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In general relativity (GR), the metric tensor of spacetime is essential since it represents the gravitational
potential. In other gauge theories (such as electromagnetism), the so-called premetric approach succeeds in
separating the purely topological field equation from the metric-dependent constitutive law. We show here
that GR allows for a premetric formulation, too. For this purpose, we apply the teleparallel approach of
gravity, which represents GR as a gauge theory based on the translation group. We formulate the metric-
free topological field equation and a general linear constitutive law between the basic field variables. The
requirement of local Lorentz invariance turns the model into a full equivalent of GR. Our approach opens a
way for a natural extension of GR to diverse geometrical structures of spacetime.
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I. INTRODUCTION

The premetric formalism is an alternative representation
of a classical field theory in which the field equations are
formulated without the spacetime metric. Only the con-
stitutive relations between the basic field variables, exci-
tation H and field strength F, can involve the metric of the
underlying manifold. This idea can be traced back to the
early 1920s where it appears in the publications of Kottler
[1,2]. Various applications of this construction to the formal
structure of electrodynamics were worked out by Post [3].
The premetric formalism was studied intensively in the
book [4]. For an account of the recent developments in this
area, see our review [5].
One advantage of the premetric formalism is that the

validity of a certain premetric model can be extended to a
more general spacetime geometry. The premetric construc-
tion works pretty well in Maxwell’s classical electrody-
namics. In this case, all basic ingredients, such as the field
equations, the conserved quantities of electric charge and
of magnetic flux, and the Lorentz force expression are
presented in a metric-free form. Only the constitutive
relation between the excitation and the field strength are
formulated with the use of the metric tensor. And this
relation can be straightforwardly extended to a local and

linear relation thereby getting rid of the metric altogether.
Let us briefly recall the various outputs of this approach:

(i) natural extension of standard electrodynamics by
axion, skewon, and dilaton fields;

(ii) metric-free dispersion relation for electromagnetic
waves in a medium with general linear response
behavior;

(iii) metric-free Green tensor (photon propagator);
(iv) metric-free jump conditions that include boundary

conditions between two media, initial Cauchy and
wave-front conditions;

(v) derivation of the metric from the local and linear
constitutive relation by prohibiting birefringence in
electromagnetic wave propagation;

(vi) natural account of Lorentz violation models.
Although Kottler’s premetric program works well in

Newtonian gravity [1] and even in a flat gravitomagnetism
model [5], it seems to be completely unacceptable in
general relativity (GR). This is due to the well-known fact
that Einstein’s theory is essentially based on a pseudo-
Riemann geometry with the metric tensor as its primary
variable. Nevertheless, in this paper, we will show that a
premetric construction of GR is possible if one turns to its
teleparallel reformulation.
The organization of the paper is as follows: In Sec. II, we

construct a teleparallel model for the coframe field. It is a
vector-valued analog of electromagnetic theory with a well-
defined gravitational energy-momentum current and a
Lorentz-type force density. The general local linear con-
stitutive law between the coframe excitation and the
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coframe field strength is defined by the use of a constitutive
tensor density of 6th rank. In Sec. III, we consider the
coframe model on a pseudo-Riemannian manifold. This
restriction naturally requires the localization of the group of
coframe transformations. Moreover, when the constitutive
tensor density is assumed to be constructed from the metric,
the model turns out to be fully equivalent to GR. Section IV
is devoted to the Lorentz force density as an interaction
term in the equation of motion for a particle. We construct a
metric-free equation for a congruence of trajectories with a
constitutive law between the momentum covector and the
velocity vector. Its restriction to the metric manifold yields
a geodesic curve in the gravitational case and a trajectory
of a charge in an exterior field in the electromagnetic case.
In the concluding section, we discuss the main properties of
our construction and propose some possible extensions of
standard GR. In the Appendix, we provide some technical
calculations.

II. PREMETRIC ELECTRODYNAMICS AND ITS
COFRAME ANALOG IN GRAVITY

As was shown in [4], classical electrodynamics can be
expressed in a premetric way. In this section, we briefly
recall the basic electromagnetic quantities and construct
their coframe analogs.
Our key assumption is that a gauge field model of gravity

must be based on a conserved current, here on the macro-
scopic (“bosonic”) energy-momentum current of matter;
see Blagojević et al. [6]. This is in analogy to the electric
current that serves as a basis of electromagnetic theory.
We use a covector-valued 3-form as a representation of the
material energy-momentum current and construct a vector-
valued field-theoretical model. It represents a vector-valued
analog of the electromagnetic theory. Recall that the latter is
expressed in terms of ordinary, scalar-valued differential
forms. Although at this stage, our construction appears to
be only formal, its justification is based on its relation to
the energy-momentum conservation law. Incidentally, the
existence of an additional independent conserved 2-form,
which is untwisted, is naturally related to the definition of a
special coframe field on the manifold.

A. Geometric structure

Let us consider a differential manifoldM endowed with
a coframe field ϑα. The 1-forms ϑα, with α ¼ 0, 1, 2, 3, are
assumed to be linearly independent at each point of M. At
this stage, we postulate that all equations are invariant
under rigid linear transformations of the coframe ϑα.
The transformed coframe ϑα

0
then becomes

ϑα
0 ¼ Lα

α0ϑα; Lα
α0 ¼ const; ð1Þ

with a constant invertible matrix Lα
α0 ∈ GLð4;RÞ.

