that the foliation tends to “freeze” in the collapsing case.
This gauge therefore avoids singularities. This sort of gauge
is commonly known in the standard cosmology literature as
conformal time gauge, and is used frequently in the linear
theory of cosmological perturbations [36].
In this work, we wish to implement gauge drivers which

preserve this gauge during the evolution. To do so, we use
Eq. (2.18) to express the evolution equations for λ and β in
the wave gauge formalism as evolution equations for the
gauge source functions f0 and f1. Hence, from now on, λ
and β will not be considered as unknown variables any-
more, but f0 and f1 will. The question is whether the
resulting evolution system is hyperbolic, and, if yes, in
which sense. In what follows we consider this question in
detail.
We continue to assume that all unknown fields in the

evolution equations are real functions, and all the partial

derivatives with respect to the coordinate φ vanish. Then,
expanding the covariant derivatives and expressing the
frame vectors ma and m̄a in terms of the coordinate vector
∂θ, we obtain evolution equations for δ, ϕ, ψ and ω of the
form

∂ttδþ a∂θθδþ b∂θf1 ¼ …; ð2:19Þ

∂ttϕþ a∂θθϕþ b∂θf1 ¼ …; ð2:20Þ

∂ttψ þ a∂θθψ ¼ …; ð2:21Þ

∂ttωþ a∂θθω ¼ …; ð2:22Þ

where a ¼ h11=h00 and b ¼ ffiffiffi
2

p
=h00. Note that we have

used f2 ¼ f1 in the evolution equation for δ. The ellipses in
the right-hand side of the equations denote lower order
terms which are irrelevant for this analysis. Setting λ ¼ −δ
and β ¼ 0 we obtain evolution equations for the gauge
source functions f0 and f1, respectively as

∂ttλ ¼ −∂ttδ ⇒ ∂tf0 − ∂θf1 ¼ …; ð2:23Þ

∂ttβ ¼ 0 ⇒ ∂tf1 − ∂θf0 ¼ …: ð2:24Þ

Naturally, these evolution equations, which we call gauge
drivers, control the behavior of the generalized gauge
source functions such that the conformal time gauge is
preserved during the evolution. Next, in order to analyze
the hyperbolicity of the resulting system of evolution
equations Eqs. (2.19)–(2.24), we rewrite it in first-order
form as

∂tuþ Π∂θu ¼ sðuÞ; ð2:25Þ

where we have defined the vector

u ¼ ðδ; ∂tδ; ∂θδ;ϕ; ∂tϕ; ∂θϕ;ψ ; ∂tψ ; ∂θψ ;ω;

∂tω; ∂θω; f0; f1Þ;

and where Π is a 14 × 14 (nonsymmetric) matrix9 with
eigenvalues

υ1;2;3;4 ¼ −υ5;6;7;8 ¼ −
ffiffiffiffiffiffi
−a

p
; υ13 ¼ −υ14 ¼ −1;

υ9;10;11;12 ¼ 0:

After a straightforward calculation we show that all
eigenvectors are linearly independent. Note that h00,
−h11 > 0 provided that hab is a Lorentzian metric with
signature ð−;þ;þÞ, thus a < 0 and hence all the eigen-
values of Π are real. This implies that Π has a complete
set of eigenvectors with real eigenvalues. Our system

8The shift vector is βa ¼ βðma þ m̄aÞ. 9Because of the size of Π we do not write it here explicitly.
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Eq. (2.25) is therefore strongly hyperbolic. This implies the
well-posedness of the initial value problem.
Constraint damping terms—In order to deal with the

widely known problem of the growth of constraint viola-
tions during numerical evolutions, Brodbeck et al. [37]
have suggested a general approach such that the constraint
surface is an attractor. Later, following this idea, Gundlach
et al. [38] introduced so called constraint damping terms
into Einstein’s equations by adding to the right side of
Eq. (2.6) the term

κðηðaDbÞ − gabηcDcÞ; ð2:26Þ

with ηa being a timelike vector and κ a constant. With this
new term, the subsidiary equation Eq. (2.8) takes the form

∇b∇bDa −DdRad ¼ 2κ∇cηðaDcÞ: ð2:27Þ

They showed by means of perturbations of the Minkowski
spacetime that all the “short wave length” modes in the
solutions of the subsidiary system Eq. (2.27) are damped if
κ > 0 at either the rate e−κt or e−κt=2. In the last years, a good
amount of numerical simulations have been successfully
conducted using this approach (see for instance [32,35]),
which confirms its effectiveness for several situations.
Nevertheless, a complete understanding of how the “long

wave length modes” solutions are damped (or not) for
generic spacetimes is still missing. Due to the expanding
(or collapsing) behavior of most cosmological spacetimes,
the “long wave length modes” are expected to be dominant
during the evolution. For our particular interest here it
is therefore a priori not clear whether these constraint
damping terms really improve the evolution of constraint
violations. In order to address this question, we simplify
our analysis now by using the assumption that the violation
covector is approximately only t-dependent

Dμðt; θÞ ≈DμðtÞ: ð2:28Þ
However, sinceDμ is a covector, the projection of its spatial
components D1 and D2 to the frame ðma; m̄aÞ must have
spin-weight 1 and −1, which directly implies that D1 ¼
D2 ¼ 0 under the above assumption because only a
function with spin-weight 0 can have a mode of l ¼ 0
(which is spatially independent). If the perturbed metrics
are “close” to the Nariai metric during the initial part of the
evolution, we can use it as the background metric for
writing the subsidiary equation that rules the evolution of
D0. Thus, replacing the Nariai metric in Eq. (2.27) with
ηa ¼ ð−1; 0; 0Þ, we obtain the evolution equation that rules
the behavior of D0ðtÞ as

∂ttD0ðtÞ þ 2κ∂tD0ðtÞ ¼ 0;

for the same constant κ as in Eq. (2.26). Evidently, the
solution of this equation is

