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We study two-dimensional f (k) Horava-Lifshitz gravity from the Hamiltonian point of view. We
determine constraints structure with emphasis on the careful separation of the second class constraints and
global first class constraints. We determine number of physical degrees of freedom and also discuss gauge

fixing of the global first class constraints.
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I. INTRODUCTION AND SUMMARY

Study of two-dimensional quantum gravity is very useful
when we can understand principles and puzzles of quantum
gravity. Two-dimensional models are much simpler
than four-dimensional gravity but share some interesting
features with four-dimensional gravity. Further, two-
dimensional gravity plays a fundamental role in the modern
formulation of string theory [1] where a propagating string
in d-dimensional flat target space-time can be described as
a theory of d- free scalar fields coupled to two dimensional
gravity.

It is well known that there is no nontrivial gravitational
dynamics in space-time dimension lower than four. In three
dimensions, the Riemann tensor is proportional to the Ricci
tensor and the source-free theory is trivial. In two dimen-
sions the Einstein tensor is zero and the Einstein-Hilbert
action is topological invariant. As a result there are no
equations of motion and hence we cannot formulate
meaningful theory. In order to resolve this issue it
was proposed in [2] that the appropriate model for two-
dimensional gravity is the constant curvature equation
@R —2A =0, where @R denotes the two dimensional
Ricci scalar. In order to study quantum properties of this
theory we need an action principle from which this
equation can be derived. It turned out that the only invariant
action is the nongeometric action that involves scalar field
@ as a Lagrange multiplier

S = /d2x¢(<2>R —2A), (1)

that leads to desired equations of motion when we perform
variation with respect to A. The exact solution of this model
was found in [3].

A few years ago P. Horava formulated its famous model
of power counting renormalizable theory of gravity known
as Hotava-Lifshitz gravity (HL) [4] which is the theory of
gravity that is not invariant under full four-dimensional
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diffeomorphism but under reduced group of diffeomor-
phism known as a foliation preserving diffeomorphism in
order to have theory with anisotropic scale invariance. In
fact, the requirement of the anisotropic scale invariance is
central for the power counting renormalizability of this
theory. On the other hand the reduced group of diffe-
morphism has a very strong impact on the structure of the
theory since there are additional modes with important
phenomenological and theoretical consequences on the
consistency of the theory.

This theory has an improved behavior at high energies
due to the presence of the higher order spatial derivatives in
the action which implies that the theory is not invariant
under full diffeomorphism but it is invariant under so called
foliation preserving diffeomorphism (Diff z)

= f(1),

This property offers the possibility that the space and time
coordinates have different scaling at high energies

X' =xi(x,1). (2)

Y = k7, X' = k71X, (3)
where k is a constant. A consequence of this fact is that in
3 + 1 dimensions the theory contains terms with 2 time
derivatives and at least 2z spatial derivatives since the
minimal amount of the scaling anisotropy that is needed for
the power-counting renormalizability of this theory is
z = 3. Then collecting all terms that are invariant under
Diff z symmetry leads to the general action [5,6]

M> -
S = 7” / dtd*xN/gK;;G* K}, — Sy. (4)

where

1
(019 — D;N; = D;N,), (5)

K. ——
Y 2N

and where we introduced generalized De Witt metric Gkl
defined as [7]
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(g% g + g g*) = AgligM, (6)

| =

gijkl —

where 4 is an arbitrary real constant. Finally note that D; is
the covariant derivative defined with the help of the
metric g;;.

The action Sy is the potential term action in the form

M2
SV ZTP/dld3XN\/§V

M3 . 1 1
:T/dtd*XN\/g £1+W£2 +Wﬁ3 s (7)

where £, contain all terms that are invariant under foliation
preserving diffeomorphism and where L, contain 2n
derivatives of the ADM variables (N, g;;). In the UV when
k > M, the dominant contributions come from the higher
derivative terms that lead to the modified dispersion
relation @® o« k® that implies that this theory is power
counting renormalizable. In the opposite regime k << M,
the dispersion relation is relativistic and it can be shown
that the theory has regions in the parameter space where it is
in agreement with observation.

