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A simple expression for calculating the classical potential in D-dimensional gravitational models is
obtained through a method based on the generating functional. The prescription is then used as a
mathematical tool to probe the conjecture that renormalizable higher-order gravity models—which are,
of course, nonunitary—are endowed with a classical potential that is nonsingular at the origin. It is also
shown that the converse of this statement is not true, which implies that the finiteness of the classical
potential at the origin is a necessary but not sufficient condition for the renormalizability of the model.
The systems we have utilized to verify the conjecture were fourth- and sixth-order gravity models in D
dimensions. A discussion about the polemic question related to the renormalizability of new massive
gravity, which Oda claimed to be renormalizable in 2009 and which was shown to be nonrenormalizable
by Muneyuki and Ohta three years later, is considered. We remark that the solution of this issue is
straightforward if the aforementioned conjecture is employed. We point out that our analysis is restricted
to local models in which the propagator has simple and real poles.
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I. INTRODUCTION

Higher-order gravity models are prime candidates as far
as the construction of a renormalizable gravity theory is
concerned. In fact, the higher-order terms of these systems
are responsible, in general, for taming the wild ultraviolet
divergences present in the Einstein-Hilbert action. In
addition, as is well known, a pacific coexistence between
renormalizability and unitarity is generally not attained in
these models.
Recently, many authors [1–19] have addressed the

problem of verifying a conjecture that—as far as we
know—was hinted at for the first time by Stelle [20,21]
in his analysis of the renormalizability of fourth-order
gravity in four dimensions: renormalizable higher-order
gravity models are endowed with a classical potential
lacking a singularity at the origin. Nonetheless, neither
Stelle nor the subsequent authors up to now seemed to
perceive in their guesstimates that the converse of this
premise is not true.
Our main goal here is to probe via some specific models

whether the finiteness of the potential at the origin is a
necessary but not sufficient condition for the renormaliz-
ability of the model.
A natural question must then be posed. What is the

utility of this conjecture? The advantages that result
from this surmise are very relevant. Indeed, by simply

computing the classical potential at the origin, we can
be absolutely certain that any higher-derivative
gravity model with a divergent potential at the origin
is nonrenormalizable. Additionally, if we are uncertain
about the renormalizability of a given system—as
is the case of new massive gravity (NMG) [22–25],
which Oda [26] claimed to be renormalizable and, three
years later, Muneyuki and Ohta [27] showed to be
nonrenormalizable—using our conjecture, we would
promptly conclude that this system is nonrenormalizable
since its gravitational potential is singular at the origin. If
we make a detailed comparison between the simplicity of
our premise and the difficult computations required by the
ordinary methods of quantum field theory, we come to the
conclusion that our surmise is much easier to handle in
the cases just mentioned. It is important to recall that the
task of proving the renormalizability of a given higher-
order gravity model is very hard work even for the experts
on the subject, which can be easily seen by leafing
through the aforementioned articles [26,27], as well as the
ones by Stelle [20], Antoniadis and Tomboulis [28], and
Johnston [29].
The models we shall use to probe the specified con-

jecture are fourth- and sixth-order gravity systems in D
dimensions, and a particular sixth-order gravity system in
four dimensions. They are defined by the following actions:

Iðfourth−orderÞ ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
2σ

κ2
Rþ α

2
R2 þ β

2
R2
μν

þ γ

2
R2
μναβ − LM

�
; ð1Þ
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Iðsixth-orderÞ ¼
Z

dDx
ffiffiffiffiffi
jgj

p 1

κ2

�
2Rþ α0

2
R2 þ β0

2
R2
μν

þ γ0
2
R2
μναβ þ

α1
2
R□Rþ β1

2
Rμν□Rμν

þ γ1
2
Rμναβ□Rμναβ − LM

�
; ð2Þ

I ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
2

κ2
Rþ α00R

2 þ a01R□Rþ b00R
2
μν − LM

�
;

where σ ¼ �1; α; β; γ; α0; β0; γ0;α1; β1; γ1; α00; a
0
1; b

0
0 are

arbitrary constants, κ2 ¼ 4κD, and LM is the Lagrangian
for matter, with

κD ¼
�
D − 2

D − 3

�
GD

2π
D−1
2

ΓðD−1
2
Þ ð3Þ

being the D-dimensional Einstein constant for D > 3 (see
Appendix A). Here, GD is the Newton constant in D
dimensions (D > 3), and Γ is the gamma function. Note
that κD reduces to its usual value in four dimensions,
namely, κD ¼ 8πG4. We remark also that the Einstein
constant in D ¼ 3 cannot be related to G3 since general
relativity in three dimensions is trivial and has no
Newtonian limit. Nevertheless, for simplicity’s sake, κ3
will be used from now on as the symbol for the Einstein
constant in D ¼ 3, although it is unrelated to G3.
Now since, in order to probe the conjecture at hand, we

are required to compute the gravitational potential, the
efficiency with which we will make the verification of this
surmise will heavily depend on how skilled we are in
building out a simple prescription for calculating this
potential. Accordingly, in Sec. II we construct a straight-
forward method for calculating the D-dimensional gravity
potential based on the generating functional. Using this
prescription, the conjecture is verified for fourth- and sixth-
order gravity models in D dimensions in Secs. III and IV,
respectively. We point out that the analysis of the tree-level
unitary of the aforementioned systems is made in the
respective sections. The aim of this study is to confirm
the general premise that renormalizable higher-order
models are nonunitary. We present our conclusions in
Sec. V. We remark also that, in this last section, special
attention is devoted to NMG since it was the analysis of this
model that inspired our conjecture.
It is worth mentioning that we will only deal with

local models in which the poles of the propagator are
simple and real. Technical details will be relegated to the
appendixes. We use natural units throughout and our
Minkowski metric is diag(1;−1;−1;…;−1).

