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Casimir effect in extended theories of gravity
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We study the Casimir vacuum energy density and the Casimir pressure for a massless scalar field
confined between two nearby parallel plates in a slightly curved, static spacetime background, employing
the weak-field approximation in the framework of extended theories of gravity (ETG). Following a
perturbative approach, we find the gravity corrections to the Casimir vacuum energy density and pressure.
The corrections to the vacuum energy density in the framework of general relativity (GR) are small, and
today they are still undetected with current technology. However, future sensitivity improvements in
gravitational interferometer experiments will give a useful tool to detect such effects induced by gravity.
For these reasons, which are interesting from a theoretical point of view, we generalize the outcomes of GR
in the context of ETG. Finally, we find the general relation to constrain the free parameters of the ETG.
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I. INTRODUCTION

Our Universe appears to be spatially flat and undergoing
a period of accelerated expansion. Observational data has
been used to probe this picture [1-6], but two unrevealed
ingredients are needed in order to achieve this dynamical
scenario, namely, dark matter on galactic and extragalactic
scales, and dark energy on cosmological scales. The
dynamical evolution of self-gravitating structures can be
explained within Newtonian gravity, but a dark matter
component is required in order to obtain agreement with
observations [7].

Lately, models of extended gravity [8,9] have been
considered as a viable theoretical mechanism to explain
cosmic acceleration and galactic rotation curves. In such
models one extends only the geometric sector, without
introducing any exotic matter. Such models may result
from an effective theory of a quantum gravity formulation
(which may contain additional contributions with respect to
general relativity) on galactic, extragalactic, and cosmo-
logical scales where otherwise large amounts of unknown
dark components are required. In the context of models of
extended gravity, one may consider that the gravitational
interaction acts differently at different scales, while the
robust results of general relativity (GR) on local and Solar
System scales are preserved [10].
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In the so-called weak-field approximation, any relativ-
istic theory of gravitation in general yields corrections to
the gravitational potentials (e.g., Ref. [11]) which—at the
Newtonian and post-Newtonian levels—could constitute
the test bed for these theories [12]. In fact, in extended
theories of gravity (ETG) there are further gravitational
degrees of freedom, and moreover the form of the gravi-
tational interaction is no longer scale invariant. Hence, in a
given situation, besides the Schwarzschild radius, other
characteristic gravitational scales could arise from the
dynamics. Such scales, in the weak-field approximation,
should exhibit a form of gravitational confinement in this
way [13].

Models of fourth-order gravity have been studied
mainly in the Newtonian limit (weak-field and small
velocity) [14,15], as well as in the Minkowskian limit
[16]. In the former one finds modifications of the
gravitational potential, while in the latter one obtains
massive gravitational-wave modes [17,18]. The weak-
field limit of such proposals has to be tested against
realistic self-gravitating systems. Galactic rotation curves,
stellar hydrodynamics, and gravitational lensing appear as
natural candidates as test-bed experiments [19-24]. These
corrections to the gravitational Lagrangian were already
considered by several authors [25-39]. From a conceptual
viewpoint, there is no reason a priori to restrict the
gravitational Lagrangian to a linear function of the
Ricci scalar minimally coupled to matter [40]. In particu-
lar, one may consider the generalization of f(R) models
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(where R is the Ricci scalar) through generic functions
containing curvature invariants—such as the Ricci squared
(RosR) or the Riemann squared (R .5, R%"°)—that are
not independent due to the Gauss-Bonnet invariant
(R? —4R,,R* + R, R**). Note that the same remark
applies to the Weyl invariant C,;,,C*7°. Hence, one may
add a (massive propagating) scalar field coupled to geom-
etry; this leads to the scalar-tensor fourth-order gravity.

