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Thermal inflation driven by a scalar field called a “flaton” is a possible scenario to solve the
cosmological moduli problem. We study a model of thermal inflation with a flaton chemical potential.
In the presence of the chemical potential, a negative mass squared of the flaton—which is necessary to
terminate thermal inflation—is naturally induced. We identify the allowed parameter region for the
chemical potential (μ) and the flaton self-coupling constant to solve the cosmological moduli problem and
satisfy theoretical consistencies. In general, the chemical potential is a free parameter and it can be taken to
be much larger than the typical scale of soft supersymmetry-breaking parameters of Oð1Þ TeV. For
μ ≳ 108 GeV, we find that the reheating temperature after thermal inflation can be high enough for the
thermal leptogenesis scenario to be operative. This is in sharp contrast to the standard thermal inflation
scenario, in which the reheating temperature is quite low and a special mechanism is necessary for
generating a sufficient amount of baryon asymmetry in the Universe after thermal inflation.

DOI: 10.1103/PhysRevD.95.083521

I. INTRODUCTION

The exponentially accelerated expansion of spacetime in
the early period of the Universe is well established as the
cosmic inflation scenario [1–5]. Primordial inflation solves
the flatness and horizon problems in the standard big bang
cosmology. On the other hand, supersymmetry (SUSY)
is believed to play an important role in the study of
elementary particles, especially in the early stages of the
Universe. It is known that inflation scenarios in the
supersymmetric epoch exhibit various problems. Among
other things, the relatively high reheating temperature after
primordial inflation causes the overproduction of graviti-
nos. The late-time decay of gravitinos after big bang
nucleosynthesis deconstructs successfully synthesized light
elements. This is known as the gravitino problem [6–8].
One resolution to the gravitino problem is achieved by a
low reheating temperature, TRH ≲ 106–7 GeV [9,10].
There is also a serious cosmological problem in the

early Universe known as the cosmological moduli problem
[11–13]. Four-dimensional spacetime may be realized in
superstring theories, which typically predict massless scalar
excitations, i.e., moduli fields. Since the moduli fields only
have Planck-suppressed interactions, the energy density
of the Universe is dominated by the moduli fields before
they decay. If the moduli decay cannot reheat the Universe
high enough, TRH ≳ 1 MeV, the present Universe cannot

be realized. This is the cosmological moduli problem. This
problem is intractable in the primordial inflation scenario
since the moduli particles are produced abundantly even at
low reheating temperature.
In order to solve the moduli problem, a short period of

secondary inflation with Oð10Þ e-foldings after primordial
inflation has been proposed [14,15]. By this second
inflation, the number density of the moduli particles is
diluted away and their energy density never dominates the
Universe. Since this secondary inflation of spacetime is
triggered by the thermal effect, this is called thermal
inflation. The realization and phenomenological viability
of thermal inflation have been discussed in detail in, for
example, Refs. [16–21].
Thermal inflation is driven by a scalar field with an

almost flat potential. This field is called the flaton. The
typical flaton potential at zero temperature is given by [15]

VðϕÞ ¼ V0 −m2
ϕ0jϕj2 þ

X∞
n¼1

λn
jϕj2nþ4

M̄2n
pl

; ð1Þ

where ϕ is the (complex scalar) flaton field, V0 is the
vacuum energy at the origin, mϕ0 is the mass of the flaton,
and λn are the coupling constants. The higher-dimensional
interactions are suppressed by the reduced Planck mass
M̄pl ¼ 2.4 × 1018 GeV. Here the flaton is assumed to
interact with a scalar field X which serves as the thermal
bath, through which the flaton potential V receives finite-
temperature corrections from the thermal bath. At a high
temperature T, the effective mass squared m2ðTÞ of the
flaton behaves like m2ðTÞ ¼ T2 −m2

