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We study two-dimensional fð ~RÞ Hořava-Lifshitz gravity from the Hamiltonian point of view. We
determine constraints structure with emphasis on the careful separation of the second class constraints and
global first class constraints. We determine number of physical degrees of freedom and also discuss gauge
fixing of the global first class constraints.
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I. INTRODUCTION AND SUMMARY

Study of two-dimensional quantum gravity is very useful
when we can understand principles and puzzles of quantum
gravity. Two-dimensional models are much simpler
than four-dimensional gravity but share some interesting
features with four-dimensional gravity. Further, two-
dimensional gravity plays a fundamental role in the modern
formulation of string theory [1] where a propagating string
in d-dimensional flat target space-time can be described as
a theory of d- free scalar fields coupled to two dimensional
gravity.
It is well known that there is no nontrivial gravitational

dynamics in space-time dimension lower than four. In three
dimensions, the Riemann tensor is proportional to the Ricci
tensor and the source-free theory is trivial. In two dimen-
sions the Einstein tensor is zero and the Einstein-Hilbert
action is topological invariant. As a result there are no
equations of motion and hence we cannot formulate
meaningful theory. In order to resolve this issue it
was proposed in [2] that the appropriate model for two-
dimensional gravity is the constant curvature equation
ð2ÞR − 2Λ ¼ 0, where ð2ÞR denotes the two dimensional
Ricci scalar. In order to study quantum properties of this
theory we need an action principle from which this
equation can be derived. It turned out that the only invariant
action is the nongeometric action that involves scalar field
Φ as a Lagrange multiplier

S ¼
Z

d2xΦðð2ÞR − 2ΛÞ; ð1Þ

that leads to desired equations of motion when we perform
variation with respect toΛ. The exact solution of this model
was found in [3].
A few years ago P. Hořava formulated its famous model

of power counting renormalizable theory of gravity known
as Hořava-Lifshitz gravity (HL) [4] which is the theory of
gravity that is not invariant under full four-dimensional

diffeomorphism but under reduced group of diffeomor-
phism known as a foliation preserving diffeomorphism in
order to have theory with anisotropic scale invariance. In
fact, the requirement of the anisotropic scale invariance is
central for the power counting renormalizability of this
theory. On the other hand the reduced group of diffe-
morphism has a very strong impact on the structure of the
theory since there are additional modes with important
phenomenological and theoretical consequences on the
consistency of the theory.
This theory has an improved behavior at high energies

due to the presence of the higher order spatial derivatives in
the action which implies that the theory is not invariant
under full diffeomorphism but it is invariant under so called
foliation preserving diffeomorphism (DiffF )

t0 ¼ fðtÞ; x0i ¼ xiðx; tÞ: ð2Þ

This property offers the possibility that the space and time
coordinates have different scaling at high energies

t0 ¼ k−zt; x0i ¼ k−1xi; ð3Þ

where k is a constant. A consequence of this fact is that in
3þ 1 dimensions the theory contains terms with 2 time
derivatives and at least 2z spatial derivatives since the
minimal amount of the scaling anisotropy that is needed for
the power-counting renormalizability of this theory is
z ¼ 3. Then collecting all terms that are invariant under
DiffF symmetry leads to the general action [5,6]

S ¼ M2
p

2

Z
dtd3xN

ffiffiffi
g

p
KijGijklKkl − SV; ð4Þ

where

Kij ¼
1

2N
ð∂tgij −DiNj −DjNiÞ; ð5Þ

and where we introduced generalized De Witt metric Gijkl

defined as [7]*klu@physics.muni.cz
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Gijkl ¼ 1

2
ðgikgjl þ gilgjkÞ − λgijgkl; ð6Þ

where λ is an arbitrary real constant. Finally note that Di is
the covariant derivative defined with the help of the
metric gij.
The action SV is the potential term action in the form

SV ¼ M2
p

2

Z
dtd3xN

ffiffiffi
g

p
V

¼ M2
p

2

Z
dtd3xN

ffiffiffi
g

p �
L1 þ

1

M2�
L2 þ

1

M4�
L3

�
; ð7Þ

where Ln contain all terms that are invariant under foliation
preserving diffeomorphism and where Ln contain 2n
derivatives of the ADM variables ðN; gijÞ. In the UV when
k ≫ M� the dominant contributions come from the higher
derivative terms that lead to the modified dispersion
relation ω2 ∝ k6 that implies that this theory is power
counting renormalizable. In the opposite regime k ≪ M�
the dispersion relation is relativistic and it can be shown
that the theory has regions in the parameter space where it is
in agreement with observation.
This theory has a very interesting property which is the

presence of the vector ai that contains spatial derivative of
lapse N. These terms are forbidden in the theory invariant
under full diffeomorphism which implies an existence of
the local first class Hamiltonian constraint. In case of HL
gravity the canonical structure is much more complicated
as was shown previously in [8–11]. More precisely, two
second class constraints were identified which should be
solved for lapse N and conjugate momentum. However
generally this constraint is a second order partial differ-
ential equation for lapse whose explicit solution was very
difficult to find. For that reason it is instructive to perform
an analysis of much simpler models as is for example two
dimensional HL gravity. This was done previously in [12].
Our goal is to generalize this analysis to the case of two
dimensional fð ~RÞ − HL gravity which is more complex
and allows local degrees of freedom on the reduced phase
space. We also discuss the subtle point of the global first
class constraints [11]. We argue that in order to solve the
second class constraints we have to fix these global
constraints. This is very important observation for the
structure of the reduced phase space when we determine
equations of motion for variables that define reduced phase
space and we show that it takes a rather complicated form.
As a result we are not able to derive Hamiltonian on the
reduced phase space that is apparently nonlocal due to the
necessity to fix global first class constraints with global
gauge fixing functions.
As the check of the validity of our procedure we discuss