A fundamental issue is the possibility that ETG can be
plagued by pathologies, such as the appearance of ghosts
(negative-norm states), which could allow for negative
possibilities and consequently violations of unitarity
[41-44]. In particular, while standard GR and the Gauss-
Bonnet theory have the same field content, this is not the
case for f(R) gravity and Weyl gravity. The former is safe,
even though it does not improve the ultraviolet behavior
of the theory; f(R) gravity has just an extra scalar and can
be ghost free in its Newtonian limit [45]. The latter has
an extra pathological spin-2 field, which however causes
no problem in the low-energy regime since then the effects
of higher-order terms give rise to small corrections to
GR [45,46]. In our analysis, we will consider an action
motivated from noncommutative geometry within the class
of Weyl-type gravity. However, as we will discuss, this
proposal will be considered in the spirit of an effective field
theory, and hence it is free from any pathologies.

In this paper we consider the Casimir effect in curved
space where the metric is given by a modified theory of
gravity. Generally speaking, the Casimir effect [47,48] can
be defined as the stress on the bounding surfaces when a
quantum field is confined in a finite volume of space.
The confinement of a physical field obviously restricts
the modes of the corresponding quantum field, giving us
measurable macroscopic effects. The Casimir effect has
been widely discussed in flat space [49-59] and has been
shown to have good agreement with the theory. Recently,
some authors [60-69] have considered the influence of a
gravitational field on the vacuum energy density of a
quantum field inside a cavity. Indeed, possible modifica-
tions in the vacuum energy induced by gravity could play a
relevant role in the dynamics of the Universe [62,70]. Yet,
at a microscopic level, modifications of the Casimir energy
induced by strong gravitational fields could become rel-
evant in models of quark confinement based on string
interquark potentials [71-74]. In connection with the
equivalence principle, there is a further question, namely,
whether vacuum fluctuations gravitate or not. Finally, the
analysis of the possible gravitational effects on Casimir
cavities faces the open issue concerning the limits of
validity of GR at small distances [75]. In this paper we
perform a perturbative evaluation up to second order of the
gravitational corrections to the Casimir vacuum energy
density for a massless scalar field confined in a cavity in a
slightly curved static spacetime background. Our starting
point is Ref. [63], where the spacetime was given by the
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approximated Schwarzschild solution, while we consider

the Newtonian limit of the solution in the case of ETG.

The paper is organized as follows. In Sec. II we
investigate the weak-field limit of a particular ETG, i.e.,
scalar-tensor-higher-order models, in view of constraining
their parameters by the analysis of the Casimir effect. In
Sec. Il we analyze the dynamic of a massless scalar field in
a weak gravitational field. Finally, in Sec. IV we discuss the
theoretical constraints of the ETG considered. Our con-
clusions are drawn in Sec. V.

II. SCALAR-TENSOR FOURTH-ORDER
GRAVITY

Let us consider the action

5= / d*x\/=glf (R. RyR?. ¢) + o) bt + XL,
(1)

where f is an unspecified function of the Ricci scalar R, the
curvature invariant RaﬁRaﬁ =Y (where R,y is the Ricci
tensor), and ¢ is a scalar field. We note that the Riemann
tensor can be discarded since the Gauss-Bonnet invariant
fixes it in the action (for details, see Ref. [76]). Here L,, is
the Lagrangian density of the ordinary matter, w(¢) is a
generic function of the scalar field, g is the determinant of
the metric tensor g,,, and' X = 87G.

In the metric approach, namely, when the gravitational
field is fully described by only the metric tensor g,,, the
field equations are obtained by varying the action (1) with
respect to g,,, leading to

ey, IO

- fR;;w + g;waR + 2fYR/4aRau
- 2[fyRa(/4];y)a + D[fYRyv] + [fyRaﬁ];aﬁguu

+ w(¢)¢;ﬂ¢;v = XT/wv (2)
where T, = — \/L__g‘s(gf ») s the energy-momentum tensor

of matter, fR:%’;, fy:%, and = is the

D’Alembert operator. For the Ricci tensor we use the
convention R, = R?,,,, while for the Riemann tensor
we define R%,, = Lot The affinity connections
are the usual Christoffel symbols of the metric, namely,
T, = 39 (a0 p + 9po.w — Yap.o)» and we adopt the signa-
ture (4,—,—,—). The trace of the field equation above
reads

fRR +2fyRapR? = 2f + O[3fr + fyR] + 2[fyRY].4p
- w(¢)¢;(l¢;a = XT? (3)