The coframe and its exterior products (taken in increas-
ing order) generate the bases

ϑα; ϑαβ ≔ ϑα ∧ ϑβ; ϑαβγ ≔ ϑα ∧ ϑβ ∧ ϑγ;

ϑαβγδ ≔ ϑα ∧ ϑβ ∧ ϑγ ∧ ϑδ ð2Þ

of the spaces of untwisted differential forms of the order 1,
2, 3, and 4, respectively. Under the transformation (1), the
basis forms (2) transform as tensors.
In order to express the twisted forms, we need the volume

element (a non-negative measure) defined on M. Relative
to the basis ϑα, it is defined as a twisted scalar-valued
4-form

vol ¼ 1

4!
εαβγδϑ

α ∧ ϑβ ∧ ϑγ ∧ ϑδ ⊗ s; ð3Þ

Here εαβγδ is the Levi-Civita permutation symbol [7] that
is normalized to ε0123 ¼ 1, while s is a section of the
orientation line bundle. In [8], Eq. (3) is represented
symbolically as the absolute value of the untwisted 4-form.
Under the transformation of the coframe (1), the volume
element (3) transforms according to the law

vol → j detLjvol; ð4Þ

with detL as the Jacobian of the coframe transformation.
Thus, the volume element (3) remains positive for all
admissible coframes.
The frame field ea is uniquely defined as the inverse of

the coframe,

eα⌋ϑβ ¼ ϑβðeαÞ ¼ δβα: ð5Þ

Under the coframe transformation (1), the frame obeys the
transformation law

eα → eα0 ¼ ðL−1Þα0αeα; ð6Þ

with ðL−1Þα0αLα
β0 ¼ δβ

0
α0 .

With these definitions at hand, the sets

vol; ϵα ¼ eα⌋vol; ϵαβ ¼ eβ⌋ϵα;

ϵαβγ ¼ eγ⌋ϵαβ; ϵαβγδ ¼ eδ⌋ϵαβγ; ð7Þ

with the indices taken in increasing order, serve as basis
forms for the spaces of twisted 4-forms, 3-forms, 2-forms,
1-forms, and 0-forms, respectively. These basis forms
transform with an additional factor j detLj. All forms in
(7) are totally antisymmetric. It is worthwhile to note that
the Levi-Civita permutation symbol εαβγδ is an untwisted
tensor density, and one can check that the values of its
components do not change under the frame transformation.
In contrast, the 0-form ϵαβγδ is a twisted density, which
means that its components, so to say, are sensitive to the
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orientation: they either remain the same or change their sign
when the frame transformation preserves orientation or
changes orientation, respectively. In technical terms, the
behavior of ϵαβγδ depends on the sign of determinant detL.
This explains a different notation for ϵαβγδ and εαβγδ. From
the definitions (7) we can straightforwardly check the
identity

ϑα ∧ ϵβ ¼ δαβvol: ð8Þ

Since at the first stage, we allow only global (rigid)
transformations of the coframe, the exterior derivatives of
the basis forms (2) and (7) transform as tensors. Hence, one
does not need here an exterior covariant derivative of the
forms. Subsequently, we will discuss how the symmetry
transformation (1) can be generalized to the case of a point
dependent Lα

α0 ðxÞ.

B. Excitation

1. Electromagnetism

In electromagnetism, the inhomogeneous field equation
can be treated as a result of the electric charge conservation
law. In order to describe, in a given spatial volume, the
electric charge with a prescribed sign, we must use the
twisted 3-form J of the electric current. Its expression in a
twisted basis reads

J ¼ Jαϵα: ð9Þ

Under the coframe transformations (1), we have ϵα → ϵα0 ¼
j detLjðL−1Þα0αϵα, and the components of the 3-form J
transform as

Jα → Jα
0 ¼ ðdetLÞ−1Lα

α0Jα; ð10Þ

or

J →
j detLj
detL

J: ð11Þ

The 3-form J remains the same under orientation preserv-
ing transformations, while picking up an additional sign
under transformations which reverse the orientation of the
coframe. This additional sign compensates the change of
the orientation of the integration domain. Consequently,
the integral

R
Ω3

J (in particular, the total charge for a
closed spatial domain Ω3) is invariant under the coframe
transformations.
The law of electric charge conservation in integral and

differential forms is given by

Z
∂Ω4

J ¼ 0 and dJ ¼ 0; ð12Þ

respectively. Locally, the latter relation is equivalent to the
inhomogeneous Maxwell equation

dH ¼ J; ð13Þ

where H is the twisted 2-form of the electromagnetic
excitation. In the ϑαβ and ϵαβ bases, it reads

H ¼ 1

2
Hαβϑ

αβ ¼ 1

2
Ȟαβϵαβ; with

Ȟαβ ¼ 1

2
ϵαβγδHγδ: ð14Þ

By construction, Hαβ is a covariant twisted tensor, whereas
Ȟαβ is an untwisted contravariant tensor density.

2. Gravity

Similarly to this electrodynamics construction, we start
our gravity model with a conservation law, now with
energy-momentum conservation. In the canonical formal-
ism, the standard energy-momentum tensor is replaced by
the energy-momentum current Σα, a twisted covector-
valued 3-form. We decompose it with respect to the
3-forms ϵβ,

Σα ¼ Σα
βϵβ: ð15Þ

This is an object of 16 independent components; see [9].
Symmetry may only be imposed by the use of a metric
tensor.
Taking into account (1), with constant Lβ

α, the con-
servation law for the energy-momentum current can be
expressed as

Z
∂Ω4

Σα ¼ 0; dΣα ¼ 0: ð16Þ

Using the standard differential-geometric facts, we can
solve Eq. (16) in a small topologically good region as

dHα ¼ Σα: ð17Þ

In this way, we define (up to a total derivative) the twisted
covector-valued gravitational excitation 2-form

Hα ¼
1

2
Hβγαϑ

βγ ¼ 1

2
Ȟβγ

αϵβγ: ð18Þ

It is of decisive importance to recognize that there is a
fundamental difference to the electromagnetic case (13).
The electromagnetic field does not carry electric charge
(the “photon” is electrically neutral), the gravitational field,
however, carries energy-momentum of its own. Hence the
right-hand side of (17) reads Σα ¼ ðmÞΣα þ ðϑÞΣα. Here (m)
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denotes matter and (ϑ) the coframe field, and we assume
additivity of the corresponding energy-momenta.