II. SIMPLE PRESCRIPTION FOR CALCULATING
THE D-DIMENSIONAL POTENTIAL FOR

GRAVITATIONAL MODELS

From quantum field theory, we know that the generating
functional for the connected Feynman diagrams WDðTÞ is
related to the generating functional ZDðTÞ for linearized
gravity theories by ZDðTÞ ¼ eiWDðTÞ [30–32], where

WDðTÞ ¼ −
κD
2

Z
dDxdDyTμνðxÞDμν;αβðx − yÞTαβðyÞ:

ð4Þ

Here, TμνðxÞð¼ TνμðxÞÞ and Dμν;αβðx − yÞ are, respec-
tively, the external conserved current and the propagator.
Now, keeping in mind that

Dμν;αβðx − yÞ ¼
Z

dDk
ð2πÞD eikðx−yÞDμν;αβðkÞ;

TμνðkÞ ¼
Z

dDxe−ikxTμνðxÞ;

we promptly obtain

WDðTÞ ¼ −
κD
2

Z
dDk
ð2πÞD TμνðkÞ�Pμν;αβðkÞTαβðkÞ;

wherePμν;αβðkÞ is the “modified propagator” in momentum
space obtained by neglecting all terms of the usual
Feynman propagator that are orthogonal to the external
conserved currents.
Assuming then that the external conserved current is

time independent, we get, from the preceding equation,

WDðJÞ ¼ −
κD
2

Z
dDk

ð2πÞD−1

�
δðk0ÞTPμν;αβðkÞ

ZZ

× dD−1xdD−1yeik·ðy−xÞTμνðxÞTαβðyÞ
�
; ð5Þ

where the time interval T is produced by the factor
R
dx0.

Simple algebraic manipulations, on the other hand,
reduce (5) to the form

WDðTÞ ¼ −κDT
Z

dD−1k
ð2πÞD−1 Pμν;αβðkÞΔμν;αβðkÞ; ð6Þ

where Pμν;αβðkÞ≡ Pμν;αβðkÞjk0¼0, and

Δμν;αβðkÞ≡
ZZ

dD−1xdD−1yeik·ðy−xÞ
TμνðxÞTαβðyÞ

2
:

In the specific case of two masses M1 and M2 located,
respectively, at a1 and a2, the current assumes the form
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TμνðxÞ ¼ ημ0ην0½M1δ
D−1ðx − a1Þ þM2δ

D−1ðx − a2Þ�:

Therefore,

Δμν;αβðkÞ ¼ M1M2eik·rημ0ην0ηα0ηβ0; ð7Þ

where r ¼ a2 − a1.
As a consequence,

WDðTÞ ¼ −κDT
M1M2

ð2πÞD−1

Z
dD−1keik·rP00;00ðkÞ: ð8Þ

Bearing in mind that

ZDðTÞ ¼ h0je−iHDT j0i ¼ e−iEDT; ð9Þ

which implies that

ED ¼ −
WDðTÞ

T
; ð10Þ

we find that the D-dimensional interparticle gravitational
energy can be computed through the simple expression

EDðrÞ ¼ κD
M1M2

ð2πÞD−1

Z
dD−1keik·rP00;00ðkÞ: ð11Þ

Accordingly, the D-dimensional gravitational potential
sourced by a mass M at rest is given by

VDðrÞ ¼ κD
M

ð2πÞD−1

Z
dD−1keik·rP00;00ðkÞ: ð12Þ

Using the straightforward prescription above, it is
possible to test the aforementioned conjecture easily, as
will be shown in the next two sections.

III. VERIFYING THE CONJECTURE
FOR FOURTH-ORDER GRAVITY SYSTEMS

IN D DIMENSIONS

To find the gravitational potential, we first need to
compute the propagator. Nonetheless, before obtaining
this operator, it will be worthwhile to remember that this
calculation demands knowledge only of the linearized
quadratic part of the model. On the other hand, since
linearized Gauss-Bonnet invariant is a total derivative in
any spacetime dimension >3 (the restriction of D ¼ 4
coming into play only when we take the full nonlinear
structure into account) [33], and, in addition, both the
curvature and Ricci tensors have the same number of
components in D ¼ 3 [34], we can drop the term of action
(1) containingR2

μναβ forD > 2 in the specified computation.
To compute the propagator, we recall that, for small

fluctuations around the Minkowski metric ημν, the full
metric assumes the form

gμν ¼ ημν þ κhμν: ð13Þ

Linearizing the Lagrangian associated with the quadratic
part of the action (1), namely,

Lðfourth−orderÞ ¼
ffiffiffiffiffi
jgj

p �
2σ

κ2
Rþ α

2
R2 þ β

2
R2
μν

�
; ð14Þ

via the preceding equation and adding to the result
the gauge-fixing Lagrangian, Lgf ¼ 1

2λ ð∂μγ
μνÞ2, where

γμν ≡ hμν − 1
2
ημνh and λ is a gauge parameter (de

Donder gauge), we find

Lðfourth−orderÞ ¼ 1

2
hμνOμν;αβhαβ; ð15Þ

where, in momentum space,

O ¼
�
σ þ βκ2k2

4

�
k2Pð2Þ þ k2

2λ
Pð1Þ þ k2

4λ
Pð0−wÞ

−
k2

4λ

ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
½Pð0−swÞ þ Pð0−wsÞ�

þ
�
−ðD − 2Þσ þ ðD − 1Þακ2k2 þD

βκ2k2

4

þD − 1

4λ

�
k2Pð0−sÞ: ð16Þ

Inverting this operator, we obtain the propagator for
fourth-order gravity in D dimensions, i.e.,

Dðfourth-orderÞ ¼ 1

σ

�
1

k2
−

1

k2 −m2
2

�
Pð2Þ þ 2λ

k2
Pð1Þ

þ 1

σðD − 2Þ
�

1

k2 −m2
0

−
1

k2

�
Pð0−sÞ

þ
�
4λ

k2
þ ðD − 1Þm2

0

σk2ðk2 −m2
0ÞðD − 2Þ

�
Pð0−wÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p
m2

0

ðD − 2Þσk2ðk2 −m2
0Þ
½Pð0−swÞ

þ Pð0−wsÞ�; ð17Þ

where fPð1Þ; Pð2Þ;…; Pð0−wsÞg is the usual set of D-
dimensional Barnes-Rivers operators (see Appendix B),
and

m2
2 ≡ −

4σ

βκ2
; m2

0 ≡ 4σðD − 2Þ
κ2½4αðD − 1Þ þDβ� : ð18Þ

Here, we are supposing that there are no tachyons in the
model, which implies that m2

2 > 0 and m2
0 > 0.

