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Recent progress in cosmology has relied on combining different cosmological probes. In an earlier work,
we implemented an integrated approach to cosmology where the probes are combined into a common
framework at the map level. This has the advantage of taking full account of the correlations between the
different probes, to provide a stringent test of systematics and of the validity of the cosmological model.
We extend this analysis to include not only cosmic microwave background (CMB) temperature, galaxy
clustering, and weak lensing from the Sloan Digital Sky Survey (SDSS) but also CMB lensing, weak
lensing from Dark Energy Survey Science Verification (DES SV) data, type Ia supernova, and H0

measurements. This yields 12 auto- and cross-power spectra which include the CMB temperature power
spectrum, cosmic shear, galaxy clustering, galaxy-galaxy lensing, CMB lensing cross-correlation along
with other cross-correlations, as well as background probes. Furthermore, we extend the treatment of
systematic uncertainties by studying the impact of intrinsic alignments, baryonic corrections, residual
foregrounds in the CMB temperature, and calibration factors for the different power spectra. For ΛCDM,
we find results that are consistent with our earlier work. Given our enlarged data set and systematics
treatment, this confirms the robustness of our analysis and results. Furthermore, we find that our best-fit
cosmological model gives a good fit to all the data we consider with no signs of tensions within our
analysis. We also find our constraints to be consistent with those found by the joint analysis of the
WMAP9, SPT, and ACT CMB experiments and the KiDS weak lensing survey. Comparing with the Planck
Collaboration results, we see a broad agreement, but there are indications of a tension from the
marginalized constraints in most pairs of cosmological parameters. Since our analysis includes CMB
temperature Planck data at 10 < l < 610, the tension appears to arise between the Planck high-l modes
and the other measurements. Furthermore, we find the constraints on the probe calibration parameters to be
in agreement with expectations, showing that the data sets are mutually consistent. In particular, this yields
a confirmation of the amplitude calibration of the weak lensing measurements from the SDSS, DES SV, and
Planck CMB lensing from our integrated analysis.

DOI: 10.1103/PhysRevD.95.083523

I. INTRODUCTION

Recent progress in observations has led to the establish-
ment of the standard model for cosmology. In spite of this
progress, some of the key components of the model such as
dark energy, dark matter, inflation, and large-scale gravity
remain either not understood or not fully tested. The
constraints on this ΛCDM model and its extensions rely
on the combination of different cosmological probes such
as the cosmic microwave background (CMB), galaxy
clustering, weak gravitational lensing, and type Ia super-
novae (SNe Ia). This combination is most often performed
at the latest stage in the analysis consisting of combining
the likelihoods to infer a joint posterior constraint on the
model parameters.
In an earlier work [1] (hereafter, Paper I), we imple-

mented an integrated approach to cosmology in which the
cosmological probes are combined into a common frame-
work at the map level. This has the advantage of taking full
account of the correlations between the different probes

which generally probe common survey volumes, to provide
a stringent test of systematics through the test of the
consistency between the probes and to yield a test of the
validity of the cosmological model. We applied this
framework to a combination of the CMB temperature from
the Planck mission [2], galaxy clustering from the eighth
data release of the Sloan Digital Sky Survey (SDSS DR8)
[3] and weak lensing from SDSS Stripe 82 [4], making
simplifying approximations but also conservative cuts on
the data.
In the present work, we extend the integrated analysis of

Paper I to also include CMB lensing maps from the Planck
mission [5], the recent weak lensing measurement with
the publicly available Dark Energy Survey (DES) Science
Verification (SV) data [6], SNe Ia data from the joint light
curve analysis (JLA) [7] and constraints on the Hubble
parameter from the Hubble Space Telescope (HST) [8,9].
This yields 12 auto- and cross-power spectra which include
the CMB temperature power spectrum, cosmic shear,
galaxy clustering, galaxy-galaxy lensing CMB lensing
cross-correlation along with other cross-correlations, as
well as background probes. Furthermore, we extend the*andrina.nicola@phys.ethz.ch

PHYSICAL REVIEW D 95, 083523 (2017)

2470-0010=2017=95(8)=083523(29) 083523-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.083523
https://doi.org/10.1103/PhysRevD.95.083523
https://doi.org/10.1103/PhysRevD.95.083523
https://doi.org/10.1103/PhysRevD.95.083523


treatment of systematic uncertainties and relax some of the
approximations as compared to Paper I. In particular, we
study the impact of intrinsic alignments, baryonic correc-
tions, residual foregrounds in the CMB temperature, and
calibration factors for the different power spectra. This
extended analysis allows us to derive more robust constraints
on theΛCDM cosmological model and a more thorough test
of the consistency between the different probes. Other joint
analyses of different sets of cosmological probes have been
performed (see references in Paper I and Refs. [10–12]).
This paper is organized as follows. We review the

framework for cosmological probe combination employed
in this work in Sec. II. In Sec. III, we describe the data used
in this work, and Sec. IV describes the theoretical modeling
of the cosmological observables. We detail the computation
of spherical harmonic power spectra in Sec. V, while
Sec. VI summarizes the systematic uncertainties considered
in this work. The computation of the covariance matrix is
described in Sec. VII. The method for parameter inference
is described in Sec. VIII, and our results on cosmological
constraints are presented in Sec. IX. We conclude in Sec. X.
Robustness tests as well as implementation details are
deferred to the Appendixes.

II. FRAMEWORK FOR INTEGRATED
PROBE COMBINATION

Following Paper I, we create projected two-dimensional
maps for the large-scale structure (LSS) and CMB probes.
We then compute both the spherical harmonic autopower
spectra of these probes as well as the cross-power spectra
for physically overlapping surveys. This yields a set of 12
spherical harmonic power spectra, which does not include
the autopower spectrum of the CMB lensing convergence
but only its cross-correlations. We complement the
observed power spectra with theoretical predictions and
an estimate of their covariance matrix and combine these
into a Gaussian likelihood. We combine the power spec-
trum likelihood with the likelihood of SNe Ia distance
moduli and a constraint on the Hubble parameter, assuming
these probes to be independent. In a last step, we compute
cosmological parameter constraints in a joint fit to these
data. The implementation details for the CMB lensing
convergence, weak lensing data from DES SV, SNe Ia, and
the Hubble constant measurement are described below.
For a description of the remaining data the reader is referred
to Paper I.

III. DATA

The data used in this analysis are summarized in Table I,
and the footprints of the different surveys are illustrated in
Fig. 1 together with the background probes. We consider
the data used in Paper I, namely, the Planck 2015 fore-
ground-reduced CMB temperature anisotropy map derived
using the Commander algorithm [13], a map of the galaxy

overdensity field derived using the CMASS1-4 sample
from SDSS DR8 [3,14,15], and a weak lensing shear map
derived using SDSS Stripe 82 co-add data [4,16]. In
addition to the cosmological maps, we also employ the
binary survey masks presented in Paper I. In this work, we
complement these three maps with several data sets as
described below.

A. DES weak lensing

We use publicly available data from the DES SV.1 The
DES is an ongoing survey, imaging the sky in five photo-
metric bandpasses (g, r, i, z, Y) using DECam [18]. After its
five-year duration, the DES will have covered approxi-
mately 5000 deg2 of the southern sky to a limiting
magnitude of about 24. The SV data were taken before
the start of the main survey, and they consist of more than
250 deg2 [19]. In our analysis, we use the largest contigu-
ous area in the DES SV data, which is part of the South
Pole Telescope East (SPT-E) field and covers an area of
approximately 139 deg2. The weak lensing shear for
galaxies in the SPT-E region has been measured using
two independent shape measurement codes, NGMIX [20]
and IM3SHAPE [21]. Both are model-fitting shear measure-
ment codes and are described in Ref. [6]. Photometric
redshifts (photo-z) have been obtained using four different
methods as described in Ref. [22]. The photometric redshift
catalogs both provide the full photo-z probability distribu-
tion function (pdf) as well as an estimate of the mean of the
pdf for each galaxy. We follow the choice of fiducial
catalog of Refs. [23,24] and perform our analysis using the
galaxy shapes measured by NGMIX and the photometric
redshifts determined using SkyNet.
Our analysis closely follows the spherical harmonic

power spectrum measurement described in Appendix A
of Ref. [23]. We select objects passing the SVA1 and the
NGMIX cuts defined in Ref. [6] which fall into any of the
three tomographic redshift bins described in Refs. [6,22].
This selection yields Ngal ¼ 3279967 galaxies.
In order to construct the weak lensing shear maps, we

weight each galaxy’s shear by its inverse variance weight
described in Ref. [6]. The galaxy shapes given in the DES
SV shear catalogs are biased estimators of the galaxy
shears, and the NGMIX shape estimates therefore need to
be corrected for the sensitivity as described in Ref. [6].
Since this correction factor is a noisy estimate of the true
correction, it cannot be applied on single galaxies. In order
to avoid introducing a bias caused by the noisy estimators
of the sensitivity, we therefore follow Ref. [23] and estimate
the weighted average of the galaxy sensitivities in our
sample and correct each galaxy shape with this mean
correction.

1The data are available at https://des.ncsa.illinois.edu/releases/
sva1.
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We then rotate the galaxy shears from equatorial to
Galactic coordinates2 and pixelize them onto HEALPix

3 [25]
pixelizations of the sphere choosing a resolution of
NSIDE ¼ 1024. This resolution corresponds to a pixel
area of 11.8 arcmin2. We apply a binary mask constructed
from the union of unobserved and empty pixels to both
shear maps. The final maps cover a fraction of sky
fsky ¼ 0.0039. The mean number of galaxies per pixel is
approximately given by ngal=pix ¼ 67, which corresponds
to ngal ¼ 5.73 arcmin−2. Figure 2 shows the map of the
shear modulus together with a zoom-in region with overlaid
whisker plot illustrating the direction of the shear.
We follow Refs. [22,23] and estimate the redshift dis-

tribution of the galaxies from the sum of the individual
galaxy pdfs, weighted by their weak lensing shear weights.
The resulting redshift distribution together with the weak
lensing window function is shown in the Appendix (Fig. 19).