ϕ0 > 0 and thermal
inflation begins at ϕ ¼ 0. As the temperature decreases, the
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effective mass squared becomes negative, which leads to
the violation of the slow-roll condition. Therefore, a
tachyonic mass of the flaton is necessary for the end of
thermal inflation. It has been discussed that a tachyonic
mass is obtained by the renormalization group flow in a
supersymmetric model [22]. However, this does not happen
in more general situations. After thermal inflation, the
flaton rolls down to the true vacuum and then starts to
oscillate there. The flaton decays to the Standard Model
particles to reheat the Universe. This decay creates entropy,
and the moduli problem can be solved. In order to solve the
moduli problem, the yield of the moduli field after thermal
inflation must be reduced to 10−12–10−15 [23] or smaller.
However, this mechanism causes another problem: the
entropy production from the flaton decay also dilutes the
primordial baryon asymmetry produced by some mecha-
nism beforehand.1 We need a mechanism to produce a
sufficient amount of baryon asymmetry before or after
thermal inflation. The authors of Refs. [16,19,21] studied
whether sufficient baryon number asymmetry is produced
with the use of the Affleck-Dine mechanism [25,26] after
thermal inflation. However, it was found that the Affleck-
Dine mechanism is not phenomenologically viable in this
framework. It is normally difficult to resolve the problem
since the reheating temperature after the flaton decay is
typically not high enough, because of very weak couplings
of the flaton to the Standard Model particles.
In this paper we propose a thermal inflation scenario that

can solve the problems of the termination of thermal
inflation and the generation of a sufficient amount of
baryon asymmetry after the flaton decay. For this purpose,
we introduce a chemical potential μ for the flaton. We will
show that in the thermal effective potential, the chemical
potential μ plays the role of the tachyonic mass of the flaton
at low temperature. Hence, thermal inflation ends when the
chemical potential starts dominating over the thermal mass.
Furthermore, μ is a free parameter in any system, which
basically has nothing to do with soft SUSY-breaking
parameters. This is in contrast with the standard thermal
inflation scenario where the tachyonic mass term in Eq. (1)
is supposed to be generated through SUSY breaking, and
hence we expect jmϕ0

j≃Oð1Þ TeV for the weak-scale
SUSY. The mass scale of the flaton is important since it
determines the reheating temperature (TRH2) after the flaton
decay and what mechanism can be implemented for the
baryon number generation. In the standard thermal inflation
scenario, TRH2 is at most Oð100Þ MeV, as we will discuss
below. With such a low reheating temperature, a possible
scenario for the baryon number generation is the Affleck-
Dine mechanism [25,26]. As mentioned above, although
the Affleck-Dine mechanism has been studied in models of

thermal inflation, it turns out that a sufficient baryon
number cannot be created [16,19,21]. In our model, we
can set μ ≫ 1 TeV so that the reheating temperature can be
much higher and thermal leptogenesis [27] (for a review,
see Ref. [28]) can be operative even after the flaton decay.
The organization of this paper is as follows. In the next

section, we present a brief review of standard thermal
inflation. In Sec. III, we introduce a chemical potential for
the flaton field and calculate the thermal effective potential
of the flaton. We then evaluate the yields of the moduli after
the flaton decay and identify the allowed regions of the
chemical potential μ and the flaton coupling constant λ.
Section IV is devoted to conclusions and discussions. We
give a brief derivation of the thermal effective potential in
Appendix A. In Appendix B, we derive the interaction term
between the flaton and the Standard Model gauge fields.

II. REVIEW OF STANDARD
THERMAL INFLATION

In this section, we review thermal inflation (proposed
in Refs. [14,15]) and how the moduli problem is solved.
If the flaton field causes thermal inflation, the energy
density from the oscillating moduli is diluted and hence
the moduli problem can be solved. After thermal inflation,
the Universe is thermalized with the reheating tem-
perature TRH2 through the flaton decay. If the reheating
temperature is high enough to allow big bang nucleosyn-
thesis (TRH2 ≳ 1 MeV), the history of the Universe
matches the standard scenario.
We focus on a part of a model which causes thermal

inflation, while a part for the primordial inflation is not
specified. We assume that the flaton field acquires its mass
via SUSY breaking, and hence the mass is naturally of the
order of the soft SUSY-breaking mass scale ∼1 TeV.
Notice that (as we will see below) the negative mass
squared for the flaton field is necessary to terminate thermal
inflation. For an origin of the negative mass squared, we
may consider the renormalization group effect, which
drives the running flaton mass squared negative at a certain
low scale. For a concrete model, see Ref. [22].
The flaton field ϕ is considered to couple with some light

fields (typically the Standard Model particles) that are in
thermal equilibrium and yield thermal corrections to the
effective potential of the flaton. The high-temperature
approximation is valid when the mass scales of the fields
are sufficiently small compared to the temperature during
thermal inflation. For simplicity, we consider a model with
two real scalars ϕ and X for thermal inflation,

L ¼ 1

2
∂μϕ∂μϕþ 1

2
∂μX∂μX − Vðϕ; XÞ; ð2Þ

where μ ¼ 0, 1, 2, 3 is the spacetime index, and we
use the mostly minus convention of the metric ημν ¼
diagð1;−1;−1;−1Þ. The scalar potential V is given by