The expression for the spatial part of the modified
propagator can be trivially found by means of (17).
Making the appropriate computations, we arrive at the
following result:
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Pμν;αβðkÞ ¼
1

σ

��
−

1

k2
þ 1

k2 þm2
2

�

×

�
1

2
ðημκηνλ þ ημληνκÞ −

1

D − 1
ημνηκλ

�

þ 1

ðD − 1ÞðD − 2Þ
�
1

k2
−

1

k2 þm2
0

�
ημνηκλ

�
:

ð19Þ

As a consequence,

P00;00ðkÞ ¼
1

σ

�
−
D − 3

D − 2

1

k2
þD − 2

D − 1

1

k2 þm2
2

−
1

ðD − 1ÞðD − 2Þðk2 þm2
0Þ
�
: ð20Þ

Therefore, the D-dimensional gravitational potential
generated by a static mass M can be computed through
the expression

Vðfourth-orderÞ
D ðrÞ ¼ −

κDM
σð2πÞD−1

�
D − 3

D − 2

Z
dD−1k
k2

eik·r

−
D − 2

D − 1

Z
dD−1k
k2 þm2

2

eik·r

þ 1

ðD − 2ÞðD − 1Þ
Z

dD−1k
k2 þm2

0

eik·r
�
:

Performing the integrations, we find (see Appendix C)

Vðfourth-orderÞ
D ðrÞ ¼ −

κDM

σð2πÞD−1
2

�
D − 3

D − 2

2
D−5
2

rD−3 Γ
�
D − 3

2

�

−
D − 2

D − 1

�
m2

r

�D−3
2

KD−3
2
ðm2rÞ

þ 1

ðD − 1ÞðD − 2Þ
�
m0

r

�D−3
2

KD−3
2
ðm0rÞ

�
;

ðD ¼ 4; 5Þ ð21Þ

and

Vðfourth-orderÞ
3 ðrÞ ¼ κ3M

4πσ
½K0ðm2rÞ − K0ðm0rÞ�; ð22Þ

where Kν is the modified Bessel function of the second
order of order ν.
Bearing in mind that

KνðrÞ ∼
ffiffiffi
π

2

r
e−rffiffiffi
r

p
�
1þO

�
1

r

��
ðr → ∞Þ; ð23Þ

it is trivial to see that (21) and the Newton gravitational
potential agree asymptotically if and only if σ ¼ þ1.

Accordingly, we assume from now on that σ ¼ þ1 for
D > 3.
Before proceeding, it is important to call attention to the

fact that our discussion will be restricted to the systems in
three, four, and five dimensions since these are the only
models in which it is possible to compute the gravitational
potential analytically.
We analyze now the small-distance behavior of the

gravitational potential in the specified systems.

A. D= 3

Remembering that, for x ≪ 1,

K0ðxÞ ∼ −
�
γ þ ln

x
2

�
þ x2

4

�
1 − γ − ln

x
2

�

þ x4
�

1

128
ð3 − 2γÞ − 1

64
ln
x
2

�
þ…; ð24Þ

where γ is the Euler-Mascheroni constant, we may rewrite
the expression for the gravitational potential (22) as

V3ðrÞ ∼
κ3M
4πσ

�
ln
m0

m2

þ ðm2rÞ2
4

�
1 − γ ln

m2r
2

�

−
ðm0rÞ2

4

�
1 − γ ln

m0r
2

�
þ…

�
: ð25Þ

Therefore, as r → 0, we get

V3ð0Þ ¼
κ3M
4πσ

ln
m0

m2

: ð26Þ

It follows then that full tridimensional fourth-order
gravity theories, i.e., the models with no special relations
between their parameters, have a gravitational potential that
is finite at the origin. However, NMG [22], for instance,
where their parameters are linked via the constraint
8αþ 3β, is singular at the origin. Note that σ for this
system is equal to −1. We shall analyze the model alluded
to in Sec. V.

B. D= 4

Taking into account that K1
2
ðxÞ ¼ ffiffi

π
2

p
e−xffiffi
x

p , we immedi-

ately obtain, from (21),

V4ðrÞ ¼ −
κ4M
8πr

�
1 −

4

3
e−m2r þ 1

3
e−m0r

�
: ð27Þ

To check whether V4ðrÞ is regular at the origin, we
expand the exponentials at r ¼ 0 into power series. Doing
so, it is easy to verify that the contributions of the higher-
derivative terms cancel the Newtonian one, making the
model free of singularity. In fact, the alluded potential can
be written as
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V4ðrÞ ∼MG4

m0 − 4m2

3
þOðrÞ: ð28Þ

The singularity cancellation occurs because the zero-
order terms containing higher derivatives produce a coef-
ficient þ1 responsible for canceling out the coefficient −1
from the original Newton term.

C. D= 5

Keeping in mind that, for x → 0,

K1ðxÞ ∼
1

x
þ x
4

�
2γ − 1þ 1

8

�
2γ −

5

2

�
x2

þ 1

192

�
2γ −

10

3

�
x4 þ…

�

þ x
2
ln
x
2

�
1þ x2

8
þ x4

192
þ…

�
;

and we may write V5ðrÞ as

V5ðrÞ ∼ −
κ5M

48ð2πÞ2
�
ðm2

0 − 9m2
2Þð2γ − 1þ 2 ln rÞ þm2

0

× ln
m2

0

4
− 9m2

2 ln
m2

2

4
þ…

�
: ð29Þ

As a consequence, the full fourth-order gravitational
potential in five dimensions is divergent at the origin;
nevertheless, ifm2

0 ¼ 9m2
2, this potential is finite at the cited

point. Accordingly, we have found a nonsingular potential
at the origin in five dimensions related to fourth-order
gravity, with its value being given by

V5ð0Þjm2
0
¼9m2

2
¼ −

3κ5Mm2
2 ln 3

32π2
: ð30Þ

Let us then probe our conjecture for fourth-order gravity
in D dimensions.

D. Testing the conjecture

According to our conjecture, the necessary condition for a
D-dimensional higher-order model to be renormalizable is
that it has a classical potential that is finite at the origin. Aswe
have just shown, full fourth-order gravity systems inD ¼ 3, 4
are finite at the origin, while in D ¼ 5 the full model has a
singularity at the aforementionedpoint. So, if the conjecture at
hand is correct, both the three- and four-dimensional full
models are expected to be renormalizable, whereas the five-
dimensional one should be nonrenormalizable.
Now, since full fourth-order gravity models in D ¼ 3, 4

are known to be renormalizable [20,27], they agree with our
conjecture since, as we have just demonstrated, they lack a
singularity at the origin.

