
Casimir effect in extended theories of gravity

G. Lambiase,1,2,* A. Stabile,3,4,† and An. Stabile1,2,‡
1Dipartimento di Fisica “E.R. Caianiello”, Università degli Studi di Salerno, via G. Paolo II,

Stecca 9, I—84084 Fisciano, Italy
2Dipartimento di Fisica “E.R. Caianiello”, Istituto Nazionale di Fisica Nucleare (INFN) Sezione di

Napoli, Gruppo collegato di Salerno, 84084 Fisciano, Italy
3Dipartimento di Ingegneria, Università degli Studi del Sannio, Palazzo Dell’Aquila Bosco Lucarelli,

Corso Garibaldi, 107- 82100 Benevento, Italy
4Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Napoli,

Complesso Universitario di Monte SantAngelo, Edificio G, Via Cinthia,
I-80126 Napoli, Italy

(Received 8 December 2016; published 11 April 2017)

We study the Casimir vacuum energy density and the Casimir pressure for a massless scalar field
confined between two nearby parallel plates in a slightly curved, static spacetime background, employing
the weak-field approximation in the framework of extended theories of gravity (ETG). Following a
perturbative approach, we find the gravity corrections to the Casimir vacuum energy density and pressure.
The corrections to the vacuum energy density in the framework of general relativity (GR) are small, and
today they are still undetected with current technology. However, future sensitivity improvements in
gravitational interferometer experiments will give a useful tool to detect such effects induced by gravity.
For these reasons, which are interesting from a theoretical point of view, we generalize the outcomes of GR
in the context of ETG. Finally, we find the general relation to constrain the free parameters of the ETG.

DOI: 10.1103/PhysRevD.95.084019

I. INTRODUCTION

Our Universe appears to be spatially flat and undergoing
a period of accelerated expansion. Observational data has
been used to probe this picture [1–6], but two unrevealed
ingredients are needed in order to achieve this dynamical
scenario, namely, dark matter on galactic and extragalactic
scales, and dark energy on cosmological scales. The
dynamical evolution of self-gravitating structures can be
explained within Newtonian gravity, but a dark matter
component is required in order to obtain agreement with
observations [7].
Lately, models of extended gravity [8,9] have been

considered as a viable theoretical mechanism to explain
cosmic acceleration and galactic rotation curves. In such
models one extends only the geometric sector, without
introducing any exotic matter. Such models may result
from an effective theory of a quantum gravity formulation
(which may contain additional contributions with respect to
general relativity) on galactic, extragalactic, and cosmo-
logical scales where otherwise large amounts of unknown
dark components are required. In the context of models of
extended gravity, one may consider that the gravitational
interaction acts differently at different scales, while the
robust results of general relativity (GR) on local and Solar
System scales are preserved [10].

In the so-called weak-field approximation, any relativ-
istic theory of gravitation in general yields corrections to
the gravitational potentials (e.g., Ref. [11]) which—at the
Newtonian and post-Newtonian levels—could constitute
the test bed for these theories [12]. In fact, in extended
theories of gravity (ETG) there are further gravitational
degrees of freedom, and moreover the form of the gravi-
tational interaction is no longer scale invariant. Hence, in a
given situation, besides the Schwarzschild radius, other
characteristic gravitational scales could arise from the
dynamics. Such scales, in the weak-field approximation,
should exhibit a form of gravitational confinement in this
way [13].
Models of fourth-order gravity have been studied

mainly in the Newtonian limit (weak-field and small
velocity) [14,15], as well as in the Minkowskian limit
[16]. In the former one finds modifications of the
gravitational potential, while in the latter one obtains
massive gravitational-wave modes [17,18]. The weak-
field limit of such proposals has to be tested against
realistic self-gravitating systems. Galactic rotation curves,
stellar hydrodynamics, and gravitational lensing appear as
natural candidates as test-bed experiments [19–24]. These
corrections to the gravitational Lagrangian were already
considered by several authors [25–39]. From a conceptual
viewpoint, there is no reason a priori to restrict the
gravitational Lagrangian to a linear function of the
Ricci scalar minimally coupled to matter [40]. In particu-
lar, one may consider the generalization of fðRÞ models
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(where R is the Ricci scalar) through generic functions
containing curvature invariants—such as the Ricci squared
(RαβRαβ) or the Riemann squared (RαβγδRαβγδ)—that are
not independent due to the Gauss-Bonnet invariant
(R2 − 4RμνRμν þRμνλσRμνλσ). Note that the same remark
applies to the Weyl invariant CαβγδCαβγδ. Hence, one may
add a (massive propagating) scalar field coupled to geom-
etry; this leads to the scalar-tensor fourth-order gravity.
A fundamental issue is the possibility that ETG can be