This theory has a very interesting property which is the
presence of the vector a; that contains spatial derivative of
lapse N. These terms are forbidden in the theory invariant
under full diffeomorphism which implies an existence of
the local first class Hamiltonian constraint. In case of HL
gravity the canonical structure is much more complicated
as was shown previously in [8—11]. More precisely, two
second class constraints were identified which should be
solved for lapse N and conjugate momentum. However
generally this constraint is a second order partial differ-
ential equation for lapse whose explicit solution was very
difficult to find. For that reason it is instructive to perform
an analysis of much simpler models as is for example two
dimensional HL gravity. This was done previously in [12].
Our goal is to generalize this analysis to the case of two

dimensional f(R) — HL gravity which is more complex
and allows local degrees of freedom on the reduced phase
space. We also discuss the subtle point of the global first
class constraints [11]. We argue that in order to solve the
second class constraints we have to fix these global
constraints. This is very important observation for the
structure of the reduced phase space when we determine
equations of motion for variables that define reduced phase
space and we show that it takes a rather complicated form.
As a result we are not able to derive Hamiltonian on the
reduced phase space that is apparently nonlocal due to the
necessity to fix global first class constraints with global
gauge fixing functions.

As the check of the validity of our procedure we discuss
two special cases of the choice of the parameters in this
theory. The first one corresponds to the diffeomorphism
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invariant two dimensional f(R) theory. We determine the
canonical structure of this theory and we argue that it has
the same form as in seminal papers [2,3]. Then we proceed
to the analysis of the reduced phase space theory when we
fix all first class constraints. We show that there are no
physical degrees of freedom on the reduced phase space
and we show that with suitable chosen gauge fixing
function we derive equations for lapse and for scalar field
that are in agreement with the equations derived in [13]
which is also a nice consistency check of our analysis.
Finally we consider the case when the function that defines

f(R) theory is identically equal to one. This situation
corresponds to the nonprojectable HL gravity in two
dimensions that was analyzed previously in [12]. We
perform the canonical analysis of this theory from a
different point of view with emphasis on the existence
of two global first class constraints and their gauge fixing.
Solving all constraints we show that there are no physical
degrees of freedom left and that these constraints lead to the
solution that is in agreement with the analysis performed
in [12].

Let us outline our results. We performed canonical
analysis of two dimensional f(R) HL gravity and we show
that the equations on the reduced phase space are rather
complicated and contain integration over the whole space
interval as a consequence of the gauge fixing of the global
constraints. We mean that this is a very important result that
should be valid in higher dimensional nonprojectable
theory as well and which certainly makes the canonical
analysis even more complicated than it is.

This paper is organized as follows. In the next section (II)
we introduce two dimensional f (R) HL gravity and define
basics notations. Then in Sec. III we perform Hamiltonian
analysis of this theory and determine all constraints. In
Sec. IV we consider special values of parameters that
correspond to f(R)-gravity in two dimensions and we
perform its Hamiltonian analysis. Finally in Sec. V we
analyze pure nonprojectable HL. gravity in two dimensions
from a Hamiltonian point of view.

II. TWO-DIMENSIONAL f (R)-HORAVA-LIFSHITZ
GRAVITY

In this section we formulate two-dimensional HL f(R)
gravity. Clearly the action for this system is the special case

of higher dimensional f(R) HL gravities that were studied
before, see for example [14—17]. Let us consider the
following model of two-dimensional nonprojectable HL

f(R) gravity
S = % / dtdxN/gf(R), (8)

where k = 822G, and where R is defined as
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R — EK - Ev, (9)
where
. ) 2u
‘CK = Kinl'] - j.K +7aﬂ(\/§Nn”K)
VIN
——0; O;N 10
fN i(v/9970;N), (10)
with K;; (6,9,1 D;N; — D;N;) where D; denotes the

covarlant denvatlve of the metric g;; and N is the shift
vector N' = g/ N;. Finally n* is a future pointing normal
vector to the surface X, that in ADM variables is equal to
n® =1 n'=-N Finally u is a free parameter that
approaches 1 in the low energy limit.

Let us now discuss the potential term Ly that is made of

R, D;, and a; = TN where R is Ricci scalar of the leaves
t = const that identically vanishes at one dimension R = 0.
It can be shown [12] that in d =1 dimensions Ly has
the form

Ly =2A - pa;a, (11)

where A is cosmological constant and f is another
dimensionless coupling constant.

