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Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial
perturbations as well as the physics of the early Universe. The large-scale coherent overdensity and tidal
force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian of large-
scale gravitational potential and therefore are of equal importance. We show that the coherent tidal force
causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions,
perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion
signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its
impact on the redshift-space power spectrum to the leading order, and discuss its importance for ongoing
and upcoming galaxy surveys.
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I. INTRODUCTION

Observations of large-scale structure in the Universe
through a wide-area spectroscopic survey of galaxies are a
very powerful probe of fundamental physics, e.g., to test the
nature of dark energy via the baryon acoustic oscillation
(BAO) measurements of cosmological distances [1–4], to
test the gravity theory on cosmological scales [5], to weigh
the neutrino mass [6–8], to extract the physics of the early
Universe [9–11], to constrain the spatial curvature [12], and
to constrain the abundance of light relics such as axions
[13]. The current-generation galaxy surveys such as the
SDSS Baryon Oscillation Spectroscopic Survey (BOSS)
have provided stringent cosmological constraints that
are yet complementary to constraints from the cosmic
microwave background [14,15]. There are upcoming wide-
area galaxy surveys probing the three-dimensional distri-
bution of galaxies at higher redshifts: the Subaru Prime
Focus Spectrograph [16], the Dark Energy Spectrograph
Instrument [17], the ESA Euclid [18], the NASA
SPHEREx [19], and the NASA WFIRST-AFTA [20].
To attain the full potential ofwide-area galaxy surveys, it is

crucial to understand the statistical properties of large-scale
structure probes. Even though the initial density field is
nearly Gaussian, the subsequent nonlinear evolution of
structure formation causes substantial non-Gaussian features
in the observed distribution of galaxies andmatter [21].Most
of the useful cosmological information lies in the weakly or
deeply nonlinear regime, where different Fourier modes are
no longer independent but tightly coupled.

The fact that any galaxy survey has to be done within a
finite volume also causes an unavoidable uncertainty in the
actual cosmological analysis. Matter density perturbations
with very long wavelengths outside a survey volume, here-
after called supersurveymodes, should be present, but are not
directly observable. In the nonlinear regime of structure
formation, the supersurvey modes become coupled to short-
wavelength modes inside the survey volume. Consequently
cosmological probes measured from a given survey region
are modulated coherently by the supersurvey modes, and the
effects need to be taken into account in the analysis in order
not to have any bias in cosmological parameter estimation. In
addition the supersurvey modes are tricky to consider,
because their effects vanish for N-body simulations with
periodic boundary conditions that have no contribution of
modes outside the simulation box.
Various works have studied the supersurvey effects for

cosmological observables such as the weak lensing correla-
tion functions [22–37]. Most of them focused on the effects
of the large-scale coherent overdensity, denoted by δb (see
[29] for a unified formulation of the effect). The effect of δb
on subsurvey modes for a cold dark matter model with the
cosmological constant (ΛCDM) can be absorbed into an
apparent curvature parameter of the local volume—a sepa-
rate universe picture [32,36,38–42]. This approach allows
one to include the fully nonlinear mode-coupling of δb with
all short-wavelength modes, by performing N-body simu-
lations on a perturbed background correctly capturing the
local expansion.
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However, the effects of a long-wavelength and coherent
gravitational tidal force on short-wavelength modes have
yet to be fully studied. The coherent overdensity and the
coherent tidal force are both related to the Hessian of the
gravitational potential (or more generally the metric per-
turbations), and have comparable amplitudes in each
realization. Since the long-wavelength tidal field could
have a direct link to the physics of the early Universe (e.g.,
[11,43–45]), it would be interesting to explore the effects
from the observed galaxy distribution. Recently Ip and
Schmidt [46] developed a formulation to describe effects of
the coherent tidal force on nonlinear structure formation in
a local volume within the framework of general relativity
(see also [47–49]). In this paper we study how the super-
survey coherent tidal force causes an apparent anisotropic
clustering in the galaxy distribution. We will show that the
effects appear to look like the redshift-space distortion
(RSD) due to peculiar motions of galaxies as well as the
Alcock-Paczynski (AP) effect.
The structure of this paper is as follows. In Sec. II we

derive a formula to describe an effect of the large-scale
coherent gravitational tidal force on the redshift-space
galaxy power spectrum measured in a given realization
of a finite-volume survey, followed by its contribution to
the covariance matrix of the quadrupole power spectrum. In
Sec. III, we assess its impact on the quadrupole power
spectrum measurement for a hypothetical galaxy survey.
Section IV is devoted to discussion. In the Appendix we
derive the response of the power spectrum to the large-scale
tide, based on the perturbation theory.

II. SUPERSURVEY TIDAL EFFECT

A. Supersurvey modes

For the purpose of the following discussion let us
consider the gravitational potential field smoothed with a
survey window function,

ΦWðxÞ≡ 1

VW

Z
d3yΦðyÞWðy − xÞ; ð1Þ

where VW ¼ R
d3yWðy − xÞ. For simplicity throughout the

paper we assume a connected survey geometry, which does
not have any hole ormasked region. The surveywindow thus
defines the boundary of a survey region around the fiducial
point x;Wðy − xÞ ¼ 1 if the vector y − x is inside a survey
region, otherwiseWðy − xÞ ¼ 0. In thiswaywecan consider
ΦWðxÞ as the smoothed gravitational field as a function of the
positionx. If a typical length scale of the surveywindow isL,
the above integration smooths out all fluctuations with scales
smaller than L around the position x. ΦWðxÞ only varies
significantly on scales comparable to or greater than L.
Now suppose that a hypothetical survey region is located

at the position x0. Then consider Taylor-expanding the
smoothed gravitational field around the position x0 as

ΦWðxÞ ¼ ΦWðx0Þ þ∇iΦW jx0xi þ
1

2
∇i∇jΦW jx0xixj

þOð∇3ΦW jx0x3Þ

¼ ΦWðx0Þ þ∇iΦW jx0xi þ
2

3
πGρ̄ma2δbjx0x2

þ 2πGρ̄ma2τWijjx0xixj þOð∇3ΦW jx0x3Þ; ð2Þ

where the comoving displacement xi ≡ ðx − x0Þi,
∇i ≡ ∂=∂xi, aðtÞ is the scale factor of the global universe,
and δb is the smoothed overdensity in the survey window
(see below). We have used the Poisson equation, ΔΦðxÞ ¼
4πGρ̄ma2δðxÞ. τWij is the smoothed tidal field defined as
the traceless Hessian matrix of the smoothed gravitational
field