two special cases of the choice of the parameters in this
theory. The first one corresponds to the diffeomorphism

invariant two dimensional fðRÞ theory. We determine the
canonical structure of this theory and we argue that it has
the same form as in seminal papers [2,3]. Then we proceed
to the analysis of the reduced phase space theory when we
fix all first class constraints. We show that there are no
physical degrees of freedom on the reduced phase space
and we show that with suitable chosen gauge fixing
function we derive equations for lapse and for scalar field
that are in agreement with the equations derived in [13]
which is also a nice consistency check of our analysis.
Finally we consider the case when the function that defines
fð ~RÞ theory is identically equal to one. This situation
corresponds to the nonprojectable HL gravity in two
dimensions that was analyzed previously in [12]. We
perform the canonical analysis of this theory from a
different point of view with emphasis on the existence
of two global first class constraints and their gauge fixing.
Solving all constraints we show that there are no physical
degrees of freedom left and that these constraints lead to the
solution that is in agreement with the analysis performed
in [12].
Let us outline our results. We performed canonical

analysis of two dimensional fð ~RÞ HL gravity and we show
that the equations on the reduced phase space are rather
complicated and contain integration over the whole space
interval as a consequence of the gauge fixing of the global
constraints. We mean that this is a very important result that
should be valid in higher dimensional nonprojectable
theory as well and which certainly makes the canonical
analysis even more complicated than it is.
This paper is organized as follows. In the next section (II)

we introduce two dimensional fð ~RÞ HL gravity and define
basics notations. Then in Sec. III we perform Hamiltonian
analysis of this theory and determine all constraints. In
Sec. IV we consider special values of parameters that
correspond to fðRÞ–gravity in two dimensions and we
perform its Hamiltonian analysis. Finally in Sec. V we
analyze pure nonprojectable HL gravity in two dimensions
from a Hamiltonian point of view.

II. TWO-DIMENSIONAL f ð ~RÞ-HORAVA-LIFSHITZ
GRAVITY

In this section we formulate two-dimensional HL fð ~RÞ
gravity. Clearly the action for this system is the special case
of higher dimensional fð ~RÞ HL gravities that were studied
before, see for example [14–17]. Let us consider the
following model of two-dimensional nonprojectable HL
fð ~RÞ gravity

S ¼ 1

κ

Z
dtdxN

ffiffiffi
g

p
fð ~RÞ; ð8Þ

where κ ¼ 8πGN and where ~R is defined as
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~R ¼ LK − LV; ð9Þ

where

LK ¼ KijKij − λK2 þ 2μffiffiffi
g

p
N
∂μð

ffiffiffi
g

p
NnμKÞ

−
2μffiffiffi
g

p
N
∂ið

ffiffiffi
g

p
gij∂jNÞ; ð10Þ

withKij ¼ 1
2N ð∂tgij −DiNj −DjNiÞwhereDi denotes the

covariant derivative of the metric gij and Ni is the shift
vector Ni ¼ gijNj. Finally nμ is a future pointing normal
vector to the surface Σt that in ADM variables is equal to
n0 ¼ 1

N, ni ¼ − Ni

N . Finally μ is a free parameter that
approaches 1 in the low energy limit.
Let us now discuss the potential term LV that is made of

R, Di, and ai ¼ ∂iN
N where R is Ricci scalar of the leaves

t ¼ const that identically vanishes at one dimension R ¼ 0.
It can be shown [12] that in d ¼ 1 dimensions LV has
the form

LV ¼ 2Λ − βaiai; ð11Þ

where Λ is cosmological constant and β is another
dimensionless coupling constant.
To deal with fð ~RÞ gravity in two dimensions we

introduce two scalar fields and write the action as

S ¼ 1

κ

Z
dtdxN

ffiffiffi
g

p ðfðAÞ þ Bð ~R − AÞÞ

¼ 1

κ

Z
dtdxN

ffiffiffi
g

p ðfðAÞ − BAþ BðKijKij − λK2Þ

− 2μ∂μBnμK þ 2μ∂iBgijaj − 2ΛBþ βBaiaiÞ: ð12Þ

In 1þ 1 dimensions gij has only one components that we
denote, following [12] as

γ ≡ ffiffiffiffiffiffi
g11

p
; g11 ¼ γ2; g11 ¼ 1

γ2
ð13Þ

so that we have the following nonzero component of Γ1
11

Γ1
11 ¼

1

2
g11∂1g11 ¼

1

γ
γ0; γ0 ≡ ∂

∂x γ: ð14Þ

Then we easily find that the action has the form

S ¼ 1

κ

Z
dtdxNγ

�
fðAÞ − BAþ Bð1 − λÞK2 − 2μ∇nBK

þ 2μ
1

γ2
B0a − 2ΛBþ βBa2

1

γ2

�
; ð15Þ

where

K ¼ g11K11 ¼
1

N

�
_γ

γ
−
N0

1

γ2
þ γ0

γ3
N1

�
;

∇nB ¼ 1

N
ð _B − N1B0Þ; a≡ a1; ð16Þ

where _B ¼ ∂tB, B0 ¼ ∂1B. The action (15) will be the
starting point of our canonical analysis that will be
performed in the next section.