To deal with f(R) gravity in two dimensions we
introduce two scalar fields and write the action as

s— % / dtdxN\J3(f(A) + B(R - A))

1 .
! / dtdxN /G(f(A) - BA + B(K,;K' — iK?)
K
— 240, Bn*K +2u0;Bga; — 2AB + fBa;a’).  (12)

In I + 1 dimensions g;; has only one components that we
denote, following [12] as

Y =+V9115 911 :72’ 911 = (13)

so that we have the following nonzero component of I'}

1 1 0
Fl —_ — 118 = — /’ IE— . 14
11 29 1911 y}’ 4 8xy ( )

Then we easily find that the action has the form
1
S = —/ dtdxNy (f(A) — BA + B(1 - A)K*-2uV,BK
1
+2,u B’a—ZAB—f—ﬂBa —) (15)
7’

where
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(1 1 [y N’
K:g K“:— —_—+ N
N\y 7
1 .
:N(B—NlB’),

V.B a=a, (16)

where B = 9,B, B' = 9;B. The action (15) will be the
starting point of our canonical analysis that will be
performed in the next section.

III. HAMILTONIAN ANALYSIS

Now we proceed to the Hamiltonian analysis of the
theory specified by the action (15). Before we do, it is
useful to simplify this action with the help of the fact that
the variable A has no dynamics and can be eliminated by
solving its equation of motion. In more details, the equation
of motion for A has the form

af
o B=0 (17)

If we presume that there is a function W that is inverse to Z—ﬁ

we find that the Eq. (17) has the solution
A =Y¥(B). (18)

Inserting this solution into the action (15) we obtain the
final form of the action

1
S = / dtdxNy <B(1 - )K* - 2uV,BK
K

+ 2/,t B’a - U(B) + pBa* 71 ) (19)

where
U(B) = f(¥(B)) — BY(B). (20)

Starting with the action (19) we find following conjugate
momenta

oL , oL
TN = s T =—~U,
5N ON,
oL 2B 2
=2 =01 -nk-2v B,

oy K K
oL 2u

=—=—-— 21
B! (1)

Then it is easy to perform Legendre transformation in order
to find a corresponding Hamiltonian
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. 1
H—/dX(ﬂ'}/—FPB—,C)—/d)C(NHT"'N]—zH])y
14

(22)
where
Hy = ——_ B - P =X pr g
T Ay 2u Ky
Bad?
+Lu) L
K Ky
H, = —yx’ + PB' (23)
using
K 2u 2B
K=-—pP, -EVB=n+="(1-2P. (24
Sy . ZW( ) (24)

Now we have to analyze the requirement of the preserva-
tion of the primary constraints 7y ~ 0, 7' %0

Oy ={my,H}
2uN’ 2uB"\' 2B 2B 1\’
BN g (BB BB (3E,)
Ky N Ky Ky Ky
E—C%O,
Ol ={z"\H} = —H, ~0. (25)

Note that C obeys an important relation

/ dxNC = / dxNH; (26)

using integration by parts and also the fact that we presume
suitable asymptotic behavior of all fields so that the
contributions from spatial infinities can be ignored. As
in higher dimensional nonprojectable HL gravity we
introduce the global primary constraint

HN:/d)mNN (27)

and split the original constraint 7, into co — 1 local ones

~ /4
N = TN — WHN (28)

that obeys the relation
/deer =0. (29)

Then the requirement of the preservation of the primary
constraint IIy implies
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a,HN == {HN,H} = —/deHT = _HT ~0 (30)

using

{Ty.N} = N, {My.a} =0

(31)

and hence {Ily, H7} = 0. In other words we have second
global constraint I1; ~ 0. We again split C into co — 1 local

constraints C and one global constraint [1; % 0 where we
define C =~ 0 as

{HN77TN} :ﬂN7

p 4

that obeys [ dxNC = 0. To proceed further we introduce
united notation for the second class constraints as

¥, = (7y.C). Since clearly {C(x),C(y)} # 0 we find that
the matrix of Poisson brackets has the schematic form

{\PA<x>»PB<y>}=AABE(O X) (33)

Y M

so that the inverse matrix A8 has the form
Y 'mx-t y-!
AB ( ) (34)
X! 0

As the final step we have to ensure that I1; and I1, are the
first class constraints. IIy clearly is since it has vanishing
Poisson brackets with all constraints on the constraints
surface. In case of I1; this is not true but we can introduce
the following combination of the constraints

