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We carry out numerical simulations of the collapse of a complex rotating scalar field of the form
Ψðt; r; θÞ ¼ eimθΦðt; rÞ, giving rise to an axisymmetric metric, in 2þ 1 spacetime dimensions with
cosmological constant Λ < 0, for m ¼ 0, 1, 2, for four one-parameter families of initial data. We look for
the familiar scaling of black hole mass and maximal Ricci curvature as a power of jp − p�j, where p is the
amplitude of our initial data and p� some threshold. We find evidence of Ricci scaling for all families, and
tentative evidence of mass scaling for most families, but the case m > 0 is very different from the case
m ¼ 0 we have considered before: the thresholds for mass scaling and Ricci scaling are significantly
different (for the same family); scaling stops well above the scale set by Λ, and the exponents depend
strongly on the family. Hence, in contrast to the m ¼ 0 case, and to many other self-gravitating systems,
there is only weak evidence for the collapse threshold being controlled by a self-similar critical solution and
no evidence for it being universal.
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I. INTRODUCTION

In the numerical and mathematical study of gravitational
collapse, massless scalar fields have often been used as a
matter field. They are simple, travel at the speed of light like
gravitational waves, and may also be of interest as funda-
mental fields. Similarly, the simplest models of gravitational
collapse are spherically symmetric, going back to the key
paper of Oppenheimer and Snyder [1] on spherically
symmetric collapse of dust to a Schwarzschild black hole.
Choptuik [2] used the combination of massless scalar

field matter with spherical symmetry to spectacular effect,
initiating the study of critical phenomena in gravitational
collapse: the generic presence of universality, scaling and
self-similarity in the time evolution of initial data that are
close to the threshold of collapse. (Here we use the term
“collapse” synonymously with black hole formation from
regular initial data.)
The triad of universality, scaling and self-similarity was

previously familiar from critical phenomena at second-order
phase transitions in thermodynamics, understood in terms of
renormalization group theory. Similarly, critical phenomena
can be understood in terms of a renormalization group flow
on the space of classical initial data in general relativity that
is at the same time a physical time evolution, for suitable
choices of the lapse and shift [3,4]. A novel feature in general
relativity is the appearance of discrete self-similarity (DSS),
rather than the continuous self-similarity (CSS) familiar
elsewhere in physics (such as fluid dynamics).
One obvious direction to go in from the work of

Choptuik was to generalize to axisymmetry. Abrahams

and Evans [5] found scaling and DSS in the collapse of
polarized axisymmetric vacuum gravitational waves. These
numerical results are widely believed to be correct but have
still not been verified independently.
With matter, axisymmetry is also the maximal symmetry

in which rotating collapse can be studied in 3þ 1 dimen-
sions, leading to a Kerr black hole. Moreover, in axisym-
metry, angular momentum forms a conserved current
generated by the Killing vector field K,

ja ≔ Ta
bKb ⇒ ∇aja ¼ 0: ð1Þ

However, in 3þ 1 spacetime dimensions with axisymme-
try, neither vacuum gravitational waves nor an axisym-
metric massless scalar field Φ can carry angular
momentum. A simple way of seeing this for the axisym-
metric scalar field (for simplicity assumed to be real) is to
note that

ja ¼ ∇aΦKb∇bΦ −
1

2
Kað∇bΦ∇bΦÞ: ð2Þ

The first term vanishes if the scalar field is itself axisym-
metric, and the second term is by definition tangent to
any axisymmetric slice, and so does not contribute to the
Noether charge J ≔

R
jadSa.

A way of getting round that is to use a complex scalar
field Ψ ¼ eimφΦ, where Φ is axisymmetric but now
complex, and m is an integer. This results in an axisym-
metric stress-energy tensor and spacetime. Although using
a complex scalar field appears to be a natural choice, this
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particular ansatz introduces a pseudocentrifugal potential
2m=r (where r is the cylindrical radius) into the wave
equation even when the angular momentum current van-
ishes identically, so the centrifugal repulsion appears to be
unrelated to angular momentum in a way that appears to be
atypical of intuitive ideas of the effect of angular momen-
tum in collapse.
Choptuik et al. [6] examined the casem ¼ 1 in 3þ 1 and

found universality and scaling. The DSS critical solution
is distinct from the well-known one for m ¼ 0 [2,7]. The
m ¼ 1 critical solution is real (up to a constant overall
phase) and nonrotating and an attractor even for rotating
initial data, so that J=M2 → 0 at the black-hole threshold.
Critical collapse of a real scalar field in spherical

symmetry in 2þ 1 was investigated by Pretorius and
Choptuik [8], and in more detail by us [9]. There are a
number of essential differences between 2þ 1 and all
higher dimensions. First, a negative cosmological constant
is required to form a black hole from regular data. This
brings with it the existence of a reflecting timelike outer
boundary (at infinity). It also means that exactly self-similar
solutions cannot exist. Finally, because the mass in 2þ 1
dimensions is dimensionless, the black hole mass scaling
cannot be derived using a pure renormalization group
argument.
In [9] we investigated these issues in the nonrotating

(m ¼ 0) case with Φ real. We initially adopted as the
definition of supercritical initial data (in any given one-
parameter family of data) that the Ricci scalar at the center
blows up without any preceding minima and maxima. Fine-
tuning to the critical parameter thus identified, we found a
universal critical solution that is approximately (asymp-
totically on small spacetime scales) CSS inside the light
cone of its (naked) singularity, but has a different symmetry
outside the light cone. (The asymptotic form inside the light
cone had previously been derived in closed form by
Garfinkle [10]). We also found the familiar and expected
scaling of the maximum of the Ricci scalar,

Rmax ∼ ðp� − pÞ−2γ; ð3Þ

for subcritical data [11]. In contrast to the scalar field in
higher dimensions, we actually saw scaling of the values
and locations of several maxima and minima of the Ricci
scalar. These must be features of the universal post-CSS
subcritical evolution, rather than the CSS critical solution
itself.
We also found power-law scaling of the mass of the

earliest marginally outer-trapped surface (EMOTS),

MEMOTS ∼ ðp − p�Þδ: ð4Þ

We derived δ based on the interaction of the critical solution
outside its light cone, the cosmological constant and a
single growing mode. Our argument relies on a technical

conjecture, but is supported by the numerical observation
that the threshold value p� is the same for subcritical Ricci
scaling and supercritical mass scaling.
In the present paper, we investigate critical collapse

for the rotating axisymmetric complex scalar field (m > 0
and/or Φ complex) in 2þ 1 dimensions. This fills the gap
in the 2 × 2 table of models studied so far. As an additional
motivation, axisymmetry in 2þ 1 dimensions reduces the
field equations to partial differential equations (PDEs) in
only two coordinates ðt; rÞ, even in the presence of angular
momentum, so that there is no extra computational cost
compared to spherical symmetry. Looking ahead to future
work on rotating fluid collapse in 2þ 1 dimensions,
we have organized the material so that Sec. II and
Appendixes A–B hold for any matter, while the rest of
the paper is specific to rotating scalar field matter.