III. HAMILTONIAN ANALYSIS

Now we proceed to the Hamiltonian analysis of the
theory specified by the action (15). Before we do, it is
useful to simplify this action with the help of the fact that
the variable A has no dynamics and can be eliminated by
solving its equation of motion. In more details, the equation
of motion for A has the form

df
dA

− B ¼ 0: ð17Þ

If we presume that there is a function Ψ that is inverse to df
dA

we find that the Eq. (17) has the solution

A ¼ ΨðBÞ: ð18Þ

Inserting this solution into the action (15) we obtain the
final form of the action

S ¼ 1

κ

Z
dtdxNγ

�
Bð1 − λÞK2 − 2μ∇nBK

þ 2μ
1

γ2
B0a −UðBÞ þ βBa2

1

γ2

�
; ð19Þ

where

UðBÞ ¼ fðΨðBÞÞ − BΨðBÞ: ð20Þ

Starting with the action (19) we find following conjugate
momenta

πN ¼ δL

δ _N
≈ 0; π1 ¼ δL

δ _N1

≈ 0;

π ¼ δL
δ_γ

¼ 2B
κ
ð1 − λÞK −

2μ

κ
∇nB;

P ¼ δL

δ _B
¼ −

2μ

κ
γK: ð21Þ

Then it is easy to perform Legendre transformation in order
to find a corresponding Hamiltonian
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H ¼
Z

dxðπ _γ þ P _B − LÞ ¼
Z

dx

�
NHT þ N1

1

γ2
H1

�
;

ð22Þ

where

HT ¼ −
κ

4μ2γ
Bð1 − λÞP2 −

κ

2μ
Pπ −

2μ

κγ
B0a

þ γ

κ
UðBÞ − β

κ

Ba2

γ
;

H1 ¼ −γπ0 þ PB0 ð23Þ

using

K ¼ −
κ

2μγ
P; −

2μ

κ
∇nB ¼ π þ 2B

2μγ
ð1 − λÞP: ð24Þ

Now we have to analyze the requirement of the preserva-
tion of the primary constraints πN ≈ 0, π1 ≈ 0

∂tπN ¼ fπN;Hg

¼ −HT −
2μ

κγ

N0

N
B0 −

�
2μ

κ

B0

γ

�0
−
2β

κ

B
γ
a2 −

�
2β

κ

B
γ
a

�0

≡−C≈ 0;

∂tπ
i ¼ fπ1;Hg ¼ −H1 ≈ 0: ð25Þ

Note that C obeys an important relation

Z
dxNC ¼

Z
dxNHT ð26Þ

using integration by parts and also the fact that we presume
suitable asymptotic behavior of all fields so that the
contributions from spatial infinities can be ignored. As
in higher dimensional nonprojectable HL gravity we
introduce the global primary constraint

ΠN ¼
Z

dxπNN ð27Þ

and split the original constraint πN into ∞− 1 local ones

~πN ¼ πN −
γR

dxγN
ΠN ð28Þ

that obeys the relation

Z
dxN ~πN ¼ 0: ð29Þ

Then the requirement of the preservation of the primary
constraint ΠN implies

∂tΠN ¼ fΠN;Hg ¼ −
Z

dxNHT ≡ −ΠT ≈ 0 ð30Þ

using

fΠN; Ng ¼ −N; fΠN; πNg ¼ πN; fΠN; ag ¼ 0

ð31Þ
and hence fΠN;HTg ¼ 0. In other words we have second
global constraint ΠT ≈ 0. We again split C into∞− 1 local
constraints ~C and one global constraint ΠT ≈ 0 where we
define ~C ≈ 0 as

~C ¼ C −
γR

dxγN
ΠT ð32Þ

that obeys
R
dxN ~C ¼ 0. To proceed further we introduce

united notation for the second class constraints as
ΨA ¼ ð ~πN; ~CÞ. Since clearly f ~CðxÞ; ~CðyÞg ≠ 0 we find that
the matrix of Poisson brackets has the schematic form

fΨAðxÞ;ΨBðyÞg ¼ △AB ≡
�
0 X

Y M

�
ð33Þ

so that the inverse matrix △AB has the form

△AB ¼
�
−Y−1MX−1 Y−1

X−1 0

�
: ð34Þ

As the final step we have to ensure that ΠT and ΠN are the
first class constraints. ΠN clearly is since it has vanishing
Poisson brackets with all constraints on the constraints
surface. In case of ΠT this is not true but we can introduce
the following combination of the constraints

~ΠT ¼ ΠT − fΠT;ΨAg△ABΨB ð35Þ
that obeys the equation

f ~ΠT;ΨAg ¼ fΠT;ΨAg − fΠT;ΨCg△CBfΨB;ΨAg ¼ 0;

f ~ΠT; ~ΠTg ¼ 0: ð36Þ
For further purposes it is useful to determine the explicit
form of ~ΠT . First of all we calculate the Poisson bracket
between ΠT and ~πN

fΠT; ~πNðxÞg ¼ fΠT; πNðxÞg

¼ −
�Z

dyN ~HT; πNðxÞ
�

¼ CðxÞ ≈ 0: ð37Þ

In case of the constraint C we only need to know that this
Poisson bracket is nonzero. Schematically we have

fΠT; ~Ψg ¼ ð0; �Þ, where � is the nonzero expression.
Then we obtain
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~ΠT ¼ ΠT − ð0; �Þ
�
−Y−1MX−1 Y−1