τWij ≡ 1

4πGρ̄ma2

�
ΦW;ij −

1

3
δKijΔΦW

�
; ð3Þ

and δKij is the Kronecker delta function. We introduced
the prefactor ð1=4πGρ̄ma2Þ in the definition of τWij to
make it dimensionless. By using the properties of survey
window as well as the partial integral, we can rewrite the
partial derivatives of the smoothed gravitational field, for
example, as

∇iΦW jx0 ≡
∂
∂xi

�
1

VW

Z
d3yΦðyÞWðy − xÞ

�
x0

¼ 1

VW

Z
d3yΦðyÞ ∂Wðy − xÞ

∂xi
����
x0

¼ 1

VW

Z
d3yΦðyÞð−1Þ ∂Wðy − xÞ

∂yi
����
x0

¼ 1

VW

�Z
d3y

∂
∂yi fΦðyÞð−1ÞWðy − xÞg

−
Z

d3y
∂ΦðyÞ
∂yi ð−1ÞWðy − xÞ

�
x0

¼ 1

VW

Z
d3y

∂ΦðyÞ
∂yi Wðy − xÞ

����
x0

¼ ΦW;ijx0
: ð4Þ

That is, the derivatives of the smoothed field in Eq. (2) are
equivalent to the survey window average of the derivatives
of the gravitational potential field. With this equality, we
rewrote the Laplacian of the smoothed field in the third line
on the right-hand side of Eq. (2) as

ΔΦW jx0 ¼
1

VW

Z
d3yΔΦðyÞWðjy − xjÞ

����
x0

¼ 1

VW

Z
d3y4πGρ̄ma2δðyÞWðjy − xjÞ

����
x0

¼ 4πGρ̄ma2δbjx0 ; ð5Þ
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where δbðx0Þ≡ ð1=VWÞ
R
d3xWðy − x0ÞδðyÞ. All the coef-

ficients of xn on the right-hand side of Eq. (2) are evaluated
at the position x0, at a given time, δb ¼ δbðtÞ and
τWij ¼ τWijðtÞ. Hereafter we will often omit the depend-
ence of x0 in the supersurvey modes when considering a
fixed position of the survey region. As long as the survey
window is sufficiently large, the supersurvey modes evolve
linearly; i.e., δb ∝ DðtÞ and τWij ∝ ΦW=ðρ̄ma2Þ ∝ DðtÞ,
where DðtÞ is the linear growth function [50].
The ensemble averages of the supersurvey modes, which

are equivalent to the average when varying the position x0

for a fixed survey window function, can be estimated based
on the linear theory for an assumed ΛCDM model. For
a general survey window hΦWi ¼ hτWiji ¼ hδbi ¼ 0 and
their variances are expressed as

σ2b ≡ hδ2bi ¼
1

V2
W

Z
d3q
ð2πÞ3 P

LðqÞj ~WðqÞj2;

ðστijτlmÞ2 ≡ hτWijτWlmi

¼ 1

V2
W

Z
d3q
ð2πÞ3

�
q̂iq̂j −

δKij
3

�

×
�
q̂lq̂m −

δKlm
3

�
PLðqÞj ~WðqÞj2; ð6Þ

where q̂i ≡ qi=q, we have used h~δk ~δk0 i≡ ð2πÞ3PLðkÞδ3D
ðkþ k0Þ as well as the Poisson equation in the Fourier
space, −k2 ~Φk ¼ ð4πGρ̄ma2Þ~δk, and PLðkÞ is the linear
mass power spectrum. For a general survey window,
hδbτWiji ≠ 0. The linear variance σb and hτWijτWlmi can
be easily computed for any survey geometry, either by
evaluating Eq. (6) directly or using Gaussian realizations of
the linear density field. Note that, even for a fixed survey
volume, different components of the linear tidal variance
hτWijτWlmi generally have different amplitudes for an
irregular-shaped window; for example, if a survey window
has a collapsed shape rather than an isotropic shape,
hτWijτWlmi has a greater amplitude for the components
corresponding to the smaller window size (see below for
further discussion).
For an isotropic window, ~WðqÞ ¼ ~WðqÞ, the compo-

nents of the linear tidal variance are simplified as

hδbτWiji ¼ 0;

σ2τ ≡ hðτW11Þ2i ¼ hðτW22Þ2i ¼ hðτW33Þ2i

¼ 3

4
hðτWijÞ2ii≠j

¼ 4

45V2
W

Z
q2dq
2π2

PL
δ ðqÞj ~WðqÞj2 ¼ 4

45
σ2b; ð7Þ

and other variances are vanishing: hτWijτWlmi ¼ 0. Thus
the large-scale overdensity and tidal variances have

comparable amplitudes, στ ∼ σb=3, because both are related
to the Hessian of the gravitational field. No correlation
between δb and τWij means that the two carry independent
information of the supersurvey modes. The higher-order
derivatives than ΦW;ijl in Eq. (2) are more sensitive to
smaller-scale modes (larger-k modes), and are suppressed
by a factor of ðx=LÞn, where x is the length scale of
subsurvey modes we are interested in and L is the survey
size. Hence δb and τWij give leading-order contributions to
the supersurvey effects. In fact Li et al. [32] showed that the
higher-order contributions with n ≥ 3 seem negligible for
the matter power spectrum, using the separate universe
simulations.

B. The redshift-space power spectrum

Let us consider structure formation in a finite-volume
survey window in the Universe. To do this we employ a
“separate universe picture” [32,36,41,42]: we consider time
evolution of motions of particles comoving with this finite
volume region in a Lagrangian picture, which is separated
from the global universe. As can be found from Eq. (2), the
same coherent force arising from the large-scale gravita-
tional field,∇xΦWðxÞ, acts on all particles inside the survey
region. The first term of Eq. (2), ΦW jx0 , is vanishing, and is
thus irrelevant for ∇xΦWðxÞ. The force from the second
term, ΦW;ijx0 , causes a parallel translation of all the
particles by the same amount, and does not cause any
additional clustering inside the survey region. The force
arising from the third and fourth terms (δb and τWij) causes
the leading-order effect on which we focus in this paper.
If we consider particles that were initially comoving with
the global comoving coordinates at a sufficiently high
redshift (where jδbj, jτWijj ≪ 1), their subsequent trajecto-
ries deviate from the global comoving coordinates as time
goes by, due to the large-scale gravitational force. That is,
their equation of motion in this “separate” survey region is
given as

Ẍi ¼ −
4

3
πGρ̄mð1þ δbÞXi þ Λ

3
Xi − 4πGρ̄mτWijXj; ð8Þ

where Xi is the displacement vector between the two
particles (the initially comoving particles) in the phy-
sical coordinates, and we have taken into account the
gravitational force for a background universe, including the
effect of the cosmological constant [50]. The above Eq. (8)
can be realized as a modified Friedmann-Robertson-Walker
(FRW) equation that describes an effective expansion of the
local survey region due to the presence of supersurvey
modes. The term involving δb causes a greater or smaller
gravitational force relative to the FRW background, if the
survey region is embedded into a coherent over- or
underdensity region (δb > 0 or < 0), respectively. This
effect can be absorbed by a redefinition of the background
density, ρ̄Wm ¼ ρ̄mð1þ δbÞ, as can be found from the above
equation. The effect on the growth of subsurvey modes,