M =TI — {TI;, ¥, } AP, (35)
that obeys the equation
{ﬁTv‘PA} = {ly, P4} - {Hrvlpc}ACB{lPBa Yy} =0,
{ﬁT, l:IT} — O (36)

For further purposes it is useful to determine the explicit

form of ﬁT. First of all we calculate the Poisson bracket
between Iy and 7y

g, zy(x)} = {lp, 2y (x) }

_ _{ / dyNﬂT,ﬂN(x)} — () ~0. (37)

In case of the constraint C we only need to know that this
Poisson bracket is nonzero. Schematically we have

{I;,¥} = (0,*), where * is the nonzero expression.
Then we obtain
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fl, — I, - (O’*)<—Y‘1MX‘1 Y—l) <0>
X! 0 *
=TIy — X 7y (38)

which is a very important result that shows that l:IT does not
depend on the constraint C~0.

Now we proceed to the analysis of the constraint H ;. We
add to it the following expression proportional to the
primary constraint 7y = 0

Hy = H, + 2yO\N = —y0yz + PO\ B + ayON  (39)

and introduce its smeared form
Hy(M') = / dxM'H, (40)

that has following Poisson brackets with canonical
variables

{Hg(M'),r} = —(M"y)',
{HS(MI)JL'} =-M'7,
{Hy(M").B} = -M'B',
{Hg(M'), P} = —(M'PY’,
{HS(M]),N} =-M'N,
{Hs(M"), 2y} = =(M'zy) (41)
and also
{HS(M'),a}:—(M‘)’a—Mla’. (42)

From these Poisson brackets we see that all constraints have
vanishing Poisson brackets with Hg on constraint surface
and hence 7:[1 ~ 0 is the local first class constraint.

Let us now return to the second class constraints ¥, and
try to find their solutions. The problem is that these second
class constraints contain the global first class constraints in
their definition. For that reason it is natural to fix the global
first class constraints by appropriate global gauge fixing
functions. Note that [Ty generates pure time dependent
rescaling of N and zy. For that reason it is natural to
introduce the following gauge fixing function

Gy = / dxyN — C ~0, (43)

where C is a constant." Now this gauge fixing function has
a nonzero Poisson bracket

'In principle this could be time dependent function but we
consider it to be constant for simplicity.
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{lly,.Gy} = —/dxyN ~—C #0. (44)

However this is not the end of the story due to the presence

of the second global constraint fIT. We have to fix this first
class constraint in order to be able to solve C ~ 0 for N. Let
us propose following gauge fixing function

G, = /dxyﬂ - C,(1)~0, (45)

where we have to presume nontrivial dependence of C,, on
time in order to find nontrivial dynamics. It is also easy to
see that

{Hs(N'"),Gr} =0 (46)
and also

{Gr. 17} ~ {Gy. 11y}

=1, - / dxN <ﬁnP —%U(B))
~— / dxN <$;:P - % U(B)>. (47)

Finally we fix the diffeomorphism constraint. There is a
number of possibilities how to fix it. For example, we could
use the gauge fixing condition y = 1. However this con-
dition does not fix the gauge completely and there remains
global diffeomorphism. For that reason we consider
another possibility when we impose the gauge fixing
function

Ge =B - f(x), (48)

where f(x) is a prescribed function that obeys the regularity
condition at infinity. Then we have

{H1(%).Gc (1)} = B'(0)3(x = y) ~ f/(x)5(x = y).  (49)

Now we are ready to analyze the time evolution of all
constraints and gauge fixing functions in order to show that
all Lagrange multipliers are fixed. Recall that the total
Hamiltonian with gauge fixing functions included has the
form

HT - (1 + /1T>I:IT + llNHN + VTGT + VNGN

+/dX(0)A‘PA+N17:(1 +Mlgc), (50)

where we extended the original Hamiltonian I1; in order to

coincide with I:IT by appropriate linear combinations of
constraints.
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First of all we start with the constraint 7~{1 ~ 0. Since the
Hamiltonian was diffemorphism invariant we find

8z7:(1(x> = {ﬂl(x)7HT}
~ / dyM, () {1 (x).Ge(3)} = Myf (x). (51)