plagued by pathologies, such as the appearance of ghosts
(negative-norm states), which could allow for negative
possibilities and consequently violations of unitarity
[41–44]. In particular, while standard GR and the Gauss-
Bonnet theory have the same field content, this is not the
case for fðRÞ gravity and Weyl gravity. The former is safe,
even though it does not improve the ultraviolet behavior
of the theory; fðRÞ gravity has just an extra scalar and can
be ghost free in its Newtonian limit [45]. The latter has
an extra pathological spin-2 field, which however causes
no problem in the low-energy regime since then the effects
of higher-order terms give rise to small corrections to
GR [45,46]. In our analysis, we will consider an action
motivated from noncommutative geometry within the class
of Weyl-type gravity. However, as we will discuss, this
proposal will be considered in the spirit of an effective field
theory, and hence it is free from any pathologies.
In this paper we consider the Casimir effect in curved

space where the metric is given by a modified theory of
gravity. Generally speaking, the Casimir effect [47,48] can
be defined as the stress on the bounding surfaces when a
quantum field is confined in a finite volume of space.
The confinement of a physical field obviously restricts
the modes of the corresponding quantum field, giving us
measurable macroscopic effects. The Casimir effect has
been widely discussed in flat space [49–59] and has been
shown to have good agreement with the theory. Recently,
some authors [60–69] have considered the influence of a
gravitational field on the vacuum energy density of a
quantum field inside a cavity. Indeed, possible modifica-
tions in the vacuum energy induced by gravity could play a
relevant role in the dynamics of the Universe [62,70]. Yet,
at a microscopic level, modifications of the Casimir energy
induced by strong gravitational fields could become rel-
evant in models of quark confinement based on string
interquark potentials [71–74]. In connection with the
equivalence principle, there is a further question, namely,
whether vacuum fluctuations gravitate or not. Finally, the
analysis of the possible gravitational effects on Casimir
cavities faces the open issue concerning the limits of
validity of GR at small distances [75]. In this paper we
perform a perturbative evaluation up to second order of the
gravitational corrections to the Casimir vacuum energy
density for a massless scalar field confined in a cavity in a
slightly curved static spacetime background. Our starting
point is Ref. [63], where the spacetime was given by the

approximated Schwarzschild solution, while we consider
the Newtonian limit of the solution in the case of ETG.
The paper is organized as follows. In Sec. II we

investigate the weak-field limit of a particular ETG, i.e.,
scalar-tensor-higher-order models, in view of constraining
their parameters by the analysis of the Casimir effect. In
Sec. III we analyze the dynamic of a massless scalar field in
a weak gravitational field. Finally, in Sec. IV we discuss the
theoretical constraints of the ETG considered. Our con-
clusions are drawn in Sec. V.

II. SCALAR-TENSOR FOURTH-ORDER
GRAVITY

Let us consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½fðR;RαβRαβ;ϕÞ þ ωðϕÞϕ;αϕ
;α þ XLm�;

ð1Þ
where f is an unspecified function of the Ricci scalarR, the
curvature invariant RαβRαβ ≐ Y (where Rαβ is the Ricci
tensor), and ϕ is a scalar field. We note that the Riemann
tensor can be discarded since the Gauss-Bonnet invariant
fixes it in the action (for details, see Ref. [76]). Here Lm is
the Lagrangian density of the ordinary matter, ωðϕÞ is a
generic function of the scalar field, g is the determinant of
the metric tensor gμν, and

1 X ¼ 8πG.
In the metric approach, namely, when the gravitational

field is fully described by only the metric tensor gμν, the
field equations are obtained by varying the action (1) with
respect to gμν, leading to

fRRμν −
f þ ωðϕÞϕ;αϕ

;α

2
gμν

− fR;μν þ gμν□fR þ 2fYRμ
αRαν

− 2½fYRαðμ�;νÞα þ□½fYRμν� þ ½fYRαβ�;αβgμν
þ ωðϕÞϕ;μϕ;ν ¼ XTμν; ð2Þ

where Tμν ¼ − 1ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgμν is the energy-momentum tensor