LARGE-SCALE TIDAL EFFECT ON REDSHIFT-SPACE … PHYSICAL REVIEW D 95, 083522 (2017)

083522-3



through the nonlinear mode coupling, can be described
by introducing an apparent curvature parameter of the
order of δb in the effective FRW equation of the local
universe, in the separate universe picture [32] (see also
[33,39,42]). The term involving the supersurvey tidal
tensor τWij is a novel effect, and causes a homogeneous
anisotropic expansion due to its tensor nature. By “homo-
geneous” we mean here that the expansion rate between
two points inside the local volume is the same, or
homogeneous, independently of where the two points
are placed inside the volume, as long as the two points
are taken along the same direction, as in the Hubble law.
This homogeneity is guaranteed by the assumption that
here we considered only up to the second order of the
Taylor expansion of the gravitational potential, which is
the leading-order effects of the supersurvey modes as we
discussed above.
Using the Zel’dovich approximation [51] or the linear-

ized Lagrangian perturbation theory (e.g., [52]), the effect
of supersurvey modes on the local expansion can be
described by a temporal perturbation of the comoving
coordinates of the local survey region as

qWi ¼ qi þΨWijðtÞqj; ð9Þ

where

ΨWijðtÞ ¼
δKij
3
δbðtÞ þ τWijðtÞ: ð10Þ

Here qWi are the perturbed comoving coordinates in the
local survey region, and qi is the comoving coordinate of
the global background. In the following, quantities with or
without subscript “W” denote the quantities in the local
survey volume or the global background, respectively. For a
sufficiently high redshift, jΨWijj ≪ 1, qWi ≃ qi. Hence, the
Lagrangian coordinates in the local volume can be defined
by the global comoving coordinates at sufficiently high
redshift. These effects can be also described by a modi-
fication of the scale factor of the local background. Note
that, in the separate universe picture, the physical length
scale should be kept the same in the local volume and the
global background, as discussed in Li et al. [32],

aWλW ¼ aλ; ð11Þ

where λW and λ are in the comoving wavelength scales.
Hence, the effect of δb can also be realized as a modifi-
cation of the scale factor: aWðtÞ≃ aðtÞ½1 − δbðtÞ=3� up to
the linear order of δb, which reproduces the results around
Eq. (35) in Li et al. [32]. On the other hand, the coherent
tidal force τWij causes a homogeneous anisotropic expan-
sion effect on the local comoving coordinates. If we take
the axes of local comoving coordinates along the principal
axes of the coherent tidal force, which can be done without

loss of generality, the tensor τWij becomes diagonal: τWij ¼
τWiδ

K
ij. Then the deformation of the comoving coordinates

can be realized as a homogeneous anisotropic deformation
of the scale factor along each axis up to the linear order of
τWi: aWiðtÞ≃ aðtÞ½1 − τWiðtÞ�, satisfying the trace condi-
tion TrðaWiÞ ¼ 3aðtÞ (see also [46,48,49] for similar
discussion).
As discussed in Sherwin and Zaldarriaga [27] (see also

[29,32]), the supersurvey modes affect the clustering
correlation function measured in the local survey volume.
Extending the method in Sherwin and Zaldarriaga [27] to
include the coherent tidal force, we can deduce that the
clustering correlation function of total matter, ξWðrÞ, in
the local volume is modified, up to the linear order of the
supersurvey modes, as

ξWðrÞ≡ hδðqW1ÞδðqW2Þir¼qW1−qW2

¼
�
1þ 68

21
δb

�
ξ

�
ri þ δb

3
ri þ τWijrj

�

≃ ξðrÞ þ
�
68

21
ξðrÞ þ 1

3
ri
∂ξðrÞ
∂ri

�
δb þ

∂ξðrÞ
∂ri rjτWij:

ð12Þ
Note that the above correlation function is from the
ensemble average of subsurvey modes on a realization
basis of the local volume that has the fixed supersurvey
modes δb and τWij. Equation (12) shows that, even if the
real-space clustering is isotropic, the correlation function
measured in the local volume generally becomes two-
dimensional due to the coherent tidal force. It causes an
apparent anisotropic clustering in the local volume, and the
amount of the anisotropic clustering depends on angles
between the directions of τWij and the separation vector r.
Fourier-transforming Eq. (12), we can find that

the power spectrum measured in the local volume is
modified as

PWðkÞ≃ PðkÞ þ δb

�
47

21
−
1

3

∂ lnPðkÞ
∂ ln k

�
PðkÞ

− τWijk̂ik̂j
∂PðkÞ
∂ ln k ; ð13Þ

where k̂i ≡ ki=k. Furthermore, in the Appendix, we use the
formulation in Takada and Hu [29] to derive the full
expression for the responses of the power spectrum to
the supersurvey modes in the weakly nonlinear regime. We
show that the large-scale tide also causes a change in the
amplitude of the power spectrum. Thus the full expression
is given as

PWðkÞ≃ PðkÞ þ δb

�
47

21
−
1

3

∂ lnPðkÞ
∂ ln k

�
PðkÞ

þ k̂ik̂jτWij

�
8

7
−
∂ lnPðkÞ
∂ ln k

�
PðkÞ: ð14Þ
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The termwith prefactor 8=7 gives the effect of the large-scale
tide on the power spectrum amplitude. For an arbitrary line-
of-sight direction that an observer takes, the anisotropic
power spectrum in the above equation appears exactly similar
to the Alcock-Paczynski distortion effect [53] (see also
[1,2,7]) as well as the RSD effect, the Kaiser effect [54].
The large-scale overdensity δb alters the power spectrum
amplitude as well as causes an isotropic dilation effect that is
given by the term involving ∂PðkÞ=∂k. Note that the terms
involving δb reproduce the 2-halo term of Eq. (27) in Li et al.
[32] (see also [29]). On the other hand, the coherent tidal
force causes a homogeneous anisotropic dilation in all three
directions, perpendicular and parallel to the line-of-sight
direction, while the RSD effect causes a distortion of the
clustering along the line-of-sight direction. In particular, the
terms involving the power spectrum derivative, ∂P=∂k,
cause a shift of the BAO peak location compared to what
the BAO location should be in the global background (see
also [27] for the effect of δb on the BAO peak location). Due
to the tensor nature of τWij, the directional dependence of
kikj causes a quadratic anisotropy in the power spectrum.
Thus the coherent tidal force causes a systematic error when
estimating the Hubble expansion rate and the angular
diameter distance from the anisotropic clustering via the
AP effect.
Next we consider effects of supersurvey modes on the

