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We suggest that nonminimally coupled scalar fields can lead to modifications of the microphysics in the
interiors of relativistic stars. As a concrete example, we consider the generation of a nonzero photon mass in
such high-density environments. This is achieved by means of a light gravitational scalar, and the
scalarization phase transition in scalar-tensor theories of gravitation. Two distinct models are presented, and
phenomenological implications are briefly discussed.
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Scalar-tensor theories [1–4] can be thought of as theories
of gravity with an additional scalar field Φ that couples
nonminimally to the metric ~gμν but does not couple to the
matter fields, ΨA. The latter couple minimally to ~gμν only.
In this representation, known as the Jordan frame, the
action reads

S½~gμν;Φ� ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−~g

p �
Φ ~R −

ωðΦÞ
Φ

~gμν∂μΦ∂νΦ
�

þ Sm½ΨA; ~gμν�; ð1Þ

and the weak equivalence principle (WEP) is manifest.
Here Φ has the interpretation of a varying inverse gravi-
tational constant, Sm denotes the matter action, and ~R is the
Ricci scalar of ~gμν.
One can also reformulate this action in terms of another

metric and a redefined scalar field, in the so-called Einstein
frame. The scalar field and the metric in this frame are
related to their Jordan frame counterparts by,

Φ ¼ ½G⋆A2ðϕÞ�−1; ~gμν ¼ A2ðϕÞgμν; ð2Þ

where G⋆ is a bare gravitational constant. The form of
A2ðϕÞ is determined by the choice of ωðΦÞ and the
requirement that the kinetic term for ϕ be canonical.
That is, the Einstein frame action reads

S ¼ 1

16πG�

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2gμνð∂μϕÞð∂νϕÞ�

þ Sm½ΨA; A2ðϕÞgμν�; ð3Þ

where R is the Ricci scalar of gμν. In the absence of matter
the theory clearly reduces to general relativity (GR) with a
minimally coupled scalar field. In this representation the
deviation from GR is encoded in the nonminimal coupling
between the matter and ϕ.

After some manipulations the field equation for the
scalar field can be put into the form [1–5]

□ϕþ 4πG�T
d
dϕ

logAðϕÞ ¼ 0; ð4Þ

where T is the trace of the Einstein frame stress-energy
tensor

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSm

δgμν
: ð5Þ

Theories in which dAðϕ0Þ=dϕ ¼ 0 for some constant ϕ0,
admit GR solutions with a trivial scalar configuration, as
the scalar’s equation is trivially satisfied and gμν effectively
satisfies Einstein’s equation with a rescaled gravitational
coupling. Note that such theories have ωðΦ0Þ → ∞ in the
Jordan frame, where Φ0 ≡Φðϕ0Þ (see Ref. [6] for a more
detailed discussion).
Certain theories in this class exhibit a remarkable

property dubbed spontaneous scalarization [4,5,7]. It is
convenient to expand the logarithmic derivative of the
conformal factor around ϕ ¼ ϕ0 as

logAðϕÞ ¼ A0 þ β0ðϕ − ϕ0Þ2=2þ � � � : ð6Þ

In and around stars of relatively low densities, such as the
Sun, the scalar remains at the trivial configuration, ϕ ¼ ϕ0,
and the metric is that of GR. As a result the theory is
indistinguishable from GR in the weak-field limit.
However, for β0 ≲ −4, compact stars above a threshold
central density undergo a phase transition and develop a
large scalar charge, even in the absence of an external scalar
environment [5]. This behavior is of particular interest as it
underscores the importance of constraining deviation from
GR in the strong-field regime.
At the perturbative level spontaneous scalarization can

be seen as a tachyonic instability [5]. The coupling between
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the scalar and T in Eq. (4) generates a negative mass for
scalar perturbations around ϕ ¼ ϕ0. The end point of this
instability is the scalarized solution, which exhibits no such
instability. This perturbative manifestation allows one to
determine with good certainty whether spontaneous scala-
rization occurs without performing a more complete non-
perturbative analysis.
Spontaneous scalarization changes the structure of com-

pact stars [4,5,7] and, as a result, it has recently been
severely constrained by binary pulsar observations [8,9].
However, it does so without actually affecting the micro-
physics in the star. This is manifest in the Jordan frame
picture, where the scalar field Φ does not couple directly to
matter. Hence, when it develops a nontrivial profile it does
act as a source for the gravitational field and it changes the
binding energy of the star, but it does not change the
properties of the matter fields. In particular, matter can still
be described effectively as a fluid with a certain equation of
state (EOS) and this EOS can be determined without any
reference to Φ.
In this paper we wish to consider the more intriguing