D0ðtÞ ¼ Ae−2κt þ B; ð2:29Þ
where A and B are constants. The constraint violationD0ðtÞ
does therefore not grow if κ > 0.
In order to check numerically the validity of the above

statements let us consider the constraint error as10

EðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥D0ðt; θÞ∥2L2ðS2Þ þ ∥D1ðt; θÞ∥2L2ðS2Þ

q
;

where the norm ∥:∥L2ðS2Þ is numerically computed by using
Eq. (2.42). In Figs. 1 and 2, we plot this error obtained for
different values of κ. Here, we have used the initial data
family which we will describe in Sec. II C and pick
ϵ ¼ −10−4, C ¼ 0 and l ¼ 2. In order to calculate EðtÞ
in these figures, we calculate the numerical solution of the
evolution equations with constraint damping terms corre-
sponding to these data using the pseudo-spectral method
described in [23] with the Runge-Kutta method as time

FIG. 1. The constraint violation error EðtÞ for fixed
Runge-Kutta time step dt ¼ 0.02 and different values of κ.

FIG. 2. The constraint violation error EðtÞ for various
Runge-Kutta time steps dt and κ ¼ 8.

10We have excluded D2ðtÞ from this definition because
D1ðt; θÞ ¼ D2ðt; θÞ ¼ D2ðt; θÞ in Gowdy symmetry.
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integrator and the axial symmetric spin weighted transform
for computing the spatial derivatives (more details on the
numerical infrastructure are given below). As expected, the
error for κ ¼ −8 grows exponentially whereas for κ ¼ 8 it
is bounded. Thus, from now on, we will keep this value for
all the following numerical calculations in this paper.
Numerical infrastructure—The main difficulty for the

numerical treatment of tensorial equations on manifolds
with spherical topology is the fact that these cannot be
globally covered by a single regular coordinate patch. In the
literature this problem is commonly known as the pole
problem because in standard polar coordinates for S2 these
issues appear at the poles. Based on the previous works
[28,29], we introduced in [23] a pseudo-spectral infra-
structure to overcome this issue numerically. It consists in
using the spin-weight formalism for expressing tensor
components in terms of spin-weighted spherical harmonics,
which are a generalization of the well known spherical
harmonics [31]; see Appendix. This allows us to work with
polar coordinate representations of Eqs. (2.1) that do not
suffer from any polar singularity. This becomes manifest
when all the spatial derivatives are replaced by the eth-
operators in Eqs. (A3).
As mentioned earlier, we shall exclusively restrict to

Gowdy symmetric models which implies axial symmetry
for all the fields in Eqs. (2.1). For the numerical treatment
of such fields, we have introduced the one-dimensional
variant of the spin-weighted transform introduced by
Huffenberger and Wandelt [39], which we call axially
symmetric spin-weighted transform in [23]. Our numerical
infrastructure is therefore a pseudo-spectral scheme based
on the method of lines where the temporal integration is
carried out by certain Runge-Kutta integrators.

C. Constraints and initial data

Formulation of the constraints and choice of free data
As explained in Sec. II A, initial data for the evolution
equations of Einstein’s equations must satisfy, first, the
gauge constraint

0 ¼ hρσðΓ̄ν
ρσ − Γν

ρσÞ þ fν;

recall Eq. (2.9). Second, we must respect the Hamiltonian
and Momentum constraints associated with Eq. (2.1) which
take the form

ð2ÞRþK2 −KikKik −
2Λ
ψ

¼ 2ρ;

DkðKki − γkiKÞ ¼ ji: ð2:30Þ

In this subsection, we use abstract indices i; j; k;… to
represent two-dimensional purely spatial fields. Notice that
in this subsection only,we use all the symbols δ,ϕ etc.,which
we had introduced for fields on S before, now to denote
the restriction of these quantities to any t ¼ const-surface.

The values of their time derivatives are denoted as _δ, _ϕ etc.
The quantity γik above is the induced 2-metric [see
Eq. (2.16)] and Dk the corresponding covariant derivative.
ð2ÞR is the scalar curvature associated with γik and Kik

represents the extrinsic curvature with K ¼ Ki
i. If Tab is

the energy-momentum tensor of the matter source in the
2þ 1-Einstein equations in Eqs. (2.1), then

ρ ¼ nanbTab; ji ¼ −γianbTab;

and hence

ρ ¼ _ψ2 þ _ω2 þ 2jmi∇iψ j2 þ 2jmi∇iωj2
4δψ2

; ð2:31Þ

j1 ¼ j2 ¼ −
_ψmi∇iψ þ _ωmi∇iω

2
ffiffiffi
δ

p
ψ2

; ð2:32Þ

Here the vector ji has been expressed in terms of the spatial
frame ð∂i

1; ∂i
2Þ ¼ ðmi; m̄iÞ; recall Eqs. (2.11) and (2.12).

The corresponding spatial dual frame ðω1
i ;ω

2
i Þ is defined as

in Eq. (2.13). Notice that Eqs. (2.16) and (2.18) yield

γik ¼ 2δω1
ðiω

2
kÞ þ ϕðω1

iω
1
k þ ω2

iω
2
kÞ: ð2:33Þ

Because the shift β vanishes as a consequence of
Eq. (2.18), the extrinsic curvature Kik is proportional to
the time derivative of γik and is therefore determined by _δ

and _ϕ. The first step of finding a complete set of initial data
on the t ¼ 0-surface is to find the quantities δ, _δ, ϕ, _ϕ, ψ , _ψ ,
ω, _ω as solutions of the Hamiltonian and Momentum
constraints. Once this is done we find initial data for f0, f1
as a solution of the gauge constraint in a second step. Recall
that all these quantities are assumed to be real and only
depend on θ.
We shall construct solutions of the Hamiltonian and

Momentum constraints using the York-Lichnerowicz
conformal decomposition; see [40] and references therein.
We shall not describe the general procedure here (which, in
two dimensions, is slightly different from the standard
3-dimensional case), but restrict to the simple time sym-
metric case