B. CMB lensing convergence

CMB lensing causes statistical anisotropies in CMB
maps, and the lensing potential can be reconstructed from

these maps using a quadratic estimator [26]. We use the
CMB lensing potential estimate ϕ̂CMB provided by the
Planck Collaboration in their second data release [5]. This
estimator has been derived from the foreground-reduced
CMB temperature and polarization maps computed using
the SMICA algorithm [5,13]. The use of both CMB temper-
ature as well as polarization data allows for several CMB
lensing potential estimators ðϕ̂TT; ϕ̂TE; ϕ̂EE; ϕ̂EB; ϕ̂TBÞ,
which can be combined into a minimal-variance estimator.
This estimate is given in the form of spherical harmonic
coefficients of the CMB lensing convergence κCMB in the
angular multipole range 8 ≤ l ≤ 2048. These are related to
the CMB lensing potential ϕCMB through

κCMB;l;m ¼ lðlþ 1Þ
2

ϕCMB;l;m: ð1Þ

We use these spherical harmonic coefficients to create a
HEALPix map of resolution NSIDE ¼ 1024 using the
HEALPix routine ALM2MAP. The analysis mask derived by
the Planck Collaboration is provided as a HEALPix map of
NSIDE ¼ 2048. We downgrade this map to a resolution
of NSIDE ¼ 1024 following the procedure outlined in
Ref. [13], which yields a binary analysis mask. We choose
the CMB lensing convergence over the CMB lensing

TABLE I. Summary of the data sets used in our analysis.

CMB temperature Survey: Planck 2015 [13] Paper I
Fiducial foreground-reduced map: Commander
Sky coverage: fsky ¼ 0.776

Galaxy density Survey: SDSS DR8 [3]
Sky coverage: fsky ¼ 0.27
Galaxy sample: CMASS1-4
Number of galaxies: Ngal ¼ 854063
Photometric redshift range 0.45 ≤ zphot < 0.65

Weak lensing SDSS Stripe 82 Survey: SDSS Stripe 82 co-add [4]
Sky coverage: fsky ¼ 0.0069
Number of galaxies: Ngal ¼ 3322915
Photometric redshift range: 0.1≲ zphot ≲ 1.1
rms ellipticity per component: σe ∼ 0.43

DES Survey: DES SV [6] Sec. III A
Sky coverage: fsky ¼ 0.0039
Number of galaxies: Ngal ¼ 3279967
Photometric redshift range: 0.3 < zphot < 1.3
rms weighted ellipticity per component: σe ∼ 0.24

CMB lensing Survey: Planck 2015 [5] Sec. III B
Sky coverage: fsky ¼ 0.67

SNe Type Ia Compilation: JLA [7] Sec. III C
Number of SNe: NSNe ¼ 740
Redshift range: 0.01 < z < 1.3

Hubble parameter Distance anchor: NGC 4258 [17] Sec. III D
Number of Cepheids: NCeph ¼ 600 [8]
Number of SNe: NSNe ¼ 8 [8]
Analysis: Efstathiou [9]

2The exact rotation applied is given in Paper I.
3http://healpix.sourceforge.net.
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potential map since the lensing convergence is more local
and should thus be less affected by masking effects arising
when computing angular power spectra. The CMB lensing
convergence map covers a fraction of sky fsky ¼ 0.67 and
is shown in Fig. 2.

C. Type Ia supernovae

We complement the CMB and LSS data with geomet-
rical constraints on the homogeneous Universe from the
distance-redshift relation measured from type Ia super-
novae. We use data from the JLA [7], which is a
compilation of 740 SNe Ia comprising data from SDSS-
II [27–31], the Supernova Legacy Survey [32,33], the HST
[34,35], and several low-redshift experiments [7].4

The JLA data consist of SNe Ia light curve parameters
which can be used to calculate observed distance moduli.

D. Hubble parameter

We also add a local H0 measurement from HST [8] to
our analysis. We use the Hubble parameter estimate by
Ref. [9], which is a revision of the measurement presented
in Ref. [8]. Both measurements are derived from
Cepheid-calibrated SNe Ia distance moduli, but the
former uses a revised distance to the anchor NGC
4258 [17] to calibrate the Cepheid distances. This
analysis constrains the Hubble parameter to be given
by H0 ¼ 70.6� 3.3 km s−1Mpc−1, where the uncertain-
ties are 1σ and assumed to be Gaussian.

IV. MODEL PREDICTIONS

The auto- and cross-correlations of the CMB and LSS
cosmological probes can be computed theoretically from
the primordial power spectrum. In order to compute the
power spectra of the cosmological fields δg, γ, and κCMB,
we employ the Limber approximation [36–38] as in
Paper I. We further assume a flat cosmological model, i.e.
Ωk ¼ 0. With these approximations, the spherical harmonic
power spectrum Cij

l between cosmological probes i, j ∈
½δg; γ; κCMB� at angular multipole l can be expressed as

Cij
l ¼

Z
dz

c
HðzÞ

WiðχðzÞÞWjðχðzÞÞ
χ2ðzÞ

× Pnl
δδ

�
k ¼ lþ½

χðzÞ ; z

�
; ð2Þ

where HðzÞ is the Hubble parameter, χðzÞ is the comoving
distance, and c denotes the speed of light. Furthermore,
Pnl
δδðk; zÞ denotes the nonlinear matter power spectrum at

redshift z and wave vector k, and Wi0 ðχðzÞÞ is the window
function for probe i0.
The window functions for δg and γ are given in Paper I.

Since the CMB lensing convergence is approximately
sourced by a single-lens plane located at the last scattering
surface with redshift z� its window function can be
expressed as the single-plane limit of the weak lensing
shear window function. We therefore have

WκCMBðχðzÞÞ ¼ 3

2

ΩmH2
0

c2
χðzÞ
a

χðz�Þ − χðzÞ
χðz�Þ

; ð3Þ

FIG. 1. Summary of the data used in this work. The left-hand side shows an overlay of the footprints of the surveys used in this work:
the CMB temperature and CMB lensing convergence from Planck, the galaxy density from SDSS DR8, and weak lensing from SDSS
Stripe 82 and DES SV. The right-hand side shows the background probes: SNe Ia from JLA and Hubble parameter data from HST. All
footprints are shown in Galactic coordinates. The map is shown in Mollweide projection at a HEALPix resolution of NSIDE ¼ 1024. (See
Table I for references for these different surveys.)

4The data can be found at http://supernovae.in2p3.fr/
sdss_snls_jla/ReadMe.html.
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where Ωm is the fractional matter density today and a is the
scale factor. In our calculations, we set z� ¼ 1090.
The power spectra involving CMB temperature anisot-

ropies can also be related to the primordial density
fluctuations. The expression for the CMB temperature
power spectrum is given in Paper I. The observed CMB
temperature anisotropies are further correlated to tracers of
the LSS. For the galaxy overdensity and weak lensing
shear, this cross-correlation is mainly due to the integrated
Sachs-Wolfe (ISW) [39] effect, and the resulting cross-
power spectra are given in Paper I. The cross-correlation
between the CMB temperature anisotropies and the CMB
lensing convergence is dominated by the ISW but receives
further contributions from Doppler effects arising from
bulk velocities of electrons scattering the CMB photons
and from the Sunyaev-Zel’dovich (SZ) [40] effect (for a

description of these effects, see e.g. Refs. [41,42]). The
cross-correlation due to the SZ effect is not observable
using the foreground-reduced CMB temperature anisotropy
maps from Ref. [13], but the remaining effects are
observable. The cross-power spectrum between CMB
temperature anisotropies and CMB lensing convergence
can be computed from

haT;lmaκCMB;l0m0 i ¼ CTκCMB
l δll0δmm0 ; ð4Þ

where aT;lm denotes the spherical harmonic coefficients of
the CMB temperature anisotropies ΔTðθÞ and aκCMB;l0m0

denotes the spherical harmonic coefficients of the CMB
lensing convergence defined as

FIG. 2. New maps used in this analysis in addition to the CMB, galaxy clustering, and SDSS weak lensing maps of Paper I. The
full-sky maps are in Galactic coordinates and are shown in Mollweide projection while the zoom-in versions are in Gnomonic
projection. The CMB lensing convergence map derived from the foreground-removed CMB temperature and polarization
anisotropy maps from SMICA is shown in the top panel. It is masked using the analysis mask provided by the Planck Collaboration.
The zoom-in shows an enlarged version of the 5 × 5 deg2 region centered on ðl;bÞ ¼ ð53°;−33.5°Þ shown in the map. The bottom
panel shows the map of the weak lensing shear modulus jγ̂j derived from DES SV. Gray regions are masked because they are either
unobserved or they do not contain any galaxies at our resolution. The zoom-in shows an enlarged version of the 5 × 5 deg2 region
centered on ðl;bÞ ¼ ð−95°;−40°Þ shown in the map. It is overlaid with a whisker plot illustrating the direction of the shear. Both
maps are shown at a HEALPix resolution of NSIDE ¼ 1024.
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κCMBðθÞ ¼
Z

dz
c

HðzÞW
κCMBðχðzÞÞδðχðzÞθ; zÞ: ð5Þ

While the observables discussed so far probe cosmic
structure formation, SNe Ia mainly probe the background
evolution through their distance moduli. The distance
modulus μ of a type Ia supernova at redshift zSNe is
given by

μðzSNeÞ ¼ 5log10

�
dLðzSNeÞ
10½pc�

�
; ð6Þ

where dLðzSNeÞ is the luminosity distance to redshift zSNe.
To compute theoretical predictions for all cosmological

observables, we follow Paper I. We use the publicly
available Boltzmann code CLASS

5 [43] to compute the
CMB temperature anisotropy power spectra and the cross-
correlation between the CMB temperature anisotropies and
the CMB lensing convergence. For the other observables,
we use PyCosmo [44]. As in Paper I, we calculate the linear
matter power spectrum from the transfer function derived
by Ref. [45]. In order to compute nonlinear matter power
spectra, we use the Halofit fitting function [46] with the
revisions of Ref. [47].