1This problem was pointed out in the early stages of the
development of the flaton field [24], before the proposal of the
thermal inflation scenario.
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V tree ¼ V0 −
m2

ϕ0

2
ϕ2 þ λ

6M̄2
pl

ϕ6 þm2
X0

2
X2 þ g

4
ϕ2X2; ð3Þ

where V0 is the energy scale at the origin, andmϕ0 andmX0

are the masses of the fields ϕ and X, respectively. Here λ
and g are coupling constants. We have introduced the
higher-dimensional interaction term ϕ6, and there is no
flaton quartic term.2 This setting realizes an almost flat
potential and leads to a large vacuum expectation value
(VEV) of the flaton field.3 Such a large VEV is crucial to
solve the moduli problem [15] [see Eq. (30) with Eq. (6)].
The stationary condition for X trivially gives X ¼ 0, while
the one for ϕ,

∂V
∂ϕ

����
X¼0

¼ 0; ð4Þ

yields

ϕ ¼ 0; ϕ ¼ λ−1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ0M̄pl

q
≡M: ð5Þ

The energy scale at the origin is given by

V0 ¼
1

3
ffiffiffi
λ

p m3
ϕ0M̄pl ¼

1

3
m2

ϕ0M
2; ð6Þ

which guarantees the vanishing cosmological constant at
the potential minimum ϕc ¼ M. The VEVof ϕ is denoted
by ϕc.
The scalar potential (3) receives thermal effects through

reheating after the primordial inflation. The thermal effects
are introduced by imposing the periodic boundary con-
dition for the fields Φi ¼ ðϕ; XÞ as Φiðτ; x⃗Þ ¼ Φiðτ þ β; x⃗Þ
in the partition function, where τ ¼ ix0 is the imaginary
time, β ¼ 1=T is the inverse temperature, and x⃗ ¼
ðx1; x2; x3Þ. The partition function is given as

Z ¼ Tre−βH

¼
Z
ΦiðτÞ¼ΦiðτþβÞ

×
Y
i

DΦiDΦ†
i e

−
R

β

0
dτ
R

d3x
P

i
ð1
2
∂0Φi∂0Φiþ1

2
∇⃗Φi∇⃗ΦiþVðϕ;XÞÞ;

ð7Þ

where H is the Hamiltonian and ∇⃗ is the derivative with
respect to x⃗. The scalar field X plays the role of the thermal
bath and the flaton receives the thermal effects through

X-loop corrections. Calculating the thermal one-loop cor-
rection of X, we obtain the effective potential for the flaton
as [30]4

VeffðϕcÞ ¼ V0 −
1

2
m2

ϕ0ϕ
2
c þ

λ

6M̄2
pl

ϕ6
c þ

Z
d3k
ð2πÞ3

ωk

2

þ 1

β

Z
d3k
ð2πÞ3 log ð1 − e−βωkÞ; ð8Þ

where we have defined

ω2
k ¼ k⃗2 þm2

XðϕÞ; ð9Þ

m2
XðϕÞ ¼

∂2V
∂X2

����
ϕ¼ϕc

¼ m2
X0 þ

1

2
gϕ2

c: ð10Þ

The fourth term on the right-hand side of Eq. (8) is the
Coleman-Weinberg potential and the fifth term is the
thermal effective potential. We consider the situation where
the temperature is high enough and the dominant contri-
bution comes from the thermal effective potential. In the
subsequent discussions, we therefore neglect the Coleman-
Weinberg potential term. Performing the high-temperature
expansion, we have

VeffðϕcÞ ¼ V0 −
π2T4

90
þ T2

24
m2

X0 þ
1

2
m2

ϕðTÞϕ2
c

þ λ

6M̄2
pl

ϕ6
c þ � � � ; ð11Þ

where mϕðTÞ is the flaton mass with the thermal correction

mϕðTÞ2 ¼ −m2
ϕ0 þ

g
24

T2: ð12Þ

For mϕðTÞ2 > 0, the vacuum is located at ϕc ¼ 0, and the
potential energy of the flaton dominates over the energy of
the Universe. This leads to a second inflation by the flaton,
namely, thermal inflation. Thermal inflation ends when the
effective mass of the flaton becomes negative, in other
words, when the temperature drops below the critical value
TC given by

TC ¼ 2mϕ0

ffiffiffi
6

g

s
: ð13Þ

Soon after the temperature becomes less than TC, the flaton
starts rolling down to the vacuum at ϕc ¼ M and then
oscillates around there. The decay of the flaton reheats the
Universe, and we roughly estimate the reheating temper-
ature as

2Such a form of the potential is found in the low-energy
effective theory of superstring theories [29].