of matter, fR ¼ ∂f
∂R, fY ¼ ∂f

∂Y, and □ ¼ ;σ
;σ is the

D’Alembert operator. For the Ricci tensor we use the
convention Rμν ¼ Rσ

μσν, while for the Riemann tensor
we define Rα

βμν ¼ Γα
βν;μ þ � � �. The affinity connections

are the usual Christoffel symbols of the metric, namely,
Γμ
αβ ¼ 1

2
gμσðgασ;β þ gβσ;α − gαβ;σÞ, and we adopt the signa-

ture ðþ;−;−;−Þ. The trace of the field equation above
reads

fRRþ 2fYRαβRαβ − 2f þ□½3fR þ fYR� þ 2½fYRαβ�;αβ
− ωðϕÞϕ;αϕ

;α ¼ XT; ð3Þ

1Here we use the convention c ¼ 1.

G. LAMBIASE, A. STABILE, and AN. STABILE PHYSICAL REVIEW D 95, 084019 (2017)

084019-2



where T ¼ Tσ
σ is the trace of energy-momentum tensor.

Finally, by varying the action (1) with respect to the scalar
field ϕ, we obtain the Klein-Gordon field equation

2ωðϕÞ□ϕþ ωϕðϕÞϕ;αϕ
;α − fϕ ¼ 0; ð4Þ

where ωϕ ¼ dω
dϕ and fϕ ¼ df

dϕ.

A. Solutions for a point-like source in the
weak-field limit

For many physical systems the study is carried out in the
weak-field approximation; in particular, for our aim the
Newtonian limit of the theory is adequate. In order to
perform our approximation we have to perturb Eqs. (2), (3),
and (4) in a Minkowski background ημν [14,77]. Neglecting
the technical aspects, we can write the expression for the
metric tensor gμν as follows:

gμν ≅

 
1þ gð2Þtt ðt;xÞ þ � � � 0

0 −δij þ gð2Þij ðt;xÞ þ � � �

!

≐
�
1þ 2Φ 0

−δij þ 2Ψδij

�
;

ϕ ≅ ϕð0Þ þ ϕð2Þ þ � � �≐ ϕð0Þ þ φ; ð5Þ

where Φ, Ψ, and φ are proportional to the power c−2

(Newtonian limit). The function f, up to the c−4 order, can
be developed as

fðR;RαβRαβ;ϕÞ ¼ fRð0; 0;ϕð0ÞÞRþ fRRð0; 0;ϕð0ÞÞ
2

R2

þ fϕϕð0; 0;ϕð0ÞÞ
2

ðϕ − ϕð0ÞÞ2

þ fRϕð0; 0;ϕð0ÞÞRϕ

þ fYð0; 0;ϕð0ÞÞRαβRαβ; ð6Þ

while all other possible contributions in f are negligible
[14,15,78]. By introducing the quantities

mR
2≐ −

fRð0; 0;ϕð0ÞÞ
3fRRð0; 0;ϕð0ÞÞ þ 2fYð0; 0;ϕð0ÞÞ ;

mY
2≐ fRð0; 0;ϕð0ÞÞ

fYð0; 0;ϕð0ÞÞ ;

mϕ
2≐ −

fϕϕð0; 0;ϕð0ÞÞ
2ωðϕð0ÞÞ ; ð7Þ

and setting fRð0; 0;ϕð0ÞÞ ¼ 1, ωðϕð0ÞÞ ¼ 1=2 for simplic-
ity, we get the complete set of differential equations

ð△ −mY
2Þ△Φþ

�
mY

2

2
−
mR

2 þ 2mY
2

6mR
2

△

�
RþmY

2fRϕð0; 0;ϕð0ÞÞ△φ ¼ −mY
2Xρ;

�
ð△ −mY

2Þ△Ψ −
�
mY

2

2
−
mR

2 þ 2mY
2

6mR
2

△

�
R −mY

2fRϕð0; 0;ϕð0ÞÞ△φ

�
δij

þ
�
ð△ −mY

2ÞðΨ −ΦÞ þmR
2 −mY

2

3mR
2

RþmY
2fRϕð0; 0;ϕð0ÞÞφ

�
;ij

¼ 0;

ð△ −mR
2ÞR − 3mR

2fRϕð0; 0;ϕð0ÞÞ△φ ¼ mR
2Xρ;