As far as the five-dimensional system is concerned, it is
trivial to show by power counting that the full model is
nonrenormalizable. In fact, in this case the degree of
superficial divergence is given by

δ ¼ 5þ 1

2

�X∞
n¼3

ðn − 2ÞðVn − EÞ
�
; ð31Þ

which clearly shows that the system is nonrenormalizable
since δ becomes greater as the vertex number increases.
Remembering that this model is divergent at the origin, it is
in agreement with our surmise because it asserts that
renormalizable systems must always be finite at the origin.
On the other hand, the gravitational potential in NMG is

divergent at the origin, as we shall prove in Sec. V, while
the five-dimensional model with its parameters connected
by the relation m2

0 ¼ 9m2
2 has a potential that is free of

singularity at the origin. Both systems are in accord with
our conjecture. Indeed, new massive gravity is nonrenor-
malizable [27] and the five-dimensional model is non-
renormalizable by power counting. Note that our surmise
says that the existence of a classical potential lacking a
singularity at the origin is a necessary but not sufficient
condition for the renormalizability of the theory.
For completeness’ sake, we discuss now the tree-level

unitarity of the fourth-order gravity models.

E. Unitarity of the fourth-order gravity systems

We show now that full fourth-order gravity models
are nonunitary in D ¼ 3, 4, 5. To do so, we make use
of a method pioneered by Veltman [35] which has been
extensively used since it was conceived. The prescription
consists of saturating the propagator with conserved exter-
nal currents and computing afterward the residues at the
simple poles of the saturated propagator (SP) alluded to. If
the residues at all poles are positive or null, the system is
tree-level unitary, but if at least one of the residues is
negative, the model is nonunitary at tree level.
For D ¼ 4 and D ¼ 5, we obtain from (19) the saturated

propagator in momentum space (note that we have chosen
σ ¼ þ1 for reasons already explained)

SPðkÞ ¼ TμνðkÞDμν;αβðkÞTαβðkÞ

¼ A
k2

−
B

k2 −m2
2

þ C
k2 −m2

0

:

Here,

A≡ T2
μν −

T2

2
; B≡ T2

μν −
T2

3
; C≡ T2

6
;

where Tμν is an external conserved current, with Tμν ¼ Tνμ.
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Now, taking into account that

�
T2
μν −

T2

2

�				
k2¼0

> 0;

�
T2
μν −

T2

3

�				
k2¼m2

2

> 0; ðsee Ref:½33�Þ; ð32Þ

we come to the conclusion that

ResðSPÞjk2¼0 > 0;

ResðSPÞjk2¼m2
0
> 0;

ResðSPÞjk2¼m2
2
< 0;

implying that fourth-order gravity is nonunitary for D ¼ 4
and D ¼ 5.
If D ¼ 3, the following results are found for the full

theory (see Table I).
Thus, full tridimensional fourth-order gravity is nonun-

itaty for σ ¼ �1. In addition, it is also renormalizable [27].
NMG, in turn, is tree-level unitary and nonrenormaliz-

able (see Sec. V), while fourth-order gravity in five
dimensions—with their parameters constrained by the
relation m2

0 ¼ 9m2
2—is nonunitary and nonrenormalizable

by power counting.
The preceding results confirm, as expected, that renor-

malizable higher-order gravity models will always be
nonunitary.

IV. PROBING THE CONJECTURE
FOR D-DIMENSIONAL SIXTH-ORDER

GRAVITY MODELS

Since we are only interested in the linear part of the
action (1), we did not take the γ0 term into account. On the
other hand, the quadratic part of the resulting action can be
written as

Iðsixth-orderÞ ¼
Z

dDx
ffiffiffiffiffi
jgj

p 1

κ2

�
2Rþ 1

2
RF1ð□ÞRþ 1

2
Rμν

× F2ð□ÞRμν þ 1

2
RμναβF3ð□ÞRμναβ

�
; ð33Þ

where

F1ð□Þ≡ α0 þ α1□;

F2ð□Þ≡ β0 þ β1□;

F3ð□Þ≡ γ1□:

Now, in the weak field approximation, we obtain

RμναβF3ð□ÞRμναβ ¼ 4RμνF3ð□ÞRμν − RF3ð□ÞR
þ ∂ΩþOðh3Þ: ð34Þ

Substituting (34) into (33), we find

Iðsixth-orderÞ ¼
Z

dDx
ffiffiffiffiffi
jgj

p 1

κ2

�
2Rþ 1

2
RðF1ð□Þ − F2ð□ÞÞ

× Rþ 1

2
RμνðF2ð□Þ þ 4F3ð□ÞÞRμν

�
: ð35Þ

Making the following redefinitions:

F1ð□Þ − F3ð□Þ ⇒ F1ð□Þ;
F2ð□Þ þ 4F3ð□Þ ⇒ F2ð□Þ;

we come to the conclusion that the quadratic part of our
original action reduces in this approximation to

Iðsixth-orderÞ ¼
Z

dDx
ffiffiffiffiffi
jgj

p 1

κ2

�
2Rþ α0

2
R2 þ β0

2
R2
μν

þ α1
2
R□Rþ β1

2
Rμν□Rμν

�
: ð36Þ

Taking the same series of actions which we have utilized
for verifying our conjecture related to fourth-order gravity
models in D dimensions, we find that the propagator in
sixth-order gravity systems can be written in momentum
space as

DðkÞ ¼
�
1

k2
þ 1

m2
2þ −m2

2−

�
m2

2−

k2 −m2
2þ

−
m2

2þ

k2 −m2
2−

��
Pð2Þ

−
1

D − 2

�
1

k2
þ 1

m2
0þ −m2

0−

�
m2

0−

k2 −m2
0þ

−
m2

0þ

k2 −m2
0−

��
Pð0−sÞ þ ð…Þ: ð37Þ

Here, ð…Þ stands for the set of terms that are irrelevant to
the spectrum of the theory, and

m2
2þ ¼ β0

2β1

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16β1

β20

s �
;

m2
0� ¼ ξ0

2ξ1

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðD − 2Þξ1
ξ20

s �
;

where ξl ¼ ðD − 1Þαl þ D
4
βlðl ¼ 0; 1Þ.
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As a consequence,