II. AXISYMMETRY WITH ROTATION

A. Metric

We consider 2þ 1-dimensional asymptotically anti–de
Sitter (AdS) spacetimes with a rotational Killing vector
K ¼ ∂θ. For clarity, we will refer to this symmetry as
axisymmetry in general, but as spherical symmetry in the
absence of rotation, when there is an additional reflection
symmetry θ → −θ.
In axisymmetry in 2þ 1 dimensions we make the metric

ansatz

ds2 ¼ fð−dt2 þ dr2Þ þ r̄2ðdθ þ βdtÞ2; ð5Þ

where f, r̄ and β are functions of ðt; rÞ only. To consider
asymptotically AdS spacetimes, we rewrite this as

f ≔
e2A

C2
; ð6Þ

r̄ ≔ eBlT ; ð7Þ

where l is the length scale set by the cosmological constant
Λ < 0 as Λ ≕ −1=l2, and where we have defined the
shorthands

S ≔ sin

�
r
l

�
; C ≔ cos

�
r
l

�
; T ≔ tan

�
r
l

�
: ð8Þ

The coordinate ranges are −∞ < t < ∞, 0 ≤ r < lπ=2
and 0 ≤ θ < 2π. It is helpful to keep in mind that in our
convention S ¼ 0 at the center r̄ ¼ 0 of axisymmetry and
C ¼ 0 at the AdS outer boundary r ¼ lπ=2. In this ansatz,
A ¼ B ¼ β ¼ 0 represents the global AdS spacetime.
These coordinates are a generalization of those used

in [8,9]. We show in Appendix B that the Kerr-AdS
solution can also be expressed in these coordinates, so
that these are good coordinates for simulating rotating
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collapse. We discuss the remaining gauge freedom in
Appendix A. The upshot is that to fix the gauge completely
we will impose β ¼ 0 at the outer boundary.

B. Einstein equations

The Einstein equations with a cosmological constant Λ
are

Gab þ Λgab ¼ 4πTab ð9Þ

in the units of [8,9], where G ¼ 1=2 and c ¼ 1. In
axisymmetry (with rotation), there are six independent
components of the Einstein equations. Two can be written
as wave equations for A and B, namely,

−A;tt þ A;rr þ C3 −
3

4
C4γ

2 þ 4πSA ¼ 0; ð10Þ

− B;tt þ B;rr þ
2

r
B;r þ B2

;r þ B;r

�
2

lSC
−
2

r

�
− B2

;t

þ 2C3 þ
1

2
C4γ

2 þ 4πSB ¼ 0; ð11Þ

where we have defined the shorthands

C3 ≔
ð1 − e2AÞ
l2C2

; C4 ≔ l2S2e2B−2A: ð12Þ

We also have two constraint equations for A and B, namely,

B;rr þ B;r

�
B;r − A;r þ

1þ C2

lSC

�
−

A;r

lSC

− A;tB;t þ C3 þ
1

4
C4γ

2 þ 4πSB0 ¼ 0; ð13Þ

B;trþB;t

�
B;r−A;rþ

C
lS

�
−A;t

�
B;rþ

1

lSC

�
þ4πS _B¼0:

ð14Þ
The last two Einstein equations (which become trivial
in spherical symmetry) can be written as one evolution
equation and one constraint for

γ ≔ β;r; ð15Þ

namely,

J;t þ 8πr̄S_γ ¼ 0; ð16Þ

J;r þ 8πr̄Sγ0 ¼ 0; ð17Þ

where we have defined the shorthand

J ≔
r̄3γ
f

: ð18Þ

We show in Appendix B that in vacuum J is the angular
momentum parameter of the Bañados-Teitelboim-Zanelli
(BTZ) metric. We have also introduced the following
shorthands for the source terms of the six Einstein
equations:

SA ≔ −
e2A−2B

l2S2
Tθθ ð19Þ

SB ≔ Ttt − Trr − 2βTtθ þ 4β2Tθθ ð20Þ

S _B ≔ Ttr − βTrθ ð21Þ

SB0 ≔ Ttt − 2βTtθ þ 4β2Tθθ ð22Þ

S_γ ≔ Trθ; ð23Þ

Sγ0 ≔ Ttθ − βTθθ: ð24Þ

C. Apparent horizon

A marginally outer-trapped surface (MOTS) in axisym-
metry is given by

gþ ≔ ð∂t þ ∂rÞ ln r̄ ¼ B;t þ B;r þ
1

lSC
¼ 0: ð25Þ

The curve gþ ¼ 0 in the tr-plane defines the apparent
horizon (AH). An isolated horizon (IH) is a piece of the AH
that is null. The apparent horizon is spacelike, timelike or
null if the product gþ;vgþ;u is positive, negative or zero.

D. Quasilocal angular momentum

Consistently with (18), (17), we define the quasilocal
angular momentum

Jðt; rÞ ¼ 8π

Z
r

0

ω
ffiffiffi
γ

p
dr0; ð26Þ

where

ω ≔ −jana ¼ −TabnaKb ¼ Tt
θ

ffiffiffi
f

p
¼ −

Sγ0ffiffiffi
f

p ð27Þ

is the angular momentum density per unit volume of space,
and na and γ are the future-pointing unit normal and
volume element on slices of constant t. J is the conserved
quantity related to ja, and is therefore gauge invariant and
independent of the time slice on which we have integrated
from the center out to the point ðt; rÞ.
Because mass in 2þ 1 spacetime dimensions is dimen-

sionless, ω has units of 1=length, and J has units of length.
The factor of 8π has been inserted so that J coincides with
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the expression for J in Kerr-AdS spacetime. It is therefore
constant in vacuum and reduces to the BTZ angular
momentum.

E. Quasilocal mass candidates

A possible quasilocal mass expression is the local BTZ
mass parameter

MBTZlocðt; rÞ ≔
r̄2

l2
þ J2

4r̄2
− ð∇r̄Þ2: ð28Þ

This is a scalar, and reduces to the constant BTZ mass in
vacuum. However, we will see that, at least for the complex
scalar field considered here, its mass aspect MBTZloc;r may
become negative.
Alternatively, we could extend the 2þ 1-dimensional

Hawking mass from spherical symmetry [8]

MHðt; rÞ ≔
r̄2

l2
− ð∇r̄Þ2 ð29Þ

to axisymmetry. The mass aspect HH;r is non-negative for
rotating scalar field matter. However, MH is not constant in
the Kerr-AdS solution.
On the horizon of a stationary black hole, or more

generally on any isolated horizon (IH) characterized by
j∇r̄j2 ¼ 0, MBTZloc reduces to the BTZ mass M, while the
generalized Hawking mass reduces to the irreducible mass:

MHjIH ¼ r̄2

l2
¼ 1

2

0
B@M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

J2

l2

s 1
CA ¼ Mirr: ð30Þ

(In any dimension, the irreducible mass is uniquely defined
by the requirements that dM − ΩdJ > 0 if and only if
dMirr > 0 and Mirr ¼ M for nonrotating black holes [12].)
In the following, we exclusively use M ≔ MH as our

quasilocal mass.