V. SPHERICAL HARMONIC POWER SPECTRA

Following Paper I, we use PolSpice
6 [48–50] to measure

the demasked spherical harmonic power spectra from the
maps. We calculate the autopower spectrum of the DES SV
weak lensing shear map as well as the cross-correlations
between the maps discussed in Sec. III and in Paper I,
which have overlaps.
We do not include the autopower spectrum of the CMB

lensing convergence in this analysis. This is due to the fact
that the autopower spectrum of the CMB lensing con-
vergence estimator is a biased estimate of the CMB lensing
convergence autopower spectrum because it probes both
the connected and the disconnected part of the four-point
function of the CMB temperature anisotropies [51]. In
order to obtain the power spectrum of the CMB lensing
convergence, the autopower spectrum of the estimator thus
needs to be corrected for this disconnected bias [51], which
is beyond the scope of this paper.
In order to compute the power spectra, we follow the

method outlined in Paper I to estimate the values of
the maximal angular scale used by PolSpice θmax and the
apodization parameter θFWHM. We validate these settings
using the Gaussian simulations described in Appendix C.
The demasking procedure used by PolSpice leads to biases
in the recovered power spectra, as discussed in Paper I.
The kernels that relate average PolSpice estimates to the true
power spectra can be computed analytically for each choice

of θmax, θFWHM and we take them into account by convolving
all theoretical predictions with these kernels. The choice of
angular multipole ranges follows that described in Paper I
for all power spectra already included in that analysis. The
angular multipole range for power spectra involving the
CMB lensing convergence follows the conservative choice
described in Ref. [5]. The low-l limit for the power spectra
is chosen to minimize the impact of mean field corrections;
the high-l limit is chosen because of mild evidence for
systematic errors at higher multipoles [5]. The chosen bin
widths largely follow the conservative binning outlined in
Ref. [5] (Δl ¼ 45) and the binning scheme in Paper I, which
is chosen to roughly correspond to the width of the PolSpice

kernels. Where we choose angular multipole bins broader
than necessary, this is mainly done to reduce the size of the
spherical harmonic power spectrum vector. The binning
schemes and PolSpice parameters used for all power spectra
are summarized in Table II.
All the spherical harmonic power spectra are computed

from themaps of resolutionNSIDE ¼ 1024. They are further
corrected for the effect of the HEALPix pixel window function,
and the power spectra involving the CMB temperature
anisotropy map are further corrected for the Planck effective
beam window function. The uncertainties are derived from
the Gaussian simulations described in Appendix C.
The power spectra computed in this work are described

in more detail below; for a description of the remaining
power spectra, the reader is referred to Paper I.

A. DES SV cosmic shear

We compute the cosmic shear power spectrum for DES
SVusing the map and mask described in Sec. III A. In order

TABLE II. Summary of spherical harmonic power spectrum
parameters and angular multipole ranges used in this analysis.
The first six power spectra are described in Paper I.

Power spectrum θmax (deg) θFWHM (deg) l range Δl

CTT
l 40 20 [10, 610] 30

C
δgδg
l

80 40 [30, 210] 30

Cγ1γ1
l 10 5 [70, 610] 60

C
δgT
l

40 20 [30, 210] 30

Cγ1T
l

10 5 [70, 610] 60

C
γ1δg
l

10 5 [30, 210] 60

CκT
l 40 20 [40, 400] 60

C
δgκ
l

80 40 [40, 190] 30

Cγ1κ
l 10 5 [70, 370] 60

Cγ2T
l

15 7.5 [70, 610] 60

Cγ2κ
l 15 7.5 [70, 370] 60

Cγ2γ2
l 15 7.5 [70, 610] 60

5http://class‑code.net.
6http://www2.iap.fr/users/hivon/software/PolSpice/.
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to estimate the contribution of shape noise, we follow
Paper I and resort to simulations. We generate 100 noise
maps by rotating the galaxy shears by a random angle. We
then calculate the power spectra of these maps, and our

estimator of the shape noise power spectrum is given by the
mean power spectrum of the noise maps.
The weak lensing shear E-mode power spectrum for

DES SV is shown in the 4,4 panel of Fig. 3, and the

FIG. 3. Measured auto- and cross-spherical harmonic power spectra along with background probes for this analysis. Starting from
the top-left corner, the 0,0 panel shows the CMB temperature anisotropy power spectrum from Planck 2015. The 1,0 panel shows the
cross-power spectrum between the galaxy overdensity from the SDSS DR8 CMASS sample and the CMB temperature anisotropies
from Planck 2015. The 1,1 panel shows the galaxy clustering power spectrum from the SDSS DR8 CMASS sample. The 2,0 panel
shows the cross-power spectrum between the CMB lensing convergence and the CMB temperature anisotropies from Planck 2015.
The 2,1 panel shows the cross-power spectrum between the CMB lensing convergence from Planck 2015 and the galaxy overdensity
from the SDSS DR8 CMASS sample. The 3,0 panel shows the cross-power spectrum between the weak lensing shear from SDSS
Stripe 82 (γ1) and the CMB temperature anisotropies from Planck 2015. The 3,1 panel shows the cross-power spectrum between the
weak lensing shear from SDSS Stripe 82 and the galaxy overdensity from the SDSS DR8 CMASS sample. The 3,2 panel shows the
cross-power spectrum between the weak lensing shear from SDSS Stripe 82 and the CMB lensing convergence from Planck 2015.
The 3,3 panel shows the cosmic shear power spectrum from SDSS Stripe 82. The 4,0 panel shows the cross-power spectrum between
the weak lensing shear from DES SV (γ2) and the CMB temperature anisotropies from Planck 2015. The 4,2 panel shows the cross-
power spectrum between the weak lensing shear from DES SV and the CMB lensing convergence from Planck 2015. The 4,4 panel
shows the cosmic shear power spectrum from DES SV. The gray panel in the upper right corner shows the SNe Ia distance moduli and
error bars from the JLA and the Hubble constant measurement from Ref. [9]. All the power spectra have been computed using the
maps in Galactic coordinates. The solid lines show the theoretical predictions for the best-fit cosmological model determined from the
integrated analysis which is summarized in Table III. The theoretical predictions for the power spectra have been convolved with
the PolSpice kernels described in Paper I and Sec. V. The error bars for the power spectra are derived from the Gaussian simulations
described in Sec. VII and Appendix C. The angular multipole ranges and binning schemes used for all the power spectra are
summarized in Table II.
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B-mode power spectrum is shown in the Appendix
(Fig. 14). The noise level of DES SV is lower than the
one from SDSS Stripe 82 as can be seen by comparing
panels 4,4 and 3,3. This is to be expected from the higher
galaxy number density and smaller measurement noise of
DES SV data.
In Appendix E, we compare the DES SV cosmic shear

power spectra computed from the maps in Galactic and
equatorial coordinates. We find discrepancies similar to
those found for SDSS Stripe 82 [1], especially at small
angular scales. Since the differences detected are within the
uncertainties of the measurement, we use the cosmic shear
power spectrum calculated from the maps in Galactic
coordinates in our integrated analysis.

B. CMB temperature and DES SV weak
lensing shear cross-correlation

We compute the cross-power spectrum between the
DES SV weak lensing shear and the CMB temperature
anisotropies using the maps and masks presented in
Sec. III A and Paper I. As discussed in Paper I, we choose
to compute cross-correlations using the combined masks
of the respective probes rather than the single-probe
masks. This is due to the fact that the former approach
results in a better recovery of the input cross-power
spectra in the Gaussian simulations described in
Appendix C. We therefore mask both maps with the
combination of the single-probe masks, which covers a
fraction of sky fsky ∼ 0.0035.
The resulting spherical harmonic power spectrum is

shown in the 4,0 panel of Fig. 3. As can be seen, the
noise level is too high to allow for a detection of the ISW
from the DES SV weak lensing shear. This is in agreement
with the results found for SDSS Stripe 82 in Paper I. We
nevertheless include the power spectrum in our analysis
since it provides an upper limit to the ISW signal from
weak lensing.
In Appendix E, we investigate the impact of our choice

of fiducial foreground-reduced CMB temperature map
by comparing the power spectra obtained using the four
different foreground-reduction algorithms employed by
Ref. [13]. As can be seen from Fig. 16, we find the
measured power spectra to be virtually the same.

C. CMB lensing convergence and galaxy
overdensity cross-correlation

To compute the cross-power spectrum between the
CMB lensing convergence and the SDSS DR8 galaxy
overdensity, we use the maps and masks described in
Sec. III B and Paper I. We mask both maps with their
combined mask, which covers a fraction of sky fsky ∼ 0.26.
The spherical harmonic cross-power spectrum between

the CMB lensing convergence and the galaxy overdensity
is shown in the 2,1 panel in Fig. 3. We see that we clearly

detect a nonzero correlation between the CMB lensing
convergence and the galaxy overdensity.

D. CMB lensing convergence and CMB
temperature cross-correlation

To compute the cross-power spectrum between the CMB
lensing convergence and the CMB temperature anisotro-
pies, we use the maps and masks presented in Sec. III B
and Paper I. The combined mask of both probes covers a
fraction of sky fsky ∼ 0.65, and we apply this mask to
both maps.
The resulting spherical harmonic power spectrum is

shown in the 2,0 panel of Fig. 3. Comparing to the results
derived in Ref. [5], we find good overall agreement.
In Appendix E, we again compare the power spectra

obtained from the different foreground-reduced CMB
temperature anisotropy maps and find them to agree
rather well.

E. CMB lensing convergence and SDSS Stripe
82 weak lensing shear cross-correlation

We estimate the cross-power spectrum between the CMB
lensing convergence and the SDSS Stripe 82 weak lensing
shear map using the maps and masks described in Sec. III B
and Paper I. We mask both maps with their combined mask,
which covers a fraction of sky fsky ∼ 0.0064.
The spherical harmonic power spectrum is illustrated in

the 3,2 panel in Fig. 3. We see that the obtained cross-power
spectrum is rather noisy, and it does not allow for a
detection of the correlation between CMB lensing con-
vergence and SDSS Stripe 82 weak lensing shear. This is
probably due to the combined effect of a low fractional sky
coverage of SDSS Stripe 82 data and significant noise in
both the CMB lensing convergence and SDSS Stripe 82
weak lensing shear. We nevertheless include this cross-
correlation in our analysis to serve as an upper limit.

F. CMB lensing convergence and DES SV weak
lensing shear cross-correlation

To compute the cross-power spectrum between the CMB
lensing convergence and the DES SV weak lensing shear
map, we use the maps and masks presented in Secs. III A
and III B. The combined mask of both maps covers a
fraction of sky fsky ∼ 0.0037, and we apply it to both maps.
The 4,2 panel in Fig. 3 shows the resulting spherical

harmonic power spectrum. We see that the signal-to-noise
ratio of the cross-correlation is low for the angular scales
considered, which we attribute to both a small sky coverage
of DES SV data and the noise level in both maps.
Nevertheless, we include the power spectrum in our
analysis since it provides an upper limit to the cross-
correlation of the CMB lensing convergence and the DES
SV weak lensing shear field.
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VI. SYSTEMATICS

Cosmological measurements are generally affected by
systematics. We parametrize these using eight different
nuisance parameters, which we simultaneously fit with the
cosmological parameters. A summary of these parameters
can be found in Table III, and they are described separately
for each cosmological probe below.