possibility that the existence of a scalar field can actually
change the behavior of matter inside a neutron star. This
can be achieved without violating WEP constraints if the
scalar is coupled to matter in a way such that (i) this
coupling vanishes to the desired order in perturbation
theory around unscalarized solutions, and (ii) it comes to
life once scalarization has occurred. This coupling could
then substantially modify the masses and/or coupling
constants of standard model fields in scalarized environ-
ments, such as neutron star interiors. For concreteness and
as a proof of principle, we will consider the case of the
electromagnetic field and we will present two concrete
models for photon mass generation and amplification. In
both models, the mechanism underlying the variation of
fundamental constants is the scalarization phase transition
in scalar-tensor theories of gravity [5]. Note that the
possibility that these masses and couplings are not constant,
but rather vary throughout space-time has been extensively
explored in a different context. For reviews, see
Refs. [10–18].
Since the toy models considered in this work deal with

photon mass generation and amplification, the starting
point will be the action of the electromagnetic field,

SEM½Aμ; ~gμν� ¼ SEM½Aμ; gμν� ¼ −
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν;

ð7Þ

where Fμν ¼ ∂μAν − ∂νAμ is the usual field-strength tensor.
This action is invariant under the Uð1Þ gauge symmetry
Aμ → Aμ þ ∂μλ. Following the motivation outlined so far,
the simplest model to consider would appear to be one
where we introduce an additional Proca-like coupling
between the scalar field and the photon. For instance,

consider the case where the unscalarized solution corre-
sponds to ϕ ¼ ϕ0 ¼ 0 and one adds to the matter action the
term,

1

2
ðmϕÞ2AμAμ: ð8Þ

Note that setting ϕ0 ¼ 0 amounts to a global shift of the
scalar, so it can be done without further loss of generality.
The term in Eq. (8) clearly generates a mass for electro-
magnetic perturbations in a scalarized setting and having an
even power of ϕ guarantees that the mass of the photon will
not be negative. At the same time, it does not introduce any
modification at linear order (always counting at the level of
the field equations) in the unscalarized case as,

1

2
ðmϕÞ2AμAμ ∝ ðδϕÞ2δAμδAμ; ð9Þ

around ϕ ¼ 0 ¼ Aμ. However, this model, despite being
potentially interesting, is actually not perturbative around
ϕ ¼ 0. This is unappealing because it casts doubt on
whether the scalarized and the unscalarized phases are
continuously connected.
To understand this issue better we should first review the

case of the standard Proca field, with the Lagrangian,

L ¼ −
1

4
FμνFμν −

1

2
m2AμAμ: ð10Þ

When one considers the polarizations of the vector field
one sees that the longitudinal mode disappears in the limit
m → 0 and thus one expects a discontinuity. To reinstate
the Uð1Þ gauge symmetry and investigate this limit more
carefully one can introduce the Stueckelberg field ψ [19]. If
under a Uð1Þ transformation

Aμ → Aμ þ ∂μλ; ψ → ψ −mλ; ð11Þ

then the Lagrangian,

LS ¼ −
1

4
FμνFμν −

1

2
ðmAμ þ ∂μψÞ2; ð12Þ

is gauge invariant. Now when one takes m → 0 the
“longitudinal mode”, i.e. ψ , decouples from the theory
and thus no true discontinuity exists. Indeed the original
issue can be interpreted as the choice ψ ¼ 0 being a bad
gauge for addressing this question.
To generalize this to the case of interest there appear to

be two possibilities for introducing a Stueckelberg field.
The first option is to keep the original gauge transforma-
tion, in which case the mass-like term becomes,

ϕ2

2
ðmAμ þ ∂μψÞ2: ð13Þ
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Despite m → 0 still being a proper decoupling limit, if one
attempts to perturb around ϕ ¼ 0 the kinetic term for ψ
does not appear until cubic order in perturbation theory.
This discontinuity in the degrees of freedom between
different orders of perturbation theory seems to challenge
the validity of such a treatment.
The second option would be to include ϕ in the

gauge transformation, i.e. to follow the Stueckelberg
prescription treating mϕ rather than m as the “mass
parameter.” This means replacing the transformation
ψ → ψ −mλ by,

ψ → ψ −mϕλ: ð14Þ

In this case additional counterterms are needed to realize
the Uð1Þ symmetry and the mass-like term is,