1 .
Here we use the convention ¢ = 1.
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where T = T°, is the trace of energy-momentum tensor.
Finally, by varying the action (1) with respect to the scalar
field ¢, we obtain the Klein-Gordon field equation

2w(¢)0¢ + 0y () hup™ = fp =0, (4)
where w, = ‘;—g and f, = %.

A. Solutions for a point-like source in the
weak-field limit

For many physical systems the study is carried out in the
weak-field approximation; in particular, for our aim the
Newtonian limit of the theory is adequate. In order to
perform our approximation we have to perturb Egs. (2), (3),
and (4) in a Minkowski background 7, [14,77]. Neglecting
the technical aspects, we can write the expression for the
metric tensor g, as follows:

1+g§,2)(t,x)+~~- 0
I =
! 0 —5”‘ —|—g(2)(t, X) + -

ij
. (1 +2d 0 )
—8; +2¥5;; )

d=pO 4@ 4. =) 4,

(5)

2
A — m2AD my” _
(A =my?) +[2 6rin

mp? + 2my? A

(- myaw - M
{ |

2 6mR2

He-myw-o) s

a mg? + 2my? A
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where ®, ¥, and ¢ are proportional to the power c~2
(Newtonian limit). The function £, up to the ¢™* order, can
be developed as

R+ Frr(0,0,49) 2

F(R.RoyyRY. $) = f(0.0,¢) 5

)
L0000 gy
+ fr(0.0,0 )R

+ fr(0,0, V)RR, (6)

while all other possible contributions in f are negligible
[14,15,78]. By introducing the quantities

i fr(0.0.4)
B 3 R (0,0,6) +2£,(0,0,90)
2. fr(0,0,4%)
£r(0,0,¢0))
2. f40(0,0,¢9)
T T ()

; (7)

and setting f(0,0,$) = 1, @(¢®) = 1/2 for simplic-
ity, we get the complete set of differential equations

2 ] R+ mYZfR(/:(O» 0, ¢(0))A(ﬂ = —mszp,

]R - mYZfR(/)(Ov 0, ¢(O))A(ﬂ}5ij

2 —my2 5 0
"SRR 0,000 =0
ij

(A =mp?)R = 3mg*fry(0.0,9) Ap = mg*Xp,

(A =my?)p + fryp(0,0,6O)R =0,

where the energy-momentum tensor 7, has also been
expanded in the case of a perfect fluid when the pressure is
negligible with respect to the mass density p.

The last two equations in Eq. (8) are a coupled system
and—for a point-like source p(x) = M5(x)—admit the
solutions [78]

— §2GM¥ —m|x| —m_|x|
(p(X) - 3 |X‘ 0, —o_ [6 € ]’
GM 1
R(x) = —2mpg? ™ o —a. (@, —n?)e ¥
+ -
= (- =n*)e-], ©)

where

1-é+P /(1 -E+r)? —dip?
wi: 2 )

2 _ 2
miy = mpwy,

& =3fry(0,0,4)2,
mg,

mp

The solutions of the gravitational potential @&
and YW, derived from the first two equations of Eq. (8),
are
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GM
o) == |1+ gemen

+[5-atem] e -Semin]. o

wix) == 01 - gtempen

—m_|x 2—myx
-3 =glemle = Semnl]

where

=P EH N+ (E-1)2 =27 (E 4 1)
oo = 6/t + (E=1)2 =27 (5 +1) '