A. CMB temperature anisotropies

The foreground-reduced CMB temperature anisotropy
maps contain significant contamination from unresolved
extragalactic sources, mainly dusty and radio galaxies [53].
Following Ref. [54], these can be modelled as additional,
residual power spectra, which become significant at high
angular multipoles. Reference [54] includes two different
contributions: a contribution of an unclustered Poisson
component Cps

l and the contribution of a clustered compo-
nent Ccl

l . We study the impact of including these power
spectra and find that they do not have a significant impact
on our results; see Appendix F for further details. We
therefore do not include them in our fiducial analysis.

B. Galaxy overdensity

The galaxy overdensity field is a biased tracer of the
underlying darkmatter.We account for this uncertainty with

a linear galaxy bias parameter b, which relates the galaxy
overdensity δg to the dark matter overdensity δ; i.e. we set

δgðk; zÞ ¼ bδðk; zÞ: ð7Þ

In addition, the observed galaxy overdensity is potentially
affected by observational and sky systematics. As detailed in
Paper I, we correct the galaxy overdensity map for these
systematics.We do not find any significant cross-correlation
between the foreground-reduced galaxy overdensity map
and systematics that could be common to other probes,
such as the extinction map from Ref. [55] as well as a
map of stars detected by SDSS with i-band magnitudes
18.0 ≤ i < 18.5. We therefore do not include nuisance
parameters accounting for foreground contamination of
the galaxy overdensity field into our analysis.

C. Weak lensing

The estimated weak lensing shear of galaxies γ̂ is prone
to multiplicative biases. We parametrize these potential
unaccounted calibration uncertainties using a scalar multi-
plicative bias parameter defined as

γ̂ ¼ ð1þmi
calibÞγ; ð8Þ

where i ∈ ½SDSS;DES�.
A further potential contaminant to the observed

weak lensing shear signal are intrinsic correlations between
the unlensed shapes of galaxies (for reviews see e.g.
Refs. [56,57], for observational detections see e.g.
Refs. [58–64]). The measured weak lensing shear in the
presence of intrinsic alignments is given by

γobs ¼ γG þ γI; ð9Þ

where γG denotes the gravitational part and γI denotes the
intrinsic part of the shear. To first order, the shapes of
galaxies are linearly related to the tidal field in which they
form [65]. This gives rise to the so-called linear alignment
model [65–67]. The expected linear alignment signal in
this model follows very closely the scale dependence of
the weak lensing shear power spectrum as discussed in
Appendix A. We therefore choose to model intrinsic
alignments as an additional contribution that modifies
the amplitude of the weak lensing shear, i.e.

γ̂ ¼ ð1þmi
calib þmi

IAÞγ≜ð1þmi⋆Þγ; ð10Þ

where i ∈ ½SDSS;DES�. In order to reduce the number of
free parameters, we combine these two amplitudes into
an effective multiplicative calibration mi⋆. We include a
separate effective multiplicative bias parameter for each of
the two weak lensing surveys considered in this work.
The dark matter power spectrum at small scales is

affected by baryonic processes such as feedback from

TABLE III. Parameters varied in the MCMC with their re-
spective priors and posterior means. The uncertainties denote the
68% C.L.

Parameter Prior Posterior mean

h flat ∈ ½0.2; 1.2� 0.700� 0.014

Ωm flat ∈ ½0.1; 0.7� 0.279� 0.015

Ωb flat ∈ ½0.01; 0.09� 0.0458� 0.0015

ns flat ∈ ½0.1; 1.8� 0.974þ0.018
−0.017

σ8 flat ∈ ½0.4; 1.5� 0.819� 0.029

τreion Gaussian with
μ ¼ 0.089, σ ¼ 0.02a

0.0787þ0.0200
−0.0199

b flat ∈ ½1.; 3.� 2.09� 0.06

mSDSS� Gaussian with
μ ¼ 0.0, σ ¼ 0.22

−0.229� 0.113

mDES� Gaussian with
μ ¼ 0.0, σ ¼ 0.22

−0.0708þ0.0953
−0.0946

mκCMB
flat ∈ ½−0.5; 0.5� −0.0598þ0.0941

−0.0946

α flat ∈ ½0.1; 0.2� 0.142� 0.007

β flat ∈ ½2.; 4.� 3.11� 0.08

M1
B flat ∈ ½−25:;−10:� −19.06� 0.02

ΔM flat ∈ ½−0.13;−0.01� −0.0711þ0.0230
−0.0227

aThis corresponds to a WMAP9 [52] prior with increased
variance to accommodate the Planck results.
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supernovae and active galactic nuclei (AGN) or gas cool-
ing. We investigate the effects of baryonic feedback on the
power spectra using the effective halo model prescription of
Mead et al. [68] (for further details, see Appendix B). We
find the effect of baryon feedback to be smaller than the
uncertainties on our measurement on all angular scales
considered, which means that our data currently are not
sensitive to baryonic feedback. Therefore, we choose to
model the nonlinear matter power spectrum using Halofit in
this work and leave the investigation of baryonic feedback
to future work.

D. CMB lensing convergence

The CMB lensing potential estimator described in
Sec. III B has a nontrivial, cosmology-dependent response
to an input CMB lensing potential [5,51]. Reference [5]
corrects for this bias assuming a fiducial cosmological
model [5]. Therefore, the normalization of the CMB
lensing convergence estimator is cosmology dependent
and should be varied alongside the cosmological param-
eters in a sampling process. To reduce computation time,
we choose an alternative approach and do not take into
account the cosmology dependence of the CMB lensing
convergence amplitude as e.g. Ref. [11]. We account for
this normalization uncertainty by including a multiplicative
bias parameter mκCMB

such that

κ̂CMB ¼ ð1þmκCMB
ÞκCMB; ð11Þ

and we allow it to vary independently from the cosmo-
logical parameters. We leave the introduction of a cosmol-
ogy-dependent CMB lensing convergence amplitude to
future work.

E. SNe Ia

Type Ia supernovae are not perfect standard candles since
their absolute peak magnitude depends on the duration of
the SNe explosion, as measured using the stretch parameter
X1, the color C of the SNe, and the properties of the
host galaxy. In order to take these effects into account, we
parametrize the observed distance modulus following
Ref. [7] as

μ ¼ m�
B − ðMB − αX1 þ βCÞ; ð12Þ

where m�
B denotes the observed peak magnitude in the rest

frame B-band. The parameters α, β, and MB are nuisance
parameters accounting for the uncertainties in the absolute
peak SNe Ia magnitude. Both the absolute magnitude
parameter MB and the parameter β were found to depend
on the properties of the supernova’s host galaxy [69,70]. In
order to take these effects into account, we follow Ref. [7]
and set

MB ¼
�
M1

B if Mstellar < 1010 M⊙;
M1

B þ ΔM otherwise:
ð13Þ

This parametrization thus finally gives rise to four different
nuisance parameters α, β, M1

B, and ΔM.

VII. COVARIANCE MATRIX

In order to compute constraints on cosmological param-
eters from the 12 power spectra described above, we need
to estimate the joint covariance matrix of these probes. We
follow Paper I and assume the covariance matrix to be
Gaussian. This assumption is justified for the CMB lensing
convergence field, as shown by e.g. Ref. [71]. As discussed
in Paper I, this is also appropriate for the CMB temperature
anisotropy and galaxy density fields at the scales consid-
ered, but it is only an approximation for the weak lensing
shear field. We expect this to be a reasonable approxima-
tion since we do not include small angular scales in
our analysis and our uncertainties on the cosmic shear
power spectrum are dominated by shape noise. We there-
fore leave the issue of non-Gaussian covariance matrices to
future work.
Following Paper I, we compute the covariance matrix

employing two different methods: the first is based on a
theoretical prediction of the covariance matrix, while the
second is an empirical method based on Gaussian simu-
lations of the cosmological probes considered in this work.
As in Paper I, we use the empirical covariance matrix
for our fiducial analysis, and we compute it using 1000
Gaussian simulations, which are described in Appendix C.
We validate the empirical covariance matrix using the
theoretical prediction. A more detailed description of both
methods can be found in Paper I.
Figure 4 illustrates the correlation matrix derived from

the sample variance of the 1000 Gaussian simulations. We
explicitly set subcovariance matrices of nonoverlapping
surveys to zero. These regions are marked in gray in the
figure.

VIII. PARAMETER INFERENCE

To compute cosmological parameter constraints from the
data presented in Secs. III and V, we follow Paper I and
assume the joint likelihood of the 12 spherical harmonic
power spectra to be Gaussian i.e.

LðDjθÞ ¼ 1

½ð2πÞd detCG�½
× e−

1
2
ðCobs

l −Ctheor
l ÞTC−1

G ðCobs
l −Ctheor

l Þ; ð14Þ

where CG denotes the Gaussian covariance matrix
described in Sec. VII. Ctheor

l denotes the theoretical pre-
diction for the spherical harmonic power spectrum vector
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of dimension d ¼ 92, and Cobs
l is the observed power

spectrum vector, defined as

Cobs
l ¼ ðCTT

l C
δgT
l C

δgδg
l CκCMBT

l C
κCMBδg
l Cγ1T

l C
γ1δg
l

Cγ1κCMB
l Cγ1γ1

l Cγ2T
l Cγ2κCMB

l Cγ2γ2
l Þobs: ð15Þ

As in Paper I, we neglect the potential non-Gaussian nature
of the weak lensing likelihood. We estimate the joint
covariance matrix CG both from simulations as well as
analytically as described in Sec. VII. We compute it for a
fiducial ΛCDM cosmological model with parameter values
fh;Ωm;Ωb;ns;σ8;τreion;TCMBg¼ f0.7;0.3;0.049;1.0;0.88;
0.078;2.275 Kg, where h is the dimensionless Hubble
parameter, Ωm is the fractional matter density today, Ωb
is the fractional baryon density today, ns denotes the scalar
spectral index, σ8 is the rms of linear matter fluctuations in
spheres of comoving radius 8 h−1 Mpc, τreion denotes the
optical depth to reionization, and TCMB is the mean
temperature of the CMB today. We assume no systematic
uncertainties in our fiducial model except a linear galaxy
bias, i.e. fb;mSDSS� ; mDES� ; mκCMB

; Aps; Aclg ¼ f2.; 0.; 0.; 0.;
0.; 0.g. As described in Paper I, we employ the corrections
described in Refs. [72–74] to debias the inverse of the
empirical covariance matrix, and we neglect the cosmology
dependence of the covariance in our sampling process.
We further assume a Gaussian likelihood for the SNe Ia

distance moduli μ, i.e.