ð∂μψ − ψ∂μ logϕþmϕAμÞ2: ð15Þ

Due to the term containing logϕ the perturbative
treatment around ϕ ¼ 0 is compromised, even though
ϕ ¼ 0 is still a perfectly acceptable asymptotic value for
1=rn, exponential and Yukawa decays. It is worth
pointing out that this prescription for introducing the
Stueckelberg field is actually related to the previous one
via the field redefinition χ ¼ ψ=ϕ that transforms
Eq. (15) into Eq. (13) with ψ replaced by χ.
A straightforward (though perhaps not unique) way to

circumvent the discontinuity issue in this model is the
following. Instead of generating a mass, one can tune the
mass to be undetectably small in unscalarized backgrounds
and simply enhance it around scalarized backgrounds.
Consider the Einstein frame Lagrangian

LSffiffiffiffiffiffi−gp ¼ 1

4πG�

�
R
4
−
1

2
ð∂μϕÞ2

�
−
1

4
FμνFμν

−
A2ðϕÞ
2

ð1þ fðϕÞÞðmAμ þ ∂μψÞ2 ð16Þ

where fð0Þ ¼ 0 and f is positive for all other arguments. In
the Jordan frame for the (rest of the) matter, for invertible A,
the Lagrangian takes the form,

LSffiffiffiffiffiffi
−~g

p ¼ 1

16π

�
Φ ~R −

ωðΦÞ
Φ

ð∂μΦÞ2
�
−
1

4
FμνFμν

−
1

2
ð1þ hðΦÞÞðmAμ þ ∂μψÞ2: ð17Þ

where, Φ ¼ G−1� A−2ðϕÞ, hðΦÞ ¼ fðϕðΦÞÞ. In other words,
as one may expect, the Jordan frame photon mass (squared)
is m2ð1þ fðϕÞÞ. Working perturbatively around ϕ ¼ 0
(the unscalarized solution) it is clear that the mass of the
photon will be determined by the value ofm and so it can be
tuned to a desired value that would avoid any known
constraint. On the other hand, when ϕ has a nontrivial

configuration the effective mass of the photon is clearly
modified. Enhancing it to the desired value is just a matter
of making a suitable choice of f.
What remains is to argue that the presence of the mass

term will not prevent scalarization from occurring. In order
to study this process in its full glory and determine the
stellar structure, it is necessary to numerically integrate the
equations of motion derived from the Lagrangian in
Eq. (16). However, with some approximations, it is possible
to obtain an analytical understanding of the scalarization
process. In particular, one can look for the standard sign for
spontaneous scalarization at the perturbative level, which is
the onset of a tachyonic instability for ϕ once the star
reaches a threshold compactness.
Indeed, so long as f is chosen to vanish at least to

quadratic order in perturbation theory, the original per-
turbative calculation of Ref. [5] applies here. For con-
creteness and without significant loss of generality, we
shall take A2ðϕÞ ¼ expðβϕ2Þ. Recall that if one expands
a more general choice for A2ðϕÞ as in Eq. (6), it is the
value of β0 that controls how effective scalarization is.
Consider the scalar’s field equation, Eq. (4), sourced by a
constant (in the Jordan frame) matter density, ρ, within
some radius, R, and take the metric to be that of flat
space in order to decouple the tensor field equations from
the scalar equation. In terms of the dimensionless
compactness parameter, s ¼ G�M=R (∼0.2 for neutron
stars) and defining u ¼ r=R the scalar’s equation of
motion becomes,

d2ϕ
du2

þ 2

u
dϕ
du

¼ 3sβe2βϕ
2

ϕHð1 − uÞ ð18Þ

where HðxÞ is the Heaviside step function. Solving this
equation in a small-amplitude expansion for ϕ to sub-
leading order, and matching ϕ and ϕ0 at the stellar
boundary one finds, for β < 0, a nontrivial scalar profile
ϕðuÞ ¼ AsincðτuÞ þOðA3Þ with τ ¼ ffiffiffiffiffiffiffiffiffiffi

3sjβjp
and ampli-

tude A ∼ ðs − s�Þ1=2, whenever the compactness, s,
exceeds the scalarization threshold s� ¼ π2=ð12jβjÞ.
The mass term will not contribute to ϕ’s equation due
to our assumption that f vanishes to quadratic order in
perturbations. Hence it cannot quench this instability.
As a second example, we now turn to another model,

which will allow for an actual generation of a mass and can
be straightforwardly generalized to other gauge fields.
Since scalarization appears, perturbatively, as a tachyonic
instability of the ϕ ¼ 0 configuration around compact
objects, it is quite tempting to consider a Higgs mechanism
where the coupling to matter (or nonminimal coupling in
the Jordan frame) replaces the Higgs potential in its role.
We note in passing that scalarization with a complex scalar
has been studied in Ref. [20].
Consider a scalar-tensor theory with a complex charged

scalar field ϕ, and action
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S ¼ 1