Kik ¼ 0

in all of what follows. According to Eq. (2.33) and the
choice of vanishing shift, this is the case if and only if

_δ ¼ 0; _ϕ ¼ 0: ð2:34Þ

The momentum constraint is therefore satisfied if
j1 ¼ j2 ¼ 0. According to Eq. (2.32), this is in particular
the case if we pick
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ω ¼ 1 − ψ ; _ψ ¼ _ω: ð2:35Þ

The Momentum constraint is now satisfied and hence we
attempt to solve the Hamiltonian constraint next. Because
the topology of the spatial slices is S2, we can assume that
γik is initially conformal to the standard round unit two-
sphere metric. According to Eq. (2.33), we can therefore
pick

ϕ ¼ 0;

which yields

γik ≔ δγ
∘
ik;

where γ
∘
ik represents the metric for the unit round two-

sphere

γ
∘
ik ¼ 2ω1

ðiω
2
kÞ:

The quantity δ can therefore be considered as the conformal
factor in the standard conformal decomposition of the
Hamiltonian constraint. We express the two-dimensional
Ricci scalar in the Hamiltonian constraint as

ð2ÞR ¼ δ−1ðR∘ −D
∘
iD
∘ i
ln δÞ; ð2:36Þ

where R
∘ ¼ 2 is Ricci scalar of the unit round two-sphere.

Replacing frame derivatives by eth-operators by means
of Eq. (A4), a straightforward calculation recasts the
Hamiltonian to the form

ΔS2δ ¼ ð̄ðδ ¼ 2δ − 2δ2
�
Λ
ψ
þ ρ

�
þ jðδj2

δ
: ð2:37Þ

See Eq. (A8) for our definition of the Laplace operator ΔS2

on the 2-sphere. Using Eqs. (2.31) and (2.35), we get

ΔS2δ ¼ 2δ −
2δ2

ψ
−
δ _ψ2

ψ2
þ jðδj2

δ
−
δjðψ j2
ψ2

:

If we now pick

ψ ¼ δ2; ð2:38Þ

the only remaining free function is _ψ in terms of which the
Hamiltonian constraint becomes

ΔS2δ ¼ −2þ 2δ −
_ψ2

δ3
−
3jðδj2
δ

: ð2:39Þ

Note that for _ψ ¼ 0 and δ ¼ const, the trivial (but not the
only) solution of Eq. (2.39) is δ ¼ 1 which yields the initial

data of the Nariai metric. Hence, in order to obtain
perturbations of the Nariai spacetime, we only have to
provide nonzero functions _ψ and solve numerically
Eq. (2.39). In the whole paper, we choose

_ψ ¼ ϵYlðθÞ þ CY0ðθÞ; ð2:40Þ

where ϵ and C are free real parameters and l is any fixed
positive integer. We list the necessary information about the
functions Yl in Sec. A. Observe that Y0ðθÞ ¼ 1=ð2 ffiffiffi

π
p Þ.

It only remains to provide initial data for f0 and f1 as
solutions of the gauge constraint. Given the choices above,
it turns out that the gauge constraint is satisfied if and
only if

f0 ¼ 0; f1 ¼ f2 ¼ −ðδ=ð2
ffiffiffi
2

p
δÞ:

Once all this is done, so, in particular, once we have
solved Eq. (2.39) with Eq. (2.40), our initial data set is
complete and satisfies all the required constraints: the
Hamiltonian constraint, the Momentum constraint, and,
the gauge constraint.
Numerical method to solve the Hamiltonian constraint

Now, we describe the basic idea for using a spectral
implementation based on the spin-weighted spherical
harmonics in the axi-symmetric case (no φ-dependence)
for solving Eq. (2.39) with Eq. (2.40). We follow the
approach in [41] for solving nonlinear elliptic equations.
For more information about these kind of methods, the
interested reader is referred to [42,43] and references
therein.
Let us start by writing the right-hand side of Eq. (2.39) as

a nonlinear function fðδ; ðδÞ with spin-weight 0. The idea
is then to construct a sequence of linearized problems
whose solutions hopefully converge to the solution of the
nonlinear problem. For the Richardson’s iteration pro-
cedure this sequence of solutions ðδnÞ is constructed by
solving

ΔS2ζ −
�∂f
∂δ

�
n
ζ −

� ∂f
∂ðδ

�
n
ðζ ¼ −ðΔS2δn − fnÞ ð2:41Þ

for each n ¼ 0; 1; 2;… for some initial guess δ0 and then
to set

δnþ1 ¼ δn þ ζ:

We call ζ the correction factor. The right-hand side of this
equation is known as the residual rn at the step n, that
measures how well δn satisfies the equation at the step n.
In our pseudo-spectral approach, we introduce suitable

collocation points θ1;…; θN , and impose Eq. (2.41) at
those. Using the properties of the eth-operators listed in
Eqs. (A5), this yields an algebraic linear system of
equations for N spectral coefficients of ζ when written
in the spin-weighted spherical harmonics basis. We shall
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not discuss the details of the solvability of this linear system
here. However, it is guaranteed to have a unique solution in
each step if the coefficients ð∂f=∂δÞn and ð∂f=∂ðδÞn
satisfy certain algebraic conditions in each step. If this is
the case, then the iteration converges quickly and thereby
allows us to construct accurate approximations of solutions
of the nonlinear equation.
In Fig. 3, choosing ϵ ¼ −10−4, C ¼ 0 and l ¼ 2, we

show the behavior of the norm ∥rn∥L2ðS2Þ as a function of n
which is numerically approximated by