III. ROTATING SCALAR FIELD MATTER

A. Field equations

The stress-energy tensor for a minimally coupled mass-
less complex scalar field Ψ is

Tab ¼
1

2
ðΨ;aΨ�

;b þΨ�
;aΨ;b − gabgcdΨ;cΨ�

;dÞ: ð31Þ

This is conserved, ∇aTab ¼ 0, if and only if Ψ obeys the
wave equation ∇a∇aΨ ¼ 0.
We make the axisymmetric rotating complex scalar field

ansatz

Ψ ¼ eimθΦ; Φ ≕ Smðϕþ iψÞ; ð32Þ

where ϕ and ψ are real and independent of θ, and m is an
integer. Without loss of generality we set m ≥ 0 from now
on. In this ansatz, regularity of Ψ requires ϕ and ψ to be
even and regular [and hence generically Oð1Þ] in r at the
origin r ¼ 0. We have chosen the regularization factor Sm

in (32) rather than rm or r̄m because this gives rise to the
simplest form of the field equations.
With the first-order variables

V ≔ ϕ;t þmβψ ; X ≔ ϕ;r; ð33Þ

W ≔ ψ ;t −mβϕ; Y ≔ ψ ;r; ð34Þ

the coupled wave equations for ϕ and ψ are

−V;t þX;r þ
2mþ 1

r
XþC1X −mβW − B;tV þC2ϕ ¼ 0;

ð35Þ

−X;t þ V;r −mðβY þ γψÞ ¼ 0; ð36Þ

and

−W;tþY;rþ
2mþ1

r
YþC1YþmβV−B;tWþC2ψ ¼0;

ð37Þ

−Y;t þW;r þmðβX þ γϕÞ ¼ 0; ð38Þ

where we have introduced the shorthands

C1 ≔
�
2m
lT

þ 1

lSC
−
2mþ 1

r

�
þ B;r; ð39Þ

C2 ≔ m
B;r

lT
þm2

C2 − e2A−2B

l2S2
: ð40Þ

Looking at the ensemble of all field equations, the first
lines of (35), (37); (10), (11); and (13), (14) represent their
principal parts, where we must consider terms of the type
B;r=r and X=r as principal in analyzing well posedness and
numerical stability. We have already eliminated all terms of
the type ϕ=r2, which otherwise we would also consider
principal, by introducing the factor Sm ≃ rm in (32).
The source terms for the Einstein equations with scalar

field matter are

SA
SB0

�
¼ 1

2
S2m½ðX2 þ Y2Þ ∓ ðV2 þW2Þ�

þm2
S2m−2

2l2
ðC2 ∓ e2A−2BÞðϕ2 þ ψ2Þ

þm
CS2m−1

l
ðXϕþ YψÞ; ð41Þ

JOANNA JAŁMUŻNA and CARSTEN GUNDLACH PHYSICAL REVIEW D 95, 084001 (2017)

084001-4



SB ¼ m2
S2m−2

l2
e2A−2Bðϕ2 þ ψ2Þ; ð42Þ

S _B ¼ S2mðVX þWYÞ þm
CS2m−1

l
ðVϕþWψÞ; ð43Þ

S_γ ¼ mS2mðYϕ − XψÞ; ð44Þ

Sγ0 ¼ mS2mðWϕ − VψÞ: ð45Þ

For m ¼ 0 and β ¼ 0, the Einstein equations reduce to
Eqs. (6)–(9) of [8], but with two copies of the scalar field.
For m > 0, we can consistently restrict solutions to the
class of real, nonrotating solutions where ψ and β, and
hence W, Y, γ, all vanish.
As a curvature diagnostic we use the Ricci scalar

R ¼ −
6

l2
þ 8πC2S2m−2e−2A

�
S2ðX2 þ Y2 − V2 −W2Þ

þ 2mSC
l

ðXϕþ YψÞ þm2

l2
ðe2A−2B þ C2Þðϕ2 þ ψ2Þ

�
:

ð46Þ

Note that this expression vanishes at r ¼ 0 except for
m ¼ 0 (with V2 þW2 contributing) and m ¼ 1 (with
ϕ2 þ ψ2 contributing).
For the rotating scalar field, we use the diagnostic ω or

ω̄ ≔
ω

m
¼ e−ACS2mðWϕ − VψÞ; ð47Þ

where ω̄ is defined also for m ¼ 0. If the complex scalar
field was coupled to an electromagnetic field, ω̄ would be
the electric charge density of the scalar field. It is an artifact
of our ansatz for Ψ that its angular momentum density ω is
simply equal to its “charge density” ω̄ times the integer m.

B. Symmetries and boundary conditions

At r ¼ 0, the boundary conditions follow from the fact
that A, B, β, ϕ, ψ , V, W are even in r and generically Oð1Þ
(and so obey Neumann boundary conditions), and γ, X
and Y are odd and generically OðrÞ (and so obey Dirichlet
boundary conditions). There is one additional geometric
regularity condition, namely the absence of a conical
singularity at r ¼ 0, or

Að0; tÞ − Bð0; tÞ ¼ 0: ð48Þ

Together, all these conditions are equivalent to the
standard requirement that the metric and scalar fields must
be analytic functions at x ¼ y ¼ 0 when expressed in the
Cartesian coordinates x ¼ r cos θ and y ¼ r sin θ. They are
of course compatible with the field equations.

At the timelike AdS infinity, regularity of (10), (11)
requires A;ϕ;ψ ∼ z2 and B ∼ z, where we have defined the
shorthand z ≔ r − lπ=2. Hence A, ϕ and ψ obey both
Dirichlet and Neumann boundary conditions, and B obeys
Dirichlet boundary conditions. The first-order auxiliary
variables V, W, X, Y therefore all vanish at the adS
boundary. As already discussed, we also impose the gauge
boundary condition (A8).
It is compatible with the field equations to assume that A,

B, β, ϕ, ψ are even functions of z (as well as even functions
of r). This is true because of the way r appears in the field
equations only through S and C. With this assumption, the
variables A;B; β;ϕ;ψ are even and X, Y, γ are odd, about
both boundaries. In addition A;ϕ;ψ ; V;W also vanish at
z ¼ 0. However, unlike r ¼ 0, z ¼ 0 is not an interior
point of the spacetime, and so this symmetry does not
follow from regularity alone. Rather, it can be imposed as
a consistent restriction of the solution space. In the
following, we always make this assumption (as we
already did in [9]).

C. Apparent horizon

Recall that the apparent horizon is spacelike, timelike
or null if the quantity gþ;vgþ;u is positive, negative or zero.
The two factors of this expression, using the Einstein
equations, are

gþ;v ¼ −4πS2m

��
V þ X þmϕ

lT

�
2

þ
�
W þ Y þmψ

lT

�
2
�
;

ð49Þ

gþ;u ¼ −
2e2A−2B

l2

�
e2B

C2
−
1

4
e4B−4Al2S2γ2

− 2πm2S2m−2ðϕ2 þ ψ2Þ
�
: ð50Þ

In the m ¼ 0 case, gþ;u < 0, and gþ;v ≤ 0 with equality
only at r ¼ 0 or where Ψ;v ¼ 0. Hence we recover the
result [9] that the AH is null (becoming an IH) where
Ψ;v ¼ 0 and spacelike elsewhere. For m > 0, gþ;v ≤ 0 still
holds but gþ;u can now become positive for ϕ2 þ ψ2

sufficiently large, even in the absence of rotation. Hence
the AH can become timelike in the presence of matter.
However, Ψ;v ¼ 0 (no infalling matter) still implies that the
AH is null (becomes an IH).

D. Quasilocal mass

The mass aspect MH;r for rotating scalar field matter is

MH;r ¼ f1 þ f2; ð51Þ
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f1 ≔ g−P½ðV þ X̂Þ2 þ ðW þ ŶÞ2�
þ gþP½ðV − X̂Þ2 þ ðW − ŶÞ2�4πm2grS2mðϕ2 þ ψ2Þ;

ð52Þ

f2 ≔
1

2
e4B−4Al4S4γ2; ð53Þ

where gr ≔ ðln r̄Þ;r and we have defined the positive
definite factor

P ≔ 2πl2e2B−2AS2mþ2 ð54Þ

and the shorthands

X̂ ≔ X þmϕ

lT
; Ŷ ≔ Y þmψ

lT
: ð55Þ

Outside the AH, we have gþ; g−; gr > 0, and henceMH;r is
positive outside the AH. In particular, we recover the
corresponding result for the case m ¼ 0 stated in [9].
However, for m > 0, MH;r vanishes in vacuum only
if γ ¼ 0.
By contrast MBTZloc;r vanishes in vacuum, even with

rotation, but is not positive definite. It can be written as

MBTZloc;r ¼ f1 − f3; ð56Þ

f3 ≔ 2mPγðWϕ − VψÞ: ð57Þ

Note that

�
J2

4r̄2

�
;r
¼ −f2 − f3; ð58Þ

where the indefinite term f3 comes from ðJ2Þ;r.