C. Field strength

1. Electromagnetism

In electrodynamics, the untwisted field strength 2-form

F ¼ 1

2
Fαβϑ

αβ ð19Þ

satisfies the equations

Z
∂Ω3

F ¼ 0; dF ¼ 0: ð20Þ

The homogeneous Maxwell equation dF ¼ 0 is an expres-
sion of the conservation of the magnetic flux. The electro-
magnetic field strength F is determined operationally via
the Lorentz force density, which acts on the electric current.
We will discuss this below. The solution of Eq. (20) can be
expressed in terms of the electromagnetic potential A,

dA ¼ F: ð21Þ

In the coframe basis, this untwisted 1-form reads

A ¼ Aαϑ
α: ð22Þ

It is defined up to the addition of a total derivative
A → Aþ dφ.

2. Gravity

In analogy to the field strength F of the electromagnetic
theory, we introduce the gravitational field strength Fα.
It is an untwisted vector-valued 2-form that satisfies the
equation

dFα ¼ 0: ð23Þ

The solution of this equation can be locally represented as

Fα ¼ dθα: ð24Þ

The set of four 1-forms θα is the analog of the electro-
magnetic potential A. We assume now that the potentials θα

are linearly independent. It always can be reached due to
the gauge invariance of Eq. (23). Indeed, we can redefine
θα → θα þ dfa, with four arbitrary scalar functions fα.
We identify the reference coframe ϑα with the dynamical

coframe θα and rewrite Eq. (24) as

Fα ¼ dϑα: ð25Þ

Thus, we can consider the covector-valued forms Σα, Hα

and the vector-valued Fα to be related to this special basis.

In particular, we expand the untwisted form Fα relative to
the untwisted basis ϑβγ as follows:

Fα ¼ 1

2
Fβγ

αϑβγ: ð26Þ

D. Lorentz force

1. Electromagnetism

The force acting on electrically charged matter is
described by a twisted covector-valued 4-form fα. Being
a top-order form, it can be represented as a vector-valued
scalar fα multiplied by the volume form fα ¼ fαvol. In
electrodynamics (see [4] and also [10–12]), the Lorentz
force is given by

fα ¼ ðeα⌋FÞ ∧ J: ð27Þ

Readers can refer to [4,10–12] for technical details explain-
ing how one can compute the electric power and the total
force of electromagnetic field acting on the matter by taking
an appropriate integral of the Lorentz force density (27).
Expanding the current with respect to the 3-form basis,

J ¼ Jαϵα; ð28Þ

and making use of (8), we recast the Lorentz force (27) into

fα ¼ ðJβFαβÞvol: ð29Þ

The first factor represents the standard expression of the
Lorentz force density

fα ¼ JβFαβ: ð30Þ

By construction, Jα is an untwisted vector density, and
accordingly fα is an untwisted covector density. For a point
particle, both the current density and the force density are
proportional to a delta-function [13].

2. Gravity

Analogously to electromagnetism, we describe the
Lorentz force for the coframe field by the 4-form

fα ¼ ðeα⌋FβÞ ∧ ðmÞΣβ: ð31Þ

Expanding the energy-momentum current with respect to
the 3-form basis,

ðmÞΣα ¼ Σα
βϵβ; ð32Þ

we introduce an untwisted energy-momentum tensor den-
sity Σα

β of massive matter. Substituting the representation
(26) into (31) and using (32), we obtain the gravitational
Lorentz force
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fα ¼ ðΣγ
βFαβ

γÞvol: ð33Þ

The first factor on the right-hand side of (33) represents the
covector of the gravitational Lorentz force density

fα ¼ Σγ
βFαβ

γ: ð34Þ

A comparison between (34) and (30) shows the deep
analogy between gravity and electromagnetism.

E. Energy-momentum current of gravity

1. Electromagnetism

The energy-momentum current of the electromagnetic
field (see [4]) is a covector-valued 3-form represented by

ðemÞΣα ¼
1

2
½F ∧ ðeα⌋HÞ −H ∧ ðeα⌋FÞ�: ð35Þ

If the twisted electromagnetic Lagrangian 4-form

ðemÞΛ ≔ −
1

2
F ∧ H ð36Þ

can be specified, we can alternatively put it into the form

ðemÞΣα ¼ eα⌋ðemÞΛþ F ∧ ðeα⌋HÞ
¼ −eα⌋ðemÞΛ −H ∧ ðeα⌋FÞ: ð37Þ

Using F ¼ dA, we can rederive the field equation dH ¼ J
and the current (35) from the Lagrangian (36).
One can straightforwardly verify the balance law [4]

dðemÞΣα ¼ fα þ Xα; ð38Þ

where fα is the Lorentz force (27) and Xα ¼ − 1
2
ðF ∧

LαH −H ∧ LαFÞ describes an additional force determined
by the constitutive law. Here Lα denotes the Lie derivative
along vector fields eα.

2. Gravity

Similar to the electromagnetic case, we postulate the
energy-momentum current of the coframe field as

ðϑÞΣα ¼
1

2
½Fβ ∧ ðeα⌋HβÞ −Hβ ∧ ðeα⌋FβÞ�: ð39Þ

We can also introduce the Lagrange 4-form for the coframe
field,

ðϑÞΛ ¼ −
1

2
Fα ∧ Hα: ð40Þ

Then we can write its energy-momentum current in a form
similar to (37),

ðϑÞΣα ¼ eα⌋ðϑÞΛþ Fβ ∧ ðeα⌋HβÞ
¼ −eα⌋ðϑÞΛ −Hβ ∧ ðeα⌋FβÞ: ð41Þ

Analogously to (38), one finds the balance law

dðϑÞΣα ¼ fα þ ðϑÞXα; ð42Þ

where fα is gravitational Lorentz force (31) and ðϑÞXα ¼
− 1

2
ðFβ ∧ LαHβ −Hβ ∧ LαFβÞ is an additional force to be

determined by the corresponding constitutive law.

F. Constitutive relation

In order to complete the field-theoretical models of
electromagnetism and gravity, a constitutive relation
between the basic variables, namely between excitation
H and field strength F should be introduced.