Since by presumption f’(x) # 0 for all x we see that the
only possibility how to obey this equation is to demand that

M, = 0. Then the time evolution of the constraint fIT
implies

8tﬁT = {ﬁTvHT} = VT{ﬁTvGT} =0 (52)

which implies that V; = 0. In the same way time evolution
of Ily implies

OMly = {lly,Hr} = Vy{lly,Gy} =0 (53)

and we find Vy = 0. However these results also imply
that the time evolution of the constraints ¥, simplify
considerably since

0 ¥4 (x) = {¥a(x),Hr}

_ / dya® (y){¥4(x), ¥5(»)} =0 (54)

due to the fact that V; = Vy = M (x) = 0. Since the
matrix of Poisson brackets of the second class constraints is
nonsingular we find that the equation above has the
solution @® = 0.

Finally we proceed to the requirement of the preservation
of the constraints Gy, Gy, and G¢. In the case of Gy we
obtain

d 9G

e
=0,Gr+ (1 +21){Gp. Tz} =0 (55)

+ {GT’ HT}

using the fact that {G7, Iy} = 0. Then we obtain
¢

dp=—1—— "
{Gr. 17}

In the case of Gy we find

dG
d—tN ={Gy.Hr}

= {Gu. Ty} + (1 +4p){Gy. TIz} =0 (57)

that can be solved for Ay. Finally the time evolution of the
constraint G- has the form
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0,Gc(x)={Gc(x),Hr}

— (14 4){Ge(x) 11, + / YN (5){Ge(x). T (7))}

K K
——(144)N | ——B(1=2)P+——
(+47) (Zﬂzy (1=4) +2ﬂ7ﬂ>

FN(x)f (x) =0, (58)

where we used the fact that fIT does not depend on C. The
previous equation can be solved for N! as

1 K(l +AT)
o 2u¥yf

We see that we completely fixed all Lagrange multipliers.

Now we proceed to the analysis of the dynamics of the
variables B, P, n, y and 7y and N. In case of 7 we find that
it is zero thanks to the constraint 7y = 0. B is determined
by the constraint G- = 0 that implies

N(B(1=2)P + 7). (59)

B = f(x). (60)

Further, the conjugate momentum P can be expressed using
the constraint H; and we find

%
P = . 61
Finally we have to find N as a function of dynamical
variables 7, y. To do this we use the fact that the constraint C
has the form

C:LB(I—A)(%/,>2+ LT

442 2uB  «

BN"? 2 ! 26 N/
_p —— (£B) - PN _o. (62
k N K k N

Introducing variable y = % we can rewrite the equation
above to the form of the Riccati equation

Y = qo(x) + g1 (x)y + g2(x)y*, (63)
where

T

) = s (1 (5)°

n K 7 1 U(B) u (B"'
48u BB’ 2BB B\B)"’
B 1
=——, = ——. 64
q1(x) B 9> 2 (64)

This equation can be explicitly solved as N = N(x,y)
however the explicit form of this solution is not important
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for us. We see that the remaining dynamical variables are 7,
y whose equations of motion have the form

Om(x) = {=(x), Hy}
N K K
=—(1+47)— -5 B(1 =A)P?> +—=zP
(1+47) y <4ﬂ2}’ =4 2uy
2uB Ba?
+yUB) + £ a +ﬁa>
Ky Ky
K/17"
2pyf!
K
Oy(x) ={y(x).Hr} = —NZP + 0,(N'y) (65)

+ N(B(1 = 2)P + z)«,

using again the fact that 1:IT does not depend on C. It is
important to stress that N, N', A, all depend on y and 7 as
follows from (59) and (64). Further, 1 4 17 is determined in
(56) and we see that it is given as an integral over spatial
section. In summary, the equation of motion for y, z are
very complicated and it is not possible to determine
Hamiltonian on the reduced phase space. In other words,
even 14 1f(R)—HL gravity has rather complicated
structure so that it is hard to see whether it can be explicitly
solved.