Note that for fy — 0, ie., my — co, we obtain the
same outcome for the gravitational potential as in
Ref. [78] for a f(R, ¢) theory. The absence of the coupling
term between the curvature invariant Y and the scalar field
¢ as well as the linearity of the field equations (8)
guarantees that the solution (10) is a linear combination
of solutions obtained within a f(R,¢) theory and a
R+ Y/my? theory, generalizing the outcomes of the
theory f(R,R,sR*) [15].
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III. DYNAMIC OF A MASSLESS SCALAR FIELD IN
A WEAK GRAVITATIONAL FIELD

In a curved spacetime the massless scalar field y(z, x)
obeys the following field equation [79]:

(O + Ry (1.x) = Jl__gaa[ﬁg“ﬂaﬁw, x)]

+ ERy(1,x) =0, (12)

where ¢ is a coupling parameter between geometry and
matter. In our ETG framework and in the vacuum, the
curvature scalar R is different from zero [see Eq. (9)]. For
simplicity we consider the massless scalar field (1, x)
confined between two parallel plates separated by a distance
L and with extension S, placed at a distance R from the
gravitational nonrotating source (R > L, V'S) (see Fig. 1).

We choose a reference frame with the origin at one of the
plates and the z axis along the radial direction. We can
expand the metric tensor components—using the gravita-
tional potentials ®(x) [Eq. (10)], ¥(x) [Eq. (11)], and
R(x) [Eq. (9)]—around the distance R along the z direction
as follows:

goo(X) =1+ 2®(R) + 2A(R)z,
gij(x) = =1+ 2%¥)(R) 4 2X(R)z,
R(x) =Ri(R) + Ra(R)z, (13)

where

G 1 4
Dy(R) = _o [1 + g(&.n)e K + <— -9(& n))e‘mR - ge"”yR],

R 3

R

AR) =S8 1 glen) -+ mo R4 (S gl ) (14 m R4 =31 my R

o) == S8 [1 - glenen = (3-aten) )

3

2
m_R _ = ,—myR
3° } ’

GM 1 2
2(8) = G 1= e+ mo R # = (S=glen) ) 01+ moRe 4 =3 (14 myR)ee |
GM — 2\,—m.R _ = 2\ ,—m_R
R] (R) — _ZmRZ_(w+ ’/I )e (C() l’] )e ,
R Wy —
GM 2 1 R —-m, R __ = 2 1 R —m_R
Rz(R):szZ—z(er n )( +m+ )e ((1) n )( +m )e ) (14)
R W, —w_
Using the metric (13), the field equation for the scalar field w(z,x) [Eq. (12)] becomes
G (1,x) = [1 + 40 + dyzlay (1, %) + E[Ry + Rozly(t,x) =0, (15)
where a dot represents a derivative with respect to ¢, and
2GM 2GM
D= 0y(R) + Wo(R) = == [1 =™K,y = AR)+E(R) =~y [1 = (1 +myR)e ™8 (16)
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Casimir Plates 4

Central body

FIG. 1. The configuration of the Casimir-like system in a
gravitational field.

To solve Eq. (15) we use the ansatz

w(t.x) = NE(g)e/@kex), (17)

where k | = (k,, k), x; = (x,y),and N is a normalization

constant. The field equation (15) becomes

(92 + 2)E(A) =0, (18)
where
A=Mz) =a—pz=L0723 -0,
(= (1-4®)0? — K3 — Ry,
0 = 40’y + ER,. (19)

The solution of Eq. (18) can be given in terms of Bessel
functions:

2 2
E(ﬂ) - \/z|:C1J1/3 <§l’;/2> —|— C2]_]/3 <§ﬂ3/2>:| s (20)

where C; and C, are constants. We note that 1 > 1 because
0 < {. Then we can use the asymptotic form of Eq. (20):

(1) = Jﬂzﬂsm EP/Z + T:|.