4πG⋆

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
4
−
1

2
gμνDμϕDνϕ

�

−
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμν þ Sm½A2ðϕ̄ϕÞgμν;Aμ;ΨA�:

ð19Þ

HereDμϕ ¼ ∂μϕ − ieAμϕ is the gauge-covariant derivative
of the scalar, where the constant e determines the coupling
between ϕ and the photon. The conformal factor is taken to
be Aðϕ̄ϕÞ ¼ expð1

2
βϕ̄ϕÞ, where β is a constant. With these

choices, the action is invariant under the Uð1Þ gauge
transformation

ϕ → ϕeieλ; Aμ → Aμ þ ∂μλ: ð20Þ

If this symmetry is spontaneously broken, and the scalar ϕ
develops a nonzero vacuum expectation value, then the
photon attains a mass of

m2
γðϕ̄ϕÞ ¼

e2

4πG⋆
ϕ̄ϕ: ð21Þ

Since this model allows for mass generation, let us study
it in a bit more detail. The field equations are

ð□ − e2AμAμ − 2ieAμ∂μ

− ie∇μAμÞϕ ¼ −4πG⋆Tβϕ; ð22Þ

∇μFμν ¼ Jν þ JðϕÞν þm2
γðϕ̄ϕÞAν; ð23Þ

Gμν ¼ 8πG⋆ðTμν þ TðϕÞ
μν þ TðAÞ

μν þ TðϕAÞ
μν Þ; ð24Þ

where

Jμ ¼ −
1ffiffiffiffiffiffi−gp δSm

δAμ ; ð25Þ

TðϕÞ
μν ¼ 1

4πG⋆

�
∂ðμϕ̄∂νÞϕ −

1

2
gμνgλσ∂λϕ̄∂σϕ

�
; ð26Þ

JðϕÞμ ¼ ie
8πG⋆

ðϕ̄∂μϕ − ϕ∂μϕ̄Þ; ð27Þ

TðAÞ
μν ¼ FμλFν

λ −
1

4
gμνFλσFλσ

þm2
γðϕ̄ϕÞ

�
AμAν −

1

2
gμνgλσAλAσ

�
; ð28Þ

TðϕAÞ
μν ¼ 2

�
JðϕÞðμ AνÞ −

1

2
gμνgλσJ

ðϕÞ
λ Aσ

�
: ð29Þ

In a static spherically symmetric space-time, the line
element has the form

gμνdxμdxν ¼ −fðrÞdt2 þ hðrÞdr2 þ kðrÞdΩ2; ð30Þ

and the electromagnetic potential has the form

Aμ ¼ ðAtðrÞ; ArðrÞ; 0; 0Þ; ð31Þ

and ϕ is purely radial. In this geometry, the field equa-
tions (22)–(23) reduce to

ϕ00 þAϕ0 − Bhϕ ¼ −4πG⋆βThϕ; ð32Þ
�
f0

f
At þ ðAtÞ0

�0
þ
�
f0

2f
−

h0

2h
þ k0

k

��
f0

f
At þ ðAtÞ0

�

¼ −hJt þm2
γðϕ̄ϕÞhAt; ð33Þ

Jr ¼ m2
γðϕ̄ϕÞAr þ JðϕÞr

h
; Jθ ¼ Jϕ ¼ 0; ð34Þ

where

A≡ f0

2f
−

h0

2h
þ k0

k
− 2iehAr; ð35Þ

B≡ ieðArÞ0 þ ie

�
h0

2h
þ f0

2f
þ k0

k

�
Ar

þ e2hðArÞ2 − e2fðAtÞ2: ð36Þ

If the matter described by Sm is electrically neutral, then
the external current Jμ vanishes, and it follows from the
above equations that

Im

�
ϕ0

ϕ

�
¼ ehAr: ð37Þ

In other words, the phase of ϕ is directly related to the
radial component of Aμ and thus Aμ has only one dynamical
degree of freedom. This is the concrete manifestation of
gauge invariance in spherical symmetry.