X−1 0

��
0

�

�

¼ ΠT − �X−1 ~πN ð38Þ

which is a very important result that shows that ~ΠT does not
depend on the constraint ~C ≈ 0.
Now we proceed to the analysis of the constraintH1. We

add to it the following expression proportional to the
primary constraint πN ≈ 0

~H1 ¼ H1 þ πN∂1N ¼ −γ∂1π þ P∂1Bþ πN∂1N ð39Þ

and introduce its smeared form

HSðM1Þ ¼
Z

dxM1 ~H1 ð40Þ

that has following Poisson brackets with canonical
variables

fHSðM1Þ; γg ¼ −ðM1γÞ0;
fHSðM1Þ; πg ¼ −M1π0;

fHSðM1Þ; Bg ¼ −M1B0;

fHSðM1Þ; Pg ¼ −ðM1PÞ0;
fHSðM1Þ; Ng ¼ −M1N0;

fHSðM1Þ; πNg ¼ −ðM1πNÞ0 ð41Þ

and also

fHSðM1Þ; ag ¼ −ðM1Þ0a −M1a0: ð42Þ

From these Poisson brackets we see that all constraints have
vanishing Poisson brackets with HS on constraint surface
and hence ~H1 ≈ 0 is the local first class constraint.
Let us now return to the second class constraints ΨA and

try to find their solutions. The problem is that these second
class constraints contain the global first class constraints in
their definition. For that reason it is natural to fix the global
first class constraints by appropriate global gauge fixing
functions. Note that ΠN generates pure time dependent
rescaling of N and πN . For that reason it is natural to
introduce the following gauge fixing function

GN ¼
Z

dxγN − C ≈ 0; ð43Þ

where C is a constant.1 Now this gauge fixing function has
a nonzero Poisson bracket

fΠN;GNg ¼ −
Z

dxγN ≈ −C ≠ 0: ð44Þ

However this is not the end of the story due to the presence
of the second global constraint ~ΠT . We have to fix this first
class constraint in order to be able to solve C ≈ 0 for N. Let
us propose following gauge fixing function

GT ¼
Z

dxγπ − CπðtÞ ≈ 0; ð45Þ

where we have to presume nontrivial dependence of Cπ on
time in order to find nontrivial dynamics. It is also easy to
see that

fHSðN1Þ;GTg ¼ 0 ð46Þ

and also

fGT; ~ΠTg ≈ fGT;ΠTg

¼ ΠT −
Z

dxN

�
κ

2μγ
πP −

2γ

κ
UðBÞ

�

≈ −
Z

dxN

�
κ

2μγ
πP −

2γ

κ
UðBÞ

�
: ð47Þ

Finally we fix the diffeomorphism constraint. There is a
number of possibilities how to fix it. For example, we could
use the gauge fixing condition γ ¼ 1. However this con-
dition does not fix the gauge completely and there remains
global diffeomorphism. For that reason we consider
another possibility when we impose the gauge fixing
function

GC ¼ B − fðxÞ; ð48Þ

where fðxÞ is a prescribed function that obeys the regularity
condition at infinity. Then we have

f ~H1ðxÞ;GCðyÞg ¼ B0ðxÞδðx − yÞ ≈ f0ðxÞδðx − yÞ: ð49Þ

Now we are ready to analyze the time evolution of all
constraints and gauge fixing functions in order to show that
all Lagrange multipliers are fixed. Recall that the total
Hamiltonian with gauge fixing functions included has the
form

HT ¼ ð1þ λTÞ ~ΠT þ λNΠN þ VTGT þ VNGN

þ
Z

dxðωAΨA þ N1 ~H1 þM1GCÞ; ð50Þ

where we extended the original Hamiltonian ΠT in order to
coincide with ~ΠT by appropriate linear combinations of
constraints.

1In principle this could be time dependent function but we
consider it to be constant for simplicity.
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First of all we start with the constraint ~H1 ≈ 0. Since the
Hamiltonian was diffemorphism invariant we find

∂t
~H1ðxÞ ¼ f ~H1ðxÞ; HTg

≈
Z

dyM1ðyÞf ~H1ðxÞ;GCðyÞg ¼ M1f0ðxÞ: ð51Þ

Since by presumption f0ðxÞ ≠ 0 for all x we see that the
only possibility how to obey this equation is to demand that
M1 ¼ 0. Then the time evolution of the constraint ~ΠT
implies

∂t
~ΠT ¼ f ~ΠT; HTg ¼ VTf ~ΠT;GTg ¼ 0 ð52Þ

which implies that VT ¼ 0. In the same way time evolution
of ΠN implies

∂tΠN ¼ fΠN;HTg ¼ VNfΠN;GNg ¼ 0 ð53Þ

and we find VN ¼ 0. However these results also imply
that the time evolution of the constraints ΨA simplify
considerably since