P00;00ðkÞ ¼ −
D − 3

D − 2

1

k2
þ 1

ðD − 1ÞðD − 2Þ
1

m2
0þ −m2

0−

�
m2

0−

k2 þm2
0þ

−
m2

0þ

k2 þm2
0−

�
−
D − 2

D − 1

×
1

m2
2þ −m2

2−

�
m2

2−

k2 þm2
2þ

−
m2

2þ

k2 þm2
2−

�
:

It follows then that the D-dimensional gravitational potential for sixth-order models reads

V3ðrÞ ¼
κ3M
4π

�
m2

0−

m2
0þ −m2

0−

K0ðm0þrÞ −
m2

0þ

m2
0þ −m2

0−

K0ðm0−
rÞ − m2

2−

m2
2þ −m2

2−

K0ðm2þrÞ þ
m2

2þ

m2
2þ −m2

2−

K0ðm2−
rÞ
�
; ð38Þ

VDðrÞ ¼ −
κDM

ð2πÞD−1
2

�
D − 3

D − 2

2
D−5
2

rD−3 Γ
�
D − 3

2

�
−

1

ðD − 1ÞðD − 2Þ
m2

0−

m2
0þ −m2

0−

�
m0þ

r

�D−3
2

KD−3
2
ðm0þrÞ

þ 1

ðD − 1ÞðD − 2Þ
m2

0þ

m2
0þ −m2

0−

�
m0−

r

�D−3
2

KD−3
2
ðm0−

rÞ þD − 2

D − 1

m2
2−

m2
2þ −m2

2−

�
m2þ

r

�D−3
2

KD−3
2
ðm2þrÞ

−
D − 2

D − 1

m2
2þ

m2
2þ −m2

2−

×

�
m2−

r

�D−3
2

KD−3
2
ðm2−

rÞ
�

ðD ¼ 4; 5Þ: ð39Þ

It is trivial to see using (23) that (39) and the
Newton gravitational potential coincide for r → ∞. Our
next step will be to make a thorough analysis of the
behavior near the origin of the gravitational potential that
we have just found.

A. D= 3

Taking (24) into account, we find that for r ≪ 1, (38)
assumes the form

V3ðrÞ ∼
κ3M
4π

�
m2

2−
lnm2þ −m2

2þ lnm2−

m2
2þ −m2

2−

−
m2

0−
lnm0þ −m2

0þ lnm0−

m2
0þ −m2

0−

þ…

�
: ð40Þ

Consequently, the tridimensional sixth-order gravita-
tional potential is finite at the origin and has the following
value:

V3ð0Þ ¼
κ3M
4π

�
m2

2−
lnm2þ −m2

2þ lnm2−

m2
2þ −m2

2−

−
m2

0−
lnm0þ −m2

0þ lnm0−

m2
0þ −m2

0−

�
: ð41Þ

B. D= 4

In this case, the gravitational potential is given by

V4ðrÞ ¼
κ4M
4πr

�
−
1

2
þ 1

6

m2
0−
e−m0þ r −m2

0þe
−m0− r

m2
0þ −m2

0−

−
2

3

m2
2−
e−m2þr −m2

2þe
−m2− r

m2
2þ −m2

2−

�
: ð42Þ

Expanding the exponentials at r ¼ 0, we get

V4ðrÞ ∼
κ4M
4π

�
2

3

m2
2−
m2þ −m2

2þm2−

m2
2þ −m2

2−

−
1

6

m2
0−
m0þ −m2

0þm0−

m2
0þ −m2

0−

�
þOðrÞ: ð43Þ

Thus, the gravitational potential for sixth-order gravity in
four dimensions is finite at the origin, with its value at this
point being equal to

V4ð0Þ ¼
κ4M
4π

�
2

3

m2
2−
m2þ −m2

2þm2−

m2
2þ −m2

2−

−
1

6

m2
0−
m0þ −m2

0þm0−

m2
0þ −m2

0−

�
: ð44Þ

RENORMALIZABILITY IN D-DIMENSIONAL HIGHER- … PHYSICAL REVIEW D 95, 084007 (2017)

084007-7



C. D= 5

It is straightforward to show that, if r ≪ 1, (39) reduces,
for D ¼ 5, to

V5ðrÞ ∼
κ5M
ð2πÞ2

�
−
3

8

m2
2þm

2
2−

m2
2þ þm2

2−

ln
m2þ

m2−

þ 1

24

m2
0þm

2
0−

m2
0þ −m2

0−

ln
m0þ

m0−

þ…

�
; ð45Þ

which converges to a finite value at the origin that is
equal to

V5ð0Þ ¼ −
κ5M
ð2πÞ2

�
3

8

m2
2þm

2
2−

m2
2þ −m2

2−

ln
m2þ

m2−

−
1

24

m2
0þm

2
0−

m2
0þ −m2

0−

ln
m0þ

m0−

�
: ð46Þ

We probe now our conjecture for D-dimensional sixth-
order gravity models.

D. Verifying the conjecture

It is not difficult to check by power counting that the
superficial divergence related to the system at hand can be
written as

δ ¼ Dþ 6 −D
2

E −
6 −D
2

X∞
n¼3

ðn − 2ÞVn: ð47Þ

Therefore, we conclude that
(i) 3 ≤ D ≤ 5 ⇒ δ decreases as the number of vertices

increases ⇒ super-renormalizable,
(ii) D ¼ 6 ⇒ δ is independent of the number of vertices

⇒ renormalizable, and
(iii) D ≥ 7 ⇒ δ increases as the number of vertices

increase ⇒ nonrenormalizable.
Since the gravitational potential can only be computed

analytically forD ¼ 3, 4, 5, we restrict our analysis to these
dimensions. On the other hand, we have proved that the
gravitational potential for the full models is finite at r ¼ 0
in the dimensions above. Accordingly, these models are in
total accord with our surmise, which requires that they must
be nonsingular at the origin. For completeness, we finally
shall study the unitarity of the specified models.