IV. NUMERICAL METHOD

A. Einstein equations

We use a numerical grid in ðt; rÞ, with Courant factor
Δr=Δt ¼ 1=4, so that taking every fourth time slice we
trivially obtain a double null grid in ðu; vÞ. (In [9], we used
Δr=Δt ¼ 1=64, but this is unnecessary for stability, and we
have checked that there is no significant difference in
results.) However, for all numerical purposes, we are doing
a Cauchy evolution. We set data on t ¼ 0, and evolve
forward in t, with regularity boundary conditions at r ¼ 0
and z ¼ 0. We use standard fourth-order central finite
differencing in r (except for the principal part of the wave
equation, see below), and fourth-order Runge-Kutta in t.
The constraints (14), (13) can be solved on a time

slice either as coupled ordinary differential equations in r
for B and B;t, or as coupled algebraic equations for A;t and
A;r (and then by integration in r for A). Generalizing the

approach of [8], we make the gauge choice B ¼ B;t ¼ 0 at
t ¼ 0, fix initial data ϕ, ψ , X ¼ ϕ;r, Y ¼ ψ ;r, V andW, and
iteratively solve the constraints for A, A;t and γ. We then
obtain β from γ by integration. During the evolution for
t > 0, we then solve the wave equations for A and B, as
well as the wave equations for ϕ and ψ .
At t ¼ 0, and then at each time step, we find γ by

integrating (17) outwards, and then β by integrating (15)
inwards. We either do the same at each time step (and at
each Runge-Kutta substep), or we use (16) to evolve γ by
integration, and again obtain β by integrating (15) inwards.
To obtain the correct behavior γ ∼ S2m−1 as r → 0, we

write (17) as

γðrÞ ¼ 8πm
l2C5

Z
r

0

eB

C2
ðWϕ − VψÞ dðS

2mþ2Þ
2mþ 2

; ð59Þ

and apply Simpson’s rule for unequally spaced points
S2mþ2 to the integral with cubic spline interpolation for
the middle points. This explicit expression assumes that B
is given, so this integration has to be carried out at each
Runge-Kutta substep in time. At t ¼ 0, we set B ¼ 0.
With i ¼ N the outer boundary grid point, so that

AN ¼ BN ¼ βN ¼ 0, we update the point i ¼ N − 1 by
using the four grid pointsN − 2, N − 3, N − 4 andN − 5 to
fit the polynomial A ¼ A2z2 þ A4z4 þ A6z6 þ A8z8 where
z ≔ r − lπ=2 and evaluate it at grid point N − 1, and
similarly for ϕ;ψ, which we also assume to be even in z and
which also vanish. For B, which is even but does not vanish
at z ¼ 0, we fit B ¼ B0 þ B2z2 þ B4z4 þ B6z6 instead.

B. Wave equation

The principal part of our wave equation for ϕ (and
similarly for ψ) is

−V;t þ X;r þ
p
r
X ¼ 0; ð60Þ

−X;t þ V;r ¼ 0; ð61Þ

where p ≔ 2mþ 1. Even though X is OðrÞ and even, so
that X=r is regular, a naive finite differencing of this linear
wave equation is known to suffer from numerical insta-
bilities that quickly become unmanageable with increasing
p (in our case, increasing m). A stable finite differencing
for arbitrarily large p based on summation by parts (SBP)
has been given in [13].
In Appendix C we give explicit formulas for the method

we use, the SBP42 method for a centred grid. In the
continuum limit in time, this finite differencing scheme in
space can be proved to be stable for all positive integers p
in a discrete energy norm that mimics the continuum
energy for this wave equation. One can prove convergence
to fourth order in the discrete energy norm before the wave
interacts with the outer boundary, and to second order
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afterwards. No numerical viscosity is required. Numerical
experiments described in [13] in fact still show third-order
convergence after interaction with the boundary, and this is
true not only in the energy norm but pointwise.

C. Apparent horizon and EMOTS

On each time slice, we locate the apparent horizon by
finding up to four zeros rA;B;C;D of gþðrÞ. When we plot
rA;B;C;D against t this gives us the shape of the AH curve
tAHðrÞ. We allow for four points in case the AH curve is
W-shaped—this did happen for m ¼ 0. Two points are
sufficient if it is V-shaped—we have always found this for
m > 0. Let t1 be the first time step for which we find
nontrivial values rA;B. We then approximate tEMOTS ¼ t1,
and rEMOTS ¼ ðrA þ rBÞ=2.

V. NUMERICAL RESULTS

A. Initial data

In order to separate the initial implosion of a wave packet
from its reflections at the AdS boundary as clearly as
possible we make the initial data as ingoing as possible as is
compatible with X being odd and ϕ and V being even in r.
Hence we set

ϕð0; rÞ ¼ fϕðrÞ þ fϕð−rÞ; ð62Þ

Xð0; rÞ ¼ f0ϕðrÞ − f0ϕð−rÞ; ð63Þ

Vð0; rÞ ¼ f0ϕðrÞ þ f0ϕð−rÞ; ð64Þ

and similarly for ψ, Y and W. We rely on the initial data
being very small at the outer boundary for them to trivially
obey the boundary conditions there.
We have investigated four families of initial data of this

type. In family A we take fϕ to be a Gaussian with center

r0ϕ ¼ 0.2, width σr ¼ 0.05 and amplitude p, and we set
fψ ¼ 0, so that these data are real and nonrotating. In
family B we set fϕ as we do in family A, with r0ϕ ¼ 0.2,
and fψ with the same amplitude and width but center at
r0ψ ¼ 0.25. In family C, we set both fϕ and fψ to be
Gaussians with the same parameters as in family A, but
multiply fϕ by cosωr and fψ by sinωr, with ω ¼ 200. In
family D we set fϕ and fψ as Gaussians with the same
amplitude, and again width σr ¼ 0.05, but now with centers
r0ϕ ¼ 0.05 and r0ψ ¼ 0.1. To fine-tune to the threshold, in
each family of initial data we vary the amplitude p.
We evolve until t ¼ 2, that is two light-crossing times, or

until an EMOTS and then a singularity forms, on a grid
with N ¼ 1000 points, and N ¼ 2000 for family D. For
nonrotating data, we optionally excise the central singu-
larity when it forms, using the simple causal structure of
our coordinates. (When β ≠ 0 this is not possible because
we solve β ¼ R

γdr.)
The critical amplitudes, critical exponents, and ranges

over which we see scaling are summarized in Table I.
Throughout this paper we use the shorthand terminology

of [9], where “subn” denotes subcritical data (p < p�) with
lnðp� − pÞ ¼ n, and “supern” denotes supercritical data
(p > p�) with lnðp − p�Þ ¼ n, so data with larger n are
closer to critical. In contrast to the nonrotating case treated
in [9], we will see that for m > 0 there are distinct critical
values of p for the scaling of the maximum of the Ricci
scalar R and local angular momentum density ω on the
one hand, and for the scaling of the EMOTS mass M on
the other. We will use p� and “subn” for the Ricci and
angular momentum scaling, while for mass scaling we
introduce p�M and “superMn.” In particular, for m > 0 (4)
is replaced by

MEMOTS ∼ ðp − p�MÞδ: ð65Þ

TABLE I. Values of critical amplitudes, critical exponents, and approximate ranges of ln jp − p�j for which we observe scaling, for
m ¼ 0, 1, 2 and four different families of initial data. p� is the critical value of p for Ricci and angular momentum density scaling, and γ
is the corresponding critical exponent; see (3) and (71). p�M is the critical value for EMOTS mass scaling, and δ the corresponding
critical exponent; see (65).