∂tΨAðxÞ ¼ fΨAðxÞ; HTg

¼
Z

dyωBðyÞfΨAðxÞ;ΨBðyÞg ¼ 0 ð54Þ

due to the fact that VT ¼ VN ¼ M1ðxÞ ¼ 0. Since the
matrix of Poisson brackets of the second class constraints is
nonsingular we find that the equation above has the
solution ωB ¼ 0.
Finally we proceed to the requirement of the preservation

of the constraints GN , GT , and GC. In the case of GT we
obtain

d
dt

GT ¼ ∂GT

∂t þ fGT; HTg
¼ ∂tGT þ ð1þ λTÞfGT; ~ΠTg ¼ 0 ð55Þ

using the fact that fGT;ΠNg ¼ 0. Then we obtain

λT ¼ −1 −
_Cπ

fGT; ~ΠTg
: ð56Þ

In the case of GN we find

dGN

dt
¼ fGN;HTg
¼ λNfGN;ΠNg þ ð1þ λTÞfGN; ~ΠTg ¼ 0 ð57Þ

that can be solved for λN. Finally the time evolution of the
constraint GC has the form

∂tGCðxÞ¼fGCðxÞ;HTg

¼ð1þλTÞfGCðxÞ; ~ΠTgþ
Z

dyN1ðyÞfGCðxÞ; ~H1ðyÞg

¼−ð1þλTÞN
�

κ

2μ2γ
Bð1−λÞPþ κ

2μγ
π

�

þN1ðxÞf0ðxÞ¼0; ð58Þ

where we used the fact that ~ΠT does not depend on ~C. The
previous equation can be solved for N1 as

N1 ¼ κð1þ λTÞ
2μ2γf0

NðBð1 − λÞPþ πÞ: ð59Þ

We see that we completely fixed all Lagrange multipliers.
Now we proceed to the analysis of the dynamics of the

variables B, P, π, γ and πN andN. In case of πN we find that
it is zero thanks to the constraint πN ¼ 0. B is determined
by the constraint GC ¼ 0 that implies

B ¼ fðxÞ: ð60Þ

Further, the conjugate momentumP can be expressed using
the constraint H1 and we find

P ¼ γπ0

f0ðxÞ : ð61Þ

Finally we have to find N as a function of dynamical
variables π, γ. To do this we use the fact that the constraint C
has the form

C ¼ κ

4μ2
Bð1 − λÞ

�
π0

B0

�
2

þ κ

2μ

π0

B0 −
1

κ
UðBÞ

−
β

κ

BN02

N2
−
�
2μ

κ
B0
�0

−
�
2β

κ
B
N0

N

�0
¼ 0: ð62Þ

Introducing variable y ¼ N0
N we can rewrite the equation

above to the form of the Riccati equation

y0 ¼ q0ðxÞ þ q1ðxÞyþ q2ðxÞy2; ð63Þ

where

q0ðxÞ ¼
κ2

8βμ2
ð1 − λÞ

�
π0

B0

�
2

þ κ2

4βμ

π0

BB0 −
1

2βB
UðBÞ − μ

β

�
B0

B

�0
;

q1ðxÞ ¼ −
B0

B
; q2 ¼ −

1

2
: ð64Þ

This equation can be explicitly solved as N ¼ Nðπ; γÞ
however the explicit form of this solution is not important

JOSEF KLUSOŇ PHYSICAL REVIEW D 95, 084026 (2017)

084026-6



for us. We see that the remaining dynamical variables are π,
γ whose equations of motion have the form

∂tπðxÞ ¼ fπðxÞ; HTg

¼ −ð1þ λTÞ
N
γ

�
κ

4μ2γ
Bð1 − λÞP2 þ κ

2μγ
πP

þ γUðBÞ þ 2μ

κ

B0

γ
aþ β

κ

Ba2

γ

�

þ κλT
2μ2γf0

NðBð1 − λÞPþ πÞπ0;

∂tγðxÞ ¼ fγðxÞ; HTg ¼ −N
κ

2μ
Pþ ∂1ðN1γÞ ð65Þ

using again the fact that ~ΠT does not depend on ~C. It is
important to stress that N, N1, λT all depend on γ and π as
follows from (59) and (64). Further, 1þ λT is determined in
(56) and we see that it is given as an integral over spatial
section. In summary, the equation of motion for γ, π are
very complicated and it is not possible to determine
Hamiltonian on the reduced phase space. In other words,
even 1þ 1fð ~RÞ − HL gravity has rather complicated
structure so that it is hard to see whether it can be explicitly
solved.

IV. THE CASE λ= 1, β = 0

It is instructive to perform Hamiltonian analysis of the
fð ~RÞ − HL gravity with special values of parameters. In
this section we consider the case when λ ¼ 1, β ¼ 0 when
the action has the form

S ¼ 1

κ

Z
dtdxNγ

�
−2μ∇nBK þ 2

μ

γ2
B0a −UðBÞ

�
: ð66Þ

From (66) we obtain conjugate momenta:

π ¼ −
2μ

κ
∇nB; πN ≈ 0;

π1 ≈ 0; P ¼ −
2μ

κ
NγK ð67Þ

and hence the Hamiltonian has the form

H ¼
Z

dx

�
NHT þ N1

1

γ2
H1

�
; ð68Þ

where

HT ¼ −
κ

2μ
πPþ

�
2μ

κγ
B0
�0

þ γ

κ
UðBÞ;