E. Unitarity of the sixth-order gravity models

From (37) we find that the saturated propagator is given
by the expression

SPðkÞ ¼ 1

k2

�
TμνTμν −

1

D − 2
T2

�

þ
�

1

m2
2þ −m2

2−

�
m2

2−

k2 −m2
2þ

−
m2

2þ

k2 −m2
2−

��

×
�
TμνTμν −

1

D − 1
T2

�
−

1

ðD − 1ÞðD − 2Þ

×

�
1

m2
0þ −m2

0−

�
m2

0−

k2 −m2
0þ

−
m2

2þ

k2 −m2
0−

��
T2:

ð48Þ

Therefore,

ResðSPðkÞÞjk2¼0 ¼
�
TμνTμν −

1

D − 2
T2

�				
k2¼0

;

ResðSPðkÞÞjk2¼m2
2þ

¼ m2
2−

m2
2þ −m2

2−

×

�
TμνTμν −

1

D − 1
T2

�				
k2¼m2

2þ

;

ResðSPðkÞÞjk2¼m2
2−

¼ −
m2

2þ

m2
2þ −m2

2−

×

�
TμνTμν −

1

D − 1
T2

�				
k2¼m2

2−

;

ResðSPðkÞÞjk2¼m2
0þ

¼ −
1

ðD − 1ÞðD − 2Þ
m2

0−

m2
0þ −m2

0−

× T2jk2¼m2
0þ
; ð49Þ

ResðSPðkÞÞjk2¼m2
0−

¼ 1

ðD − 1ÞðD − 2Þ
m2

0þ

m2
0þ −m2

0−

× T2jk2¼m2
0−
: ð50Þ

Our next step is to obtain the signs related to the residues.
To do that, however, we first must know how m2

2þ and m2
2−
,

as well as m2
0þ and m2

0−
, are ordered. To facilitate this task,

we redefine the following parameters:

α0 ↦ κ2α0; α1 ↦ κ4α1; β0 ↦ κ2β0; β1 ↦ κ4β1;

which implies that, in terms of these redefined parameters,
the masses m2

� and m2
0� assume the form

m2
2� ¼ β0

2κ2β1

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16β1

β20

s !
; ð51Þ
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m2
0� ¼ ξ0

2κ2ξ1

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðD − 2Þξ1
ξ20

s !
; ð52Þ

where ξl ¼ 3αl þ βl (l ¼ 0, 1). Actually, we are interested
in the following regions in the parametric spaces:

Ωβ ¼ fðβ0; β1Þ ∈ R2jκ2m2
2þ > 0 and κ2m2

2−
> 0g;

Ωξ ¼ fðξ0; ξ1Þ ∈ R2jκ2m2
0þ > 0 and κ2m2

0−
> 0g;

Ωα ¼
�
ðα0; α1Þ ¼

�
4ξ0 −Dβ0
4ðD − 1Þ ;

4ξ1 −Dβ1
4ðD − 1Þ

�
∈ R2

× jðβ0; β1Þ ∈ Ωβ and ðξ0; ξ1Þ ∈ Ωξ

�
:

Taking (51) and (52) into account, we may write

Ωβ ¼ fðβ0;β1Þ ∈R2jβ0 < 0 and − β20=16< β1 < 0g;
Ωξ ¼ fðξ0; ξ1Þ ∈R2jξ0 > 0 and 0< ξ1 < ξ20=4ðD− 2Þg:

As a result, we find that, in these regions, the masses are
ordered as

m2
2þ > m2

2−
and m2

0þ > m2
0−
: ð53Þ

Now, from (32) and (53), we arrive at the conclusion that

ResðSPðkÞÞjk2¼0 > 0;

ResðSPðkÞÞjk2¼m2
2þ

> 0; ResðSPðkÞÞjk2¼m2
2−

< 0;

ResðSPðkÞÞjk2¼m2
0þ

< 0; ResðSPðkÞÞjk2¼m2
0−

> 0:

Consequently, the particle content of the model is made
up of three healthy particles and two ghosts, which clearly
shows that full sixth-order gravity is nonunitary. The results
above confirm once more that renormalizable higher-order
gravity models are nonunitarry.

V. FINAL COMMENTS

We have verified that renormalizable higher-order gravi-
tational models, specifically fourth- and sixth-order gravity
systems in D dimensions, possess a singularity-free
classical potential at the origin. The converse is not
necessarily true. Indeed, consider the gravity system in
four dimensions defined by the Lagrangian [16]

L ¼
ffiffiffiffiffi
jgj

p �
2

κ2
Rþ α0R2 þ a1R□Rþ b0R2

μν

�
;

where the masses of the modes related to higher-order
terms are given by

m2
ð0Þ� ¼ 3a0 þ b0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3a0 þ b0Þ2 − 24a1κ−2

p
6a1

;

m2
ð2Þ ¼

4

jb0jκ2
: ð54Þ

Here,mð2Þ andmð0Þþ are ghost excitations, whilemð0Þ− is
a healthy mode [12].
In this scenario, the potential is given by

V4ðrÞ ¼ −
G4M
r

�
1 −

4

3
e−mð2Þr þ 1

3

� m2
ð0Þ−

m2
ð0Þ− −m2

ð0Þþ

× e−mð0Þþr þ
m2

ð0Þþ
m2

ð0Þþ −m2
ð0Þ−

e−mð0Þ−r
��

; ð55Þ

and, as a consequence, in the region near the origin, it
assumes the form

V4ðrÞ∼G4M

�
−
4

3
mð2Þ þ

1

3

mð0Þþmð0Þ− − ðmð0Þþ −mð0Þ−Þ
m2

ð0Þþ −m2
ð0Þ−

�

þOðrÞ: ð56Þ

Therefore, the potential is finite at r ¼ 0. Nonetheless,
the model at hand is nonrenormalizable by power counting,
which implies that the finiteness of the classical potential at
the origin is a necessary—but certainly not sufficient—
condition for the renormalizability of the model.
In summary, if a higher-derivative gravity model is

renormalizable, it is necessarily nonunitary and, in addi-
tion, is endowed with a classical potential finite at the
origin, but the opposite is not true in general. We have also
confirmed the general premise that renormalizable higher-
derivative gravity models are nonunitary.
Now we address the issue of NMG [22]. Our main

interest in this system is in the fact that it was by analyzing
its properties that the idea of the conjecture came to light.
As is well known, this model aroused great interest in the
physical community when it was conceived since it is a
tree-level unitary higher-order gravity model; in fact, tree-
level unitary higher-derivative gravity systems are
extremely rare in physics. On the other hand, the afore-
mentioned theory caused considerable controversy as far as
its renormalizability is concerned. Actually, it was initially
claimed to be renormalizable by Oda [26], only to be shown
to be nonrenormalizable some years later by Muneyuki and
Ohta [27]. It is exactly the disagreement between these
results that we want to discuss in the framework of our
conjecture. Nevertheless, for clarity’s sake, we begin by
presenting some important points related to the system
at hand.
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A. Tree-level unitarity