redshift-space power spectrum of galaxies. Galaxies are
biased tracers of the underlying matter distribution in the
large-scale structure. In this paper, we assume that the
number density fluctuation field of galaxies is locally
related to the matter density fluctuation field at the same
position via a linear bias parameter b: δgðxÞ ¼ bδmðxÞ. As
shown in Hu and Kravtsov [22], the mean number density
of galaxies in a finite-volume survey is modulated from the
global mean by δb as

n̄gW ≃ n̄g½1þ bδb�: ð15Þ
Then the two-point correlation function of the galaxies in a
local volume is estimated relative to the local mean density,
ξgWðrÞ ¼ hngðxÞngðxþ rÞi=n̄2gW − 1. As discussed in Li
et al. [32] (see also [55]), the real-space power spectrum of
galaxies is modified by supersurvey modes as

PgWðkÞ≃ b2ð1 − 2bδbÞPWðkÞ: ð16Þ
Combining this with the supersurvey effects [Eq. (13)] and
the Kaiser RSD effect, we can find that the redshift-space
power spectrum of galaxies is given as

PS
gWðkÞ ¼ ½1þ βμ2�2

×

�
PgðkÞ þ δb

�
47

21
− 2b −

1

3

∂ lnPgðkÞ
∂ ln k

�
PgðkÞ

þ k̂ik̂jτWij

�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
PgðkÞ

�
; ð17Þ

where PgðkÞ is the real-space power spectrum in the global
background, μ is the cosine angle between the line-of-sight
direction and thewave vectork, and β≡ ð1=bÞd lnD=d lna.
In the above equation we simply assumed that the Kaiser
RSD effect causes an additional distortion of the galaxy
distribution, and treated the effect as amultiplicative factor to
the real-space power spectrum (see below for further dis-
cussion). Thus the redshift-space power spectrum in the
presence of the supersurvey effects have redshift-space
distortions up to μ6, in the weakly nonlinear regime. In
the following we focus on the effect of τWij on the redshift-
space spectrum, and ignore the effect of δb (i.e., set δb ¼ 0).
Now we consider the multipole power spectra that are

useful spectra to quantify the RSD effects. Without loss of
generality, we can assume that the z-axis direction in the
local coordinates is along the line-of-sight direction of an
observer. Taking into account the fact that the coherent tidal
force also causes an anisotropic dilation even in the xy
plane perpendicular to the line-of-sight direction, where the
redshift distortion effect is absent, we can define the
multipole power spectrum as

PS
glWðkÞ ¼ ð2lþ 1Þ

Z
1

−1

dμ
2

Z
2π

0

dφ
2π

PS
gWðkÞLlðμÞ; ð18Þ

where φ and μ are the angle and cosine angle between
the coordinate axes and the wave vector k, i.e.,
k≡ kð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
cosφ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
sinφ; μÞ, and LlðμÞ is

the lth order Legendre polynomial; L0ðμÞ ¼ 1 and
L2ðμÞ ¼ ð3μ2 − 1Þ=2, which are relevant for the following
calculation.
The monopole power spectrum is found to be

PS
g0WðkÞ ¼

�
1þ 2β

3
þ β2

5

�
PgðkÞ þ

�
1

3
þ 2β

5
þ β2

7

�

× ðτW11 þ τW22 þ τW33Þ
�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
PgðkÞ

¼
�
1þ 2β

3
þ β2

5

�
PgðkÞ; ð19Þ

where we used TrðτWijÞ ¼ 0. Thus the coherent tidal force
does not affect the monopole power spectrum because of
the trace-free nature of τWij.
On the other hand, the supersurvey tide causes a

modulation in the quadrupole power spectrum,

PS
g2WðkÞ ¼

�
4β

3
þ 4β2

7

�
PgðkÞ þ

�
1þ 22β

21
þ 3β2

7

�
τW33

×

�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
PgðkÞ; ð20Þ

where we used the fact τW11 þ τW22 ¼ −τW33 in deriving
the above equation. Since the quadrupole power spectrum
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amplitude depends on β, or in other words there is no
contribution from the monopole power spectrum, it is a
useful probe of the growth rate. However, the coherent tidal
force causes an extra contribution to the quadrupole power
spectrum (the second term on the rhs). As we emphasized
above, the tidal effect varies with a position of the survey
region, and in this sense τWij is a statistical variable. Note
that even if the coherent density mode δb exists in the
survey region, it only affects the amplitude of the quadru-
pole power spectrum, and the effect is therefore perfectly
degenerate with the bias parameter.
Similarly one can compute the extra contribution to the

higher-order multipole power spectra,

PS
g4WðkÞ ¼

8β2

35
PgðkÞ þ

�
24β

35
þ 136β2

385

�
τW33

×

�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
PgðkÞ;

PS
g6WðkÞ ¼

8β2

77
τW33

�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
PgðkÞ ð21Þ

and PS
lWðkÞ ¼ 0 for l ≥ 8. Thus the coherent tidal force

generally induces a nonvanishing P6 power spectrum,
which is absent in the Kaiser formula.
In the following, we consider PS

g2WðkÞ, the leading-order
anisotropic power spectrum, to study the impact of the
coherent tidal force.

C. Supersample covariance

We have so far shown that the supersurvey tidal force
affects a measurement of the redshift-space power spec-
trum, and here estimate how the effect is important
compared to a statistical precision of the power spectrum
measurement.
Extending the formulation for the real-space power

spectrum in Scoccimarro et al. [56] (see also [24,29]),
we can write down an estimator for the quadrupole power
spectrum in a given survey region,