H1 ¼ −γπ0 þ PB0; ð69Þ
where we used integration by parts in order to have a theory
linear in N. As usually the preservation of the primary

constraints πN ≈ 0, π1 ≈ 0 implies the secondary con-
straints HT ≈ 0, H1 ≈ 0. Now we have to analyze their
preservation again. In order to do this we have to calculate
corresponding Poisson brackets of the smeared form of
these constraints HTðXÞ ¼

R
dxXHT

fHTðXÞ;HTðYÞg ¼
Z

dxðXY 0 − X0YÞ 1
γ2

ðPB0 − γπ0Þ

¼ HS

�
ðXY 0 − YX0Þ 1

γ2

�
ð70Þ

and also

fHSðX1Þ;HTðYÞg ¼ HTð−X1Y 0Þ: ð71Þ

We see that there is a crucial difference with the analysis
performed in previous sections since now there is local first
class constraint HT ≈ 0 together with spatial diffeomor-
phism constraint H1 ≈ 0 and the first class constraints
πN ≈ 0, π1 ≈ 0.
Let us now proceed to the gauge fixing of all constraints.

At this place however we should be very careful with the
variables N and N1. To see this in more detail remember
that we are free to add secondary constraints HT , H1 with
arbitrary Lagrange multipliers to the total Hamiltonian HT .
Let us also presume that we couple the gravity with matter
in the form of free scalar field

Smat ¼
1

2

Z
dtdxNγ

�
∇nϕ∇nϕ −

1

γ2
ϕ02

�
ð72Þ

with corresponding matter contribution to the Hamiltonian
in the form

Hmatter¼
Z

dx
�
N
�
1

2γ
P2
ϕþ

1

2γ
ðϕ0Þ2

�
þN1

1

γ2
Pϕϕ

0
�
: ð73Þ

Now when we include the secondary constraints to the total
Hamiltonian we find that it has the form

HT;matter ¼
Z

dx

�
ðN þ λTÞ

�
1

2γ
P2
ϕ þ

1

2γ
ðϕ0Þ2

�

þ ðN1 þ λ1Þ
1

γ2
Pϕϕ

0
�
: ð74Þ

In order to return to the Lagrange formalism we have to
calculate the equation of motion for ϕ

_ϕ ¼ fϕ; Hg ¼ ðN þ λTÞPϕ þ ðN1 þ λ1Þ
1

γ2
ϕ0 ð75Þ

that allows us to express Pϕ as
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Pϕ ¼ 1

N þ λT

�
_ϕ − ðN1 þ λ1Þ

1

γ2
ϕ0
�
: ð76Þ

From this expression we immediately see that the compo-
nents of the metric as it is seen by scalar field are N þ λT ,
N1 þ λ1 instead of the original ones. For that reason it is
convenient to consider N, N1 as Lagrange multipliers and
hence it does not make sense to speak about their conjugate
momenta and fix them. Rather we should fix N, N1 by the
requirement of the preservation of the gauge fixing func-
tions during the time evolution.2 In other words the total
Hamiltonian with gauge fixing constraints included has the
form

HT ¼
Z

dxðNHT þ N1H1 þ λHTGHT
þ λH1GH1

Þ: ð77Þ

Of course, there is a freedom in the choice of the gauge
fixing functions GHT

, GH1
when we only demand that they

have nonzero Poisson brackets with HT , H1. On the other
hand when we impose the condition that the solutions of the
constraints correspond to the static solution we choose the
following form of these constraints

GH1
¼ γ2 − N ≈ 0; GHT

¼ P ≈ 0; ð78Þ
where now we have the following nonzero Poisson brackets

fGH1
ðxÞ;HTðyÞg ¼ −

κ

μ
γP ≈ 0;

fGH1
ðxÞ;H1ðyÞg ¼ −γðxÞγðyÞ ∂

∂y δðx − yÞ;

fGHT
ðxÞ;HTðyÞg ¼ −

2μ

κ

∂
∂y

�∂yδðx − yÞ
γ

�

−
γ

κ

δUðBÞ
δB

δðx − yÞ;
fGHT

ðxÞ;H1ðyÞg ¼ −P∂yδðx − yÞ ≈ 0: ð79Þ

Then the requirement of the preservation of the constraint
HT ≈ 0 implies

∂tHTðxÞ ¼ fHTðxÞ; HTg ≈
Z

dyλHT ðyÞfHTðxÞ;GHT
ðyÞg

¼ γ

κ
λHT

δU
δB

þ 2μ

κ

∂
∂x

�∂xλ
HT

γ

�
ð80Þ

that has clearly the solution λHT ¼ 0. In the same way we
find

∂tH1ðxÞ ¼ fH1ðxÞ; HTg ¼ 2γ∂xðλH1γÞ ¼ 0 ð81Þ

that has again solution λH1 ¼ 0. Let us proceed to the
analysis of the evolution of the constraints GH1

≈ 0,
GHT

≈ 0

∂tGH1
ðxÞ ¼ fGH1

ðxÞ; HTg ¼ 2γðxÞ∂xðγN1Þ ¼ 0 ð82Þ

which is equal to zero for N1 ¼ DðtÞ
γ where DðtÞ is an

arbitrary time-dependent function. However, in order to
have a solution with the asymptotic behavior N1 → 0 for
x → ∞, we choose D ¼ 0. Then the requirement of the
preservation of the constraint GHT

has the form

∂tGHT
ðxÞ ¼ fGHT

ðxÞ; HTg

¼ −
2μ

κ
∂
�∂N

N

�
−
N2

κ

δU
δB

¼ 0: ð83Þ

It is convenient to parametrize N as N ¼ eω so that the
equation above has the form

2μω00 ¼ −e2ω
δU
δB

ð84Þ

that is generalization of the equation found in [13] to the
case of μ ≠ 1. Further, the Hamiltonian constraint on the
constraint surface implies

2μ

�
B0

N

�0
þ NUðBÞ ¼ 0 ð85Þ

that can be written as

2μB00 − 2μB0ω0 þ e2ωU ¼ 0: ð86Þ

This equation is again in agreement with the combinations
of Eqs. (2.14) and (2.15) presented in [13].