From (17), it is straightforward to obtain the saturated
propagator, i.e.,

SPðkÞ ¼ 1

σ

�
1

k2
−

1

k2 −m2
2

��
T2
μν −

1

2
T2

�

þ 1

σ

�
−

1

k2
þ 1

k2 −m2
0

�
1

2
T2: ð57Þ

Equation (18), in trurn, furnishes the constraints

σ

β
< 0;

σ

8αþ 3β
> 0: ð58Þ

Now, the residues of SPðkÞ at the poles k2 ¼ m2
2, k

2 ¼ 0,
and k2 ¼ m2

0 are, respectively,

ResðSPÞjk2¼m2
2
¼ −

1

σ

�
T2
μν −

1

2
T2

�				
k2¼m2

2

; ð59Þ

ResðSPÞjk2¼0 ¼ −
1

σ
ðT2

μν − T2Þjk2¼0; ð60Þ

ResðSPÞjk2¼m2
0
¼ −

1

2σ
ðT2Þjk2¼m2

0
: ð61Þ

Therefore, we arrive at the conclusion that
ResðSPÞjk2¼m2

2
> 0 if σ ¼ −1 (which we assume to be

the case from now on), and ResðSPÞjk2¼0. As a result, we
need not worry about these poles; the troublesome one is
k2 ¼ m2

0 since ResðSPÞjk2¼m2
0
< 0. A way out of this

difficulty is to consider the m0 → ∞ limit of the model
under discussion, which leads us to conclude that
α ¼ − 3

8
β. Accordingly, the class of models defined by

the Lagrangian

L ¼
ffiffiffiffiffi
jgj

p �
−
2R
κ2

þ β

2

�
R2
μν −

3

8
R2

��
; ð62Þ

where κ2 ¼ 4κ3, is ghost free at tree level. For conven-
ience’s sake, we replace β with 4

κ2m2
2

. The resulting

Lagrangian,

LNMG ¼
ffiffiffiffiffi
jgj

p �
−
2R
κ2

þ 2

κ2m2
2

�
R2
μν −

3

8
R2

��
; ð63Þ

defines the famous system referred to as new massive
gravity [22–25].
At this point, it will be interesting to recall some

comments that, in a sense, predicted the nonrenormaliz-
ability of NMG.

(i) It is not clear at all whether the specific ratio between
α and β will survive renormalization at a given loop,
even at one loop; in other words, unitarity beyond
tree level has to be checked [36].

(ii) Most likely, NMG is nonrenormalizable since it only
improves the spin-2 projections of the propagator
but not the spin-0 projection [37].

Undoubtedly, these remarks have anticipated for a few
years the definitive proof related to the nonrenormaliz-
ability of NMG.

B. Gravitational potential

From (22) we get, without any difficulty,

VNMGðrÞ ¼ −
κ3M
4π

K0ðm2rÞ: ð64Þ

Note that the potential in NMG has a logarithm singularity
at the origin.

C. Discussing the renormalizability
of NMG via our conjecture

According to Oda [26], NMG is renormalizable.
However, the author made a mistake when he considered
NMG a full three-dimensional gravity model (with
σ ¼ −1), with the latter being renormalizable. In other
words, although the birth of NMG is the full gravity model
just mentioned (see Fig. 1), the system under discussion has
a constraint between its parameters (α ¼ − 3

8
β). It is

precisely this special relation between the parameters that
is responsible for breaking the renormalizability of the full
model, as was demonstrated by Muneyuki and Ohta [27].
Examining the diagram depicted in Fig. 1, we clearly see

that, as m0 becomes greater and greater, the full potential
V3ðrÞ with σ ¼ −1 and m2 < m0 [see (22)] rapidly
approaches the potential in NMG, and eventually they
coalesce. It is worth mentioning that, to arrive at the NMG
potential from the full potential above, the latter must
necessarily become singular at the origin which takes place
in the m0 → ∞ limit. It is remarkable that this is precisely

FIG. 1. Gravitational potential for both the full fourth-order
gravity model in three dimensions with σ ¼ −1 andm2 < m0 (the
solid line) and NMG (the dashed line).
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the condition for avoiding, at tree level, the massive spin-0
ghost that haunts full tridimensional fourth-order gravity.
Accordingly, the presence of the singularity in NMG is
correlated to the absence of the tree-level ghost, which
means that the renormalizability of the model and its
consequent nonunitary and the existence of a singularity
in the potential are intertwined. In the diagram shown in
Fig. 2, the behavior of full fourth-order gravity in three
dimensions is depicted as far as its unitarity and renorma-
lizability, and the existence of a finite gravitational potential
at the origin, are concerned. A cursory glance at this
diagram suggests that, in three dimensions, a unitary
system is nonrenormalizable, with it being connected to
a singular potential at the origin, while a renormalizable
model is related to a potential finite at the origin, with it also
being nonunitary. Interestingly enough, it was exactly the
analysis of this model that led us to propose the conjecture
analyzed in this paper.
We remark also that, although we have only tested our

premise for some specific D-dimensional higher-derivative
gravitational models, the surmise is completely general. In
fact, our conjecture is valid for the most general D-
dimensional gravitational action below,

ID ¼
Z

dDx
ffiffiffiffiffi
jgj

p �
2σ

κ2
Rþ 1

2κ2
RF1ð□ÞR

þ 1

2κ2
RμνF2ð□ÞRμν þ

1

2
RμναβF3ð□ÞRμναβ

�
:

Here,

F1ð□Þ ¼
Xp
n¼0

αnð□Þn þ f1ð□Þ; ð65Þ

F2ð□Þ ¼
Xq
n¼0

βnð□Þn þ f2ð□Þ; ð66Þ

F3ð□Þ ¼
Xr
n¼0

γnð□Þn þ f3ð□Þ: ð67Þ

where f1ð□Þ, f2ð□Þ, and f3ð□Þ are nonlocal func-
tions, and αnðn ¼ 0;…; pÞ, βnðn ¼ 0;…; qÞ, and
γnðn ¼ 0;…; rÞ are real coefficients. These results will
be published elsewhere [38]. Last but not least we would
like to draw the reader's attention to the article by [40], in
which action (2) was built out for the first time.
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APPENDIX A: D-DIMENSIONAL
EINSTEIN CONSTANT