P̂S
g2ðkiÞ≡ 5

VW

Z
jkj∈ki

d3k
Vki

~δgWðkÞ~δgWð−kÞL2ðμÞ; ð22Þ

where ~δgWðkÞ is the density fluctuation field of galaxies
convolved with the survey window, the prefactor 5 is from
the definition of multipole power spectrum [Eq. (18)],
(2lþ 1), the integral is over a shell in k-space of width Δk,
and volume Vki ≃ 4πk2iΔk for Δk=ki ≪ 1. We have here
employed the continuous limit of discrete Fourier trans-
forms under the approximation that the total volume for the
Fourier transform is much greater than the survey region
(see Refs. [24,28] for a pedagogical derivation of power
spectrum estimator and the covariance based on the discrete
Fourier decomposition).
Similarly to the formulation in Schaan et al. [31], we

introduce the ensemble average of subsurvey modes for a
fixed coherent tidal force, τWij, denoted as hiτW . When we
focus on wave number modes satisfying k ≫ 1=L, the
average of the estimator (22) is computed as

hP̂S
g2ðkiÞiτW ≡ 5

VW

Z
jkj∈ki

d3k
Vki

h~δgWðkÞ~δgWð−kÞiτWL2ðμÞ

≃ 5

VW

Z
jkj∈ki

d3k
Vki

PS
gWðk; τWÞL2ðμÞ

Z
d3q
ð2πÞ3 j

~WðqÞj2

¼ 5

Z
jkj∈ki

4πk2dk
Vki

Z
1

−1

dμ
2
PS
gWðk; τWÞL2ðμÞ

¼
Z
jkj∈ki

4πk2dk
Vki

��
4β

3
þ 4β2

7

�
PgðkÞ þ

�
1þ 22β

21
þ 3β2

7

�
τW33

�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
PgðkÞ

�

≃
�
4β

3
þ 4β2

7

�
PgðkiÞ þ

�
1þ 22β

21
þ 3β2

7

�
τW33

�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
ki

PgðkiÞ; ð23Þ

where PS
gWðk; τWÞ is the power spectrum obtained

by setting δb ¼ 0 in Eq. (17). Furthermore, because
the convolution changes the power spectrum only
around k≲ 1=L due to the nature of the window
function while here we are interested in the spectra
of modes satisfying k ≫ 1=L. That is, we have used

PS
Wðk − q; τWÞ≃ PS

Wðk; τWÞ over the integral range of

d3q, and assumed that the power spectrum PgðkÞ is not

a rapidly varying function within k-bin. Thus the
average of the estimator [Eq. (22)] for a fixed τWij

recovers Eq. (20).
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Now we introduce the ensemble average that is the
average of the estimator with varying positions of the
survey regions, denoted as hi,

hP̂S
g2ðkiÞi≃

�
4β

3
þ 4β2

7

�
PgðkiÞ þ

�
1þ 22β

21
þ 3β2

7

�

× hτW33i
�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
ki

PgðkiÞ

≃
�
4β

3
þ 4β2

7

�
PgðkiÞ; ð24Þ

where we assumed hτ̂W33i ¼ 0, i.e., the average of the
coherent tidal force is vanishing in the ensemble average
sense. Thus the ensemble average of the estimator (22)
recovers the quadrupole power spectrum in the Kaiser
formula.

Now we consider the covariance of the quadrupole
power spectrum, defined in terms of the estimator as

Cij ≡ hP̂2ðkiÞP̂2ðkjÞi − hP̂2ðkiÞihP̂2ðkjÞi: ð25Þ

Similarly to Takada and Hu [29], we find that the
covariance is decomposed into two contributions

C≃CG þCSSC: ð26Þ

The first term is a Gaussian term, and the second term is
the non-Gaussian error arising from the coherent tidal force
on which we focus in this paper. Here we ignored the
trispectrum contribution of subsurvey modes to the sample
variance for simplicity.
Following method in Guzik et al. [57] and Takada and

Hu [29], we can compute the Gaussian term as

CG
ij ≃ δKij

25

VW

ð2πÞ3
Vki

Z
jkj∈ki

d3k
Vki

2½1þ βμ2�2
�
PgðkÞ þ

1

n̄g

�
2

½L2ðμÞ�2

¼ δKij
50

VW

ð2πÞ3
Vki

Z
jkj∈ki

4πk2dk
Vki

Z
1

−1

dμ
2
½1þ βμ2�2

�
PgðkÞ þ

1

n̄g

�
2

½L2ðμÞ�2

≃ δKij
ð2πÞ3
VWVki

10

�
1þ 44

21
β þ 18

7
β2 þ 340

231
β2 þ 415

1287
β4
��

PgðkÞ þ
1

n̄g

�
2

; ð27Þ

where we have included the shot noise term arising
from a finite number of sampled galaxies, given by the
terms including 1=n̄g. The Gaussian covariance scales as
1=VW . More exactly speaking, it scales as the number of
independent k-modes in the shell as

NmodeðkiÞ ¼
VkiVW

ð2πÞ3 ≃ 4πk2iΔkVW

ð2πÞ3 : ð28Þ

The Gaussian covariance matrix is diagonal, and, in other
words, its off-diagonal components are vanishing.
On the other hand, the supersample covariance (SSC)

term is given as

CSSC
ij ¼

�
1þ 22β

21
þ 3β2

7

�
2
�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
ki

×

�
8

7
−
∂ lnPgðkÞ
∂ ln k

�
kj

PgðkiÞPgðkjÞσ2τ33; ð29Þ

where σ2τ33 can be calculated using Eq. (6) for a given
cosmological model and survey window, and we have
assumed hδbτW33i ≪ σ2τ33 for a reasonable window. The
SSC covariance has off-diagonal components.
In the following we will use Eqs. (27) and (29) to

compute the covariance for a measurement of the quadru-
pole power spectrum for a hypothetical galaxy survey.

III. RESULTS

Throughout this paper, we employ cosmological
parameters that are consistent with the nine-year WMAP
results [58]: Ωc0h2 ¼ 0.1165, Ωb0h2 ¼ 0.02248, and
ΩΛ ¼ 0.7055 for the density parameters of CDM, baryon,
and the cosmological constant, As ¼ 2.455 × 10−9 for the
amplitude of the primordial curvature perturbation,
ns ¼ 0.967 for the tilt of primordial power spectrum,
and h ¼ 0.687 for the Hubble constant. In this model
σ8 ¼ 0.815, which is the variance of present-day, linear
matter fluctuations within a sphere of radius 8 Mpc=h.
The key quantity to characterize the effect of coherent

tidal force is the variance of linear tidal field averaged over
the survey window, στ [Eq. (6)]. The left panel of Fig. 1
shows the variance for a ΛCDM model, for a spherical
window as a function of survey volume VW . Other
covariance term scales with 1=VW , so the curve shows
the relative contribution of the coherent tidal force to the
sample variance. Likewise the effect of supersurvey over-
density σb [29], the supersurvey covariance has a weak
dependence on the volume. For a sufficiently large cos-
mological volume such as VW ≳ 1 ðGpc=hÞ3, στ ∼ 10−3.
As can be found from Eq. (6), the different components