1. Electromagnetism

The system of the premetric field equations for electro-
magnetism (13) and (20) involves 8 equations for 12
independent variables, the components of the 2-forms H
and F. This system is undetermined and has to be
supplemented by an additional relation between the basic
variables. In solid state electromagnetism, such relation can
be of a rather complicated form. However, even the
simplest case of a linear constitutive relation has a wide
range of applications.
Using the expansions

H ¼ 1

2
Ȟαβϵαβ; F ¼ 1

2
Fαβϑ

αβ; ð43Þ

we postulate the most general local linear constitutive
relation in the form of

Ȟαβ ¼ 1

2
χαβγδFγδ: ð44Þ

Due to this definition, the constitutive tensor density χ
satisfies the symmetry relations

χαβγδ ¼ −χβαγδ ¼ −χαβδγ: ð45Þ

2. Gravity

Similarly, our coframe system must be endowed with the
constitutive relation between Fα and Hα. We assume this
relation to be linear and local. In analogy to electromag-
netism, we use the expansions

Hα ¼
1

2
Ȟβγ

αϵβγ; Fα ¼ 1

2
Fβγ

αϑβγ: ð46Þ

We postulate the most general local and linear constitutive
relation in the form of
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Ȟβγ
α ¼

1

2
χβγα

νρ
μFνρ

μ: ð47Þ

Here χβγανρμ is the constitutive tensor density that obeys the
symmetries

χβγα
νρ

μ ¼ −χγβανρμ ¼ −χβγαρνμ: ð48Þ

G. Lagrange formalism

In this section, we apply the Lagrange formalism to
derive the statements proposed above. In this way, we are
able to justify the coframe model that was postulated in the
previous section only by analogy.

1. Electromagnetism

Although the electromagnetic case is well-known, it is
instructive to recall the variational procedure. This con-
struction turns out to be completely metric-free. As only
restriction, we will use an additional symmetry relation of
the constitutive tensor density, namely

χαβγδ ¼ χγδαβ: ð49Þ

In term of the irreducible decomposition [4], it means that
the skewon part is assumed to be forbidden and the
constitutive tensor density is left with only 21 independent
components; then and only then a Lagrange formalism is
possible.
We start with the Lagrange 4-form

Λ ¼ −
1

2
F ∧ HðFÞ þ A ∧ J

¼
�
−
1

2
FαβȞ

αβðFγδÞ þ AαJα
�
vol: ð50Þ

The variation of this Lagrangian takes the form

δΛ ¼ −
1

2
ðδF ∧ H þ F ∧ δHÞ þ δA ∧ J: ð51Þ

In the case of the linear constitutive relation with the
symmetry (49), the first two terms on the right-hand side of
Eq. (51) are equal to one another. Indeed, using the
component representation, we have

F ∧ δH ¼ −
1

2
ðFαβδȞ

αβÞvol

¼ −
1

4
ðFαβχ

αβγδδFγδÞvol

¼ −
1

2
ðȞγδδFγδÞvol ¼ δF ∧ H: ð52Þ

Consequently, Eq. (51) takes the form

δΛ ¼ −dðδAÞ ∧ H þ δA ∧ J

¼ −dðδA ∧ HÞ − δA ∧ ðdH − JÞ: ð53Þ

In order to derive the field equation from this expression,
we remove, as usual, the total derivative term and require
δΛ to be zero for arbitrary variations of the potential. Then
we obtain the inhomogeneous Maxwell equation and
the electric charge conservation law as straightforward
consequences,

dH ¼ J; dJ ¼ 0: ð54Þ

Let us now study relation (53) on shell, i.e, we assume that
the inhomogeneous Maxwell equation (54) is already
satisfied. Then we are left with

δΛ ¼ −dðδA ∧ HÞ: ð55Þ

For variations induced by frame transformations, we use
δαΛ instead of δΛ and δαA instead of δA. These variations
are generated by the Lie derivatives relative to the frame
vectors, δα ¼ Leα . Thus, we have

δαΛ ¼ LeαΛ ¼ dðeα⌋ΛÞ; ð56Þ

δαA ¼ LeαA ¼ dðeα⌋AÞ þ eα⌋dA: ð57Þ

Substituting into (55), we obtain a conservation law

dðemÞΣα ¼ 0; ð58Þ

where

ðemÞΣα ¼ ½eα⌋Λþ ðeα⌋FÞ ∧ H� − ðeα⌋AÞ ∧ J: ð59Þ

On the right-hand side of this equation, we recognize
the energy-momentum of the electromagnetic field and the
interaction term.

2. Gravity

Consider a Lagrangian of a system that includes the
coframe field and a matter field

Λ ¼ 1

2
Fα ∧ Hα þ ðmÞΛ: ð60Þ

Using (46), we rewrite it as

Λ ¼ 1

2
ðFβγ

αȞβγ
αÞvolþ ðmÞΛ: ð61Þ

Variation of this Lagrangian reads (see Appendix)

δΛ¼−dðδϑα ∧HαÞ−δϑα ∧ ðdHα− ðϑÞΣα− ðmÞΣαÞ; ð62Þ
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where the energy-momentum current of the coframe field is
specified by

ðϑÞΣα ¼ eα⌋Λþ Fβ ∧ ðeα⌋HβÞ: ð63Þ

The matter energy-momentum current ðmÞΣα is defined via
the relation

δðmÞΛ ¼ δϑα ∧ ðmÞΣα: ð64Þ

For variations of the coframe that vanish on the boundary,
we are left with the field equation

dHα ¼ Σα; ð65Þ

where the total energy-momentum current is given as a
sum of the coframe current (63) and the matter current
defined in (64)

Σα ¼ ðϑÞΣα þ ðmÞΣα: ð66Þ

Note that the conservation law for this quantity, dΣα ¼ 0,
follows straightforwardly from field equation (65).

H. Premetric electromagnetism-gravity
correspondence

We can now summarize the analogy between the
premetric coframe model of gravity and the standard
electromagnetic theory in Table I.