As is well known, the D-dimensional Poisson equation
can be written as

∇2
D−1φDðxÞ ¼ GD

2π
D−1
2

ΓðD−1
2
Þ ρ; ðA1Þ

where ρ is the mass density.
On the other hand, the Schwarzschild metric in isotropic

coordinates reads

ds2 ¼
�
1þ 1

2
φDðxÞ

1 − 1
2
φDðxÞ

�
2

dt2 −
�
1 −

1

2
φDðxÞ

� 4
D−3

× ½ðdx1Þ2 þ � � � þ ðdxD−1Þ2�: ðA2Þ
In the Newtonian limit, i.e., far form the mass distribu-

tions, the previous metric assumes the form

ds2 ¼ ½1þ 2φDðxÞ�dt2 −
�
1 −

2

D − 3
φDðxÞ

�
× ½ðdx1Þ2 þ � � � þ ðdxD−1Þ2�: ðA3Þ

From the Einstein equations, namely, Gμν ¼ κDTμν, we
then find

G00 ¼ κDρ ¼ D − 2

D − 3
∇2

D−1φDðxÞ: ðA4Þ

Therefore, we come to the conclusion that

κD ¼ D − 2

D − 3
GD

2π
D−1
2

ΓðD−1
2
Þ ðD > 3Þ: ðA5Þ

As we mentioned in the Introduction, in D ¼ 3, κ3
cannot be related to G3; nonetheless, for simplicity’s sake,
κ3 is used, in general, as the symbol for the tridimensional
Einstein constant, although it is unrelated to G3.

FIG. 2. The renormalizability, unitarity, and gravitational po-
tential at the origin for full fourth-order gravity in three
dimensions (σ ¼ �1).
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APPENDIX B: D-DIMENSIONAL
BARNES-RIVERS OPERATORS

The complete set of D-dimensional Barnes-Rivers oper-
ators in momentum space is given by

Pð2Þ
μν;κλ ¼

1

2
ðθμκθνλ þ θμλθνκÞ −

1

D − 1
θμνθκλ;

Pð1Þ
μν;κλ ¼

1

2
ðθμκωνλ þ θμλωνκ þ θνλωμκ þ θνκωμλÞ;

Pð0−sÞ
μν;κλ ¼ 1

D − 1
θμνθκλ; Pð0−wÞ

μν;κλ ¼ 1

D − 1
ωμνωκλ;

Pð0−swÞ
μν;κλ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

D − 1
p θμνωκλ; Pð0−wsÞ

μν;κλ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
D − 1

p ωμνθκλ;

where θμν ≡ ημν −
kμkν
k2 and ωμν ≡ kμkν

k2 are, respectively, the
usual transverse and longitudinal vectorial projection oper-
ators. The multiplicative table for these operators is dis-
played in Table II.

APPENDIX C: SOME RELEVANT INTEGRALS

The integrals related to the models dealt with in this
article can be generically written as

Z
dD−1k
ð2πÞD−1 fðjkjÞeik·r: ðC1Þ

Now, keeping in mind that

Z
dD−1k
ð2πÞD−1 fðjkjÞeik·r

¼ 1

ð2πÞD−1
2

1

r
D−3
2

Z
∞

0

x
D−1
2 fðxÞJD−3

2
ðxrÞdx

ðD > 2Þ; ðsee Ref:½13�Þ;

where x≡ jkj, we promptly find the following results:

Z
dD−1k
ð2πÞD−1

eik·r

k2

¼ 1

ð2πÞD−1
2

1

rD−3

Z
∞

0

y
D−5
2 JD−3

2
ðyÞdy

¼ 1

ð2πÞD−1
2

1

rD−3 ID;Z
dD−1k
ð2πÞD−1

eik·r

k2 þm2

¼ 1

ð2πÞD−1
2

1

rD−3

Z
∞

0

y
D−1
2

y2 þm2r2
JD−3

2
ðyÞdy

¼ 1

ð2πÞD−1
2

1

rD−3 IDðrÞ:

Here,

ID ≡
Z

∞

0

y
D−5
2 JD−3

2
ðyÞdy; ðC2Þ

and

IðrÞ≡
Z

∞

0

y
D−1
2

y2 þm2r2
JD−3

2
ðyÞdy:

From Gradshteyn and Ryzhik [39], we obtain

ID ¼ 2
D−5
2 Γ
�
D − 3

2

�
; ðD ¼ 4; 5Þ; ðC3Þ

IDðrÞ ¼ ðmrÞD−3
2 KD−3

2
ðmrÞ; ðD ¼ 3; 4; 5Þ: ðC4Þ

Accordingly,Z
dD−1k
ð2πÞD−1

eik·r

k2
¼ 1

ð2πÞD−1
2

2
D−5
2

rD−3 Γ
�
D − 3

2

�
;

ðD ¼ 4; 5Þ;Z
dD−1k
ð2πÞD−1

eik·r

k2 þm2
¼ 1

ð2πÞD−1
2

�
m
r

�D−3
2

KD−3
2
ðmrÞ:

ðD ¼ 3; 4; 5Þ

TABLE I. Signs of the residues of SP at the poles k2 ¼ 0,
k2 ¼ m2

0, k
2 ¼ m2

2 related to full fourth-order gravity in three
dimensions.

D ¼ 3 σ ¼ þ1 σ ¼ −1

ResðSPðkÞÞjk2¼0 ¼ 0 ¼ 0

ResðSPðkÞÞjk2¼m2
0

> 0 < 0

ResðSPðkÞÞjk2¼m2
2

< 0 > 0

TABLE II. Multiplicative table for the Barnes-Rivers operators.

Pð2Þ Pð1Þ Pð0−sÞ Pð0−wÞ Pð0−swÞ Pð0−wsÞ

Pð2Þ Pð2Þ 0 0 0 0 0
Pð1Þ 0 Pð1Þ 0 0 0 0
Pð0−sÞ 0 0 Pð0−sÞ 0 Pð0−swÞ 0
Pð0−wÞ 0 0 0 Pð0−wÞ 0 Pð0−wsÞ
Pð0−swÞ 0 0 0 Pð0−swÞ 0 Pð0−sÞ
Pð0−wsÞ 0 0 Pð0−wsÞ 0 Pð0−wÞ 0
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