IV. THE CASE i=1, =0

It is instructive to perform Hamiltonian analysis of the

f(R) —HL gravity with special values of parameters. In
this section we consider the case when 4 = 1, f = 0 when
the action has the form

1
S = —/ dtdey(—ZﬂVnBK—l— Z%B’a - U(B)). (66)
K Y

From (66) we obtain conjugate momenta:

2
= ——'MV”B,
K

TN N O,
2

P=-FNyk (67)
K

and hence the Hamiltonian has the form

1
H:/dX(NHT+N17/2H1>, (68)

2 !/
My = —— 2P+ (”B’) +Lu),
H, = —yn’' + PB/, (69)

where we used integration by parts in order to have a theory
linear in N. As usually the preservation of the primary
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constraints 7y ~0, 7' ~0 implies the secondary con-
straints Hy ~0, H; ~0. Now we have to analyze their
preservation again. In order to do this we have to calculate
corresponding Poisson brackets of the smeared form of
these constraints Hy(X) = [ dxXHy

{H;(X),H(Y)} = /dx(XY’ — X’Y)%(PB’ —ya')
4
! ! l
= Hj <(XY -YX') y2> (70)
and also
{Hg(X"), Hy(Y)} = Hy (=X"Y"). (71)

We see that there is a crucial difference with the analysis
performed in previous sections since now there is local first
class constraint Hy ~ 0 together with spatial diffeomor-
phism constraint H; ~0 and the first class constraints
ay ~0, n' = 0.

Let us now proceed to the gauge fixing of all constraints.
At this place however we should be very careful with the
variables N and N,. To see this in more detail remember
that we are free to add secondary constraints Hy, H; with
arbitrary Lagrange multipliers to the total Hamiltonian H.
Let us also presume that we couple the gravity with matter
in the form of free scalar field

1 1
Smat = 5/ dthN}, (vn¢vn¢ - y_zd)a) (72)

with corresponding matter contribution to the Hamiltonian
in the form

1 1 1
Hmaner:/dx |:N(2_}/P§S+2_y(¢/)2) +]\IIPP(/)CIV] . (73)

Now when we include the secondary constraints to the total
Hamiltonian we find that it has the form

Hr e = / dx [(N 1 i) (Z—IY o ziy (¢>’)2>
+ (Nl + /11) %P(ﬁqﬁ'] . (74)

In order to return to the Lagrange formalism we have to
calculate the equation of motion for ¢

b= {¢.H} = (N +21)Py+ (N, + /11)%245’ (75)

that allows us to express Py as
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1 . 1

Py= i (b= m) 5o). (9
From this expression we immediately see that the compo-
nents of the metric as it is seen by scalar field are N + Ar,
N; + 4y instead of the original ones. For that reason it is
convenient to consider N, N; as Lagrange multipliers and
hence it does not make sense to speak about their conjugate
momenta and fix them. Rather we should fix N, N; by the
requirement of the preservation of the gauge fixing func-
tions during the time evolution.” In other words the total
Hamiltonian with gauge fixing constraints included has the
form

Hy = /dx(NHT +N1H] +/1HTQ'HT +/1H'QH1). (77)

Of course, there is a freedom in the choice of the gauge
fixing functions Gy, Gy, when we only demand that they
have nonzero Poisson brackets with Hy, H,. On the other
hand when we impose the condition that the solutions of the
constraints correspond to the static solution we choose the
following form of these constraints

Gu, =r*—N~=O, Gy, =P =0, (78)

where now we have the following nonzero Poisson brackets

(G, (%), Hr (1)} = — gyp ~0,

(G, (0. Ha ()} = 7 () (y) a%«s(x ).

o (ayaoc —y))

{Gn, (%), Hr (y)} = « Oy

4
y8U(B)
Tk op 0T
{91, (x), Hi(y)} = =PO,6(x = y) 0. (79)

Then the requirement of the preservation of the constraint
‘Hy ~ 0 implies

OHr(x) = {(Hy(x). Hy} ~ / dyiMs (y){H7(x). Gr (1)}

_7 HT& Z_MQ 8)(,17'[1
_K/1 oB + K Ox y (80)

that has clearly the solution 277 = 0. In the same way we
find

*Alternatively, we can still keep N and N, as dynamical fields
and then it is possible to fix their values by fixing primary
constraints 7y = 0, z! ~ 0. Then however gauge fixing of Hr, H,
determine Lagrange multipliers A7, 4; that have to be included in
the resulting metric as it is clear from the discussion presented
above.
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I (x) = {H(x), Hr} = 270, (F1y) =0 (81)

that has again solution 17" = 0. Let us proceed to the
analysis of the evolution of the constraints Gy, =0,