ð△ −mϕ
2Þφþ fRϕð0; 0;ϕð0ÞÞR ¼ 0; ð8Þ

where the energy-momentum tensor Tμν has also been
expanded in the case of a perfect fluid when the pressure is
negligible with respect to the mass density ρ.
The last two equations in Eq. (8) are a coupled system

and—for a point-like source ρðxÞ ¼ MδðxÞ—admit the
solutions [78]

φðxÞ ¼
ffiffiffi
ξ

3

r
2GM
jxj

1

ωþ − ω−
½e−mþjxj − e−m−jxj�;

RðxÞ ¼ −2mR
2
GM
jxj

1

ωþ − ω−
½ðωþ − η2Þe−mþjxj

− ðω− − η2Þe−m−jxj�; ð9Þ

where

ω� ¼ 1 − ξþ η2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξþ η2Þ2 − 4η2

p
2

;

m2
� ¼ m2

Rω�;

ξ ¼ 3fRϕð0; 0;ϕð0ÞÞ2;
η ¼ mϕ

mR
:

The solutions of the gravitational potential Φ
and Ψ, derived from the first two equations of Eq. (8),
are
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ΦðxÞ ¼ −
GM
jxj
�
1þ gðξ; ηÞe−mþjxj

þ
�
1

3
− gðξ; ηÞ

�
e−m−jxj −

4

3
e−mY jxj

�
; ð10Þ

ΨðxÞ ¼ −
GM
jxj
�
1 − gðξ; ηÞe−mþjxj

− ½1=3 − gðξ; ηÞ�e−m−jxj −
2

3
e−mY jxj

�
; ð11Þ

where

gðξ; ηÞ ¼ 1 − η2 þ ξþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η4 þ ðξ − 1Þ2 − 2η2ðξþ 1Þ

p
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η4 þ ðξ − 1Þ2 − 2η2ðξþ 1Þ

p :

Note that for fY → 0, i.e., mY → ∞, we obtain the
same outcome for the gravitational potential as in
Ref. [78] for a fðR;ϕÞ theory. The absence of the coupling
term between the curvature invariant Y and the scalar field
ϕ as well as the linearity of the field equations (8)
guarantees that the solution (10) is a linear combination
of solutions obtained within a fðR;ϕÞ theory and a
Rþ Y=mY

2 theory, generalizing the outcomes of the
theory fðR;RαβRαβÞ [15].

III. DYNAMICOF AMASSLESS SCALAR FIELD IN
A WEAK GRAVITATIONAL FIELD

In a curved spacetime the massless scalar field ψðt;xÞ
obeys the following field equation [79]:

ð□þ ξRÞψðt;xÞ ¼ 1ffiffiffiffiffiffi−gp ∂α½
ffiffiffiffiffiffi
−g

p
gαβ∂βψðt;xÞ�

þ ξRψðt;xÞ ¼ 0; ð12Þ

where ξ is a coupling parameter between geometry and
matter. In our ETG framework and in the vacuum, the
curvature scalar R is different from zero [see Eq. (9)]. For
simplicity we consider the massless scalar field ψðt;xÞ
confined between two parallel plates separated by a distance
L and with extension S, placed at a distance R from the
gravitational nonrotating source (R ≫ L;

ffiffiffi
S

p
) (see Fig. 1).

We choose a reference frame with the origin at one of the
plates and the z axis along the radial direction. We can
expand the metric tensor components—using the gravita-
tional potentials ΦðxÞ [Eq. (10)], ΨðxÞ [Eq. (11)], and
RðxÞ [Eq. (9)]—around the distance R along the z direction
as follows:

g00ðxÞ≃ 1þ 2Φ0ðRÞ þ 2ΛðRÞz;
gijðxÞ≃ −1þ 2Ψ0ðRÞ þ 2ΣðRÞz;
RðxÞ≃R1ðRÞ þR2ðRÞz; ð13Þ

where

Φ0ðRÞ ¼ −
GM
R

�
1þ gðξ; ηÞe−mþR þ

�
1

3
− gðξ; ηÞ

�
e−m−R −

4

3
e−mYR

�
;

ΛðRÞ ¼ GM
R2

�
1þ gðξ; ηÞð1þmþRÞe−mþR þ

�
1

3
− gðξ; ηÞ

�
ð1þm−RÞe−m−R þ −

4

3
ð1þmYRÞe−mYR

�
;

Ψ0ðRÞ ¼ −
GM
R

�
1 − gðξ; ηÞe−mþR −

�
1

3
− gðξ; ηÞ

�
e−m−R −

2

3
e−mYR

�
;