III. FIELD-THEORETICAL MODELS
ON METRIC MANIFOLDS

So far, all the ingredients in the electromagnetic as well as
in the coframemodel are premetric. Indeed, the metric is not
involved in these formalisms at all. We will now consider
these models on a manifold endowed with a pseudo-
Riemannian metric. In the electromagnetic case, this struc-
ture allows us to describe vacuum electrodynamics. For the

coframe field, we are able to reinstate standard GR in the
context of a premetric formalism.

A. Coframe field and metric

We consider a manifold M endowed with a smooth
metric g and restrict the coframe field ϑa to be orthonormal
relative to this metric. Thus, the metric on our manifold can
be expressed as

g ¼ gαβϑα ⊗ ϑβ; ð67Þ

where gαβ ¼ diagðþ1;−1;−1;−1Þ is the Minkowski met-
ric. In other words, we restrict ourselves to the subgroup
Oð1; 3Þ of the orthogonal transformations of the coframe:

ϑα → ϑα
0 ¼ Lα

α0ϑα: ð68Þ

Then the metric satisfies the relation

gα0β0Lα
α0Lβ

β0 ¼ gαβ; ð69Þ

and hence ðdetLÞ2 ¼ 1. We observe that the metric in (67)
is invariant under a wider class of transformations that
depend on a point x ∈ M with Lα

α0 ðxÞ, that is, we have
local coframe transformations.
We can develop the coframe and the frame fields,

respectively, in terms of local coordinates fxig as follows:

ϑα ¼ ϑi
αdxi; eα ¼ eiα∂i: ð70Þ

In these holonomic coordinates, the components of the
metric tensor read

gij ¼ gαβϑiαϑjβ; gij ¼ gαβeiαejβ: ð71Þ

The volume element (3) takes now the form

vol ¼ ffiffiffiffiffiffi
−g

p
d4x ¼ j detϑiαjd4x; ð72Þ

TABLE I. Premetric electromagnetism-gravity analogy.

Objects and Laws Electromagnetism Gravity

Source current J Σα

Conserved source current dJ ¼ 0 dΣα ¼ 0
Excitation H Hα

Inhomogeneous field equation dH ¼ J dHα ¼ ðϑÞΣα þ ðmÞΣα

Field strength F Fα

Homogeneous field equation dF ¼ 0 dFα ¼ 0
Potential A ϑα

Potential equation dA ¼ F dϑα ¼ Fα

Lorentz force fα ¼ ðeα⌋FÞ ∧ J fα ¼ ðeα⌋FβÞ ∧ ðmÞΣβ

Energy-momentum current Σα ¼ eα⌋Λþ F ∧ ðeα⌋HÞ ðϑÞΣα ¼ eα⌋Λþ Fβ ∧ ðeα⌋HβÞ
Lagrangian Λ ¼ −ð1=2ÞF ∧ H Λ ¼ −ð1=2ÞFα ∧ Hα

Constitutive tensor χαβγδ χβγα
νρ

μ
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where g ¼ detðgijÞ ¼ −ðdetϑiαÞ2. We recognize in this
standard expression the twisted 4-form as defined in (3).
It is worthwhile to note that Ȟαβ and Ȟαβ

γ are true
tensors under the restriction to the orthogonal group.

B. Vacuum electrodynamics

Standard Maxwell-Lorentz electrodynamics is recovered
in the premetric framework provided the constitutive tensor
is expressed in terms of the Minkowski metric as follows:

χαβγδ ¼ 1

2
λ0ðgαγgβδ − gαδgβγÞ: ð73Þ

Here g is the determinant of the metric and λ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ε0=μ0

p
denotes the vacuum impedance. In ‘the International
System of Units’ (SI), its value is λ0 ¼ 1=ð377ΩÞ. If we
only allow the metric gαβ to enter the constitutive tensor
(73) as variable, then, due to the symmetries (45) of χαβγδ,
the construction of (73) is well determined.
We expand the field strength 2-form in a coordinate basis

F ¼ 1

2
Fijdxi ∧ dxj ð74Þ

and derive from dF ¼ 0 the homogeneous Maxwell
equation in its standard form in tensor calculus:

ϵijkl∂jFkl ¼ 0: ð75Þ

If the constitutive tensor (73) is used, also the inhomo-
geneous field equation dH ¼ J can be rewritten in the
standard tensor notation,

∂jð
ffiffiffiffiffiffi
−g

p
FijÞ ¼ ffiffiffiffiffiffi

−g
p

Ji: ð76Þ

This results in the conservation law of the electric current,

∂ið
ffiffiffiffiffiffi
−g

p
JiÞ ¼ 0: ð77Þ

The Lorentz force in a coframe basis reads

fα ¼ eαiFik
ffiffiffiffiffiffi
−g

p
Jkd4x: ð78Þ

The scalar factor of this 4-form presents the ordinary
expression of the Lorentz force density covector

fi ¼ FikJk: ð79Þ

C. Constitutive tensor density of the coframe

We turn now to the gravitational model. We require the
6th rank constitutive tensor density to be expressed in terms
of the metric tensor gαβ as variable alone. Due to the
symmetries listed in Eq. (48), the most general expression
of this type appears to be

χβγα
νρ

μ ¼
2

ϰ
fβ1gαμðgβνgγρ − gγνgβρÞ

þ β2½ðgγρδβα − gβρδγαÞδνμ − ðgγνδβα − gβνδγαÞδρμ�
þ β3½ðgγρδβμ − gβρδγμÞδνα − ðgγνδβμ þ gβνδγμÞδρα�g;

ð80Þ

provided we assume the additional “paircom” symmetry

χβγα
νρ

μ ¼ χνρμ
βγ

α: ð81Þ

Here β1, β2, β3 are dimensionless factors, ϰ is a dimen-
sionful constant.
A remark is in order concerning the dimensions. The

coframe and the gravitational field strength have the
dimensions of a length, ½ϑα� ¼ ½dϑα� ¼ l. Analogously,
the gravitational current and the gravitational excitation
have the same dimension as a momentum: ½Σα� ¼ ½Hα� ¼
½momentum� ¼ ml

t ¼ ft. As a result, ½Fα ∧ Hα� ¼ ftl ¼
½action�. Hence the Lagrangian has, indeed, the correct
dimension of an action. Consequently, the dimension of the
constant ϰ is obtained as the ratio of the dimension of Fα

divided by the dimension of Hα, that is, we have ½ϰ� ¼ t
m.