V. NONPROJECTABLE HL GRAVITY
WITH f ðxÞ= 1

Finally we perform the Hamiltonian analysis of the
special case when fðxÞ ¼ 1.
To begin with note that in case fðxÞ ¼ 1 the equation of

motion for A implies that B ¼ 1 identically and hence the
action has the form

S ¼ 1

κ

Z
dtdxNγ

�
ð1 − λÞK2 − 2Λþ βa2

1

γ2

�

which is the action studied in [12]. However our goal is to
carefully identified global first class constraints so that we
again proceed to the Hamiltonian formulation of this
theory.

2Alternatively, we can still keep N and N1 as dynamical fields
and then it is possible to fix their values by fixing primary
constraints πN ≈ 0, π1 ≈ 0. Then however gauge fixing ofHT ,H1

determine Lagrange multipliers λT , λ1 that have to be included in
the resulting metric as it is clear from the discussion presented
above.
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Starting with the action (19) we find following conjugate
momenta

πN ¼ δL

δ _N
≈ 0; π1 ¼ δL

δ _N1

≈ 0;

π ¼ δL
δ_γ

¼ 2

κ
ð1 − λÞK: ð87Þ

Then it is easy to perform the Legendre transformation in
order to find the corresponding Hamiltonian

H ¼
Z

dxðπ _γ − LÞ ¼
Z

dx

�
NHT þ N1

1

γ2
H1

�
; ð88Þ

where

HT ¼ γ

�
κ

4ð1 − λÞ π
2 −

β

κ

a2

γ2
þ 2

κ
γΛ

�
;

H1 ¼ −γ∂1π: ð89Þ

Again the requirement of the preservation of the primary
constraints πN ≈ 0, π1 ≈ 0 implies two secondary con-
straints

∂tπN ¼ fπN;Hg ¼ −HT −
2β

κ

1

γ
a2 −

�
2β

κ

1

γ
a

�0

¼ −
κ

4ð1− λÞ γπ
2 −

2

κ
γΛ−

β

κ

a2

γ
−
�
2β

κ

1

γ
a

�0 ≡−C≈ 0;

∂tπ
i ¼ fπ1;Hg ¼ −H1 ≈ 0; ð90Þ

where C obeys the property

Z
dxNC ¼

Z
dxNHT: ð91Þ

Now we should proceed completely as in Sec. III and we
will find that the theory has identical structure of con-
straints. For that reason we immediately skip to the analysis
of the gauge fixed theory. We again fix the constraint ΠN
with the gauge fixing function

GN ¼
Z

dxγN − C ≈ 0; ð92Þ

where C is a constant. Now this gauge fixing function has
nonzero Poisson bracket

fΠN;GNg ¼ −
Z

dxγN ¼ −C ≠ 0; ð93Þ

while we have

fGN; ~πNðxÞg ¼ 0; fHSðN1Þ;GNg ¼ 0: ð94Þ

The global constraint ~ΠT is fixed by gauge fixing function

GT ¼
Z

dxγπ − CπðtÞ ≈ 0 ð95Þ

so that

fGT;ΠTg ¼
Z

dxNHT −
4β

κ2

Z
dxNγΛ≈−

4β

κ
ΛC ð96Þ

and we see that GT cannot be gauge fixing function in case
when Λ ¼ 0 since in this case the theory possesses global
scale gauge symmetry with GT corresponding generator.
We return to this problem below. It is also easy to see that

fHSðN1Þ;GTg ¼ 0: ð97Þ

Finally we fix the diffemorphism constraint using the gauge
fixing condition

GS∶ γ − gðtÞ ≈ 0; ð98Þ

where gðtÞ is an arbitrary time dependent function. Note
that GS has the following nonzero Poisson bracket with
HSðN1Þ

fGSðxÞ;HSðN1Þg ¼ ðN1Þ0 ð99Þ

that is zero for N1 ¼ N1ðtÞ. Now fromH1 ¼ 0 we find that
π ¼ πðtÞ and then the gauge fixing condition GT implies

Z
dxγπðtÞ ¼ gðtÞπðtÞ

Z
dx ¼ CπðtÞ ð100Þ

and hence

πðtÞ ¼ CπðtÞ
gðtÞL ; ð101Þ

where L is the regularized length of the system.
Now we are ready to determine Lagrange multipliers for

all constraints and gauge fixing functions. Recall that the
total Hamiltonian with gauge fixing functions included has
the form

HT ¼ ð1þ λTÞ ~ΠT þ λNΠN þ VTGT þ VNGN

þ
Z

dxðωAΨA þ N1 ~H1 þM1GSÞ: ð102Þ

From the previous expression we see that the effective lapse
is ð1þ λTÞN instead of N. However the value of λT is fixed
by the requirement of the preservation of all constraints.
First of all we start with the constraint ~H1 ≈ 0. Since the
Hamiltonian is diffemorphism invariant we find
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∂t
~H1ðxÞ ¼ f ~H1ðxÞ; HTg