ΣðRÞ ¼ GM
R2

�
1 − gðξ; ηÞð1þmþRÞe−mþR −

�
1

3
− gðξ; ηÞ

�
ð1þm−RÞe−m−R þ −

2

3
ð1þmYRÞe−mYR

�
;

R1ðRÞ ¼ −2mR
2
GM
R

ðωþ − η2Þe−mþR − ðω− − η2Þe−m−R

ωþ − ω−
;

R2ðRÞ ¼ 2mR
2
GM
R2

ðωþ − η2Þð1þmþRÞe−mþR − ðω− − η2Þð1þm−RÞe−m−R

ωþ − ω−
: ð14Þ

Using the metric (13), the field equation for the scalar field ψðt;xÞ [Eq. (12)] becomes

ψ̈ðt;xÞ − ½1þ 4Φþ 4γz�▵ψðt;xÞ þ ξ½R1 þR2z�ψðt;xÞ ¼ 0; ð15Þ

where a dot represents a derivative with respect to t, and

Φ≡Φ0ðRÞ þΨ0ðRÞ ¼ −
2GM
R

½1 − e−mYR�; γ ≡ ΛðRÞ þ ΣðRÞ ¼ 2GM
R2

½1 − ð1þmYRÞe−mYR�: ð16Þ
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To solve Eq. (15) we use the ansatz

ψðt;xÞ ¼ NΞðzÞeiðωt−k⊥·x⊥Þ; ð17Þ

where k⊥ ≡ ðkx; kyÞ, x⊥ ≡ ðx; yÞ, and N is a normalization
constant. The field equation (15) becomes

ð∂2
λ þ λÞΞðλÞ ¼ 0; ð18Þ

where

λ≡ λðzÞ ¼ α − βz≡ ζθ−2=3 − θ1=3z;

ζ ¼ ð1 − 4ΦÞω2 − k2⊥ − ξR1;

θ ¼ 4ω2γ þ ξR2: ð19Þ

The solution of Eq. (18) can be given in terms of Bessel
functions:

ΞðλÞ ¼
ffiffiffi
λ

p �
C1J1=3

�
2

3
λ3=2
�
þ C2J−1=3

�
2

3
λ3=2
��

; ð20Þ

where C1 and C2 are constants. We note that λ ≫ 1 because
θ ≪ ζ. Then we can use the asymptotic form of Eq. (20):

ΞðλÞ≃
ffiffiffiffiffiffiffiffiffi
3

π
ffiffiffi
λ

p
s

sin

�
2

3
λ3=2 þ τ

�
: ð21Þ

If we assume that the field ψ satisfies Dirichlet boundary
conditions on the plates, that is,

ψðz ¼ 0Þ ¼ ψðz ¼ LÞ ¼ 0; ð22Þ

after some algebra, we find the relation

2

3
½λ3=2ð0Þ − λ3=2ðLÞ� ¼ nπ; ð23Þ

where n is an integer. From Eq. (23) we find the energy
spectrum:

ω2
n ¼ ð1þ 4Φþ 2γLÞ

�
k2⊥ þ

�
nπ
L

�
2
�
þ ξ

�
R1 þ

1

2
R2L

�
:

ð24Þ

This relation shows that the dependence on the parameters
mR and mϕ appears in the second term on the right-hand
side of Eq. (24), i.e., the curvature terms. In other words, if
the coupling parameter ξ is zero the energy spectrum in the
case of fðR;ϕÞ gravity reduces to that of GR.
Finally, using the scalar product defined in the theory of

quantum fields in curved spacetimes,

ðψn;ψmÞ ¼ −i
Z
V
½ð∂μψnÞψ�

m − ψnð∂μψmÞ��

×
ffiffiffiffiffiffiffiffi
−g3

p
nμdxdydz; ð25Þ

we derive the normalization constant

N2
n ¼

αβ

3Sωnnð1 −Φ0Þ
: ð26Þ

A. Casimir vacuum energy density

To calculate the mean vacuum energy density E between
the plates, we use the general relation [79]

E ¼ 1

VP

X
n

Z
d2k⊥

Z
dxdydz

ffiffiffiffiffiffiffiffi
−g3

p ðg00Þ−1T00ðψn;ψ�
nÞ;

ð27Þ

where

VP ¼
Z

dxdydz
ffiffiffiffiffiffiffiffi
−g3

p ≃ SL

�
1 − 3Ψ0 −

3

2
ΣL
�
;