LðDjθÞ ¼ 1

½ð2πÞd detC�½ e−
1
2
ðμobs−μtheorÞTC−1ðμobs−μtheorÞ; ð16Þ

where d ¼ NSNe, μobs is the vector of observed SNe Ia
distance moduli and μtheor denotes the theoretical predic-
tion. The covariance matrix C contains both statistical as
well as systematic errors and is constructed following
Ref. [7].7 We note that C depends on the values of the
nuisance parameters α and β and thus needs to be
reevaluated in each step when sampling parameters.
We combine the power spectra together with the SNe Ia

and the Hubble constant measurement assuming them to
be independent; i.e. we multiply the likelihoods. We note
that this is an approximation since the residuals of the
SNe Ia distance moduli are affected by weak gravitational
lensing and redshift space distortions. It will be interesting
to investigate these correlations for future surveys (see
e.g. Ref. [75]).
From the combined likelihood, we compute cosmologi-

cal parameter constraints in the framework of a flat ΛCDM
cosmological model. All our constraints are derived assum-
ing a vanishing neutrino mass, i.e.

P
mν ¼ 0.00 eV. We

sample the likelihood in a Monte Carlo Markov chain
(MCMC) with CosmoHammer [76] varying 14 different
parameters. We vary the six cosmological parameters
fh;Ωm;Ωb; ns; σ8; τreiong as well as the eight nuisance
parameters fb;mSDSS� ; mDES� ; mκCMB

;α; β;M1
B;ΔMg, which

are described in Sec. VI. We note that our fiducial
constraints do not include the nuisance parameters Aps

and Acl, and we recall that we further neglect several
sources of systematic uncertainties such as photometric
redshift uncertainties, stochastic and scale-dependent gal-
axy bias [77–79], and baryonic effects on the matter power
spectrum. Also, we do not model intrinsic alignments but
include them as part of our effective multiplicative bias.
The data combination considered weakly constrains the
optical depth to reionization, and we therefore follow Paper
I and apply a Gaussian prior of τreion ¼ 0.089� 0.02. As
discussed in Paper I, this corresponds to an enlarged
WMAP9 prior [52]. We further assume Gaussian priors
on the effective multiplicative bias parameters mi�,
i ∈ ½SDSS;DES�, as mi� ¼ 0.� 0.22. The width of the
prior is given σ2ðmi�Þ ¼ σ2ðmi

calibÞ þ σ2ðmi
IAÞ. Assuming a

maximal calibration uncertainty of σðmi
calibÞ ¼ 0.1 and

σðmi
IAÞ ¼ 0.2 gives σðmi�Þ ≈ 0.22. The choice of

σðmi
calibÞ is motivated by Ref. [80], which found the

multiplicative bias for the shape measurement method
of SDSS Stripe 82 data to lie in the range mSDSS

calib ∈
½−0.08; 0.13�. We choose a conservative approach and
apply the same uncertainty to the DES SV galaxy shears,
even though the reported calibration uncertainty is

FIG. 4. Correlation matrix of the spherical harmonic power
spectra derived using the Gaussian simulations described in
Sec. VII. Gray regions are set to zero because they correspond
to the covariance between nonoverlapping surveys. The binning
scheme and angular multipole ranges for each probe follow those
given in Table II.

7The covariance matrix can be found at http://supernovae
.in2p3.fr/sdss_snls_jla/ReadMe.html.
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σðmDES
calibÞ ¼ 0.05 [6]. The choice for σðmi

IAÞ follows from
the discussion in Appendix A, from which we can see that
the contribution of intrinsic alignments amounts to max-
imally 20% of the measured weak lensing signal in our
fiducial model. We nevertheless choose to center the prior
on mSDSS� , mDES� on zero rather than on the value expected
from our fiducial model for intrinsic alignments in order to
confirm that the data moves the posterior. We allow for

intrinsic alignments by broadening the prior as compared to
the expectation from only multiplicative calibration uncer-
tainties. For all other parameters, we assume flat priors,
which are summarized in Table III.
We compute all parameter constraints using the covari-

ance matrix derived from the Gaussian simulations. The
results using the theoretical covariance matrix or a covari-
ance matrix derived using a cosmological model with

FIG. 5. Comparison of the constraints obtained from the integrated analysis from Paper I to the constraints obtained in this
work and the constraints obtained by the Planck Collaboration [81] using only CMB data (TTþ lowP) or adding external data
(TT;TE;EEþ lowPþ lensingþ ext). The constraints from Paper I are marginalized over b,mSDSS

calib , while the constraints from this work
are marginalized over all nuisance parameters given in Table III. The Planck constraints are marginalized over all nuisance parameters.
In each case, the inner (outer) contour shows the 68% C.L. (95% C.L.).
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parameter values similar to the ones derived for our best fit8

are shown in the Appendix (Fig. 17), and we find them to
be consistent with our fiducial results. This confirms that

the computation of the empirical covariance matrix has
converged with 1000 simulations. It further verifies that our
results are not sensitive to the slightly high value of σ8
chosen for our fiducial simulations.
In order to investigate the impact of residual fore-

grounds on our analysis, we compute constraints on
cosmological parameters from CMB temperature data

FIG. 6. Comparison of the constraints obtained in this work to the constraints obtained by the Planck Collaboration [81] using only
CMB data (TTþ lowP) and the constraints obtained by WMAP9 [52] both using multipoles l < 1200 (WMAP9) and combined with
high-l data from SPTand ACT (WMAP9þ SPTþ ACT). The constraints from this work are marginalized over all nuisance parameters
given in Table III. The Planck and the WMAP9 constraints are marginalized over all nuisance parameters. In each case, the inner (outer)
contour shows the 68% C.L. (95% C.L.).

8fh;Ωm;Ωb;ns;σ8;τreion;TCMBg¼f0.699;0.278;0.0455;0.975;
0.799;0.0792;2.275Kg, and fb;mSDSS� ; mDES� ; mκCMB

; Aps; Aclg ¼
f2.13;−0.142; 0.0; 0.0; 0.0; 0.0g.
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alone both including the parameters Aps, Acl and neglecting
them. As can be seen from the Appendix (Fig. 18), we find
no significant difference between the constraints derived
from the extended parameter set and the ones derived
ignoring these additional degrees of freedom. This suggests
that the low-l CMB temperature anisotropy power spec-
trum is not affected by these foregrounds. We therefore
choose to not include contamination from residual extra-
galactic point sources into our fiducial analysis.
We further validate our analysis of the CMB temperature

anisotropies by comparing our fiducial CMB-only param-
eter constraints to those obtained from running the official
Planck likelihood [81] with nuisance parameters fixed to
the best-fit values derived by Ref. [81] (TTþ lowP).
Figure 18 shows the comparison between the CMB temper-
ature constraints derived in this work with the constraints
derived from the Planck likelihood for lmax ≃ 610. We
show the results obtained from the Planck likelihood both
with lmin ¼ 10 and lmin ¼ 30. This is due to the fact that in
the Planck likelihood the angular multipoles for l < 30 are
unbinned while for l ≥ 30 the power spectrum is binned
into bins of Δl ¼ 21, which is more comparable to our
binning scheme of Δl ¼ 30. As can be seen, we find
reasonable agreement between the derived parameter con-
straints. This is not the case when we extend the angular
multipole range, and we therefore use lmax ¼ 610 as in
Paper I for our fiducial analysis.

IX. COSMOLOGICAL CONSTRAINT RESULTS

Figure 5 shows our integrated cosmological parameter
constraints along with those from Paper I. The associated
means of the posterior distributions for all the parameters
along with their 68% confidence limits are given in
Table III. As can be seen from the figure, our constraints
with the new data and greater flexibility for systematics
agree very well with our previous findings,9 demonstrating
the robustness of our results. In fact, we also find that the
results are robust to removing random probes from our
analysis. We note that the slight tension between CMB
temperature anisotropies and weak lensing discussed in
Paper I is resolved when accounting for the expected effects
of intrinsic alignments. This can be seen from the fact that
broadening the prior on the multiplicative calibration bias
parameter in Paper I recovers a value consistent with the
expectation from intrinsic alignments and results in a better
fit to the power spectra involving weak gravitational
lensing, as discussed in Paper I. Furthermore, we see from
Fig. 3 that there is no noticeable tension between CMB

temperature anisotropies and weak lensing in the extended
analysis.
In Fig. 5, we also compare our constraints to those

derived by the Planck Collaboration [81]. For the latter, we
show the constraints derived from the combination of CMB
temperature anisotropies with the Planck low-l polariza-
tion likelihood (TTþ lowP) and the constraints when also
including the Planck polarization power spectra, CMB
lensing, and external data sets (TT;TE;EEþ lowPþ
lensingþ BAOþ JLAþH0). While we see a general
broad agreement, a global tension is nevertheless apparent
in most of the panels. Our analysis indeed continues to
prefer a lower value of Ωm, Ωb, and σ8 as well as a higher
value of h. This tension is at similar levels to what has been
found by other groups (e.g. Ref. [82] and references
therein). Since our analysis includes a subset of the
Planck data, the tension appears to be with the Planck
data that we have not included, namely low-l polarization
data, and CMB temperature anisotropy data for l ∈ ½2; 9�
and l ∈ ½611; 2508�, where the latter has the greatest
impact. This parameter shift induced by the Planck high-
l measurements has also been reported and studied by
others, including [83] and [84].

FIG. 7. Comparison of the constraints onΩm and σ8 obtained in
this work and the constraints obtained by the Planck Collabo-
ration [81] using only CMB data (TTþ lowP), the constraints
obtained by WMAP9 [52] combined with high-l data from SPT
and ACT (WMAP9þ SPTþ ACT), and the constraints obtained
from cosmic shear measurements from KiDS-450 [82]. The
constraints from this work are marginalized over all nuisance
parameters given in Table III. The Planck, WMAP9þ SPTþ
ACT, and KiDS constraints are marginalized over all nuisance
parameters. In each case, the inner (outer) contour shows the
68% C.L. (95% C.L.).