If we assume that the field y satisfies Dirichlet boundary
conditions on the plates, that is,

[1]

(21)

(22)

after some algebra, we find the relation
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%[13/2(0) - 22(L)] = nx,

(23)
where n is an integer. From Eq. (23) we find the energy
spectrum:

w? = (1 +4® +2yL) [ki + <nL—ﬂ>T +§[R1 +%R2L}
(24)

This relation shows that the dependence on the parameters
mpg and m, appears in the second term on the right-hand
side of Eq. (24), i.e., the curvature terms. In other words, if
the coupling parameter £ is zero the energy spectrum in the
case of f(R,¢) gravity reduces to that of GR.

Finally, using the scalar product defined in the theory of
quantum fields in curved spacetimes,

W W) = —i/v[(aﬂwn)wi‘n ~ Y, (0m)]
X \/=gzntdxdydz, (25)
we derive the normalization constant
N2 il (26)

~ 3Swn(l - )

A. Casimir vacuum energy density

To calculate the mean vacuum energy density £ between
the plates, we use the general relation [79]

|
5:V—Z/dzkl/dxdydz\/—gs(goo)‘lToo(wn,l//ii),
P n

(27)
where
3
Vp = /dxdde\/_g:; = S |:1 - 3‘{10 — EEL:| s
1
T,, = Oi,w — Eg,wg“/’ Dy Opy. (28)

Vp is the proper volume and 7oy (,,, ;) is a component of
the energy-momentum tensor. Using the Schwinger proper-
time representation and {-function regularization, we find
the mean vacuum energy density:

7’ R,
E=—[14+3(D)—¥y) —(2Z—-A)L ,
(29)

where Lp is the proper length of the cavity,
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1
LP —/dZ\/_g:; 2L|:1—T0—§2L:|,

D) -, = 2oM { (& n)e R
+ G —g(&, n)) e R — % e"”Y’*} :
2X2-A= %4 [1=3g(&m)(1+m R)e~ ¥
= (1=3g(&n)(1 +m_R)e-F]. (30)

The relation (29) gives the corrections to the Casimir vacuum
energy density, up to the order o(M/ Rz).2 Contrary to GR
results, where corrections to the Casimir energy density
occur to second order (M/R?), in ETG one obtains correc-
tions to first order, o(M/R). This is a very interesting result,
because it provides a physical quantity that directly tests
ETG. Finally, we note that the first-order correction increases
the Casimir vacuum energy density, while the second-order
corrections decrease the Casimir vacuum energy density.

B. Casimir pressure

The attractive force observed between the cavity plates
is obtained from the relation F = 8LP’ where E = EVp
is the Casimir vacuum energy. In the case of ETG, one
gets

7 - 2A nSp
F=—-|1+3(®,-2¥,) — , 31
+ 3(®D, 0) 3 P 48013 (31)
where
GM
D — 2o = ——{1 = 3g(&,m)e™* (1 = 3g(&.m))e™"-"],
GM
T —2A = = [5+99(&n)(1 + m R)e™™k

+3(1=3g(&n)(1 + m_R)e™™-R
4+ —8(1 + myR)e~"R].

From Eq. (31) we note that the contributions of curvature
are mathematically zero. Furthermore, the correction at first
order does not depend on the parameter my, while those at
second order depend on all of the parameters. By intro-
ducing the Casimir pressure P = F /S, one finally gets

P =Py + Perc.
2
n
Po= ©480L%°
T -2A
Prrg = |3(®g —2¥) - TLP Py, (32)

’In Eq. (29) we have neglected all products of order higher
than ¢~2
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where P, is the Casimir pressure in the flat case, while
Prrc 1s the correction to the pressure in the context of ETG.

IV. EXPERIMENTAL CONSTRAINTS

Our aim now is to test the compatibility of an ETG with
the experimental data. This can be achieved by using the
pressure as a measurable physical quantity. Imposing the
constraint | Pgrg| < 8P, where 5P is the experimental error,
we obtain the relation

T -2A oP

which gives the constraint for the free parameters (7) of
the ETG.