∥rn∥2L2ðS2Þ ≈
2π2

N

XN
i¼0

r2n: ð2:42Þ

In this figure we observe that the norm of rn decays rapidly
until it reaches a satisfactory order of ∼10−14.
Approximate analytic solutions of the Hamiltonian

constraint—The heuristic analytical approach in Sec. III A
below relies on the following analytic approximations of
solutions which is meaningful at least when the parameters ϵ
and C are small.
To this end, we shall now assume that the family of

solutions δ of Eq. (2.39) with Eq. (2.40) depends smoothly
on the parameters ϵ and C in a neighborhood of ϵ ¼ C ¼ 0.
Then we express δ approximately as

δðθÞ ¼ 1þ ϵδð1ÞðθÞ þ Cδð2ÞðθÞ þ ϵ2δð3ÞðθÞ
þ ϵCδð4ÞðθÞ þ C2δð5ÞðθÞ þ…; ð2:43Þ

for some so far unknown functions δð1Þ;…; δð5Þ which are
assumed to be independent of C and ϵ. With this ansatz, we
find that Eqs. (2.39) and (2.40) are satisfied up to cubic
order in the parameters, if

2δð1Þ − ΔS2δð1Þ ¼ 0; 2δð2Þ − ΔS2δð2Þ ¼ 0;

which is implied by the linear orders in ϵ and C and which
yields that

δð1Þ ¼ δð2Þ ¼ 0; ð2:44Þ

and, if

2δð3Þ − ΔS2δð3Þ ¼ ðYlÞ2;

2δð4Þ − ΔS2δð4Þ ¼
Ylffiffiffi
π

p ;

2δð5Þ − ΔS2δð5Þ ¼
Y0

2
ffiffiffi
π

p ; ð2:45Þ

where Eq. (2.44) and Y0 ¼ 1=ð2 ffiffiffi
π

p Þ have been used to
simplify these equations. It is well known that for any
partial differential equation of the form

puðθÞ − ΔS2uðθÞ ¼ fðθÞ ¼
X∞
k¼0

fkYkðθÞ

defined on S2 given by any smooth source term function f
and any non-negative integer p, the uniquely determined
solution is

uðθÞ ¼
X∞
k¼0

fk
pþ kðkþ 1ÞYkðθÞ:

Regarding Eqs. (2.45), this implies that

δð3Þ ¼
X2l
k¼0

al;k
2þ kðkþ 1ÞYk;

δð4Þ ¼
1

ð2þ lðlþ 1ÞÞ ffiffiffi
π

p Yl;

δð5Þ ¼
Y0

4
ffiffiffi
π

p :

The coefficients al;k here are defined implicitly by the
equation

ðYlÞ2 ¼
X2l
k¼0

al;kYk ð2:46Þ

which can therefore be calculated explicitly from the
well-known Clebsch-Gordon coefficients [44]. When we
combine all this with Eq. (2.43) we find

δ ¼ 1þ
X2l
k¼0

al;kϵ2

2þ kðkþ 1ÞYk þ
ϵCffiffiffi

π
p ð2þ lðlþ 1ÞÞYl

þ C2

4
ffiffiffi
π

p Y0 þ…: ð2:47Þ

This is an approximation of solutions of Eq. (2.39) with
Eq. (2.40) which is expected to be valid for small values of
the parameters C and ϵ.

FIG. 3. Convergence of the numerical scheme for solving the
Hamiltonian constraint.
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In Fig. 4 we provide numerical evidence which supports
the claim that Eq. (2.47) is a good approximation of
solutions of the Hamiltonian constraint in many of the
cases of interest.

III. ANALYSIS AND RESULTS

A. Heuristic mode analysis

Our interpretation of our numerical results and conclu-
sions below are based on a heuristic mode analysis
technique which we shall discuss first now. Recall that
the unknowns of our dynamical equations are δ, ϕ, ψ , ω,
f0 and f1 which are all real quantities of spin-weight 0, 2,
0, 0, 0 and 1, respectively, depending only on t and θ.
In order to facilitate the following analysis we define

δ� ≔ ψ−1δ; ϕ� ≔ ψ−1ϕ; ð3:1Þ

which are related to the physical 2þ 1-metric ĥab as

ĥab ¼ −δ�ω0
aω

0
b þ 2δ�ω1

ðaω
2
bÞ þ ϕ�ðω1

aω
1
b þ ω2

aω
2
bÞ ð3:2Þ

in the gauge Eq. (2.18); cf. Eqs. (2.4) and (2.5). Moreover,
we define

ψ� ≔ sech2tψ ; ω� ≔ ψ−1ω; ð3:3Þ

and set

u� ≔ ðδ�;ϕ�;ψ�;ω�; f0; f1Þ:

All the components of u�—and hence in particular the
quantity δ� which we shall mostly focus on in the
following—can be decomposed using spin-weighted
spherical harmonics of appropriate spin-weight (see
Sec. A), for example

δ�ðt; θÞ ¼
X∞
l¼0

δ�;lðtÞYlðθÞ:

Consistently with this, we write the collection of the l-th
coefficients of all those components of u� for which these
are defined schematically as u�;l. We shall refer to this as
the mode decomposition of u� and δ�, respectively. The
l ¼ 0-mode u�;0, so, in particular, δ�;0 will often be called
fundamental mode. We shall also often write

u�h ¼ u�0; δ�h ¼ δ�0;

in order to emphasize that these are the relevant modes in
the spatially homogeneous case. For the Nariai spacetime,
we write u� ¼ u�N and δ� ¼ δ�N with

δ�N ¼ 1 ⇒ δ�Nh ¼ 2
ffiffiffi
π

p
and δ�N;l ¼ 0;

for all l ¼ 1; 2;…: ð3:4Þ

Using this, the evolution equation for δ� can be written
schematically as

δ̈�;lðtÞ ¼ Glðt; u�;0; u�;1…; _u�;0; _u�;1;…Þ: ð3:5Þ

We may rewrite this for each l ¼ 0; 1;… as

δ̈�;lðtÞ þ Alð_δ�;lðtÞ − _δ�N;lðtÞÞ þ Blðδ�;lðtÞ − δ�;lðtÞÞ
¼ Flðt; u�;0; u�;1…; _u�;0; _u�;1;…Þ; ð3:6Þ

where

Al ≔ −
∂Gl

∂ _δ�;l
����
u�¼u�N;t¼0

; Bl ≔ −
∂Gl

∂δ�;l
����
u�¼u�N;t¼0

;