Thus, ½κ� ¼ ½ϰc� ¼ t2
ml ¼ 1

f is Einstein’s gravitational con-
stant. This demonstrates a remarkable consistency of tele-
parallel gravity with Einstein’s GR.
Observe that the symmetry (81) allows the coframe

model to be derived from a Lagrangian. Using the con-
stitutive tensor (80), we can write the coframe Lagrangian
in (60) as

ðϑÞΛ ¼ 1

2
Fα ∧ Hα

¼ 1

4ϰ
Fβγαðβ1Fβγα þ β2gαβFν

γν þ β3FαγβÞvol

¼ 1

2ϰ
Fβγαðα1ð1ÞFβγα þ α2

ð2ÞFβγα þ α3
ð3ÞFβγαÞvol;

ð82Þ

where ðIÞFβγα are the three irreducible pieces of the field
strength; see [9].

D. GR in terms of coframe variables

We constructed a set of coframe models parametrized by
dimensionless numerical parameters α1, α2, and α3 that
turns out to be very similar to the electrodynamics system.
The question is: How are these models connected to
gravity, in particular to GR?
Recall that Einsteins theory is expressed by the field

equation

Rij −
1

2
Rgij ¼ κTij: ð83Þ
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Here κ ¼ 8πG=c4, with Newton’s gravitational constant G.
When the metric tensor (71) is substituted into the left-hand
side of (83), we obtain an expression that includes second
order derivatives of the coframe components plus the
product of their first order derivatives. Exactly the same
type of expressions we have in the coframe field equation
dHα ¼ Σα. Thus, for some special values of the parameters
α1, α2, and α3, we can recover standard GR from the
coframe field equation.
It seems technically simpler to deal with the Lagrangian.

Recall that the left-hand side of (83) is derived from the
action functional

W ¼ 1

2κc

Z
R

ffiffiffiffiffiffi
−g

p
d4x: ð84Þ

As it is well known, the scalar curvature R and, in turn,
the Lagrangian in (84) can be expressed as a sum of two
parts: a term that is quadratic in the first order derivatives
of the metric plus a total divergence. In particular, up to a
total derivative, Eq. (84) can be represented [see [14]
Eq. (3.20)] as

W ¼ 1

2κc

Z
gijðΓli

kΓkj
l − Γlk

kΓij
lÞ ffiffiffiffiffiffi

−g
p

d4x: ð85Þ

The expression of this Lagrangian in terms of the
coframe is well-known. In a compact form (see [15]), this
teleparallel equivalent of GR reads

W ¼ 1

2

Z
Fα ∧ Hα; ð86Þ

where

Hα ¼
1

κc
⋆½gαβFβ − gαβϑβ ∧ ðeγ⌋FγÞ − 2gβγeα⌋ðϑβ ∧ FγÞ�

¼ 1

κc
gαβ

⋆�
−ð1ÞFβ þ 2ð2ÞFβ þ 1

2
ð3ÞFβ

�
: ð87Þ

In tensor form, (87) can be found in [16]; see Eq. (A.15).
There is a long development of this teleparallel theory of

gravity. Relevant papers are, amongst others, Pellegrini and
Plebanski [17], Kaempffer [18], Cho [19], Hehl, Nitsch
and von der Heyde [16], Nitsch et al. [20], Muench et al.
[21], Nester et al. [22–24], Obukhov & Pereira [25], Itin
[26–30], Maluf [31], Aldrovandi & Pereira [32]. A review
was given in [6].
We substitute (87) into (86) and compare the result with

the coframe Lagrangian (82). The values of the free
parameters turn out to be

ðβ1 ¼ 1; β2 ¼ −4; β3 ¼ 2Þ and�
α1 ¼ −1; α2 ¼ 2; α3 ¼

1

2

�
: ð88Þ

Since (40) includes all possible Lagrangians that are
quadratic in the first order derivatives of the coframe
components, we found that the Hilbert-Einstein
Lagrangian is a special case of a coframe Lagrangian.

E. Local coframe transformations

In a premetric teleparallel formalism, GR turns out to be
a special case of a general coframe model with the specific
parameters of (88). This case, however, is very distin-
guished. Indeed, standard GR and its teleparallel equivalent
are invariant under local Lorentz transformations of the
coframe field,

ϑα
0 ¼ Lα

α0 ðxÞϑα: ð89Þ

It can be checked (see [19]) that there exists, up to
an arbitrary multiplicative constant, only one set of free
parameters ðα1; α2; α3Þ, which constitutes a locally Lorentz
invariant coframe model with invariant Lagrangian and
field equation. Other ingredients of the coframe model,
such as field strength, excitation, energy-momentum cur-
rent, and Lorentz-type force, are not locally invariant.
This fact is very well known in GR, where the energy-
momentum of gravity cannot be defined in a covariant way.

IV. LORENTZ FORCE AND GEODESICS

Equations of motion for test particles in an external
gravitational field should not be postulated, they are
rather the consequence of the conservation laws. Most
conveniently, one can derive the equations of motion with
the help of the multipole expansion methods by integrat-
ing conservation laws over an extended test body. Here
we confine our attention to the lowest (monopole) order
and consider the relativistic version of Newton’s equation
of motion with the gravitational Lorentz force on the
right-hand side. We demonstrate that one can rewrite the
latter as the standard geodesic equation of GR, provided
we assume the metric dependent constitutive relation
between the momentum pα and the velocity uα of a
test particle.