Now we analyze some models of ETG; see Table I
Let us first consider the case A in Table I; the only relevant
quantity is my. The relation (33) implies

2Rg 6P

1 —2eMrRe| <
1 -2 |3R57>0

(34)
where Rq and R§, are the radius and Schwarzschild radius

of the Earth. As a special case of f(R) theories one can
consider the polynomial expression

N
=R +aR? +Zan72”. (35)

n=3

f(R)

Note, however, that the characteristic scale mgp is only
generated by the R? term. In the literature an interesting
model of f(R) theories is that of Starobinsky, f(R) =
R —R?/R, [80], for which m3% = R,/6.

To generalize the previous results one has to include
the curvature invariant R, R*. For case B in Table I—
corresponding to the general class of f(R, RaﬂRaﬂ)
theories and their characteristic scales mp and my—we
use Eq. (33) to obtain

1 —2¢~MrRe _ 1Lp
o

[5+6(1 + mpRg)e "=Re

2 Rg 6P

—8(1 + myRg)e ™ Re]| < .
( mY @)e } 3R§‘9PO

Notice that to also constrain the parameter my one needs
corrections up to second order in (M/R?). This class of
theories includes the Weyl-square-type model, i.e.,
ClpsCH7? = 2R, R — —R2 where only one character-
istic scale appears (mgr — +00).

The same argument is also valid for the scalar-tensor case
of the theory, for which in the Newtonian limit (see case D

in Table I) the more general expression (6) reads

(1-0 \/)m\fw "4 (- 0P, ()
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PHYSICAL REVIEW D 95, 084019 (2017)

TABLE 1. Here f%(0.0,¢©) =1 and w(¢”)) = 1/2, and for case D we set also ¢, + c;¢©) = 1.

Case

Mass definition

A f(R)

C F(R.¢) + (d)pad”

D R+ iR+ f(P) + ().t

E F(R.RGRY. ) + () prah®

2 _
mgr"~ = 3frr(0)
my? — oo,m¢2 =0
§=0,n=0,9(&n) =2/3

m, = mp,m_ — o

2 1
MR = = 37%r(0.0) 127, (0.0)

my* = -y’ =0
E=0.n=0,9(&n) =2/3
m, = mp,m_ — o0

2 _ _ 1
T 3fre(09)

mY2 — 00, m¢2 = —f¢¢(0, (/)(0))
£=3fry(0.0)"n =3t

mp
1=g+nP £/ (1=g+7) =47
my — 5 m

mRZ

mg

R
= 00, my* = 00, my* = —f 44 ()
£=3c%n—0.9(.0) =55

"y

m, — oo, m_ —
* ’ V1-3¢,?

1
T 31 2R (0.0.60)+27,(0.0.47)

my® = oy’ = ~Lp(0.0.00)
£="3fry(0.0.¢0) =3t

1=gPn/(1=g+1P) 4
my = 5 mp

mR2 =

Thus, for the a general scalar-tensor (ST) theory in the
Newtonian limit, one can consider the model®

1
fsi(Ro9) = R+ e R =3 m2 (= $O) + 2 "
(7)

Since for this case mz — o0, my — oo, & = 3¢,%, n — 0,
m, — oo, and m_ = ——2—, from Eq. (33) it follows that

V1-3¢,2
2e"-Re
1 -3¢

_2Rg 5P

~ 3RS P

As a special case of a scalar-tensor fourth-order gravity
model (case E), we consider noncommutative spectral
geometry (NCSG) [81,82], for which at a cutoff scale
(set as the grand unification scale) the purely gravitational
part of the action coupled to the Higgs H reads [83]

i

R
Snesg = / d*x\/=g {W + a9 Cpps CH77 + 1yR*R*
0

RH?
12

H, H“

T

— po*H? + — + JgH*|, (38)

*With the condition ag + a;¢© = 1.