Family m p� p�M 2γ δ subn superMn

A 0 0.13305923 0.13305923 2.36 0.69 ½−25;−5� ½−25;−15�
B 0 0.08462225 0.08462225 2.46 0.66 ½−18;−4� ½−16;−4�
C 0 0.01356158 0.01356158 2.27 0.67 ½−18;−6� ½−18;−5�
D 0 0.183241 0.183241 2.53 0.54 ½−13;−4� ½−13;−2�
A 1 0.576 0.4399 3.73 0.42 ½−6.5;−2� ½−5;−2.5�
B 1 � � � 0.257 � � � 0.36 � � � ½−4.4;−2�
C 1 0.066957 � � � 9.54 � � � ½−8;−3.5� � � �
D 1 1.1269357 1.1 3.93 0.03 ½−13;−4� ½−7;−4�
A 2 1.632 1.395 3.11 0.1 ½−6;−0.5� ½−4.5;−2�
B 2 0.871 0.74 1.98 0.16 ½−7;−1� ½−3.5;−2�
C 2 0.19103 0.132 5.36 0.623 ½−9;−3� ½−5;−3.5�
D 2 4.682 4.544 1.93 0.05 ½−7;−2� ½−6;−3�
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B. Evidence for self-similarity and subcritical scaling

We start by looking for direct evidence that, for sufficient
fine-tuning of the parameter p to some threshold value p�,
the time evolution goes through a universal (for given m)
self-similar phase. A continuously self-similar and axisym-
metric metric can be written in coordinates ðT; x; θÞ
adapted to both symmetries as

gμνðT; x; θÞ ¼ e−2TḡμνðxÞ: ð66Þ

It follows that during this hypothetical self-similar phase

Rðt; 0Þ≃ aðt0� − t0Þ−2; ð67Þ

where R is the Ricci scalar, t0 ¼ t0ðtÞ the proper time at
the origin, t0� is a family-dependent accumulation time
(obtained by fitting) and a a universal dimensionless
constant. (See [3] for a general argument and [9] for a
detailed discussion of the case of spherical symmetry in
2þ 1.) To look for this behavior, we plot ln jRðt0; 0Þj
against ln jt�0 − t0j and adjust the parameter t�0 to optimize
the linear fit.
This self-similar phase ends when the growing mode (or

perhaps one of several growing modes) has reached some
nonlinearity threshold, and this must happen at

Ajp − p�j−γðt0� − t0Þ≃ 1; ð68Þ

where γ is the critical exponent, and A is a family-
dependent constant. To the extent that we can neglect
the infall of further matter (which for Λ < 0 is often not
true), the subsequent evolution is no longer self-similar but
is still universal up to an overall spacetime scale, so that in
particular

jRðt; 0Þj≃ A2jp − p�j−2γf�½Ajp − p�j−γðt0 − t0�Þ�; ð69Þ

where A is the same as in (68), and so depends on the
family of initial data, but the two dimensionless functions
f� (one for p > p� and one for p < p�) are universal. fþ
obviously blows up.
Figures 1 and 2 provide evidence for the behavior (67)

and (69) for the m ¼ 0 A and m ¼ 1 D families of initial
data, by showing lnRðt; 0Þ against ln jt0 − t0�j.
In asymptotically flat spacetime, f− has a single maxi-

mum before decaying to zero. This means that, for
subcritical (p < p�) data

max
t
jRðt; 0Þj≃ bA2ðp� − pÞ−2γ; ð70Þ

where A is again the same family-dependent constant as
in (68), (69) and b ≔ max f− is a universal dimensionless
constant [11]. [This is a more explicit version of (15)
above.] In our investigation [9] of them ¼ 0 case, we found
that f− had two maxima and two minima before the final

blowup. We could demonstrate scaling of both the values,
and the location in t0 − t0�, of all these extrema. Similar
scaling laws hold for other geometric invariants, such as ω
defined in (27), for which self-similarity predicts

ωmax ∼ ðp� − pÞ−γ: ð71Þ

For ω we only find a single maximum.
Figure 3 gives evidence of these scaling laws for the

m ¼ 0 B and C families, Fig. 4 for the m ¼ 1 B and D
families, and Fig. 5 for the m ¼ 2 B and C families.
For quantities which vanish identically at the center, such

as the Ricci scalar for m ≥ 2, or the angular momentum
density ω for anym, we look for the maximum over all r for
a given t instead, and plot this against t0 − t0�. The resulting
function of t clearly depends on the time slicing, but seems
to scale anyway; see again Figs. 4 and 5.
Table I shows the value of the Ricci scaling exponent 2γ

for our 12 families of initial data. For m ¼ 0, γ is the same
for all families, as one would expect if there was a unique
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represents Rðt; 0Þ ¼ jt�0 − t0j−2, indicating that indeed the space-
time is CSS near the center. In the labels, “subn” means that
− lnðp� − pÞ ¼ n, and “supern” means − lnðp − p�Þ ¼ n.
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CSS solution with a single unstable mode. Strikingly, for
m > 0, γ depends strongly on the family.
Beyond looking at the behavior of the global maxima of

R and ω, or the behavior of their maxima over r as a
function of t, we have also attempted to look for direct
evidence of self-similarity as a function of ðr; tÞ, as we did
successfully in [9] for them ¼ 0 case. We have constructed
double-null coordinates ~u and ~v normalized to be proper
time at the origin and with their origins fixed so that ~u ¼ ~v
at the center and ~u ¼ ~v ¼ 0 at the accumulation point
t ¼ t�. We can then define coordinates adapted to the self-
similarity as T ≔ − lnð− ~uÞ and x ≔ ~v= ~u, and plot against
these coordinates. Quantities such as ϕ2 þ ψ2, e−Tω, M,
R−2T should then be functions of x only in any self-similar
region. However, the only quantity for which this works is
the Ricci scalar. For this reason, we do not show any plots
of, for example, the scalar field.