3When the flat potential includes the flaton quartic coupling, it
is necessary to set the coupling constant to be much smaller than λ
in Eq. (3) in order to realize the large VEV. 4For a derivation, see Appendix A.
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TRH2 ≃
�

90

π2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffi

ΓM̄pl

q
; ð14Þ

where g�ð≃200Þ counts the effective degrees of freedom of
the radiation, and Γ is the flaton decay width. Here we
simply assume that the flaton decays to the Higgs boson (h)
through the effective interaction [18]

Lint ∼
m2

ϕ

M
ϕhh; ð15Þ

where mϕ is the flaton mass in the vacuum at T ¼ 0 and is
given by

m2
ϕ ¼ ∂2V

∂ϕ2

����
T¼0;ϕc¼M

¼ 4m2
ϕ0: ð16Þ

The decay width of the process ϕ → hh is obtained as

Γ≃ 1

16π

m3
ϕ

M2
; ð17Þ

where we have neglected the Higgs boson mass.
Substituting Eq. (17) into Eq. (14), we find the reheating
temperature as

TRH2≃
�

90

π2g�

�
1=4 mϕ

4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕM̄pl

π

s
¼ 1

4π

�
360λ

g�

�1
4

mϕ: ð18Þ

The main role of thermal inflation is to dilute the yield of
the moduli field, by which the moduli problem is solved.
The dilution is caused by the entropy production from the
flaton decay after thermal inflation. Before we discuss the
entropy production, we note that there are two relevant
scenarios for the moduli oscillation after primordial infla-
tion (see Fig. 1). The first is the one discussed in Ref. [15].
In this scenario, the moduli fields are displaced from the
potential minima during primordial inflation. When the
Hubble parameter reduces to H ∼mΦ, the moduli fields
start to oscillate around their potential minima. Here mΦ is
the mass of the moduli fields. The Universe enters the
matter-dominated era with the oscillating inflaton and
moduli fields whose energy densities are comparable.
After the moduli oscillation, the first reheating occurs
due to the decay of the inflaton and we denote the reheating
temperature by TRH1.
The second possibility is that the moduli oscillation takes

place after the first reheating. When the Universe cools
down to H ∼mΦ, the moduli fields start to oscillate. As we
will see later, in both scenarios the oscillating moduli—
which dominate the energy density of the Universe—can be
diluted away by thermal inflation.
In the following, we perform a qualitative analysis of the

entropy production in these scenarios.

Scenario 1: The increase of the entropy density after the
flaton decay is calculated as

Δ ¼ sðTRH2Þ
sðTCÞ

; ð19Þ

where sðTÞ is the entropy density at temperature T. In the
radiation-dominated era, this is given by

sðTÞ ¼ 2π2

45
g�T3 ¼ 4ρðTÞ

3T
; ð20Þ

where we have used the energy density for relativistic
particles

ρðTÞ ¼ π2

30
g�T4: ð21Þ

With the use of Eq. (20), the increase of the entropy (19) is
expressed as

Δ ¼ 30V0

π2g�T3
CTRH2

; ð22Þ

where we have used V0 ¼ ρðTRH2Þ.
The yield of the moduli YΦ after the flaton decay is

given by

YΦ ¼ nΦðTRH2Þ
sðTRH2Þ

¼ nΦðTCÞ
sðTCÞΔ

¼ nΦðTRH1Þ
sðTRH1ÞΔ

; ð23Þ

where nΦ is the number density of the moduli particles,
and we have assumed no entropy production before the end
of thermal inflation. Since the moduli particles are non-
relativistic in this era, nΦ at a certain temperature is
represented by

nΦ ¼ 1

mΦ
ρΦ; ð24Þ

where ρΦ is the energy density of the moduli. The energy
density of the moduli at TRH2 is produced by moduli
oscillation after primordial inflation:

FIG. 1. Two possible scenarios for the moduli oscillation in the
thermal history of the Universe. Here “MD” and “RD” mean
matter-dominated and radiation-dominated, respectively.
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ρΦ ¼ 1

2
m2

ΦΦ2
0; ð25Þ

where Φ0 is the amplitude of the moduli fields. During the
moduli oscillation, the Universe is in the matter-dominated
era and therefore we have