of the linear variance of supersurvey tidal tensor, στij,
depends on the shape of survey window. The right panel
of Fig. 1 studies this for a cylinder window as a function
of the different shape, for a fixed survey volume of
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VW ¼ πr2l ¼ 1 ðGpc=hÞ3. When r ≪ l, a survey window
corresponds to a survey being “narrow” in area coverage on
the sky, but deep in redshift direction—a “tube-shaped”
survey. A survey with l ≪ r corresponds to a survey being
“wide” in area, but shallow in redshift—a “pill-shaped”
survey. The linear variance components have different
amplitudes depending on angles between the coordinate
axes and the principal axes of tidal tensor. Here we consider
the line-of-sight direction to lie along the third-axis
direction of an observer coordinate’s system and the height
direction of the cylinder window (l direction); in this
case στ11 ¼ στ22. The variance components στ33 ≃ στ11
when r≃ 0.7 Gpc=h or equivalently l≃ r. For either
case of extreme “tube” or “pill” shape, one component
στ11 or στ33 has a greater amplitude than the other. However,
the variance amplitude gets smaller due to the cancellation
effect of the linear variances [also see [29]]. However,
the extreme cases are not desirable, because one length
scale of the volume can be in the nonlinear regime, and
the linear-order approximation of the supersurvey modes
breaks down.
Figure 2 compares the Gaussian and supersurvey covari-

ance terms in the covariance matrix of the quadrupole power
spectrum, for a spherical window of VW ¼ 1 ðGpc=hÞ3
[see Eqs. (27) and (29)]. Here we assume a survey probing
the three-dimensional distribution of galaxies at z ¼ 0.5 and
with linear bias parameter b ¼ 2, which roughly resemble
SDSSCMASS-typegalaxies [14].Herewe ignored the effect
of a finite number density of the galaxies. Since the Gaussian
covariance depends on the bin width of wave number,
we employ Δ log k ¼ 0.1. Note that, in order to show the
effect of the coherent tidal force on the BAO features, we
employed a much finer k-binning to plot the curve, but

used Δ log k ¼ 0.1 to compute the Gaussian term at each
k-bin. The figure shows that the supersurvey effect gives a
dominant contribution to the sample variance in the weakly
nonlinear regime, k≳ 0.7 h=Mpc.

FIG. 2. Shown is how the supersurvey tidal force causes an
increase in the sample variance in ameasurement of the quadrupole
power spectrum of redshift-space galaxy distribution. The curve
shows the SSC contribution to the sample variance relative to the
Gaussian variance, for a survey with volume 1 ðGpc=hÞ3, at
z ¼ 0.5 and galaxies with linear bias b ¼ 2 [Eqs. (27) and
(29)]. Here we ignored the shot noise contribution due to a finite
number density of galaxies. Since theGaussian termdependson the
bin width of wave number, we assumed a binning ofΔ log k ¼ 0.1
(10 bins in one decade of wave number). The SSC effects cause a
significant sample variance at k ≳ 0.5 h=Mpc.

FIG. 1. The rms of linear gravitational tidal field convolved with the survey window, στij for a ΛCDMmodel and z ¼ 0.5 [see Eqs. (6)
and (7)]. Left panel: the rms as a function of survey volume for spherical window, VW ¼ 4πr3=3. In this case, the tidal tensor becomes
diagonal: στ ≡ στ11 ¼ στ22 ¼ στ33. Right panel: the rms for cylinder windows of fixed volume VW ¼ πr2l ¼ 1 ðGpc=hÞ3, as a function
of the radius of base circle, r. Here we assume that the height of cylinder is along the 3-axis (the light-of-sight) direction, and the base
circle is in the plane perpendicular to the line-of-sight direction (therefore στ11 ¼ στ22). For an elongated cylinder window, i.e., a tubelike
shaped survey, στ11 has a greater amplitude, while στ33 has a greater amplitude for a pill-like shape. When r ∼ l, στ11 ≃ στ33, and the
linear variance has a largest amplitude.
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As one demonstration of the impact of the coherent tidal
force on a measurement of the quadrupole power spectrum
in redshift space, we study a cumulative signal-to-noise ðSNÞ
ratio, defined as

�
S
N

�
2

≤kmax

≡ X
kikj∈kmax

PS
g2WðkiÞ½C−1�ijPS

g2WðkjÞ; ð30Þ

where C−1 is the inverse of the covariance matrix, and the
summation runs over all wave number bins up to a given
maximum wave number kmax. This quantity does not
depend on the bin width. The inverse of ðS=NÞ gives a
statistical precision of measuring the overall amplitude of
the power spectrum, if the shape is completely known.
Figure 3 shows the results. The supersurvey tidal force
causes a degradation in the power spectrum measurement,
at kmax ≳ a few h=Mpc, and for a galaxy survey with a high
number density such as n̄g ≃ 10−3ðh=MpcÞ3, which is the
case for the WFIRST-AFTA survey [20].

IV. DISCUSSION

We have derived a formula to describe the effect of
supersurvey, coherent tidal force on the redshift-space
power spectrum measured in a finite-volume survey. The
large-scale coherent overdensity and tidal field both arise
from the Hessian of the long-wavelength gravitational
potential, and are of equal importance. Since the super-
survey modes are not direct observables, the effects on

cosmological observables need to be theoretically modeled.
The supersurvey tide causes a characteristic, anisotropic
clustering pattern in the distribution of the tracers, in all
three directions perpendicular and parallel to the line-of-
sight direction [see Eq. (17)]. This effect appears to be
exactly similar to the geometrical AP distortion as well as
the redshift-space distortion effect of peculiar velocities.
We then derived a formula to model the contribution of
the coherent tidal force to the sample variance in a
measurement of the quadrupole redshift-space power
spectrum. We showed that the supersample variance is
not negligible if including the power spectrum information
up to the weakly nonlinear regime, k≳ a few h=Mpc, or
for a galaxy survey with a high number density such as
n̄g ≃ 10−3 ðh=MpcÞ3. In our derivation, we have not yet
properly included the supersurvey effects on the nonlinear
Kaiser factor. This can be done by using the perturbation
theory, and will be our future work.
For a galaxy survey with a volume coverage greater

than ∼ðGpc=hÞ3 and z ¼ 0.5 as in the SDSS survey, the
linear variance of super-survey tidal force στ ∼ 10−3 for a
ΛCDM model. This implies that the supersurvey tide
causes about 0.1% anisotropy in the clustering distribution.
However, the expectation value of the variance is after t
he angle average, compared to the variance of coherent
density contrast: στ ≃

ffiffiffiffiffiffiffiffiffiffi
4=45

p
σb ≃ σb=3.4 [see Eq. (7)]. If

the principal axes of the supersurvey tidal tensor have
an alignment to directions parallel and/or perpendicular to
the line-of-sight direction, the tide could have a similar