where R*R* is the topological term that integrates to the
Euler characteristic, and hence is nondynamical. Since the
square of the Weyl tensor can be expressed in terms of R?
and R,,/R* as Cp,,,C"*" = 2R, R" — %Rz, the NCSG
action is a particular case of the action (1). For this model,
we have the following parameters:

afoH} 5% (kiHy — 6)
mR — 00, 52 2 mY == P 5
127 36fok;
af
n—0, my= ﬂ_zo (2ug — 1220H3),
m
4
s m_ , 39
m, — oo,m_ — \/1_?2 (39)
where we have set fz(0,0,$) = 2137 - go%'oqg(o)z = 1.
Using Eq. (33), one obtains
1Lp 2 Rg 6P
1--=L[5-8(1 Rg)e™Re]| <28
6Rg U T mrRe) R S S By

The total absolute experimental error (in experiments
measuring the Casimir pressure between Au coated
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plates by means of a micromechanical torsional oscillator
at the shortest separations) is as small as 0.2%
(6P/Py=0.002) of the measured Casimir pressure
[84]. Current technology is far from providing a direct
experiment to check the influence of gravity on the
Casimir pressure.”

For the sake of simplicity we can analyze the case of a
f(R) theory [Eq. (34)]. The term on the right-hand side
of Eq. (34) is of the order’ o(10%), while the one on the
left-hand side is of the order of unity. Such a large
difference implies that, at the moment, we cannot use
the Casimir experiments [84] to measure the pressure in
order to constrain the parameter mp of the gravitational
model: to be able to constrain the free parameters, we need
to improve the experimental sensitivity on Earth by at
least 6 orders of magnitude, %i; < 107°. However, gravi-
tational interferometers may provide a valid framework to
test ETG. They have reached a high sensitivity, and
therefore they could in principle be used as a tool to
detect the small effects induced by gravity on the Casimir
pressure, improving the required precision by 6 orders of
magnitude. Moreover, future space missions with
advanced technology might allow measurements around
the planet Jupiter. In fact, in this case we get the best ratio

of the radii,6 % = 2.5 x 107, and therefore we only have to
J

improve the sensitivity of the instruments by 4 orders of

magnitude. This also suggests that in the future Jupiter

‘We note that for the Earth ®,—2¥,=10"° and
(7S = 2A)Lp = 10722,
*We have 2—? =7.2x10% and & = 1073
) 0

®Here we report some estimations of the parameter 1% for
different Solar System objects: Moon =1.6 x 10'°, Mercury
=49 x 10°, Venus =8.4 x 10%, Mars =3.6 x 10°, Saturn
=6.9 x 107, Uranus =1.9 x 108, Neptune =1.7 x 103, and
Pluto =6.2 x 10'°
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might provide a different laboratory in the Solar System to
test the influence of modified gravity on Casimir-like
experiments.

V. CONCLUSIONS

Working in the weak-field approximation, we have
solved the field equations in a curved spacetime for a
massless scalar field, following a perturbative approach up
to the o(M/R?) order. We have derived the corrections to
the flat spacetime Casimir vacuum energy density and
pressure in the context of ETG.

For the Casimir vacuum energy density (29), we have
found that GR only gives a contribution to the second order,
and not to the first order. This is a very interesting result
because future experiments with higher sensitivity may
directly test the models of ETG to the first order in
o(M/R?).

Finally, we have also derived the Casimir pressure,
given by Eq. (32). In this case GR gives a contribution to
the first order. Requiring that the corrections for a given
model of ETG decrease within the experimental errors, we
have imposed the constraints (33) on the free parameters
of the model. However, present technology [84] does not
allow for a direct measurement of gravity effects on a
Casimir-like apparatus. This is because the sensitivity of
the experiments needs to be improved by at least 6 orders
of magnitude in order to quantify the small effects induced
by gravity. For these reasons, the gravitational interfer-
ometers—owing to the achieved high sensitivity—might
give a direct check of the influence of gravity on the
Casimir pressure and, as a consequence, they can be
considered an alternative tool for testing the ETG. We
have also discussed how the planet Jupiter, with appro-
priate space missions around it, might be a favorite
laboratory in the Solar System to test some models of
ETG by measuring the Casimir pressure.
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