C. EMOTS location

As already discussed above, the AH is the curve in the tr
plane defined by r̄;v ¼ 0, so that every point on it is a
MOTS. As in [9], we denote a local minimum of tAHðrÞ as
an earliest MOTS (EMOTS). If there are two (or more)
EMOTS, then in [9] we denoted the earliest of these as the

first MOTS (FMOTS), but we did not find this behavior
for m > 0.
We focus here on the dependence of the entire AH

curve, and the EMOTS location as one aspect of this, as a
function of the parameter p, taking the example of the
m ¼ 1 A data. A MOTS is already contained in the initial
data for p≳ 0.74. Reducing p from this value, the location
of the EMOTS moves inwards on an approximately null
curve, then moves outwards very rapidly in p in a spacelike
direction at p ¼ pbreak ≃ 0.445465, then moves to the
future on a timelike curve, a little inwards again and then
outwards again on an approximately null curve. Figure 6
illustrates this for the range 0.74 > p > 0.404.
Figure 7 shows how this comes about, by showing the

AH curve for selected values of p, with the lower plot
zooming in on pbreak. For all p, there is only a single
EMOTS, but the nature (timelike/spacelike) of the AH
curve for the m ¼ 1 A data varies with p in a compli-
cated way.
For p≃ pbreak the AH curve has a section that is almost

parallel to the time slices, and the local minimum moves
along that shallow section very quickly, giving rise to the
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apparent jump in Fig. 6. This behavior of the EMOTS is
highly slicing dependent.
For p < pbreak, the EMOTS mass does not scale. This is

reminiscent of the m ¼ 0 A data investigated in detail in
[9]: in that case there were two EMOTS, with a discon-
tinuous switch from the inner to the outer EMOTS being
the FMOTS. Only the inner EMOTS scaled.
Figure 8 shows the EMOTS trajectory for the m ¼ 1 C

data. This is much simpler, and the transition from the
ingoing null to the timelike segment is now clearly
continuous.

D. EMOTS mass and angular momentum

A key observation is that for m ¼ 0 there is a single
critical value p� governing both subcritical and supercriti-
cal scaling, while for m > 0 we have very different critical
values of p for subcritical scaling of the maximum of the
Ricci scalar, and for scaling of the EMOTS mass, with
p�M < p�. This means that both cannot be controlled by the
same critical solution (in contrast to the m ¼ 0 case, where
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we have a theoretical model for this that also predicts the
critical exponents).
For m > 0, the evidence for supercritical EMOTS

mass scaling is even weaker than for subcritical R and ω
scaling, and for the EMOTS angular momentum we have
not found any scaling. Therefore, in the following, we do
not show log-log plots ofM and J against p, but show p on
a linear scale. As for the subcritical scaling of R and ω,
the supercritical scaling of MEMOTS does not continue to
arbitrarily small scales for m > 0. The mass scaling
exponents, and the ranges of lnðp − p�MÞ for which we
observe approximate power-law behavior, are listed in
Table I. Like γ, the mass scaling exponent δ depends
strongly on the family of initial data.
In Figs. 9–13 we give a few examples of the behavior of

the EMOTS mass and angular momentum, and the maxima 0
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0.435, pbreak ≃ 0.445465, 0.46 and 0.5 (from top to bottom).
The bottom plots shows values of p closer to pbreak, namely
p ¼ 0.445460, …66, 68, 694, 70, 72, 80 (from top to bottom).
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of R and ω, as functions of the amplitude p, over a large
range of p. We also indicate the approximate ranges of p
where we see supercritical and subcritical scaling. In these
plots, the upper end of the plotting range for p corresponds
to a MOTS being present already in the initial data. The
minimum of p on the MEMOTS curve corresponds to the
EMOTS location having gone back out almost to the outer
boundary at t ∼ 1 (compare Figs. 6 and 8), which however
in p is very close to p�M. The lower end of the plotting
range for p corresponds to the lowest value of p where we
can clearly see a maximum of R for some t < 2. (Finding
the maximum becomes numerically very difficult, and so it
is not clear for all p if one exists.)
As a reminder of the behavior we found for the m ¼ 0

case in [9], Fig. 9 shows this for the m ¼ 0 B data. (For
m ¼ 0 there is no angular momentum, but these initial data
are complex, so instead of ω we show the “charge density”

ω̄.) This illustrates that for m ¼ 0 there is a single value p�
controlling both supercritical and subcritical scaling.
Figures 10–12 then show three different families of

initial data for m ¼ 1. The obvious difference to m ¼ 0 is
that we now have separate critical values p� for subcritical
scaling and p�M for supercritical scaling, with p� > p�M
for all m > 0 data we have investigated. Moreover, the
blowup of maxR and maxω at p ¼ p� is immediately
obvious (and power-law scaling is then confirmed by log-
log plots such as Figs. 3–5), whereas the mass scaling is
much less clear both by eye and in log-log plots.
Finally, Fig. 13 shows an example of anm ¼ 2 family of

initial data, namely the m ¼ 2 B data.
An additional key difference between m ¼ 0 and m > 0

is that for m ¼ 0, both super and subcritical scaling
continues down to very small scales: the lower cutoff is
either the (small) length scale set by the cosmological
constant, or appears to be a lack of numerical resolution. In
contrast, for m > 0 scaling seems to end at some smallish
scale for dynamical reasons that we do not yet understand.
Looking at Table I, we see that we observe EMOTS mass
scaling only over about 3 e-foldings in jp − p�j for all
m > 0 data, in contrast to up to 10 e-foldings for m ¼ 0.
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We see Ricci scaling for up to 20 e-foldings in jp − p�j for
m ¼ 0, but the “best” we have found for m > 0 is 9
e-foldings. We have no real explanation for this failure of
scaling at small scales, and can only guess that it is covered
up by the infall of matter into the self-similar region of
spacetime.
Among our three examples of m > 0 families of data,

we have selected m ¼ 1 D because it shows the clearest
subcritical scaling (see Table I, and the lower part of Fig. 4).
By contrast,m ¼ 1 B (Fig. 10) shows no subcritical scaling
at all, while m ¼ 1 C (Fig. 11) shows no supercritical
scaling. We can only guess that these are extreme examples
of infalling matter covering up what would otherwise be a
self-similar region.
There appears to be no supercritical scaling of J at all for

any of our (m > 0) families. Again we have no explanation
for this. Note that the mass that scales (and which we are
using in all our plots) is the generalized Hawking massMH
(based on the area radius, and becoming the irreducible
mass of an isolated horizon or black hole), not the
generalized BTZ mass MBTZloc (which includes angular
momentum, and becomes the BTZ mass of a black hole).

E. Numerical error

As an indication that the resolution-dependent numerical
error is small, Fig. 14 shows approximate power-law scaling
of the maximum of the Ricci scalar against p� − p for 1000
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and 2000 grid points in r, with Δr=Δt ¼ 1=4 at both
resolutions, for the m ¼ 2 B data (see below for what
these data are). Adjusting p� so that the log-log plot
approaches a straight line as much as possible, we find
p� ¼ 0.871� 0.001 at both resolutions, with no clear
difference between the values at the two resolutions.
The main systematical error that we are aware of is a

failure of our time evolution scheme to maintain the
regularity condition A ¼ B at the center r ¼ 0, at times
shortly before the blowup. (In 2þ 1, blowup occurs very
soon after maximum curvature, as measured by the time
coordinate t, even for subcritical data.) However, neither
the EMOTS nor the maxima of R and ω occur in the
domain of dependence of the constraint violation, and so
we believe their values are not affected.