A. Premetric equation of particle motion

In accordance with the expression (33) of the twisted
covector-valued 4-form for the Lorentz force, the
equation of motion of test particle reads, in the monopole
approximation,

dpα

ds
¼ uβpγFαβ

γ: ð90Þ

Here pα is the integrated momentum (1st moment) of an
extended body. The body is characterized by an infinite set
of multipole moments which are derived by integrating the
energy-momentum current density Σa

β over a cross-section
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of body’s world tube. In the lowest approximation, we
neglect effects of the dipole and higher order moments [33].
The equation (90) is invariant under arbitrary smooth

reparametrization of the curve s → λðsÞ. Thus, even being
expressed via the length parameter s, equation of motion
(90) is premetric, provided we consider the momentum pα

and the 4-velocity uα as independent variables. Moreover,
Eq. (90) is invariant under a rescaling of the momentum
pα → Cpa. This symmetry manifests Einstein’s principle
of equivalence of inertial and gravitational mass, which is
valid even in the premetric framework.
Let us rewrite Eq. (90) in a coordinate basis. Multiplying

both sides of this equation by ϑi
α, we find

ϑi
α dpα

ds
¼ ujðFαβ

γϑi
αϑj

βÞpγ

¼ ujð∂iϑj
γ − ∂jϑi

γÞpγ: ð91Þ

Consequently,

ϑi
α dpα

ds
þ dϑiα

ds
pα ¼ ujpγ∂iϑj

γ: ð92Þ

Thus, the equation of motion of a test particle takes the
form

dpi

ds
¼ ujpα∂iϑj

α: ð93Þ

This equation is metric-free, and it is valid in a general
geometric background.

B. Geodesic equation

Eventually, the metric g is introduced on the spacetime
manifold. Recall the two equivalent representations of the
metric tensor in terms of a coframe ϑα or of coordinates xi,
respectively:

g ¼ gαβϑα ⊗ ϑβ ¼ gijdxi ⊗ dxj: ð94Þ

We observe

pγ∂iϑj
γ ¼ gβγpkϑβk∂iϑj

γ ¼ 1

2
pk∂igjk: ð95Þ

As a result, (93) is recast into

dpi

ds
¼ uj∂jpi ¼

1

2
∂igjkpjuk: ð96Þ

So far, this equation contains two unknowns, the
covector pi, the momentum, and the vector ui, the velocity.
We now assume the constitutive relation between the
momentum and the velocity of the particle to be local
and linear,

pi ¼ mgijuj; ð97Þ

where m is the mass of the particle. As a consequence, (96)
reduces to

dui
ds

¼ uj∂jui ¼
1

2
∂igjkukuj: ð98Þ

This is equivalent to the standard geodesic equation;
see [34]:

dui

ds
þ Γjk

iujuk ¼ 0: ð99Þ

C. Particle motion in an electromagnetic field

The premetric framework above, which correctly pro-
duces a geodesic, can be extended to an electric point
charge. The total force should be the sum of the gravita-
tional and the electromagnetic Lorentz terms

dpα

ds
¼ uβpγFαβ

γ þ quβFαβ: ð100Þ

Here q is the lowest multipole moment arising from the
integration of the electric current vector density Jα over a
cross-section of body’s world tube; it is interpreted as a
total electric charge of a test body. Using the constitutive
relation (97), we then end up with the standard equation of
motion of a charge in a curved spacetime:

dui

ds
þ Γjk

iujuk ¼ q
m
Fijuj: ð101Þ

V. DISCUSSION

A. A gauge view at gravity

A gauge-theoretical understanding of gravitational
theory was our tool for arriving at a premetric version of
general relativity, namely teleparallelism, here specifically
by considering a gauge theory of the translation group.
However, it is the semidirect product of the translation
group Tð4Þ with the Lorentz group SOð1; 3Þ, the Poincaré
group Tð4Þ ⋊ SOð1; 3Þ, which is the group of motion in
Minkowski spacetime. The Poincaré group is connected
with the energy-momentum and spin angular momentum of
matter as Noether currents.
The gauging, that is, the localization of the Poincaré

group, yields the Poincaré gauge theory of gravity (PG), see
the review [6], Part B. If the spin of matter is suppressed, a
(Inönü-Wigner type) group contraction of the PG leads to a
translation gauge theory. This contraction is mathemati-
cally very delicate and is conventionally done in a heuristic
manner. In this way, the teleparallelism theory is emerging.
At the same time it becomes intelligible why teleparallelism
has a number of unexpected and somewhat strange
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features. After all, the vanishing of the curvature, that is, the
defining characteristics of teleparallelism theory, is hard to
digest from a purely Einsteinian GR point of view (as
already Pauli remarked to Einstein in the 1920s). However,
from the point of view of PG, this is self-evident, since the
curvature is the gauge field strength of the Lorentz group—
and the suppression of the material spin, in turn, suppresses
the Lorentz group as gauge group. And thus the Pauli
objection can be invalidated. By the same token we
recognize that teleparallelism can only be really understood
in the context of PG. It is not comprehensible as a stand-
alone theory.

B. Nonlocal extension of teleparallelism

A further success of the gauge-theoretical view at GR
can be listed: When, in the early 2000s, Mashhoon
recognized that Einstein’s clock hypothesis is not sustain-
able as soon as high translational and rotational acceler-
ations occur. Therefore, he looked for a classical nonlocal
extension of GR and of the Einstein field equation. In spite
of several attempts, he was not able to implement it on the
basis of the Einstein equation and GR.
Again, as soon as one looked at gravity from a gauge-

theoretical perspective, it evident of how one has to
proceed: Switch from GR to the teleparallel approach to
gravity. Its structure is closely related to electromagnetism.
And in electromagnetism it is straightforward to generalize
a local and linear constitutive law to a nonlocal and linear
framework—already Volterra pointed this out in the 1910s.
Mashhoon and one of the present authors [35,36]

took their “teleparallel” glasses and looked at the field
equation of gravity. Following Volterra, they set up a
nonlocal framework for a classical theory of gravity,
extending thereby GR to the domain of high accelerations.
This nonlocal theory of gravity was worked out in some
detail by Mashhoon and collaborators and can be found in
the forthcoming monograph of Mashhoon [37]. Quite
unexpectedly, nonlocal gravity is able to describe the
cosmos without taking recourse to dark matter; see the
title of [35]. The nonlocal theory explains dark matter
straightforwardly. Up to now, the astrophysical data seem
to speak in favor of this new framework.