9In Paper I, we included massive neutrinos in our fiducial
model in contrast to this work, but we find the constraints without
massive neutrinos to be consistent. The constraints of Paper I with
and without massive neutrinos differ at the percent level in the
best-fit value for σ8, with the constraints with massive neutrinos
being lower in σ8.
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Exploring this further, Fig. 6 shows the comparison of
our integrated analysis with the constraints from WMAP9
[52] and WMAP9 combined with high-l data from the
Atacama Cosmology Telescope (ACT) [85,86] and
the South Pole Telescope (SPT) [87,88]. We also show
the constraints from the Planck Collaboration [81]. We see
that our results are in good agreement with WMAP9 and
the combination of WMAP9, ACT, and SPT and are

consistent with the already highlighted tension with the
Planck high-l measurement [83,84].
In Fig. 7, we focus on one of the panels, showing the

Ωm–σ8 plane, and now include the results from KiDS [82].
We also see that our results are in good agreementwithKiDS.
The constraints on the nuisance parameters varied in our

analysis are shown in Figs. 8 and 9. From Table III, we see
that we find values of the effective weak lensing shear

FIG. 8. Constraints on the nuisance parameters described in Table III obtained in this work. These have been marginalized over all
cosmological parameters. The inner (outer) contour shows the 68% C.L. (95% C.L.).
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calibration parameter of mSDSS� ¼ −0.229� 0.113 and
mDES� ¼ −0.0708þ0.0953

−0.0946 . The obtained value for the effec-
tive multiplicative bias of SDSS Stripe 82 is broadly
consistent with an overall intrinsic alignment contribution
of −15% and a calibration uncertainty of around 5%. The
effective multiplicative bias for DES SV is slightly lower
than would be expected from our fiducial model, which

would suggest a lower limit on mDES� of around −10%
coming solely from intrinsic alignments. This discrepancy
could be due to cancellations between the two components
of the effective bias. We find a value of the multiplicative
bias of the CMB lensing convergence of mκCMB

¼
−0.0598þ0.0941

−0.0946 , which is again consistent with the expect-
ation of mκCMB

¼ 0. Finally, our constraint on the galaxy

FIG. 9. Constraints on the nuisance parameters described in Table III affecting the amplitude of the power spectra as well as τreion
obtained in this work. These have been marginalized over all remaining parameters. For the linear galaxy bias parameter b, the dashed
line and the gray band show the mean and 1σ uncertainty of the tomographic galaxy bias derived in Ref. [14] for the CMASS1-4 sample.
The dashed line and the gray band for τreion show the mean and 1σ uncertainty of the adopted prior, while for mSDSS� and mDES� , the
dashed lines and gray bands show the effective multiplicative bias expected from intrinsic alignments together with the 1σ calibration
uncertainties for both SDSS Stripe 82 and DES SV. FormκCMB

finally, the dashed line is centered onmκCMB
¼ 0. The inner (outer) contour

shows the 68% C.L. (95% C.L.).
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bias b for the SDSS CMASS1-4 sample is consistent with
the mean of the tomographic bias parameters reported in
Ref. [14]. We further find the constraints on different
nuisance parameters to be only slightly correlated between
one another. This shows that the combination of auto- and
cross-correlations can be used for cross-calibration of
different surveys and cosmological probes.
The theoretical predictions for the best-fitting cosmo-

logical model together with the measured data are shown in
Fig. 3. As can be seen, the theoretical predictions fit the
data rather well, and there is no sign of a tension between
different data sets.

X. CONCLUSIONS

In this work, we have extended our framework for
integrated cosmological probe analysis presented in
Paper I. We combined data from CMB temperature
anisotropies, galaxy clustering, weak lensing, and CMB
lensing, focusing on two-point statistics and taking into
account the cross-correlations between the different probes.
We used CMB temperatures from Planck 2015 [2], galaxy
clustering data from SDSS DR8 [3], weak lensing data
from both SDSS Stripe 82 [4] and DES SV [6], and CMB
lensing data from Planck 2015 [5]. We further included
SNe Ia distance moduli from the JLA [7] and Hubble
constant measurements from HST [8,9]. For all the probes
of the inhomogeneous Universe, we computed 12 spherical
harmonic power spectra, and we combined them into a joint
likelihood assuming both a Gaussian covariance matrix as
well as a Gaussian likelihood. We then combined this
likelihood with the Gaussian SNe Ia likelihood assuming
these two data sets to be independent. Furthermore we
extended our treatment of systematic uncertainties and
relaxed some of the approximations used in Paper I. We
studied the impact of intrinsic alignments, baryonic cor-
rections, residual foregrounds in the CMB temperature, and
calibration factors for the different power spectra. This
extended analysis allows us to derive more robust con-
straints on the cosmological model and a more thorough
test of the consistency between the different probes.
From this analysis, we computed cosmological parameter

constraints for a flat ΛCDM cosmological model marginal-
izing over eight nuisance parameters. We made several
simplifying approximations throughout this analysis. We
assumed the joint covariance matrix of the considered
cosmological probes to be Gaussian. Further, we only
included systematic uncertainties from linear galaxy bias,
multiplicative biases due to either calibration or intrinsic
alignments in theweak lensing shear, uncertainties in the SNe
Ia intrinsic luminosities, andmultiplicative calibration uncer-
tainties in the CMB lensing convergence. We have not taken
into account uncertainties due to photometric redshift errors
or additive weak lensing calibration bias, and we have not
included intrinsic alignment modelling in our analysis. Since
we have foundour data to be insensitive to baryonic effects on

the matter power spectrum and residual foregrounds in the
CMB temperature anisotropy maps, we have not included
these effects in our analysis. Finally our theoretical predic-
tions were all computed using the Limber approximation.
Due to the conservative cutswe applied on the data,we donot
believe these effects to significantly affect our conclusions.
We found results that are consistent with those presented in
Paper I, which, given our enlarged data set and systematics
treatment, confirms the robustness of our analysis and results.
Furthermore, we found our data to be well fit by our best-fit
cosmological model, and we did not see any sign of tension
between the data sets considered in our analysis.
We also found that our constraints are consistent with

those derived by other analyses such as the joint analysis of
the WMAP9, SPT, and ACT CMB experiments and the
KiDS weak lensing survey [82]. Comparing the obtained
constraints to those from the Planck Collaboration [81], we
found broad agreement but also tensions in the margin-
alized constraints in most pairs of cosmological parameters.
In particular, we found a lower value of Ωm, Ωb, and σ8
as well as a higher value of h. Since our analysis included
low-l Planck CMB temperature data (l ∈ ½10; 610�), the
tension appears to arise between the Planck high-l modes
and the other measurements.
We further found the constraints on the probe calibration

parameters to be largely independent and in agreement with
expectation. This shows that these data sets are mutually
consistent. This also yields a confirmation of the amplitude
calibration of the weak lensing measurements from SDSS,
DES SV, and Planck CMB lensing from our integrated
analysis.
Future cosmological surveys will provide data with

unprecedented precision. It will thus be interesting to
extend the framework presented here to models beyond
ΛCDM as well as extend this framework to include three-
dimensional tomographic information, further data, or
higher-order statistics.
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APPENDIX A: IMPACT OF
INTRINSIC ALIGNMENTS

The shapes of unlensed galaxies have been found to
exhibit significant correlations, which are called intrinsic
alignments [58–64]. Since weak lensing shear assumes all
correlations between galaxy shapes to be due to gravita-
tional lensing, any measurement of weak lensing will
be biased by the presence of intrinsic alignments. These
affect both the cosmic shear power spectrum as well as any
cross-correlation between LSS probes and the weak lens-
ing shear.
The observed cosmic shear power spectrum in the

presence of intrinsic alignments can be written as

Cγγ;obs
l ¼ Cγγ

l þ 2CGI
l þ CII

l ; ðA1Þ

where Cγγ
l is the cosmic shear power spectrum. CGI

l denotes
correlations between the intrinsic alignments of foreground
galaxies and the weak lensing shear of background galaxies
[66]. These arise because the gravitational field causing
the intrinsic alignments is the same as that giving rise to
the weak lensing shear and they are called gravitational-
intrinsic (GI) correlations. Finally, CII

l denotes correlations
between shapes of neighboring galaxies which arise
because these form under the influence of similar tidal
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gravitational fields [65]. These correlations are termed
intrinsic-intrinsic (II) galaxy alignments.
Since intrinsic galaxy alignments are due to the large-

scale gravitational field in which galaxies form, these will
be correlated to any tracer of the LSS. Therefore, we
should expect intrinsic alignment contributions to the cross-
correlation between the weak lensing shear and both the
galaxy overdensity and the CMB lensing convergence. The
observed cross-correlation between the galaxy overdensity
and the weak lensing shear is given by

C
γδg;obs
l ¼ C

γδg
l þ C

Iδg
l ; ðA2Þ

where C
γδg
l denotes the contribution due to weak lensing

and C
Iδg
l is due to intrinsic galaxy alignments.

The cross-correlation between the CMB lensing con-
vergence and the weak lensing shear can be written as

CκCMBγ;obs
l ¼ CκCMBγ

l þ CκCMBI
l ; ðA3Þ

where again CκCMBγ
l is the signal coming from weak

gravitational lensing and CκCMBI
l denotes the intrinsic align-

ment contribution.
In order to model these effects and investigate the impact

of intrinsic alignments on the spherical harmonic power
spectra used in our analysis, we follow Refs. [24,82] and
adopt the nonlinear alignment model [66,67]. In this model,
the nonlinear intrinsic alignment power spectra are para-
metrized as

PII ¼ F2ðzÞPnl
δδðk; zÞ;

PδI ¼ FðzÞPnl
δδðk; zÞ: ðA4Þ

The function FðzÞ parametrizes the response of a galaxy
shape to an external gravitational tidal field and is given by

FðzÞ ¼ −AIAC1ρcrit
Ωm

DðzÞ ; ðA5Þ

where we have neglected any redshift or luminosity
dependence of intrinsic alignments. ρcrit is the critical
density of the Universe at z ¼ 0, DðzÞ denotes the
linear growth factor normalized to unity today, and C1 ¼
5 × 10−14 h−2M−1⊙ Mpc3 is a normalization constant. The
amplitude of the intrinsic alignments is determined by the
free parameter AIA.
In this model, the intrinsic alignment spherical harmonic

power spectra for the cosmic shear become (see e.g.
Ref. [90])

CII
l ¼

Z
dz

HðzÞ
c

nγðzÞnγðzÞ
χ2ðzÞ PII

�
k ¼ lþ½

χðzÞ ; z

�
;

CGI
l ¼

Z
dz

WγðχðzÞÞnγðzÞ
χ2ðzÞ PδI

�
k ¼ lþ½

χðzÞ ; z

�
; ðA6Þ

where nγðzÞ denotes the normalized redshift selection
function of the weak lensing survey under consideration.
The intrinsic alignment contribution to the cross-

correlation of the galaxy overdensity and the weak lensing
shear can be written as [90]

C
Iδg
l ¼

Z
dz

HðzÞ
c

nδgðzÞnγðzÞ
χ2ðzÞ × bPδI

�
k ¼ lþ½

χðzÞ ; z

�
:

ðA7Þ

Analogously, the contribution of intrinsic alignments to
the cross-correlation between the CMB lensing conver-
gence and weak lensing shear is given by [91,92]

CκCMBI
l ¼

Z
dz

WκCMBðχðzÞÞnγðzÞ
χ2ðzÞ × PδI

�
k ¼ lþ½

χðzÞ ; z

�
:

ðA8Þ

Figure 10 shows the linear alignment contribution to

Cγγ;obs
l , C

γδg;obs
l , and CκCMBγ;obs

l for SDSS Stripe 82 weak
lensing shear evaluated for our best-fit cosmological model
given in Table III and assuming an intrinsic alignment
amplitude AIA ¼ 1 and using Halofit. Since the magnitude of
intrinsic alignments does not depend on calibration uncer-
tainties or galaxy bias, we further assume no systematic
uncertainties. The choice of intrinsic alignment amplitude
is consistent with the recent results of Ref. [82]. As can be
seen from the figure, the observed spherical harmonic
power spectra are significantly reduced in the presence of

intrinsic alignments. The effect is most pronounced for C
γδg
l

for which the clustering amplitude is reduced by approx-
imately 20%. We can also see that the scale dependence
of the intrinsic alignment power spectra closely follows
the weak lensing shear power spectra. In order to reduce the
computation time for our parameter estimation, we there-
fore choose to model the intrinsic alignments as an addi-
tional multiplicative degree of freedom as described
in Sec. VI.
We note that the results for DES SV are similar, but we

choose to show the results for SDSS Stripe 82 because
the latter shows a more significant impact of intrinsic
alignments.
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APPENDIX B: IMPACT OF BARYONIC
PROCESSES ON THE DARK MATTER

POWER SPECTRUM

Numerical simulations have shown that baryonic proc-
esses such as gas cooling and feedback from both AGN and
supernovae have the potential to significantly alter the dark
matter power spectrum on small scales (e.g. Ref. [93]).

These processes are still poorly understood which leads to
systematic uncertainties on the matter power spectrum at
small scales [93]. Depending on the chosen model for
baryonic physics, the matter power spectrum can be
reduced by around 10% at scales of k ¼ 1 Mpc−1, which
could significantly alter the weak lensing power spectrum
due to the broadness of the redshift kernel WγðχðzÞÞ.

FIG. 10. Impact of intrinsic galaxy alignments on the theoretical spherical harmonic power spectra involving weak lensing data from
SDSS Stripe 82 as estimated using the nonlinear alignment model.

FIG. 11. Comparison of the theoretical predictions for the cosmic shear power spectra obtained taking into account baryonic
corrections to the matter power spectrum as well as without taking them into account. The left-hand panel shows the results for SDSS
Stripe 82, while the right-hand panel shows the results for DES SV. The theoretical predictions for the power spectra have been
convolved with the PolSpice kernels described in Paper I and Sec. V. The error bars are derived from the Gaussian simulations described
in Sec. VII and Appendix C. The angular multipole range and binning scheme is summarized in Table II.
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In order to investigate the impact of baryonic corrections
on the power spectra involving weak lensing shear con-
sidered in this work, we adopt the effective halo model
described in Refs. [68,94]. This optimized halo model has
been shown to accurately reproduce the results from the
Cosmic Emu dark matter-only simulations [95,96]. Baryonic
effects can be incorporated by adjusting the internal
structure of the halos. The two free parameters of the
model are the amplitude A of the mass-concentration
relation and a halo bloating parameter η0 which controls
the density profile of the halo. In order to investigate the
impact of baryonic corrections on our analysis, we compute
the matter power spectrum using the best-fit halo model
parameters described in Refs. [68,94]. We incorporate
baryonic effects using the parameters of the AGN model
of Ref. [68], which is the model that shows the largest
deviations from the dark matter-only results. We then
compute the cosmic shear power spectra for the surveys
considered in this work and compare them to those
obtained when neglecting baryonic effects. The results
are shown in Fig. 11 for a cosmological model defined
by fh;Ωm;Ωb; ns; σ8g ¼ f0.71; 0.27; 0.045; 0.97; 0.8g and
fmSDSS� ; mDES� g ¼ f−0.11;−0.02g. As can be seen from
the figure, the amplitude of the cosmic shear power spectra is
significantly reduced for small angular scales. On the
smallest angular scales considered, the suppression reaches
approximately 15%. Comparing the magnitude of this effect
to the measured data, we see that it is significantly smaller
than the size of our error bars, and our data are therefore
currently not sensitive to baryonic effects. We therefore do
not include baryonic corrections into our fiducial model and
leave an investigation of those to future work.

APPENDIX C: CORRELATED SPIN-0
AND SPIN-2 FIELDS

To validate our analysis as well as to obtain an estimate
of the covariance matrix, we need to generate correlated
Gaussian realizations of CMB temperature anisotropies T,
galaxy overdensity δg, CMB lensing convergence κCMB,
and two weak lensing shear fields γ1, γ2 with auto- and

cross-power spectra fCTT
l ;C

δgT
l ;C

δgδg
l ;CκCMBT

l ;C
κCMBδg
l ;Cγ1T

l ;

C
γ1δg
l ;Cγ1κCMB

l ;Cγ1γ1
l ;Cγ2T

l ;Cγ2κCMB
l ;Cγ2γ2

l g. To this end, we
extend the algorithm presented in Paper I, which is based
on Refs. [97,98]. We further improve the algorithm by
including several terms we neglected due to their low
amplitude in Paper I.
Due to the sky coverage of the surveys considered in this

work, the DES SV weak lensing shear field is not correlated
to both the SDSS galaxy overdensity and the SDSS Stripe
82 weak lensing shear field. To take this into account, we
simulate two separate sets of maps for each weak lensing
survey. Both these sets consist of the weak lensing shear
maps as well as all the spin-0 maps correlated to those. We

then add the spin-0 maps obtained from these two sets of
maps to create the final Gaussian realizations.
The first set of maps consists of a correlated realization

of CMB temperature anisotropies, galaxy overdensity,
CMB lensing convergence, and the SDSS weak lensing
shear field and is constructed as follows:

(i) We first create three correlated HEALPix maps using
SYNFAST in polarization mode with the power
spectra

C00
l ¼ CTT

l =2;

CEE
l ¼ Cγ1γ1

l =3;

CBB
l ¼ 0;

C0E
l ¼ Cγ1T

l :

These maps are denoted m01
i , where

i ∈ fT; γ11; γ21g.
(ii) Following Refs. [1,97,98], we then create three maps

with a new random seed and the power spectra

C00
l ¼ C

δgδg
l − 2ðCδgT

l Þ2=CTT
l ;

CEE
l ¼ Cγ1γ1

l =3;

CBB
l ¼ 0;

C0E
l ¼ C

γ1δg
l − 2C

δgT
l Cγ1T

l =CTT
l :

The second term in the last equation removes
unwanted cross-correlations between the spin-0
and spin-2 fields, which would otherwise arise in
this process. These maps are denoted m02

i , where
i ∈ fδg; γ11; γ21g.

(iii) In a next step, we create three additional maps with
another random seed and power spectra

C00
l ¼ CκCMBκCMB

l =2 − ðCκCMBT
l Þ2=ð2CTT

l Þ
− ðCκCMBδg

l − C
δgT
l CκCMBT

l =CTT
l Þ2

=ðCδgδg
l − 2ðCδgT

l Þ2=CTT
l Þ;

CEE
l ¼ Cγ1γ1

l =3;

CBB
l ¼ 0;

C0E
l ¼ Cγ1κCMB

l − Cγ1T
l CκCMBT

l =CTT
l

− C
γ1δg
l C

κCMBδg
l =½Cδgδg

l − 2ðCδgT
l Þ2=CTT

l �:

As before, unwanted spin-0/spin-2 correlations are
removed by adding the second and third terms in
the last equation. These maps are denoted m03

i ,
where i ∈ fκCMB; γ11; γ

2
1g.

(iv) We create two spin-0 maps generated with the same
seed as used for m01 with the power spectra
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C00
l ¼ 2ðCδgT

l Þ2=CTT
l ;

C00
l ¼ ðCκCMBT

l Þ2=ð2CTT
l Þ:

The map corresponding to the first power spectrum
is denoted m04

δg
, while the one corresponding to the

second is called m04
κCMB

.
(v) We create a spin-0 map generated with the same seed

as used for m02 with the power spectrum

C00
l ¼ ðCκCMBδg

l − C
δgT
l CκCMBT

l =CTT
l Þ2

=ðCδgδg
l − 2ðCδgT

l Þ2=CTT
l Þ:

This map is called m05
κCMB

.
(vi) Finally, we combine the maps, i.e.

m0
T ¼ m01

T ;

m0
δg
¼ m02

δg
þm04

δg
;

m0
κCMB

¼ m03
κCMB

þm04
κCMB

þm05
κCMB

;

m0
γ1
1

¼ m01
γ1
1

þm02
γ1
1

þm03
γ1
1

;

m0
γ2
1

¼ m01
γ2
1

þm02
γ2
1

þm03
γ2
1

:

We construct a correlated realization of CMB temper-
ature anisotropies, CMB lensing convergence, and the DES
SV weak lensing shear field analogously:
(1) We first create three correlated HEALPix maps using

SYNFAST in polarization mode with the power
spectra

C00
l ¼ CTT

l =2;

CEE
l ¼ Cγ2γ2

l =2;

CBB
l ¼ 0;

C0E
l ¼ Cγ2T

l :

These maps are denoted ~m1
i , where i ∈ fT; γ12; γ22g.

(2) Following Refs. [1,97,98], we then create three
maps with a new random seed and the power
spectra

C00
l ¼ CκCMBκCMB

l =2 − ðCκCMBT
l Þ2=ð2CTT

l Þ;
CEE
l ¼ Cγ2γ2

l =2;

CBB
l ¼ 0;

C0E
l ¼ Cγ2κCMB

l − CκCMBT
l Cγ2T

l =CTT
l :

These maps are denoted ~m2
i , where

i ∈ fκCMB; γ12; γ
2
2g.

(3) We create a spin-0 map generated with the same seed
as used for ~m1 with the power spectrum

C00
l ¼ ðCκCMBT

l Þ2=ð2CTT
l Þ:

The map is denoted ~m3
κCMB

.
(4) Finally, we combine the maps, i.e.