Gn, =0
019y, (x) = {Gn, (x), Hr} = 2y (x)0.(yN') =0 (82)

which is equal to zero for N' = % where D(t) is an

arbitrary time-dependent function. However, in order to
have a solution with the asymptotic behavior N' — 0 for
x — oo, we choose D = 0. Then the requirement of the
preservation of the constraint Gy, has the form

3197{7- (x) = {gHT (x), Hr}

2u_[ON\ N2sU
__?a<7>—75—3_0. (83)

It is convenient to parametrize N as N = ¢“ so that the
equation above has the form

2w ou

2! — — oY
pe =" sp

(84)
that is generalization of the equation found in [13] to the
case of u # 1. Further, the Hamiltonian constraint on the
constraint surface implies

2u (%)/ +NU(B)=0 (85)

that can be written as
2uB" - 2uB'@ + **U = 0. (86)

This equation is again in agreement with the combinations
of Egs. (2.14) and (2.15) presented in [13].

V. NONPROJECTABLE HL GRAVITY
WITH f(x)=1

Finally we perform the Hamiltonian analysis of the
special case when f(x) = I.

To begin with note that in case f(x) = 1 the equation of
motion for A implies that B = 1 identically and hence the
action has the form

1 1
S = —/dtdey((l —)K? =2A + pa® —2>
K 4

which is the action studied in [12]. However our goal is to
carefully identified global first class constraints so that we
again proceed to the Hamiltonian formulation of this
theory.
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Starting with the action (19) we find following conjugate
momenta

oL oL
ﬂN:—.NO, ﬂ'l:fzo,

SN 5N,

oL 2

=2 (1=K 87
=220 (57)

Then it is easy to perform the Legendre transformation in
order to find the corresponding Hamiltonian

H:/dxw—z):/dx<NHT+N1yi2H1>, (88)

where

K , pa* 2
— (=P A
M y<4(1—/1)ﬂ K )

Hl = —]/(9177:. (89)
Again the requirement of the preservation of the primary

constraints 7y ~0, 7' #0 implies two secondary con-
straints

241 281 1\
Oy ={ny,H} = —Hr ——'B—a2 - (g;a>

O ={n' \H} = —H, =0, (90)

where C obeys the property

/ dxNC = / dxNH. (91)

Now we should proceed completely as in Sec. III and we
will find that the theory has identical structure of con-
straints. For that reason we immediately skip to the analysis
of the gauge fixed theory. We again fix the constraint ITy
with the gauge fixing function

Gy = /dxyN -C=~0, (92)

where C is a constant. Now this gauge fixing function has
nonzero Poisson bracket

{lly, Gy} = —/dxyN =—-C#0, (93)
while we have

{Gun.n(x)} =0, {Hg(N').Gy}=0. (94)
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The global constraint ﬁT is fixed by gauge fixing function

G = /dxyﬂ - C,(H=~0 (95)
so that

4

K

and we see that Gy cannot be gauge fixing function in case
when A = 0 since in this case the theory possesses global
scale gauge symmetry with G; corresponding generator.
We return to this problem below. It is also easy to see that

{Hs(N').Gr} =0. 97)

Finally we fix the diffemorphism constraint using the gauge
fixing condition

Gs: v —g(t) =0, (98)
where ¢(f) is an arbitrary time dependent function. Note
that Gy has the following nonzero Poisson bracket with
Hy(N')

{Gs(x). Hg(N")} = (N')' (99)

that is zero for N' = N' (). Now from H; = 0 we find that
7 = z(t) and then the gauge fixing condition G implies

/dxyﬂ(t) = g(t)x(1) / dx = C,(1) (100)
and hence
_ Gi(1)
z(t) = (0L (101)

where L is the regularized length of the system.