¼
Z

dyM1ðyÞf ~H1ðxÞ;GCðyÞg ¼ M0
1ðxÞ ¼ 0

ð103Þ

and this is equal to zero forM1 ¼ M1ðtÞ. On the other hand,
we have to demand that the Lagrange multipliers have
correct asymptotic behavior at infinity so that the only
possible solution is M1 ¼ 0.
Then the time evolution of the constraint ~ΠT implies

∂t
~ΠT ¼ f ~ΠT; HTg ¼ VTf ~ΠT;GTg ¼ 0 ð104Þ

which implies VT ¼ 0. In the same way time evolution of
ΠN implies

∂tΠN ¼ fΠN;HTg ¼ VNfΠN;GNg ¼ 0 ð105Þ

and we find VN ¼ 0. Then, exactly as in Sec. III, we find
that ωA ¼ 0.
Finally we proceed to the requirement of the preservation

of the constraint GT , GN , and GS. In case of GT we obtain

d
dt

GT ¼ ∂GT

∂t þ fGT; HTg
¼ ∂tGT þ ð1þ λTÞfGT; ~ΠTg ¼ 0 ð106Þ

and hence we find

λT ¼ −1 −
_Cπ

fGT; ~ΠTg
¼ −1 −

_Cπ
4β
κ ΛC

: ð107Þ

In case of GN we find

∂tGN ¼ fGN;HTg
¼ λNfGN;ΠNg þ ð1þ λTÞfGN;ΠTg ¼ 0 ð108Þ

using the fact that ωA ¼ 0. The previous equation can be
solved for λN but the explicit solution is not important for
us. Finally the time evolution of the constraint GS has the
form

∂tGSðxÞ ¼
∂GS

∂t þ fGSðxÞ; HTg − _gþ ð1þ λTÞfGSðxÞ; ~ΠTg

þ
Z

dyN1ðyÞfGSðxÞ; ~H1ðyÞg

¼ −_gþ ð1þ λTÞ
κ

2ð1 − λÞNγπ þ N0
1gðtÞ ¼ 0:

ð109Þ

The previous equation can be solved for N1 at least in
principle. However it is important to stress that N1 is off

diagonal component of the metric so that if we demand that
the metric is diagonal we have to impose the condition
N1 ¼ 0. Then the previous equation implies

_g ¼ ð1þ λTÞ
κ

2ð1 − λÞNgðtÞπ ¼ −
κ

8β
Cπ

_CπN; ð110Þ

where in the final step we used (101). Let us now return to
the condition C ¼ 0 that can be solved for N. However we
simplify the calculation considerably when we demand that
the (00)-component of the effective metric is equal to −1.
This requirement implies that we have to demand that
N ¼ 1

1þλT
that with the help of (107) implies

N ¼ −
4β
κ ΛC
_Cπ

ð111Þ

and hence

_g ¼ −
κ

2ð1 − λÞCπ: ð112Þ

Note that (111) implies that N ¼ NðtÞ and then the
constraint C simplifies considerably and leads to the result

C2
π ¼ −

8ð1 − λÞL2

κ2
g2Λ: ð113Þ

Inserting this expression into (110) we obtain a differential
equation for g

_g ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2ΛL2

λ − 1

r
g ð114Þ

that can be easily integrated with the result

g ¼ Ce�
ffiffiffiffiffiffi
2ΛL2
λ−1

p
t: ð115Þ

In other words we found in the process of the gauge fixing
that all dynamical fields are fixed and that the line element
has the form

ds2 ¼ −dt2 þ Ce�
ffiffiffiffiffiffi
2ΛL2
λ−1

p
td2x ð116Þ

which is in complete agreement with the result derived
in [12].
Finally we briefly mention the case of zero cosmological

constant Λ ¼ 0. In this case we cannot use the gauge fixing
function GT ¼ R

dxγπ since it commutes with ΠT . Let us
propose another gauge fixing function

GTðfÞ ¼
Z

dxγfðπÞ − CπðtÞ; ð117Þ

where fHSðN1Þ;GTðfÞg ¼ 0 which follows from the fact
that π is scalar. Using this gauge fixing function we find
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fGTðfÞ;ΠTg ¼
Z

dx

�
κ2γπ

4ð1 − λÞ
�
2f −

df
dπ

π

�
−
β2

κ2
a
γ

df
dπ

�

ð118Þ

that is clearly nonzero and which also does not vanish on
the constraint surface. Then we can proceed as in previous
case. First of all the gauge fixing of the diffeomorphism
constraint implies π ¼ πðtÞ. Further, if we demand that
(00)-component of the effective metric is equal to −1 we
immediately obtain that N ¼ NðtÞ and hence π ¼ 0 as
follows from C ¼ 0. If we again require that the metric is
diagonal we obtain Eq. (110) that implies g ¼ const for
π ¼ 0 and we can choose this constant to be equal to one. In
other words, the flat line element

ds2 ¼ −dt2 þ d2x ð119Þ

is the solution of the gauge fixed Λ ¼ 0 nonprojectable HL
gravity
To conclude, we found that in case of two-dimensional

nonprojectable HL gravity all dynamical fields are fixed
and there are no physical degrees of freedom left which is in
agreement with the analysis performed in [12].
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