~mT ¼ m1
T;

~mκCMB
¼ ~m2

κCMB
þ ~m3

κCMB
;

~mγ1
2
¼ ~m1

γ1
2

þ ~m2
γ1
2

;

~mγ2
2
¼ ~m1

γ2
2

þ ~m2
γ2
2

:

In a last step, we combine both sets of maps, i.e.

mT ¼ m0
T þ ~mT;

mδg ¼ m0
δg
;

mκCMB
¼ m0

κCMB
þ ~mκCMB

;

mγ1
1
¼ m0

γ1
1

;

mγ2
1
¼ m0

γ2
1

;

mγ1
2
¼ ~mγ1

2
;

mγ2
2
¼ ~mγ2

2
:

This algorithm yields a set of seven correlated HEALPix

maps fmT; mδg ; mκCMB
; mγ1

1
; mγ2

1
; mγ1

2
; mγ2

2
g with auto- and

cross-power spectra given by fCTT
l ; C

δgT
l ; C

δgδg
l ; CκCMBT

l ;

C
κCMBδg
l ; Cγ1T

l ; C
γ1δg
l ; Cγ1κCMB

l ; Cγ1γ1
l ; Cγ2T

l ; Cγ2κCMB
l ; Cγ2γ2

l g. As
in Paper I, we include the HEALPix window function and
CMB temperature beam window function in the spherical
harmonic power spectra prior to creating the maps.
Note that it is not possible to create maps with negative

power spectra using HEALPix. This means that we always
need to make sure that all cross-terms remain positive. This
can usually be achieved by applying the counterterms to the
power spectra with larger amplitude.
In order to obtain simulations of observed maps, we need

to add realistic noise to the signal-only maps. To this end,
we follow the implementation in Paper I for the CMB
temperature anisotropy, the galaxy overdensity, and the
weak lensing shear maps. As described in more detail in
Paper I, we add noise to the simulations on the map level.
For the CMB temperature anisotropies, we add the
Commander half-mission half-difference map to the signal.
The noise maps for the galaxy overdensity consist of
randomized maps of the galaxy positions in the data, while
the weak lensing noise maps are created by rotating the
galaxy shears in the data by a random angle. We create
noise-only maps for the CMB lensing convergence using
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the simulated data provided by the Planck Collaboration in
Ref. [5]. These data consist of a set of 100 simulations of
observed spherical harmonic coefficients of the CMB
lensing convergence as well as the spherical harmonic
coefficients of the input CMB lensing convergence to each
simulation. To compute noise-only maps, we first compute
the difference between observed and true spherical har-
monic coefficients. Using those, we create HEALPix maps of
the CMB lensing convergence reconstruction noise at
resolution NSIDE ¼ 1024. This approach is an approxi-
mation for two reasons. First, it is only exactly valid in the
limit of linearity in signal and noise. This is not true in this
case, and we therefore expect to see differences between the
estimated noise power spectra and the true one. Comparing

these two, we find differences of at most 3.5%, which is an
acceptable accuracy for covariance matrix computations.
Second, the CMB lensing noise power spectrum is cos-
mology dependent since the main source of noise is the
disconnected part of the CMB temperature four-point
function, which depends on the cosmological model
assumed in the simulations. Therefore, we should strictly
only use these maps for the fiducial cosmological model
adopted in Ref. [5]. Since we only include cross-power
spectra involving the CMB lensing convergence, we
believe the errors due to assuming a different cosmological
model for the theory and the noise to be subdominant. We
therefore leave the refinement of the CMB lensing con-
vergence noise estimate to future work.

FIG. 12. Comparison between input theoretical power spectra and the mean reconstruction derived from Nsim ¼ 1000 Gaussian
simulations as described in Sec. D. The angular sky coverage and the noise level of the simulations closely match the data. The PolSpice
settings used to compute these power spectra are identical to those applied on the data, and the angular multipole range as well as binning
schemes match those described in Table II. Dashed lines denote negative spherical harmonic power spectrum values. The input power
spectra have been convolved with the PolSpice kernels described in Paper I and Sec. V. The error bars are derived from the Gaussian
simulations described in Sec. VII and Appendix C.
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APPENDIX D: VALIDATION OF SPHERICAL
HARMONIC POWER SPECTRUM

MEASUREMENT

As in Paper I, we validate our power spectrum meas-
urement using the Gaussian simulations described in
Sec. C. We compute Nsim ¼ 1000 realizations of signal
and noise for our fiducial cosmological model defined by
fh;Ωm;Ωb;ns;σ8;τreion;TCMBg¼f0.7;0.3;0.049;1.0;0.88;
0.078;2.275Kg and fb;mSDSS� ; mDES� ; mκCMB

; Aps; Aclg ¼
f2.0; 0.0; 0.0; 0.0; 0.0; 0.0g. The noise level in the simu-
lations is consistent with the data, and we apply the survey
masks determined from the data to each simulated map.
The spherical harmonic power spectra are computed with
the same PolSpice settings as used on the data, and the noise
bias correction is performed as described in Sec. V.
Figures 12 and 13 show the comparison between the mean
of the recovered power spectra and the input theoretical
power spectra. The error bars denote the error on the mean
of the power spectra and are derived using the Gaussian
simulations. We find that the input power spectra are
generally recovered rather well, which validates our power
spectrum measurement.

APPENDIX E: SPHERICAL HARMONIC POWER
SPECTRUM ROBUSTNESS TESTS

In this section, we summarize the robustness tests
performed for the measured spherical harmonic power
spectra.

1. Comparison between spherical harmonic power
spectra in equatorial and Galactic coordinates

We test that the measured power spectra are indepen-
dent of the chosen coordinate system by comparing the

results obtained from the maps in equatorial and Galactic
coordinates. The only power spectrum that can be
transformed between coordinate systems is the cosmic
shear power spectrum for DES SV, and the results are
shown in Fig. 15. We find discrepancies between the two
power spectra, which are comparable to the discrepan-
cies found for SDSS Stripe 82 in Paper I. This suggests
that coordinate-dependent bias corrections are not the
only explanation for differences between the power
spectra but that these differences are partly also due
to different shape noise properties in different coordinate
systems. Since the discrepancies detected are well within
our measurement uncertanties, we do not investigate this
issue further and include the spherical harmonic power
spectrum measured from the maps in Galactic coordi-
nates in our analysis.

FIG. 13. Mean of the reconstructed cosmic shear B-modes derived from Nsim ¼ 1000 Gaussian simulations as described in Sec. D.
The angular sky coverage and the noise level of the simulations closely match the data. The PolSpice settings used are identical to those
applied on the data, and the angular multipole range as well as binning schemes match those described in Table II. The left-hand panel
shows the results for the SDSS Stripe 82 simulations, while the right-hand panel shows the results for the DES SV simulations. The error
bars are derived from the Gaussian simulations described in Sec. VII and Appendix C.

FIG. 14. Spherical harmonic B-mode power spectrum of DES
SV. The error bars are derived from the Gaussian simulations
described in Sec. VII and Appendix C. The angular multipole
range and binning scheme used are summarized in Table II.
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2. Comparison between spherical harmonic power
spectra measured from different foreground-reduced

CMB temperature maps

We investigate the impact of our choice of fiducial
foreground-reduced CMB temperature anisotropy map
by comparing the power spectra involving CMB temper-
ature data obtained using the four foreground reduction
algorithms employed by the Planck Collaboration [13].
These are Commander, NILC, SEVEM, and SMICA, and the
results for Cγ2T

l and CκCMBT
l are shown in Fig. 16. As can be

seen, we find the derived power spectra to be consistent
with each other.

APPENDIX F: IMPACT OF UNRESOLVED
FOREGROUNDS ON CMB TEMPERATURE

ANISOTROPIES

As described in Sec. VI, the foreground-reduced CMB
temperature anisotropy maps are contaminated by unre-
solved extragalactic sources [53]. Following Ref. [54], the
power spectra of these foregrounds can be modelled using a
contribution of an unclustered Poisson component Cps

l and
the contribution of a clustered component Ccl

l [54]. These
become significant at high angular multipoles. The two
power spectra are defined in terms of their amplitudes Aps

and Acl as

Cps
l ¼ 2π

Aps

lpðlp þ 1Þ ;

Ccl
l ¼ 2π

Acl

lðlþ 1Þ
�
l
lp

�
0.8
; ðF1Þ

where the Pivot angular multipole is defined to be lp ¼
3000 and both amplitudes have units of μK2. The nor-
malization ensures that for Dl ¼ lðlþ1Þ

2π Cl we have Dps
lp

¼
Aps and Dcl

lp
¼ Acl. We investigate the impact of these

residual foregrounds by comparing the cosmological
parameter constraints obtained from CMB temperature
data alone both including these two additional degrees
of freedom and neglecting them. The constraints obtained
in both cases are virtually the same as can be seen from
Fig. 18, which means that the low-l temperature anisotropy
power spectrum is insensitive to residual foregrounds. We
therefore do not include these additional degrees of free-
dom in our fiducial analysis.

FIG. 16. Comparison of the spherical harmonic power spectra Cγ2T
l and CκCMBT

l obtained from the foreground-reduced CMB
temperature anisotropy maps derived using the four different algorithms Commander, NILC, SEVEM, and SMICA. The theoretical predictions
for the power spectra have been convolved with the PolSpice kernels described in Paper I and Sec. V. The error bars are derived from the
Gaussian simulations described in Sec. VII and Appendix C. The angular multipole ranges and binning schemes used for all the power
spectra are summarized in Table II.

FIG. 15. Comparison of cosmic shear power spectrum from
DES SV as measured using the maps in Galactic and equatorial
coordinates. The theoretical prediction for the power spectrum
has been convolved with the PolSpice kernels described in Paper I
and Sec. V. The error bars are derived from the Gaussian
simulations described in Sec. VII and Appendix C. The angular
multipole range and binning scheme used is summarized in
Table II.
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FIG. 17. Comparison of the constraints obtained from the fiducial joint analysis to the constraints obtained using the theoretical
covariance matrix and the constraints obtained assuming a different cosmological model to estimate the empirical covariance. The
constraints are marginalized over all nuisance parameters given in Table III. In each case the inner (outer) contour shows the
68% C.L. (95% C.L.).
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FIG. 18. Comparison of the constraints obtained from CMB temperature anisotropies for angular multipoles l ∈ ½10; 610� in this
work both including the additional nuisance parameters Aps and Acl and neglecting them. Also shown are the constraints obtained
from the Planck likelihood with lmax ≃ 610 and lmin ¼ 10 as well as lmin ¼ 30. In each case, the inner (outer) contour shows the
68% C.L. (95% C.L.).
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