FIG. 3. Cumulative S/N ratio for a measurement of the quadrupole power spectrum, as a function of maximum wave number kmax. We
here assumed VW ¼ 1 ðGpc=hÞ3, z ¼ 0.5, and b ¼ 2 as in the previous figure. S/N ratio does not depend on the bin width of k. Left
panel: The results for an infinite number density of galaxies; we ignored the shot noise contribution. The upper or lower curves in the
upper plot are the results when assuming the Gaussian covariance or including the SSC contribution, respectively. The lower panel
shows the ratio. Right panel: A similar plot, but for a finite number density of galaxies: n̄g ¼ 10−3 or 10−4 ðh=MpcÞ3, respectively.
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amplitude as δb in a particular realization: τ ∼ δb corre-
sponding to ∼0.3% anisotropy. Since the current state-
of-the-art SDSS BOSS survey already achieved about 1%
accuracy for the BAO distance measurements [15], the
supersurvey tide could cause a bias by an amount of the 1σ
statistical error, if the SDSS survey volume is embedded
into a particular region if the aligned tide has a 3σ value.
Hence, it would be more important to study how the
coherent tidal force could cause a bias in measurements
of the cosmological distances via the AP test as well as the
growth rate via the RSD effect. This requires us to
propagate the expected statistical accuracy of the red-
shift-space power spectrum measurement into parameter
estimation for a given survey geometry, including margin-
alization over other parameters. This will be our future
work, and will be presented elsewhere.
The redshift-space clustering of galaxies is anisotropic

by nature, and the coherent tidal force causes a similar
anisotropic clustering pattern in the observed distribution.
For the monopole power spectrum such as the weak lensing
power spectrum, the effect disappears at the first order of
τWij due to the traceless nature TrðτWijÞ ¼ 0. There are
other effects of the coherent tidal force that can be observed
in principle from upcoming wide-area galaxy surveys.
First, it is shown that the coherent tidal force causes a
modification of dark matter halo formation via a coupling
of the inertia of mass distribution in a protohalo region with
the coherent tidal force, leaving a nonlocal bias effect
relative to the underlying matter distribution at the second
order: ∂δh=∂ðτ2WÞ ¼ bτ [59,60]. The nonlocal bias can be
measured by combining measurements of the power
spectrum (two-point) and bispectrum (three-point) of
large-scale structure tracers. Another observable is the
correlation of the large-scale tidal force with shapes of
galaxies at much smaller scales, the so-called intrinsic
alignments [61,62]. The intrinsic alignments are one of the
major systematic effects for ongoing and upcoming weak
lensing surveys. Conversely, the intrinsic alignments can be
regarded as a “signal,” rather than a contaminating sys-
tematic error, and can be measured from these wide-area
galaxy surveys in order to constrain the large-scale tidal
force [63,64]. Furthermore, a better understanding of the
nonlinear mode coupling allows one to use a combination
of the observed subsurvey modes to estimate the large-scale
tidal field [65–67].
In order to realize the effect of coherent tidal force on

structure formation in the deeply nonlinear regime, such as
halo formation, we need to use N-body simulations. For
this purpose, a separate universe simulation technique
would be powerful; since the large-scale tidal force can
be absorbed into the perturbed scale factors along each
coordinate axis, aWðtÞ≃ aðtÞ½1 − τWi�, we can follow the
full nonlinear mode coupling of the large-scale tide with
sub-box modes by running N-body simulations in the
perturbed background. For the coherent overdensity δb,

the effect for a ΛCDM model can be absorbed as an
apparent curvature, even if the global background is flat.
Several works have developed the separate universe sim-
ulation technique to study the mode coupling effect of δb
with sub-box modes [32,33,42,55,68,69]. The separate
universe simulation allows for a better calibration of
various effects such as the supersample covariance and
the local halo bias, without running a large number of huge
box simulations. In a very similar way we believe that the
separate universe simulation technique can be applied to
the large-scale tidal effect. Recently Ip and Schmidt [46]
developed a unified formula to model the effect of the
coherent tidal force on the evolution of subsurvey modes
within the framework of general relativity. However, there
are in general two contributions to the large-scale tidal
field: the internal tidal force arising from the anisotropic
matter distribution within a finite-volume boundary and the
external tidal force that is not specified by the internal
boundary conditions (see also [48,49]). Nevertheless, as
long as we are interested in the effects of the linear tidal
force, it would be possible to develop a separate universe
simulation technique to include the large-scale tide in the
simulation as well as to study the effect on nonlinear
structure formation. If this is true, the separate universe
simulations would give us a better way to calibrate the
large-scale tidal effects on various cosmological observ-
ables. This is in progress and will be presented elsewhere.
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APPENDIX: TAKADA AND HU DERIVATION
OF POWER SPECTRUM RESPONSE

TO SUPERSURVEY MODES

In this appendix we derive the responses of the real-space
power spectrum to the long-wavelength tidal force, based
on the formulation in Takada and Hu [29].
Taking into account the survey window, the observed

field of the matter fluctuation field can be defined as
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δWðxÞ ¼ δðxÞWðxÞ; ðA1Þ

whose Fourier transform is a convolution

~δWðkÞ ¼
Z

d3q
ð2πÞ3

~WðqÞ~δðk − qÞ: ðA2Þ

In order to study how the large-scale tide causes an
anisotropic modulation in the measured power spectrum,
let us define an estimator of the two-dimensional power
spectrum of wave vector k as

P̂ðkÞ ¼ 1

VW

~δWðkÞ~δWð−kÞ: ðA3Þ

Note that the wave vector bin k can be finite, compared to
the fundamental mode of a survey, kf ≃ 2π=L, and in that
case the above estimator is defined from a sum of the
modes within the bin width. The power spectrum estimator
satisfies a parity invariance,

P̂ðkÞ ¼ P̂ð−kÞ: ðA4Þ

The ensemble average of the estimator is found to recover
the underlying true power spectrum

hP̂ðkÞi ¼ 1

VW

Z
d3q
ð2πÞ3 j

~WðqÞj2Pðk − qÞ

≃ PðkÞ 1

VW

Z
d3q
ð2πÞ3 j

~WðqÞj2 ¼ PðkÞ: ðA5Þ

Here we have used that Pðk − qÞ≃ PðkÞ over the inte-
gration range of d3q which the window function supports
and also assumed that PðkÞ is not a rapidly varying
function within the k-bin. In the third equality on the
rhs, we have used the general identity for the window
function,

VW ¼
Z

d3xWnðxÞ

¼
Z �Yn

a¼1

d3qa

ð2πÞ3
~WðqaÞ

�
ð2πÞ3δ3Dðq1…nÞ; ðA6Þ

where q1…n ¼ q1 þ…qn here and below. For n ¼ 2,
VW ¼ R j ~WðqÞj2d3q=ð2πÞ3.
As we have discussed, the supersurvey modes affect the

power spectrum measured in a finite-volume survey region.
Hence, when a given survey volume has supersurvey
modes of δb and τWij, the effects on power spectrum
measured in the survey realization are expressed as