VI. DISCUSSION

Going from the spherically symmetric scalar field in
3þ 1 dimensions with Λ ¼ 0 [2,3], via the spherically
symmetric scalar field in 2þ 1 dimensions with Λ < 0
[8,9], to the rotating axisymmetric scalar field in 2þ 1
dimensions with Λ < 0 (this work) the results of numerical
time evolutions become more complicated and less well
understood. Hence we begin this discussion by reviewing
the two simpler situations.
In the 3þ 1 case with Λ ¼ 0 there is a clearly defined

collapse threshold p ¼ p�: essentially all scalar field matter
that does not immediately go into making the black hole
escapes to infinity instead. For arbitrary one-parameter
families of initial data, with sufficient fine-tuning one can
make the curvature arbitrarily large as p↗p�, and the black
hole mass arbitrarily small as p ↘ p�.
In the 2þ 1 case we need Λ < 0 to form a black hole

from regular initial data at all. This means that we
effectively have a reflecting timelike outer boundary. As
a consequence, all matter eventually falls into the black
hole. In 2þ 1 dimensions with Λ < 0 there is also a gap in
the (dimensionless) mass between the AdS ground state
with M ¼ −1, and the black hole solutions with M > 0.
[The range −1 < M ≤ 0 corresponds to point particles
(conical singularities), which cannot form in collapse.]
For both these reasons the collapse threshold in 2þ 1

dimensions is less clearly defined than in higher dimen-
sions: the final black hole mass is just the total mass Mtot,
as long asMtot > 0, while forMtot < 0 a black hole cannot
form. (By contrast, in higher dimensions with Λ < 0 there
is still a reflecting boundary condition, but now the mass
has dimension, there is no mass gap, and there is a well-
defined threshold of black-hole formation after 0; 1; 2;…
reflections at the outer boundary [14].)
In response to these features of 2þ 1 dimensions, we

have adopted the approach of [8]: we define as subcritical
any evolution where the Ricci scalar reaches a local
maximum (at the center) before blowing up. We also do
not measure the final black hole mass but the mass of the

first intersection of the apparent horizon with our time
slicing (the EMOTS).
In [9] we found empirically that for p≃ p� the time it

takes for a light ray to reach the outer boundary and come
back (Δt ∼ 2 in our choice of coordinates) corresponds to
an exponentially small proper time at the center. This
means that any outgoing radiation is scattered back to the
center almost immediately, in terms of the relevant time at
the center, and is probably why even in what we define as
subcritical evolutions, a spacelike central curvature singu-
larity develops very soon after the maximum of the Ricci
scalar.
The system investigated in [8,9] is the case m ¼ 0 with

real Φ of this work, and the particular initial data used to
produce all plots in [9] correspond to the A family of initial
data here. For m ¼ 0, we found a critical value p� of p at
which both the maximum of Ricci becomes arbitrarily large
as p↗p�, and the (inner) EMOTS mass arbitrarily small as
p ↘ p�. We identified a CSS critical solution both theo-
retically and numerically. Based on this, we derived the
Ricci scaling exponent γ and mass scaling exponent δ, in
agreement with our numerical time evolutions.
There are some similarities between m ¼ 0 and m > 0:
(1) For most families of initial data, there is a threshold

p�M such that the EMOTS mass shows power-law
scaling as p ↘ p�.

(2) For most families of initial data, there is a threshold
p� such that the Ricci scalar shows power-law
divergence as p↗p�.

(3) For initial data with p≃ p�, the maximum of the
Ricci scalar evolves as a function of proper time at
center t0 in a way that is compatible with the existence
of a CSS solution with one unstable mode—the
“standard” scenario for type-II critical collapse [3].

However, key aspects of m > 0 also differ from m ¼ 0
(see Table I):
(4) The critical values of p for Ricci scaling and

EMOTS scaling are widely separated (with p� >
p�M in all cases).

(5) We observe both mass scaling and Ricci scaling only
over a limited range of scales.

(6) The scaling exponents γ and δ depend strongly on
the family of initial data.

(7) With the exception of the Ricci scalar R, we have not
convincingly been able to identify a CSS or DSS
spacetime dependence of relevant scalars such asM,
ϕ2 þ ψ2 or ω in evolutions for p≃ p�.

A strong motivation for this work was that in 2þ 1

spacetimedimensions axisymmetry (with rotation) is numeri-
cally almost as straightforward as spherical symmetry, and
that the threshold of gravitational collapse with angular
momentum has hardly been studied yet. We have made the
following observations concerning angular momentum:
(8) At least for some families, the maximum of the local

angular momentum density ω shows subcritical
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scaling with the same (family-dependent) γ as the
maximum of R.

(9) However, where this is the case the constant ratio
maxR=maxω2 depends on the family of initial data.

(10) The previous two observations also hold for the
“charge density” ω̄ ≔ ω=m for m ¼ 0, where there
can be no angular momentum.

(11) The angular momentum of the EMOTS shows no
critical scaling.

(12) The bound J < Ml that applies to a BTZ black hole
formed in collapse appears to also hold for the
EMOTS. It appears to become sharp as p ↘ p�M for
some but not all families of initial data.

It is hard to reconcile all this conflicting evidence. We
are tempted to dismiss the EMOTS mass as an “epiphe-
nomenon” that even for m ¼ 0 is somewhat gauge
dependent and not deeply coupled to the nonlinear
dynamics [9]. In particular, for m > 0, the AH is no
longer constrained to be spacelike, and we have seen that
it can change shape with p in a rather complicated way.
However, the key observation for m > 0 is simply that
p�M is that different from p�: this seems to rule out a
scenario where the same critical solution controls both
Ricci and EMOTS mass scaling.
There is no such argument for also dismissing the Ricci

and ω scaling. We clearly see some threshold behavior as
p↗p�, and it may be that it ends at some level of fine-
tuning (or is absent in a few families) only because the
blowup associated with a critical solution is covered up by
other, noncritical, dynamics.
If we take observations 2, 8, 9 and 10 seriously, and

somehow explain observation 7 away as scaling behavior
being “covered up,” the least implausible theoretical model
appears to be one where the dynamics as p↗p� with
m > 0 is controlled by a family of asymptotically CSS
solutions, maybe having more than one unstable mode, and
admitting different angular momentum (or “charge”) to
mass ratios. A toy model for this may be the competition
between a real DSS and a complex CSS solution in a
harmonic map coupled to gravity [15].
The obvious next step is to look for these critical

solutions. From the experience with m ¼ 0 [9], a thorough
study of asymptotically CSS solutions for m > 0 is bound
to be complex, and we leave this to future work.
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APPENDIX A: GAUGE FREEDOM

To find the residual gauge freedom in the ansatz (5),
we define the auxiliary coordinates

u ≔ t − r; v ≔ tþ r: ðA1Þ

The metric becomes

ds2 ¼ −fdudvþ r̄2
�
dθ þ β

dvþ du
2

�
2

: ðA2Þ

Consider now the coordinate transformation

u ¼ uðûÞ; v ¼ vðv̂Þ; θ ¼ θ̂ þ ϑðû; v̂Þ: ðA3Þ

For the metric in ðû; v̂; θ̂Þ to retain the form (A2), we must
have

β̂ ¼ β
du
dû

þ 2ϑ;û ¼ β
dv
dv̂

þ 2ϑ;v̂: ðA4Þ

The sum and difference of these two PDEs give

β̂ ¼ β

2

�
du
dû

þ dv
dv̂

�
þ ϑ;t̂; ðA5Þ

where ϑ is given by

ϑðt̂; r̂Þ ¼ ϑ∞ðt̂Þ þ
Z

r̂

∞

β

2

�
du
dû

−
dv
dv̂

�
dr̂0: ðA6Þ

Under the same gauge transformation,

f̂ ¼ f
du
dû

dv
dv̂

: ðA7Þ

The three arbitrary functions of one variable uðûÞ, vðv̂Þ
and ϑ∞ðt̂Þ precisely parametrize the residual gauge freedom
of (A2) and hence (5).
As we shall see below in Eq. (10), modulo Eq. (6), the

metric coefficient f obeys a wave equation with principal
part f;uv. Appropriate local data for this wave equation
would be the value of f on two null surfaces ðu ¼ u0;
v > v0Þ and ðv ¼ v0; u > u0Þ. From (A7), these null data
precisely fix the functions ûðuÞ and v̂ðvÞ, so f (or
equivalently A) is pure gauge. The function ϑ∞ðt̂Þ, which
parametrizes a rigid time-dependent rotation of the coor-
dinate system, can be fixed independently by setting
βðt; πl=2Þ. We set

βðπl=2; tÞ ¼ 0; ðA8Þ
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which is the natural choice for asymptotically AdS
spacetimes.