Tμν ¼ ∂μψ∂νψ −
1

2
gμνgαβ∂αψ∂βψ : ð28Þ

VP is the proper volume and T00ðψn;ψ�
nÞ is a component of

the energy-momentum tensor. Using the Schwinger proper-
time representation and ζ-function regularization, we find
the mean vacuum energy density:

E ¼ −½1þ 3ðΦ0 −Ψ0Þ − ð2Σ − ΛÞLP�
π2

1440L4
P
þ ξR2

192LP
;

ð29Þ

where LP is the proper length of the cavity,

FIG. 1. The configuration of the Casimir-like system in a
gravitational field.
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LP ¼
Z

dz
ffiffiffiffiffiffiffiffi
−g3

p ≃ L

�
1 −Ψ0 −

1

2
ΣL
�
;

Φ0 −Ψ0 ¼ −
2GM
R

�
gðξ; ηÞe−mþR

þ
�
1

3
− gðξ; ηÞ

�
e−m−R −

1

3
e−mYR

�
;

2Σ − Λ ¼ GM
R2

½1 − 3gðξ; ηÞð1þmþRÞe−mþR

− ð1 − 3gðξ; ηÞÞð1þm−RÞe−m−R�: ð30Þ

The relation (29) gives the corrections to theCasimir vacuum
energy density, up to the order oðM=R2Þ.2 Contrary to GR
results, where corrections to the Casimir energy density
occur to second order ðM=R2Þ, in ETG one obtains correc-
tions to first order, oðM=RÞ. This is a very interesting result,
because it provides a physical quantity that directly tests
ETG. Finally, we note that the first-order correction increases
the Casimir vacuum energy density, while the second-order
corrections decrease the Casimir vacuum energy density.

B. Casimir pressure

The attractive force observed between the cavity plates
is obtained from the relation F ¼ − ∂E

∂LP
, where E ¼ EVP

is the Casimir vacuum energy. In the case of ETG, one
gets

F ¼ −
�
1þ 3ðΦ0 − 2Ψ0Þ −

7Σ − 2Λ
3

LP

�
π2SP
480L4

P
; ð31Þ

where

Φ0 − 2Ψ0 ¼
GM
R

½1 − 3gðξ; ηÞe−mþR−ð1 − 3gðξ; ηÞÞe−m−R�;

7Σ − 2Λ ¼ GM
R2

½5þ 9gðξ; ηÞð1þmþRÞe−mþR

þ 3ð1 − 3gðξ; ηÞÞð1þm−RÞe−m−R

þ −8ð1þmYRÞe−mYR�:
From Eq. (31) we note that the contributions of curvature
are mathematically zero. Furthermore, the correction at first
order does not depend on the parameter mY, while those at
second order depend on all of the parameters. By intro-
ducing the Casimir pressure P ¼ F=S, one finally gets

P ¼ P0 þ PETG;

P0 ¼ −
π2

480L4
P
;

PETG ¼
�
3ðΦ0 − 2Ψ0Þ −

7Σ − 2Λ
3

LP

�
P0; ð32Þ

where P0 is the Casimir pressure in the flat case, while
PETG is the correction to the pressure in the context of ETG.

IV. EXPERIMENTAL CONSTRAINTS

Our aim now is to test the compatibility of an ETG with
the experimental data. This can be achieved by using the
pressure as a measurable physical quantity. Imposing the
constraint jPETGj≲ δP, where δP is the experimental error,
we obtain the relation				3ðΦ0 − 2Ψ0Þ −

7Σ − 2Λ
3

LP

				≲ δP
P0

; ð33Þ

which gives the constraint for the free parameters (7) of
the ETG.
Now we analyze some models of ETG; see Table I.

Let us first consider the case A in Table I; the only relevant
quantity is mR. The relation (33) implies

j1 − 2e−mRR⊕ j≲ 2

3

R⊕

RS
⊕

δP
P0

; ð34Þ

where R⊕ and RS
⊕ are the radius and Schwarzschild radius

of the Earth. As a special case of fðRÞ theories one can
consider the polynomial expression

fðRÞ ¼ Rþ αR2 þ
XN
n¼3

αnRn: ð35Þ

Note, however, that the characteristic scale mR is only
generated by the R2 term. In the literature an interesting
model of fðRÞ theories is that of Starobinsky, fðRÞ ¼
R −R2=R0 [80], for which m2