Fl ≔ Gl þ Alð_δ�;l − _δ�N;lÞ þ Blðδ�;l − δ�N;lÞ:

We emphasize that Eq. (3.6) just an algebraic manipulation
of Eq. (3.5). Also, it should be clear that similar

FIG. 4. Difference of the numerical solution δ of the Hamiltonian constraint and the analytic expression δL given by (2.47) for
ϵ ¼ 10−4 and ϵ ¼ 10−3, C ¼ 0 and various values of l.
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decompositions can be performed for any of the other
components of u�. In any case, a lengthy calculation now
reveals that

Al ¼ 0; Bl ¼ lðlþ 1Þ − 2;

for all l ¼ 0; 1;…, and hence that

δ̈�;lðtÞ þ ðlðlþ 1Þ − 2Þðδ�;lðtÞ − δ�N;lðtÞÞ
¼ Flðt; u�;0; u�;1…; _u�;0; _u�;1;…Þ: ð3:7Þ

Now, suppose we are in a regime where jFlj is negligible
in comparison to the other terms in Eq. (3.7) and that the
dynamics is therefore dominated by the left-hand side.
Then, this equation together with (3.4) implies

δ�;0 ≈ 2
ffiffiffi
π

p þ ðδ�;0jt¼0 − 2
ffiffiffi
π

p Þ cosh
ffiffiffi
2

p
t

þ _δ�;0jt¼0 sinh
ffiffiffi
2

p
t; ð3:8Þ

δ�;1 ≈ δ�;1jt¼0 þ _δ�;1jt¼0t; ð3:9Þ

δ�;l ≈ δ�;ljt¼0 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 2

p
t

þ _δ�;ljt¼0 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 2

p
t; ð3:10Þ

where l ≥ 2. Hence, in this regime, the l ¼ 0 mode is in
general unstable (in fact, this is the heuristic explanation for
the before-mentioned instability of the Nariai solution in the
class of homogeneous spacetimes)while the l ≥ 2-modes are
all oscillatory. The l ¼ 1-mode is “somewhere in between”.
Before we continue, we wish to emphasize that the

approximation Eqs. (3.8)–(3.10) are not a complete lineari-
zation of the evolution equations around the Nariai space-
time. It is therefore questionable whether Eqs. (3.8)–(3.10)
are useful in any sense. In any case, our numerical experi-
ments below show that the rather simplistic description above
turns out to be sufficient as a basic for our main results.
Recall now that Eq. (2.47) is an approximation of the

solution δjt¼0 of the Hamiltonian constraint for our par-
ticular family of initial data. This approximation is
expected to be valid for small parameter values C and ϵ.
Let us now use Eq. (2.47) to express Eqs. (3.8)–(3.10) in
terms of the initial data parameters l, ϵ and C. First, we see
that Eqs. (3.1), (2.38), and (2.34) yield

δ�jt¼0 ¼
1

δ

����
t¼0

; _δ�jt¼0 ¼ −
_ψ

δ3

����
t¼0

:

Eqs. (2.47) and (2.40) therefore give us the following result

δ�jt¼0 ¼ 1 −
X2l
k¼0

al;kϵ2

2þ kðkþ 1ÞYk

−
ϵCffiffiffi

π
p ð2þ lðlþ 1ÞÞYl −

C2

4
ffiffiffi
π

p Y0 þ…; ð3:11Þ

_δ�jt¼0 ¼ −CY0 − ϵYl þ…: ð3:12Þ

Now it turns out that in our applications, C is typically
much smaller than ϵ. In fact, C is often of the order ϵ2 (as
justified below). When we combine Eqs. (3.8)—(3.12) with
Eqs. (3.11) and (3.12) and only keep terms of order ϵ, ϵ2

and C, we get

δ�;0 ≈ 2
ffiffiffi
π

p
−
1

2
al;0ϵ2 cosh

ffiffiffi
2

p
t − C sinh

ffiffiffi
2

p
t; ð3:13Þ

δ�;1 ≈
1

4
al;1ϵ2 − ϵdl;1t; ð3:14Þ

δ�;l ≈ −
al;lϵ2

2þ lðlþ 1Þ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 2

p
t

− ϵdl;l sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 2

p
t; ð3:15Þ

for all l ¼ 2;…; 2l provided l ≥ 1. Here we use the
notation

di;k ≔
�
1 i ¼ k;

0 i ≠ k:

The approximate description Eqs. (3.13)–(3.15) of the
dynamics of the quantity δ� can of course be expected to
hold only for small values of the initial data parameters ϵ
and C (i.e., close to the exact Nariai spacetime given by
ϵ ¼ C ¼ 0) and only for short times t close to the initial
time t ¼ 0. As long as this approximation holds, it suggests
that the criticality of the cosmological models, i.e., the
borderline between collapse and expansion globally in
space, is mainly governed by the fundamental mode δ�;0
because all other modes are bounded if l ≥ 2. Moreover,
for any choice of ϵ ∈ R, the critical value of C, i.e., the
value when δ�0 is exactly at the borderline in this approxi-
mation according to Eq. (3.13), should be close to

Ccrit ¼ −
1

2
al;0ϵ2 ¼ −

1

4
ffiffiffi
π

p ϵ2; ð3:16Þ

where we use that al;0 ¼ 1=ð2 ffiffiffi
π

p Þ for all l ≥ 0; recall the
definition of al;l by Eq. (2.46). In our applications, we
typically set ϵ ¼ −10−κ for some positive integer κ, which
therefore yields

Ccrit ≈ −1.4 × 10−2κ−1: ð3:17Þ

Later we provide numerical evidence that the actually
critical value of C for solutions of the fully nonlinear
equations is indeed somewhat close to Eq. (3.16).
If we now choose any l ≥ 2 and pick initial data

parameters ϵ and C close to the actual critical values of
the fully nonlinear problem for which all modes are
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expected to be bounded, the oscillatory nature of the modes
δ�;l with l ¼ 2;…; 2l suggested by Eq. (3.15) should
dominate the dynamics. According to Eq. (3.15) the
oscillation period is independent of l (so long as l is
between 2 and 2l) and is given by

TL ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 2

p : ð3:18Þ

The phase and the amplitudes of the oscillations however
depend significantly on l. If l ¼ l the amplitude is propor-
tional to ϵ (in leading order), while it is proportional to ϵ2

for l ≠ l; moreover there is a phase shift of approximately
π=2 between these two kinds of modes. In the next
subsections, we present numerical evidence which supports
all claims in this subsection.