APPENDIX B: THE KERR-ADS SOLUTION

Here we show that a horizon-crossing patch of the
Kerr-AdS metric can be written in the form (5).
In Schwarzschild-like coordinates ðt̄; r̄; θÞ, the eternal

exterior Kerr-AdS vacuum metric is given by

ds2 ¼ −f̄dt̄2 þ f̄−1dr̄2 þ r̄2ðdθ̄ þ β̄dt̄Þ2; ðB1Þ

where the area radius r̄ is used as a coordinate, and the
metric coefficients f̄ and β̄ are given by [16,17]

f̄ðr̄Þ ≔ −M þ r̄2

l2
þ J2

4r̄2
; β̄ðr̄Þ ≔ −

J
2r̄2

: ðB2Þ

The dimensionless mass parameterM takes value −1 (with
J ¼ 0) for AdS spacetime, −1 < M ≤ 0 for a point particle/
naked singularity and M > 0 for a black hole. J is the
angular momentum of the spacetime. For 0 < J2=l2 < M2,
f ¼ 0 has two roots 0 < r̄− < r̄þ < ∞, corresponding to
an inner and outer horizon.
Defining the tortoise coordinate ~rðr̄Þ for r̄ > r̄þ by

~r ≔
Z

f̄−1dr̄; ðB3Þ

(B1) becomes

ds2 ¼ f̄ð−dt̄2 þ d~r2Þ þ r̄2ðdθ̄ þ β̄dt̄Þ2; ðB4Þ

which is of the form (5), with r̄ now a function of t̄ and ~r.
In terms of the auxiliary coordinates

U ≔ t̄ − ~r; V ≔ t̄þ ~r; ðB5Þ

both branches of the bifurcate outer horizon can be brought
to finite coordinate values u ¼ 0 or v ¼ 0 by introducing
the Kruskal coordinates

u ≔ −e−aþU; v ≔ eaþV; ðB6Þ

where the constant aþ is determined by the requirement
that f is finite on the horizon. Further details can be found
in [16,17]. With t and r then defined by (A1), and ϑ given
by (A6), the new metric again has the functional form (5),
but is now finite on the horizon, with β and f given by
(A5), (A7).
The precise expressions for f, r̄ and β as functions of

ðt; rÞ do not matter to us here, because in collapse
simulations the BTZ metric will not appear in this specific
form, but in a generic form related by a further regular
coordinate transformation of the form (A3). Our task is then

to read offM and J when the BTZ metric, or a piece of it, is
given in generic coordinates of the form (5).

APPENDIX C: SBP FINITE DIFFERENCING
IN r FOR THE WAVE EQUATION

We assume here that the grid is centered and equally
spaced, so that ri ¼ iΔr for i ¼ 0…N. We finite-difference
(60), (61) as

�
X;rþ

p
r
X

�
i
¼8ð ~Xiþ1I1− ~Xi−1I−1Þ−ð ~Xiþ2I2− ~Xi−2I−2Þ

12w̄iΔr
;

ðC1Þ

ðV;rÞi ¼
8ðViþ1 − Vi−1Þ − ðViþ2 − Vi−2Þ

12Δr
; ðC2Þ

where we have introduced the shorthands

Ik ≔ Iðk; i; pÞ ≔
�
1þ k

i

�
p

ðC3Þ

and

~X0 ≡ 0; ðC4Þ

~X1 ≡ ~v1X1 þ u3=2X2; ðC5Þ

~X2 ≡ ~v2X2 þ u3=2X1 þ u5=2X3; ðC6Þ

~X3 ≡ ~v3X3 þ u5=2X2; ðC7Þ

~Xi ≡ ~viXi; i ≥ 4: ðC8Þ

[These formulas are equivalent to Eqs. (57)–(65) of [13],
and are obtained from them by canceling a factor of ip

between the numerator and denominator.] The coefficients
u3=2, u5=2, v̄i and w̄i depend on the integer p and are
defined by a fourth-order recursion relation with boundary
conditions at i ¼ 0 and i → ∞.
While the stability of this scheme is not obvious, it is

easy to see that with v̄i ¼ w̄i ¼ 1, ui ¼ 0, it reduces to
applying the standard fourth-order accurate symmetric
stencil to X0 þ pX=r ¼ r−pðrpXÞ0, and is therefore a
fourth-order accurate discretization. The expression for
V 0 is just the standard symmetric five-point fourth-order
accurate finite difference, but it is important to note that
the method consists of both finite-difference stencils and
appropriate boundary conditions.
The symmetry boundary r ¼ 0 is dealt with by extending

the grid to two ghost points according to Xð−rÞ ¼ −XðrÞ
and Vð−rÞ ¼ VðrÞ. The outer boundary rN ¼ lπ=2 is dealt
with by one-sided finite differences for the last four grid
points, namely,
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�
X;r þ

p
r
X

�
N−3;…;N

¼ 8 ~XN−5I−2 − 64 ~XN−4I−1 þ 59 ~XN−2I1 − 3 ~XNI3
98wN−3Δr

;

ðC9Þ

8 ~XN−4I−2 − 59 ~XN−3I−1 þ 59 ~XN−1I1 − 8 ~XNI2
86wN−2Δr

; ðC10Þ

− ~XN−2I−1 þ ~XNI1
2wN−1Δr

; ðC11Þ

3 ~XN−5I−3 þ 8 ~XN−2I−4 − 59 ~XN−1I−2 þ 48 ~XN

34wNΔr
: ðC12Þ

The corresponding one-sided finite differences for V;r

use the same rational coefficients, but without the weights
vi, wi, Ik.
We impose the boundary conditions ϕ;ϕ0; V; V 0; X ¼ 0

and similarly ψ ;ψ 0;W;W0; Y ¼ 0 using the Olsson projec-
tion method [18], which is summarized in Appendix G
of [13]. This method makes sure that the discrete energy
estimate still holds after imposing the boundary conditions.
It does not matter how we discretize the r-derivatives in

these BCs, but we choose the ð3; 8;−59; 48Þ stencil for
d=dr at the boundary set out above.
The coefficients ~vi and ~wi are tabulated for p ¼ 1;…; 22

(thus covering m ¼ 0;…; 10), and for i ¼ 0;…; 2000 in
[19]. The asymptotic expansions

~vð1Þi ¼ 1þ ð2p − 1Þðp − 1Þpðpþ 1Þðpþ 3Þ
60i4

þ ð2p − 3Þðp − 3Þðp − 2Þðp − 1Þpðpþ 1Þðpþ 3Þ
504i6

þOði−8Þ ðC13Þ

and

~wi ¼ 1þ ð2pþ 1Þðpþ 1Þpðp − 1Þðp − 3Þ
60i4

þ ð2p − 1Þðp − 5Þðp − 3Þðp − 2Þðp − 1Þpðpþ 1Þ
504i6

þOði−8Þ ðC14Þ

are accurate to double precision arithmetic for i > 2000
and p ≤ 22, thus complementing the tabulated values for
arbitrarily large i.
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