R ¼ R0=6.
To generalize the previous results one has to include

the curvature invariant RμνRμν. For case B in Table I—
corresponding to the general class of fðR;RαβRαβÞ
theories and their characteristic scales mR and mY—we
use Eq. (33) to obtain				1 − 2e−mRR⊕ −

1

6

LP

R⊕
½5þ 6ð1þmRR⊕Þe−mRR⊕

− 8ð1þmYR⊕Þe−mYR⊕ �
				≲ 2

3

R⊕

RS
⊕

δP
P0

:

Notice that to also constrain the parameter mY one needs
corrections up to second order in (M=R2). This class of
theories includes the Weyl-square-type model, i.e.,
CμνρσCμνρσ ¼ 2RμνRμν − 2

3
R2, where only one character-

istic scale appears (mR → þ∞).
The same argument is also valid for the scalar-tensor case

of the theory, for which in the Newtonian limit (see case D
in Table I) the more general expression (6) reads�

1 − ϕð0Þ
ffiffiffi
ξ

3

r �
Rþ

ffiffiffi
ξ

3

r
Rϕ −

mϕ
2

2
ðϕ − ϕð0ÞÞ2: ð36Þ2In Eq. (29) we have neglected all products of order higher

than c−2.
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Thus, for the a general scalar-tensor (ST) theory in the
Newtonian limit, one can consider the model3

fSTðR;ϕÞ ¼ c0Rþ c1Rϕ −
1

2
mϕ

2ðϕ − ϕð0ÞÞ2 þ 1

2
ϕ;αϕ

;α:

ð37Þ
Since for this case mR → ∞, mY → ∞, ξ ¼ 3c12, η → 0,
mþ → ∞, and m− ¼ mϕffiffiffiffiffiffiffiffiffiffiffi

1−3c12
p , from Eq. (33) it follows that

				1 − 2e−m−R⊕

1 − 3c21

				≲ 2

3

R⊕

RS
⊕

δP
P0

:

As a special case of a scalar-tensor fourth-order gravity
model (case E), we consider noncommutative spectral
geometry (NCSG) [81,82], for which at a cutoff scale
(set as the grand unification scale) the purely gravitational
part of the action coupled to the Higgs H reads [83]

SNCSG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ0

2
þ α0CμνρσCμνρσ þ τ0R⋆R⋆

þH;αH;α

2
− μ0

2H2 þ −
RH2

12
þ λ0H4

�
; ð38Þ

where R⋆R⋆ is the topological term that integrates to the
Euler characteristic, and hence is nondynamical. Since the
square of the Weyl tensor can be expressed in terms of R2

and RμνRμν as CμνρσCμνρσ ¼ 2RμνRμν − 2
3
R2, the NCSG

action is a particular case of the action (1). For this model,
we have the following parameters:

mR → ∞; ξ ¼ af0H2
0

12π2
; mY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5π2ðk20H0 − 6Þ

36f0k20

s
;

η → 0; mϕ ¼ af0
π2

ð2μ0 − 12λ0H2
0Þ;

mþ → ∞; m− →
mϕffiffiffiffiffiffiffiffiffiffi
1 − ξ

p ; ð39Þ

where we have set fRð0; 0;ϕð0ÞÞ ¼ 1
2k02

− ξ0
af0
π2

ϕð0Þ2 ¼ 1.
Using Eq. (33), one obtains

				1 − 1

6

LP

R⊕
½5 − 8ð1þmYR⊕Þe−mYR⊕ �

				≲ 2

3

R⊕

RS
⊕

δP
P0

:

The total absolute experimental error (in experiments
measuring the Casimir pressure between Au coated

TABLE I. Here fRð0; 0;ϕð0ÞÞ ¼ 1 and ωðϕð0ÞÞ ¼ 1=2, and for case D we set also c0 þ c1ϕð0Þ ¼ 1.

Case ETG Mass definition

A fðRÞ mR
2 ¼ − 1

3fRRð0Þ
mY

2 → ∞; mϕ
2 ¼ 0

ξ ¼ 0; η ¼ 0; gðξ; ηÞ ¼ 2=3
mþ ¼ mR; m− → ∞

B fðR;RαβRαβÞ mR
2 ¼ − 1

3fRRð0;0Þþ2fY ð0;0Þ
mY

2 ¼ 1
fY ð0;0Þ ; mϕ

2 ¼ 0

ξ ¼ 0; η ¼ 0; gðξ; ηÞ ¼ 2=3

mþ ¼ mR; m− → ∞
C fðR;ϕÞ þ ωðϕÞϕ;αϕ

;α mR
2 ¼ − 1

3fRRð0;ϕð0ÞÞ

mY
2 → ∞; mϕ

2 ¼ −fϕϕð0;ϕð0ÞÞ
ξ ¼ 3fRϕð0;ϕð0ÞÞ2; η ¼ mϕ

mR

m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ξþη2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ξþη2Þ2−4η2