C. Uð1Þ-axion field versus axial torsion vector field

Consider axion electrodynamics [38]: The Uð1Þ-axion a
is present in the third irreducible piece of the electromag-
netic constitutive tensor in (44):

ð3Þχαβγδ ¼ aϵαβγδ;

½ð3Þχαβγδ� ¼ 1=ðelectric resistanceÞ: ð102Þ

Similarly, the axial torsion piece A ≔ gαβ⋆ðϑα ∧ FβÞ is
manifest in the third piece of the gravitational constitutive
tensor in (47):

ð3Þχβγανρμ;

½ð3Þχβγανρμ� ¼mass=time¼ force=velocity¼ ½1=κc�: ð103Þ

The explicit form of ð3Þχβγανρμ can be read off most
conveniently from the Lagrangian (82). Both quantities,
the electrodynamical axion and the axial torsion, should
contribute to the axial anomaly of quantum field theory; see
Obukhov [39].
Moreover, Mielke et al. [40] tentatively assumed

that the axial torsion A, which is a geometric quantity
characterizing spacetime, can be chosen as the gradient
of a pseudoscalar field P, that is, A ¼ dP. Subsequently,
without any physical argument to support it and without
an appropriate dimensional analysis, P is identified with
the axion field a of the internal Uð1Þ symmetry of
Peccei-Quinn. This is what we call an ad hoc
assumption. Moreover, our dimensional analysis in
Eqs. (102) and (103) above shows how far-fetched such
an assumption is.
Similar attempts were made by Castillo-Felisola

et al. [41]. Corral argued that they don’t consider
torsion as a field strength related to translational
gauging, but rather that they rely on “the geometrical
interpretation of torsion.” And this would make a
difference. We cannot share this optimism: What else
other than a geometric quantity is a translational gauge
field strength, after all?
One could try the ansatz, with the superscript ðϑÞ

denoting the constitutive tensor density for the coframe
Lagrangian (82),

χ̂βγα
νρ

μ ¼ ðϑÞχβγανρμ þ a0εβγνρgαμ; ð104Þ

in order to link (102) with (103). However, the trace via gαμ

of (104) can never yield the axion, unless one introduces in
an ad hoc fashion a dimensionful factor in a0. In other
words, in this way one cannot find an axion in a natural
way.
The Uð1Þ axion is related to the internal group Uð1Þ,

whereas the axial torsion is related to the external trans-
lation group Tð4Þ via the Cartan circuit. One should not
marry internal and external groups, unless one investigates
supersymmetry, which allows such a mixing under certain
circumstances.
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APPENDIX: VARIATION OF THE
COFRAME LAGRANGIAN

We start with the premetric coframe Lagrangian,

Λ ¼ 1

2
Fα ∧ HαðFβÞ: ðA1Þ

Substituting the components of the forms (18), (26), we
obtain

Λ ¼ 1

8
ðFβγ

αȞμν
αÞϑβγ ∧ ϵμν: ðA2Þ

Applying the relation, which is a direct consequence of (8),

ϑβγ ∧ ϵμν ¼ ðδγμδβν − δβμδ
γ
νÞvol; ðA3Þ

we derive the coframe Lagrangian in components,

Λ ¼ 1

4
ðFβγ

αȞβγ
αÞvol: ðA4Þ

Consequently, the variation of the Lagrangian takes the
form

δΛ ¼ 1

4
½δðFβγ

αÞȞβγ
α þ Fβγ

αδðȞβγ
αÞ�vol

þ 1

4
ðFβγ

αȞβγ
αÞδðvolÞ: ðA5Þ

Applying the local and linear constitutive relation (47)
together with its symmetry property (81), we find

Fβγ
αδðȞβγ

αÞ ¼ Fβγ
αχβγα

νρ
μδðFνρ

μÞ
¼ δðFνρ

μÞχνρμβγαFβγ
α ¼ δðFνρ

μÞȞνρ
μ: ðA6Þ

Thus, Eq. (A5) takes the form

δΛ ¼ 1

2
δðFβγ

αÞȞβγ
αvolþ

1

4
Fβγ

αȞβγ
αδðvolÞ: ðA7Þ

In order to calculate the variation δðFβγ
αÞ, we use (26):

δðdϑαÞ ¼ 1

2
δðFβγ

αÞϑβγ þ Fβγ
αδϑβ ∧ ϑγ: ðA8Þ

Hence,

δðFβγ
αÞ ¼ eγ⌋eβ⌋dðδϑαÞ − Fβμ

αeγ⌋ðδϑμÞ
þ Fγμ

αeβ⌋ðδϑμÞ: ðA9Þ

Thus, the first term of (A7) reads

1

2
δðFβγ

αÞȞβγ
αvol

¼ −dðδϑαÞ ∧ Hα − Fβμ
αȞβγ

αδϑ
μ ∧ ðeγ⌋volÞ: ðA10Þ

In order to calculate the variation of the volume element, we
apply the formula

δðvolÞ ¼ δϑμ ∧ ðeμ⌋volÞ: ðA11Þ

Accordingly, the variation of the coframe Lagrangian (A7)
takes the form

δΛ ¼ −dðδϑαÞ ∧ Hα − Σα ∧ δϑα; ðA12Þ

where

Σα ¼
�
Fβα

μȞβρ
μ −

1

4
δραFβγ

μȞβγ
μ

�
ðeρ⌋volÞ: ðA13Þ

Using the components of the forms (18), (26), we obtain
(39) and (41). We extract the total derivative as in (A12)
and obtain finally

δΛ ¼ −dðδϑα ∧ HαÞ − δϑα ∧ ðdHα − ΣαÞ: ðA14Þ
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