Given that the scalar current source JðϕÞμ appears on
the right-hand side of Eq. (23), one might be tempted to
conclude that scalarized stars necessarily have an elec-
tric charge. This would be highly problematic from a
phenomenological point of view. However, it follows
from Eqs. (32)–(34) that, in the static and spherically
symmetric case, the only nontrivial component of this
current can be absorbed by a gauge transformation.
Hence, it is in principle possible to have scalarized stars
with vanishing electric charge, but still a nonzero
photon mass in their interior, allowing for interesting
phenomenology.
We will now demonstrate that the electric charge of

scalarized stars is actually forced to vanish at the pertur-
bative level. We will resort to the same approximations and
definitions as in the previous model. We will additionally
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define W ¼ ffiffiffiffiffiffiffiffiffiffiffi
4πG�

p
At and ϵ ¼ e2R2=ð4πG�Þ. The field

equations then boil down to

d2jϕj
du2

þ 2

u
djϕj
du

þ ϵW2jϕj ¼ 3sβe2βjϕj2 jϕjHð1 − uÞ; ð38Þ

d2W
du2

þ 2

u
dW
du

¼ ϵjϕj2W: ð39Þ

Solving these equations perturbatively in ϵ to leading
order, and, again, in a small-amplitude expansion for jϕj
to subleading order, and matching at the stellar boun-
dary, one finds that W is forced to vanish everywhere in
order to avoid a singularity at the stellar center. As the
equations for jϕj are identical to those of ϕ in the
previous model (other than the contribution which is
forced to vanish) the scalarized profile and the threshold
are unaffected. Hence, this calculation also demonstrates
that scalarization will proceed in the same fashion as in
the known models explored by Damour and Esposito-
Farèse.
To summarize, we have presented two models in which

the mass of the photon has a different value in the interior
and the vicinity of a compact star than that measured by
experiments performed in a weak gravity regime. In both
models a scalar field ϕ undergoes spontaneous scalariza-
tion, i.e. its configuration is trivial in and around matter
configurations of low compactness, whereas it becomes
nontrivial once a certain threshold in compactness is
crossed. The first model has a Proca-like mass term with
a ϕ-dependent effective mass that never vanishes entirely.
Scalarization can change its value from undetectably low to
significantly high to give rise to new phenomenology. The
second model can be thought of as a gravitational Higgs
mechanism with the Higgs potential replaced by the scalar-
gravity coupling. In this model the massless photon
acquires a nonzero mass in the interior of a sufficiently
compact star.
We have focused on the electromagnetic field for

simplicity and concreteness but it should be clear that
our goal was to give a proof of principle. Adding mass
to the photon is a provocative, significant departure
from the standard model that might turn out to be hard
to reconcile with experiments and observations [21].
However, one does not necessarily need to think of the
vector field in our model as the electromagnetic field.
Moreover, one can straightforwardly construct similar
models that would change the masses or couplings of

other standard model fields in and around compact stars.
This would be less of a departure from the standard
picture and it can still have profound implications for
our understanding of the microphysics and internal
structure of neutron stars, as currently realistic equations
of state are based on the assumption that fundamental
physics remains unchanged in the star’s interior.
Moreover, models such as the ones we proposed here
could exhibit characteristic phenomenology that current
or future observations could probe. This would reveal
the existence of otherwise very elusive scalar fields.
This issue certainly deserves closer investigation.
It has recently been shown that scalarization might

also occur around black holes that are surrounded by
matter [22,23], as the presence of the latter makes the
known no-hair theorems [24–30] inapplicable. If sig-
nificant scalarization can occur in some astrophysical
black hole systems, then it would be particularly
interesting to study such systems within the context
of our models.
Before closing, it is worth commenting on our

choices of coupling between the scalar and the electro-
magnetic field. Our models are such that the coupling
terms vanish at low orders in perturbation theory around
the unscalarized solution and hence they are entirely
absent from the equation of motion of the scalar field.
This is the simplest way to be certain that scalarization
is entirely unaffected and proceeds precisely as in the
known models at the perturbative level. However, a
contribution to the scalar’s equation coming from the
coupling terms could well be present, so long as it does
not quench the tachyonic instability that acts as a
perturbative manifestation of spontaneous scalarization.
Models with such behavior are very likely to exist.
We close with a note of caution. Our arguments relied

heavily on a perturbative treatment. A nonperturbative
study of compact stars in our models would not only
provide stronger evidence for our claims, but it would
also determine the structure of compact stars and allow
one to quantify the deviations from general relativity.
We will consider this issue in a separate publication.

The research leading to these results has received
funding from the European Research Council under
the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC Grant Agreement No. 306425
“Challenging General Relativity.”
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