B. Numerical evidence for Result 1: Existence
of critical models

Based on the heuristic analysis in Sec. III A we now
present our numerical findings which support Result 1 in
Sec. I. Recall from our previous discussion that the critical
behavior is mainly governed by the l ¼ 0-mode of δ�. The
dynamics of this mode are approximated by Eq. (3.13)
which suggests that, for initial data given by any fixed
values ϵ and l ≥ 2, the corresponding solution of the (fully
nonlinear) evolution equation should be eventually expand-
ing globally in space if C < Ccrit, where Ccrit is given by
Eq. (3.16), and be eventually collapsing globally in space if
C > Ccrit. The critical case should therefore be C ¼ Ccrit.
Our numerical results now indeed confirm this, but with a
slightly different value Ccrit than the value in Eq. (3.16).
This suggests that there are nonlinear effects in the
evolution equations, in particular effects of order ϵ2, which
are not taken into account by our mode analysis (which was
based on setting Fl in Eq. (3.7) to zero). In any case, we
find that the actual value is proportional to ϵ2 in leading
order in consistency with Eq. (3.16); cf. Fig. 5. In practice,
we use the following algorithm to determine the actual
value of Ccrit for any choice ϵ ∈ R and l ≥ 2 which is
suggested by Eqs. (3.13)–(3.15):
(1) Construct the full set of initial data as outlined in

Sec. II C for the given values of ϵ and l, and for the
value C given by Eq. (3.16).

(2) Evolve the initial data to the future using the
fully nonlinear evolution equations and gauges in
Sec. II B. Determine whether the solution collapses
(i) or expands (ii) globally in space.

(3) Construct new ID in the same way as before for the
same value of ϵ and l, but with some slightly
decreased value of C if (i) in Step 2, or, with some
slightly increased value of C if (ii); cf. Eq. (3.13).

(4) Go back to Step 2 and repeat this process until a
sufficiently good approximation of the critical sol-
ution has been obtained.

This algorithm is now used in Fig. 6 to approximate the
actual fully nonlinear critical solution for ϵ ¼ −10−4 and
l ¼ 2. It demonstrates that the time period for which δ�h is
bounded (and oscillatory, see below) is longer the closer C
is to the critical value. In Figs. 7 and 8 we apply the
algorithm now to various values of ϵ and fixed l, only
plotting our best numerical approximation of the critical
solution obtained by our algorithm.
All these plots Figs. 6, 7 and 8 therefore confirm Result 1

in Sec. I. In the next subsection, we shall study the
oscillations. Before we get to this, let us emphasize that
none of our numerical solutions is (as a matter of principle)
exactly critical. Eventually during the evolution, the sol-
utions “all make a decision whether to expand or to
collapse.” Let us discuss how this happens in terms of
the following alternative decomposition of the evolution
equation of the l ¼ 0-mode

δ̈�;0ðtÞ ¼ GðHÞ
0 ðt; u�;0; _u�;0Þ

þ GðIÞ
0 ðt; u�;1; u�;2;…; _u�;1; _u�;2;…Þ: ð3:19Þ

FIG. 5. The actual critical value Ccrit as a function of ϵ for
l ¼ 2. The data points are taken from Fig. 7. The picture
demonstrates that Ccrit ∼ ϵ2.

FIG. 6. Finding the critical solution with the algorithm in the
text for l ¼ 2 and ϵ ¼ −10−4.
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The first term on the right-hand side captures all terms (also
all nonlinear ones) in the equation which are present in the
spatially homogeneous case in which we fully understand
the criticality of the Nariai solution [15]. The second term

can then be considered as “inhomogeneous corrections” to
the equations close to the homogeneous case. Now, Fig. 9
suggests that the expected unstable behavior is triggered

once the homogeneous term GðHÞ
0 ðt; u�;0; _u�;0Þ dominates

the right-hand side of Eq. (3.19) and the evolution therefore
displays the well-known Nariai-like instability. The sol-
ution plotted there is again our best numerical approxima-
tion of the critical solution in Fig. 6. We find that whatever
the value of δ�;0 is at the time when the homogeneous term
takes over determines whether the solution eventually
expands or collapses globally in space.

C. Numerical evidence for Result 2: Nonlinear
oscillatory dynamics

As discussed before, if the solution is critical (or almost
critical) and hence δ� is bounded for an extended period of
time, the oscillatory nature of the modes δ�;l for l ≥ 2

suggested by Eq. (3.15) should dominate the dynamics.
We shall discuss the dynamics of the modes l ≥ 2 first
now, before we explain the oscillatory behavior of the
l ¼ 0-mode in Figs. 6, 7 and 8 [which is clearly not
explained by Eq. (3.13)].
As before we assume that l ≥ 2. Recall that the

oscillation period of the modes δ�;l for l ≥ 2 is expected
to be TL given by Eq. (3.18). In Table I we confirm the
validity and accuracy of this heuristic prediction. As
expected the agreement with Eq. (3.15) is better for smaller
t and indeed gets worse for the second and third oscillation
when nonlinear effects clearly become significant.
Recall from Eq. (3.15) that there should be a phase