Pðk; δb; τWÞ≃ PðkÞ þ ∂PðkÞ
∂δb δb þ

∂PðkÞ
∂τWij

τWij: ðA7Þ

Here ∂PðkÞ=∂δb and ∂PðkÞ=∂τWij are the responses of the
power spectrum to the supersurvey modes, δb and τWij,
respectively. Here we consider the power spectrum
responses at the leading order of the supersurvey modes,
or in other words we ignored the responses at the higher
orders of Oðδ2b; τ2WÞ. The ensemble average of the above
power spectrum, which is equivalent to the average of the
power spectrum estimator for different survey regions, is

hPðk; δb; τWÞi ¼ PðkÞ þ ∂PðkÞ
∂δb hδbi þ

∂PðkÞ
∂τWij

hτWiji

¼ PðkÞ; ðA8Þ

where we used hδbi ¼ hτWiji ¼ 0. Thus the ensemble
average of the power spectrum estimator recovers the true
power spectrum in the global universe.
Now let us consider the covariance matrix of the power

spectrum estimator [Eq. (A3)],

Cðk;k0Þ ¼ hP̂ðkÞP̂ðk0Þi − PðkÞPðk0Þ: ðA9Þ

Inserting Eq. (A7) into the above equation leads us to find
a formal expression of the supersample covariance due to
δb and τW ,

CSSCðk;k0Þ ¼ σ2b
∂PðkÞ
∂δb

∂Pðk0Þ
∂δb

þ hτWijτWlmi
∂PðkÞ
∂τWij

∂Pðk0Þ
∂τWlm

; ðA10Þ

where we have assumed hδbτWiji≃ 0 for a reasonably
symmetric survey window.
Following the formulation in Takada and Hu [29,33], we

advocate that the squeezed trispectrum can be characterized
by the responses of the power spectrum to the supersurvey
modes as

lim
q→0

½TPTðk;−kþ q;k0;−k− qÞ− TPTðk;−k;k0;−k0Þ�

≃PLðqÞ
�∂PðkÞ

∂δb þ τWij
∂PðkÞ
∂τWij

��∂Pðk0Þ
∂δb þ τWlm

∂Pðk0Þ
∂τWlm

�
;

ðA11Þ

where the Fourier modes q are supersurvey modes satisfy-
ing k; k0 ≫ q. Using the perturbation theory [21], we can
compute the squeezed trispectrum contribution,

CSSCðk;k0Þ ¼ 1

V2
W

Z
d2q
ð2πÞ3 j

~WðqÞj2

× ½TPTðk;−kþ q;k0;−k0 − qÞ
− TPTðk;−k;k0;−k0Þ�: ðA12Þ
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TPT is the tree-level trispectrum, defined as

hδðk1Þδðk2Þδðk3Þδðk4Þic
¼ ð2πÞ3δ3Dðk1234ÞTPTðk1;k2;k3;k4Þ; ðA13Þ

where

TPTðk1;k2;k3;k4Þ ¼ 4½F2ðk13;−k1ÞF2ðk13;k2ÞPLðk13Þ
× PLðk1ÞPLðk2Þ þ 11 perm�
þ 6½F3ðk1;k2;k3ÞPLðk1Þ
× PLðk2ÞPLðk3Þ þ 3 perm�; ðA14Þ

with the Fourier kernels defined as

F2ðk1;k2Þ ¼
5

7
þ 1

2

�
1

k21
þ 1

k22

�
ðk1 · k2Þ þ

2

7

ðk1 · k2Þ2
k21k

2
2

;

ðA15Þ

and the definition of F3 is given by Eq. (31) in Takada and
Hu [29], but the term involving F3 is not relevant for the
following calculation.
Inserting Eqs. (A14) and (A15) into Eq. (A12) leads to

CSSCðk;k0Þ≃ 1

V2
W

Z
d3q
ð2πÞ3 j

~WðqÞj24PLðqÞ½PLðkÞF2

× ðq;−kÞ þ PLðjk − qjÞF2ðq;k − qÞ�
× ½PLðk0ÞF2ðq;k0Þ þ PLðjk0 þ qjÞ
× F2ð−q;k0 þ qÞ�: ðA16Þ

To further proceed with the calculation, we need to care
about the fact that the mode coupling kernel F2 has a pole.
More especially, under the fact k; k0 ≫ q, we need to use an
expansion such as the following:

PLðjk − qjÞF2ðq;k − qÞ

≃
�
PðkÞ − ∂PðkÞ

∂k ðk · qÞ
�

×

�
5

7
þ 1

2

�
1

q2
þ 1

k2

�
ðk · q − q2Þ

þ ðk · q − q2Þ2
q2k2

�
: ðA17Þ

Then we can find that the supersample covariance can be
computed as

CSSCðk;k0Þ≃ σ2b

�
47

21
−
1

3

∂ lnPðkÞ
∂ ln k

�

×

�
47

21
−
1

3

∂ lnPðk0Þ
∂ ln k0

�
PLðkÞPLðk0Þ

þ hτWijτWlmik̂ik̂jk̂0lk̂0m
�
8

7
−
∂ lnPðkÞ
∂ ln k

�

×
�
8

7
−
∂ lnPðk0Þ
∂ ln k0

�
PLðkÞPLðk0Þ; ðA18Þ

where k̂ ¼ k=k. To arrive at this equation, we used the
following identities for the q-integration:

Z
d3q
ð2πÞ3 j

~WðqÞj2PLðqÞ ¼ σ2b ðA19Þ

Z
d3q
ð2πÞ3 j

~WðqÞj2PLðqÞqiqj

¼
Z

d3q
ð2πÞ3 j

~WðqÞj2PLðqÞ
��

qiqj −
δKij
3

�
þ δKij

3

�

¼ hδbτWiji þ
δKij
3
σ2b

≃ δKij
3
σ2b ðA20Þ

Z
d3q
ð2πÞ3 j

~WðqÞj2PLðqÞqiqjqlqm

≃
Z

d3q
ð2πÞ3 j

~WðqÞj2PLðqÞ

×

��
qiqj −

δKij
3

��
qlqm −

δKlm
3

�
þ δKijδ

K
lm

9

�

¼ hτWijτWlmi þ
δKijδ

K
lm

9
σ2b: ðA21Þ

Note that we also used the fact that terms involving the
moments with an odd power of qi, or equivalently an odd
power of ki, are vanishing under the parity invariance
conditions of k ↔ −k and k0 ↔ −k0.
Comparing Eqs. (A10) and (A18) leads us to find that the

power spectrum response can be given as

Pðk; δb; τWÞ≃ PðkÞ þ δb

�
47

21
−
1

3

∂ lnPðkÞ
∂ ln k

�
PðkÞ

þ k̂ik̂jτWij

�
8

7
−
∂ lnPðkÞ
∂ ln k

�
PðkÞ: ðA22Þ
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