p
2

q
mR

D c0Rþ c1Rϕþ fðϕÞ þ ωðϕÞϕ;αϕ
;α mR

2 → ∞; mY
2 → ∞; mϕ

2 ¼ −fϕϕðϕð0ÞÞ
ξ ¼ 3c12; η → 0; gðξ; 0Þ ¼ 2

3ð1−ξÞ
mþ → ∞; m− → mϕffiffiffiffiffiffiffiffiffiffiffi

1−3c12
p

E fðR;RαβRαβ;ϕÞ þ ωðϕÞϕ;αϕ
;α mR

2 ¼ − 1
3fRRð0;0;ϕð0ÞÞþ2fY ð0;0;ϕð0ÞÞ

mY
2 ¼ 1

fY ð0;0;ϕð0ÞÞ ; mϕ
2 ¼ −fϕϕð0; 0;ϕð0ÞÞ

ξ ¼ 3fRϕð0; 0;ϕð0ÞÞ2; η ¼ mϕ

mR

m� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ξþη2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ξþη2Þ2−4η2

p
2

q
mR

3With the condition α0 þ α1ϕ
ð0Þ ¼ 1.
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plates by means of a micromechanical torsional oscillator
at the shortest separations) is as small as 0.2%
(δP=P0 ≃ 0.002) of the measured Casimir pressure
[84]. Current technology is far from providing a direct
experiment to check the influence of gravity on the
Casimir pressure.4

For the sake of simplicity we can analyze the case of a
fðRÞ theory [Eq. (34)]. The term on the right-hand side
of Eq. (34) is of the order5 oð106Þ, while the one on the
left-hand side is of the order of unity. Such a large
difference implies that, at the moment, we cannot use
the Casimir experiments [84] to measure the pressure in
order to constrain the parameter mR of the gravitational
model: to be able to constrain the free parameters, we need
to improve the experimental sensitivity on Earth by at
least 6 orders of magnitude, δP

P0
≲ 10−9. However, gravi-

tational interferometers may provide a valid framework to
test ETG. They have reached a high sensitivity, and
therefore they could in principle be used as a tool to
detect the small effects induced by gravity on the Casimir
pressure, improving the required precision by 6 orders of
magnitude. Moreover, future space missions with
advanced technology might allow measurements around
the planet Jupiter. In fact, in this case we get the best ratio
of the radii,6 RJ

RS
J
≃ 2.5 × 107, and therefore we only have to

improve the sensitivity of the instruments by 4 orders of
magnitude. This also suggests that in the future Jupiter

might provide a different laboratory in the Solar System to
test the influence of modified gravity on Casimir-like
experiments.

V. CONCLUSIONS

Working in the weak-field approximation, we have
solved the field equations in a curved spacetime for a
massless scalar field, following a perturbative approach up
to the oðM=R2Þ order. We have derived the corrections to
the flat spacetime Casimir vacuum energy density and
pressure in the context of ETG.
For the Casimir vacuum energy density (29), we have

found that GR only gives a contribution to the second order,
and not to the first order. This is a very interesting result
because future experiments with higher sensitivity may
directly test the models of ETG to the first order in
oðM=R2Þ.
Finally, we have also derived the Casimir pressure,

given by Eq. (32). In this case GR gives a contribution to
the first order. Requiring that the corrections for a given
model of ETG decrease within the experimental errors, we
have imposed the constraints (33) on the free parameters
of the model. However, present technology [84] does not
allow for a direct measurement of gravity effects on a
Casimir-like apparatus. This is because the sensitivity of
the experiments needs to be improved by at least 6 orders
of magnitude in order to quantify the small effects induced
by gravity. For these reasons, the gravitational interfer-
ometers—owing to the achieved high sensitivity—might
give a direct check of the influence of gravity on the
Casimir pressure and, as a consequence, they can be
considered an alternative tool for testing the ETG. We
have also discussed how the planet Jupiter, with appro-
priate space missions around it, might be a favorite
laboratory in the Solar System to test some models of
ETG by measuring the Casimir pressure.
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