difference of π=2 between the oscillations of the modes
with l ≠ l (l ¼ 2;…; 2l), and the mode l ¼ l. Moreover,
the amplitudes of all the former modes should be propor-
tional to ϵ2 while the amplitude of the latter is proportional
to ϵ. All this is confirmed in Figs. 10 and 11. We also
remark here that Fig. 7 confirms, in consistency with the
heuristic predictions, that the oscillation period only
depends on l but not on ϵ or C.
Now, while our heuristic analysis explains that the

fundamental mode is bounded for the (almost) critical
solutions and all modes l ≥ 2 are oscillatory, it misses the
oscillatory behavior of the fundamental mode which is
obvious in Figs. 6, 7 and 8. The basic assumption for the
results in Sec. III A was that the term Fl in Eq. (3.7) is
negligible. For the fundamental mode, this is clearly not
the case and terms which are Oððδ�;lÞ2 þ ð∂tδ�;lÞδ�;l þ
ð∂tδ�;lÞ2Þ are expected to change the dynamics signifi-
cantly; recall that the amplitudes of all modes δ�;l with
l ≠ l are of order ϵ2 and hence of higher order than δ�;l.
Because of the quadratic coupling of the fundamental
mode and the l ¼ l-mode, whose amplitude is proportional
to ϵ and whose oscillation period length is approximately
given by Eq. (3.18), we expect that the amplitude of the
oscillation of the fundamental mode is proportional to ϵ2

and the oscillation period length is half of Eq. (3.18), i.e.,

FIG. 7. The fundamental mode of our best numerical approx-
imations of the critical solutions for various values of ϵ and
fixed l ¼ 2.

FIG. 8. The fundamental mode of our best numerical approx-
imations of the critical solutions for various values of l and
fixed ϵ ¼ −10−4.

FIG. 9. Homogeneous and inhomogeneous contributions to the
evolution of the homogeneous mode as explained in the text for
C ¼ −0.975982 × 10−9, ϵ ¼ −10−4, l ¼ 2.
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πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 2

p : ð3:20Þ

The statement about the amplitude is indeed confirmed by
Fig. 7. The accuracy of the prediction about the oscillation
period length is studied in Table II.
In the rest of this subsection we consider the question

whether these oscillations are a real physical effect of our
models rather than just a gauge effect. To this end, we
define a physical time function as the solution τ of the
Eikonal equation

∇aτ∇aτ ¼ −1 ð3:21Þ

with zero initial data on any of our models. As explained in
[23], the value of τ represents the proper time along the
congruence of unit timelike geodesics which start perpen-
dicularly to the initial hypersurface. In Figs. 12 and 13, we
plot this function τ in one of our cosmological models,
mainly to demonstrate that our numerical solutions cover a
significant part of physical time. Let us now describe our
oscillations in terms of the physical time before. In order
to simplify the discussion a little, we exploit the fact that
for 3þ 1-Gowdy symmetric spacetimes and hence for
axi-symmetric 2þ 1-spacetimes, the poles of the spatial
two-sphere is a geometrically distinguished point at all
times. It is therefore geometrically (and physically) mean-
ingful to look at the Kretschmann scalar of the 3þ 1-metric
as a function of τ at the pole θ ¼ 0 of the spatial 2-spheres
only. This is done in Fig. 14 for various critical solutions.
The oscillations are evident in this representation and hence
are a real physical phenomenon.
All this confirms Result 2 in Sec. I.

D. Numerical evidence for Result 3:
Late time behavior

We have now used numerical evidence to support our
claim that for any ϵ ∈ R and l ≥ 2 it is possible to keep the
quantity δ� bounded for as long as we like by picking C
sufficiently close to some critical value. Figure 15 now
shows that also the quantity ϕ� [see the definition in
Eq. (3.1)] is bounded and, in fact, oscillatory. Since δ�
and ϕ� determine the physical geometry of the spatial
two-spheres [recall Eq. (3.2)], it follows that the spatial
S2-factor of critical 3þ 1-models do not deviate much

FIG. 10. The l ¼ l-mode of our best numerical approximations
of the critical solutions for various values of ϵ and fixed l ¼ 2.

TABLE I. Critical solutions for ϵ ¼ −10−4 and various l: Oscillatory behavior of δ�;l. Here, TL is the prediction
from Eq. (3.18). TN1

is the actual period length of the first full oscillation after t ¼ 0, and TN2
and TN3

of the second
and third one. Moreover, tL is the predicted time of the first oscillation maximum according to Eq. (3.15) and tN the
actual numerical value.

Data tL tN TL TN1
TN2

TN3

l ¼ 2 0.723221 0.69999 3.14159 3.19999 3.5499997 …
l ¼ 3 0.47418 0.46662 1.98692 2.09979 2.3997598 2.3997598
l ¼ 4 0.359534 0.333 1.48096 1.5651 1.7649001 2.1644998

FIG. 11. The l ¼ 4-mode (i.e., l ≠ l) of our best numerical
approximations of the critical solutions for various values of ϵ
and fixed l ¼ 2.

TABLE II. Critical solutions for ϵ ¼ −10−4 and various l:
Oscillatory behavior of δ�;0. Here, TL is the prediction from
Eq. (3.20). TN1

is the actual period length of the first full
oscillation after t ¼ 0, and TN2

and TN3
of the second and

third one.