Now we are ready to determine Lagrange multipliers for
all constraints and gauge fixing functions. Recall that the
total Hamiltonian with gauge fixing functions included has
the form

HT - (1 + /IT)fIT + j'NHN + VTGT + VNGN

+/dx(wA‘PA + N'H, + M, Gy). (102)

From the previous expression we see that the effective lapse
is (1 4+ A7)N instead of N. However the value of A7 is fixed
by the requirement of the preservation of all constraints.
First of all we start with the constraint 7:{1 ~ 0. Since the
Hamiltonian is diffemorphism invariant we find
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9, M, (x) = {H,(x), H}

- / dyM, () {1 (x). Ge(y)} = M) (x) = 0
(103)

and this is equal to zero for M' = M'(¢). On the other hand,
we have to demand that the Lagrange multipliers have
correct asymptotic behavior at infinity so that the only
possible solution is M' = 0.
Then the time evolution of the constraint I1; implies
oMy = {M;. Hy} = Vo{ll;.Gr} =0 (104)
which implies V; = 0. In the same way time evolution of
ITy implies
OMly = {Ily, Hr} = Vy{lly,Gy} =0 (105)
and we find Vy = 0. Then, exactly as in Sec. III, we find
that w* = 0.

Finally we proceed to the requirement of the preservation
of the constraint G, Gy, and Gs. In case of G; we obtain

d 0Gr
EGT = 7_‘_ {Gr.Hr}
=0,Gr + (1 +2p){G7.0I;} =0 (106)
and hence we find
C C
/IT:—I——’Z:—I—M),” . (107)
{GT’HT} ?AC
In case of Gy we find
0Gy = {GNaHT}
= WiGy, Oy} + (1 4+ 27){Gy, 17} =0 (108)

using the fact that * = 0. The previous equation can be
solved for Ay but the explicit solution is not important for
us. Finally the time evolution of the constraint Gy has the
form

0Gs

0,Gs(x) = E*‘ {Gs(x),Hr} — g+ (1 +/17){gs(x),ﬁr}
+ / YN (9){Gs(x). 71 ()}
=g+ (1 +mﬁzvm + Nig(r) = 0.

(109)

The previous equation can be solved for N; at least in
principle. However it is important to stress that N; is off
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diagonal component of the metric so that if we demand that
the metric is diagonal we have to impose the condition
N; = 0. Then the previous equation implies

Ng(t)x = — = C,C,N.

5 (110)

g= (1+/1T)ﬁ

where in the final step we used (101). Let us now return to
the condition C = 0 that can be solved for N. However we
simplify the calculation considerably when we demand that
the (00)-component of the effective metric is equal to —1.
This requirement implies that we have to demand that

N = ﬁ that with the help of (107) implies
YAC
N =—*_ (111)
C,
and hence
K
j=—-———C,. 112
I==30-nC (112)

Note that (111) implies that N = N(¢) and then the
constraint C simplifies considerably and leads to the result

8(1—2)L?

- (113)

Inserting this expression into (110) we obtain a differential
equation for g

2AL?
g=+ 114
g 1Y (114)
that can be easily integrated with the result
g=Ce* e (115)

In other words we found in the process of the gauge fixing
that all dynamical fields are fixed and that the line element
has the form

2
ds® = —d* + Ce*V 7T dx (116)
which is in complete agreement with the result derived
in [12].
Finally we briefly mention the case of zero cosmological
constant A = 0. In this case we cannot use the gauge fixing

function Gy = f dxyn since it commutes with Il;. Let us
propose another gauge fixing function

G (f) = / dxyf(x) = C (). (17)

where {Hg(N'),G7(f)} = 0 which follows from the fact
that 7 is scalar. Using this gauge fixing function we find
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(G011} = [ d(ﬁ (2 _%,,) _ﬂ_;%
(118)

that is clearly nonzero and which also does not vanish on
the constraint surface. Then we can proceed as in previous
case. First of all the gauge fixing of the diffeomorphism
constraint implies z = z(¢). Further, if we demand that
(00)-component of the effective metric is equal to —1 we
immediately obtain that N = N(¢) and hence 7 =0 as
follows from C = 0. If we again require that the metric is
diagonal we obtain Eq. (110) that implies g = const for
7« = 0 and we can choose this constant to be equal to one. In
other words, the flat line element

PHYSICAL REVIEW D 95, 084026 (2017)
ds? = —di? + d*x (119)

is the solution of the gauge fixed A = 0 nonprojectable HL
gravity

To conclude, we found that in case of two-dimensional
nonprojectable HL. gravity all dynamical fields are fixed
and there are no physical degrees of freedom left which is in
agreement with the analysis performed in [12].
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