Data TL TN1
TN2

TN3

l ¼ 2 1.5708 1.65 1.7500002 1.75
l ¼ 3 0.993459 1.1665499 1.1105 0.9665699
l ¼ 4 0.74048 0.7992 0.86580002 0.73259997
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from the geometry of the standard round unit 2-sphere for
an arbitrary long time, on the one hand. On the other hand,
the geometry of the spatial S1-factor, which is described by
the quantity ψ, changes exponentially, as suggested by
Fig. 16, and its growth is almost unaffected by whether C is
larger or smaller than the critical value. See also Fig. 17
which shows the deviation of this quantity from the
corresponding Nariai values. Recall that ψ� is defined in
Eq. (3.3).
This supports the claim that the long-term behavior of

our inhomogeneous critical solutions is very similar to that
of the exact Nariai solution. In particular, as for the Nariai
solution, the highly anisotropic timelike future is expected
to be inconsistent with the cosmic no hair picture. This
supports Result 3 in Sec. I. As explained earlier, we have
convincing evidence now that whenever the solutions are
noncritical, they either expand or collapse to the future
eventually. In the expanding case, we expect the solutions
to behave in accordance with the cosmic no-hair conjecture.
This is indeed confirmed by our numerical results. For
instance, Figs. 18 and 19 show (for a clearly noncritical

FIG. 12. Fundamental mode of the solution of the Eikonal
equation discussed in the text for the solution given by C ¼ 10−4,
ϵ ¼ −10−4, l ¼ 2.

FIG. 13. Inhomogeneous part of the solution of the Eikonal
equation discussed in the text for the solution given by C ¼ 10−4,
ϵ ¼ −10−4, l ¼ 2, i.e., τl ¼ τ − τh.

FIG. 14. Kretschmann scalar K of the 3þ 1-metric vs. the
physical time τ at the pole θ ¼ 0 for various best approximations
of critical solutions for l ¼ 2.

FIG. 15. The quantity ϕ� for our best numerical approximations
of the critical solutions for various values of ϵ and fixed l ¼ 2.

FIG. 16. Exponential growth of ψ for models given by
ϵ ¼ 10−4, l ¼ 2 and various values of C (close to the critical
value).
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solution; the valueC ¼ −10−4 is far in the expanding regime)
that,while the3þ 1-Kretschmann scalar starts off close to the
Nariai value, it eventually approaches the expected de Sitter
value after all the oscillations have died out.
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APPENDIX: SPIN-WEIGHTED
SPHERICAL HARMONICS

Let ðθ;φÞ be the standard polar coordinates in S2.
A function f on S2 has spin-weight s if it transforms
under a local rotation by an angle τ in the tangent plane at
every point ðθ;φÞ ∈ S2 as f → eisτf. In this case, f can be
written as

fðθ;φÞ ¼
X∞
l¼jsj

Xl

m¼−l
almsYlmðθ;φÞ; ðA1Þ

where sYlmðθ;φÞ are the spin-weighted spherical harmon-
ics [31] and alm are complex numbers. These functions are
normalized asZ

S2

sYl1m1
ðθ;φÞsȲl2m2

ðθ;φÞdΩ ¼ δl1l2δm1m2
: ðA2Þ

For any function f of spin-weight s, this identity can be
used to calculate the complex coefficients alm in Eq. (A1).
The eth operators ð and ð̄ are defined by

ðf ≔ ∂θf −
i

sin θ
∂φf − sf cot θ ¼

ffiffiffi
2

p
ma∇af − sf cot θ;

ð̄f ≔ ∂θf þ i
sin θ

∂φf þ sf cot θ ¼
ffiffiffi
2

p
m̄a∇af þ sf cot θ;

ðA3Þ

cf. Eq. (2.11), for any function f on S2 with spin-weight s.
Using Eqs. (A3), we can therefore express the frame vectors
ðma; m̄aÞ in Eq. (2.11) in terms of the eth-operators as

maðfÞ ¼ 1ffiffiffi
2

p ððf þ fs cot θÞ;

m̄aðfÞ ¼ 1ffiffiffi
2

p ðð̄f − fs cot θÞ: ðA4Þ

FIG. 17. The difference of ψ and the corresponding quantity of
the Nariai solution is small for ϵ ¼ 10−4, l ¼ 2 and various
values of C (close to the critical value).

FIG. 18. The value of the Kretschmann scalar at the pole vs. the
value of τ at the pole. Late time behavior for the solution given
by C ¼ −10−4, ϵ ¼ −10−4, l ¼ 2.

FIG. 19. Evolution of Kl¼K−Kh (where K is the Kretschmann
scalar) vs. the value of τ at the pole. Late time behavior for the
solution given by C ¼ −10−4, ϵ ¼ −10−4, l ¼ 2.
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The properties of raising and lowering spin are

ðsYlmðθ;φÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylmðθ;φÞ;

ð̄sYlmðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylmðθ;φÞ;

ð̄ðsYlmðθ;φÞ ¼ −ðl − sÞðlþ sþ 1ÞsYlmðθ;φÞ: ðA5Þ
In fact, we can use the relations (A5) to define
spin-weighted spherical harmonics sYlm with any integer
spin-weight s from the standard spherical harmonics

Ylmðθ;φÞ ¼ 0Ylmðθ;φÞ: ðA6Þ
It is easy to check that from any function f with spin-weight
s, we can obtain a function with either spin sþ 1 from ððfÞ
or spin s − 1 from ð̄ðfÞ. Thus, they are also known in the
literature as the raising and lowering operators [45]. We can
also check that

½ð̄; ð�f ¼ 2sf: ðA7Þ
The Laplace operator (in our sign convention) of the
two-sphere can be written in terms of eth-operators as

ΔS2f ¼ ððð̄þ ð̄ðÞ
2

f: ðA8Þ

Further, using the commutation relation Eq. (A7) we obtain
the useful expressions

ΔS2f ¼ ðð̄f þ sf ¼ ð̄ðf − sf: ðA9Þ

Finally, any function f with spin-weight s can be
expanded in terms of axi-symmetric spin-weighted
spherical harmonics

sYlðθÞ ¼ sYl0ðθ;φÞ

since the latter is independent of φ, i.e., Eq. (A1)
becomes

fðθÞ ¼
X∞
l¼jsj

alsYlðθÞ; ðA10Þ

for complex numbers al. In analogy to Eq. (A6), we shall
often write

YlðθÞ ¼ 0YlðθÞ: ðA11Þ
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