ρΦðTRH1Þ ¼ ρΦ

�
aosc

aðTRH1Þ
�

3

¼ ρΦ

�
HðTRH1Þ
Hosc

�
2

; ð26Þ

where aosc and Hosc are the scale factor and the Hubble
parameter when the moduli oscillation starts, and aðTRH1Þ
and HðTRH1Þ are the ones at the reheating by primordial
inflation. Since the moduli oscillation starts when
HðT0Þ≃mΦ, we express the moduli number density as

nΦðTRH1Þ ¼
1

2mΦ
Φ2

0HðTRH1Þ2; ð27Þ

from Eqs. (24), (25), and (26). The entropy density sðTRH1Þ
in the denominator in Eq. (23) is evaluated as

sðTRH1Þ ¼
4

TRH1
M̄2

plHðTRH1Þ2; ð28Þ

where we have used the relation (21) and the Friedmann
equation

H2ðTRH1Þ ¼
ρðTRH1Þ
3M̄2

pl

: ð29Þ

Substituting Eqs. (22), (27), and (28) into Eq. (23), we
obtain the yield of the moduli:

YΦ ¼ π2g�
240

TRH1TRH2T3
C

mΦV0

�
Φ0

M̄pl

�
2

: ð30Þ

With the use of the specific expressions for TRH2, TC, and
V0 given in Eqs. (18), (13), and (6) together with the decay
width (17), we have

YΦ ¼ 9π

g3=2

�
g�
10

�
3=4 λ3=4TRH1mϕ

mΦM̄pl

≃ 1.1 × 10−6 × λ3=4
�

TRH1

1010 GeV

��
1 TeV
mΦ

�

×

�
mϕ

1 TeV

��
Φ0

M̄pl

�
2

; ð31Þ

where we have chosen g� ¼ 200 and g ¼ 1. It is natural that
the moduli mass is the same order as the soft SUSY-
breaking mass and the moduli amplitude is assumed to be
the reduced Planck scale. Note that it is not necessary that
TRH1 < 106 GeV to solve the gravitino problem since it
can be solved after thermal inflation as well. The moduli
problem is solved if the yield satisfies the constraint [23]

YΦ < 10−13; ð32Þ

which leads to an upper bound on λ as

λ≲ 4.0 × 10−10; ð33Þ
for TRH1 ¼ 1010 GeV, mΦ ¼ mϕ ¼ 1 TeV, for example.
Taking λ ¼ 10−11 as a conservative value, the reheating
temperature TRH2 in Eq. (18) turns out to be

TRH2 ≃ 164 MeV: ð34Þ
Scenario 2: Next we consider the scenario where the

moduli oscillation starts after the reheating by the primor-
dial inflation (see Fig. 1). When the moduli oscillation
starts at H ≃mΦ, the energy density of the radiation
becomes of the same order as the energy density of the
moduli [Eq. (25)] withΦ0 ≃ M̄pl. With this observation, we
find the temperature when the moduli oscillation starts:

T0 ¼
�

15

π2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

mΦΦ0

p
: ð35Þ

Considering that there is no entropy production until the
flaton decay, the yield of the moduli after the flaton decay is
written as

YΦ ¼ nΦðTRH2Þ
sðTRH2Þ

¼ nΦðT0Þ
sðT0ÞΔ

; ð36Þ

where the increase of the entropy density Δ is the same as
in Eq. (22) since there is no entropy production during T0

and TC.
Substituting Eqs. (20), (22), and (25) into Eq. (36), we

have

YΦ ¼ 3

8

�
π2g�
15

�
3=4 Φ1=2

0 T3
CTRH2

m1=2
Φ V0

: ð37Þ

Combining this result with Eqs. (13) and (18), we obtain

YΦ ¼ 27 ×
61=4g1=2�
g3=2

ffiffiffi
π

5

r
λ3=4mϕΦ

1=2
0

m1=2
Φ M̄pl

≃ 6.2 × 10−6λ3=4
�

mϕ

1 TeV

��
1 TeV
mΦ

�
1=2

�
Φ0

M̄pl

�
1=2

;

ð38Þ
where we have chosen g� ¼ 200 and g ¼ 1. The condition
(32) leads to

λ≲ 4.0 × 10−11: ð39Þ
The reheating temperature after the flaton decay is given as

TRH2 ≃ 92 MeV; ð40Þ

for a conservative value λ ¼ 10−12.
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In both scenarios, the reheating temperature is suffi-
ciently high to realize big bang nucleosynthesis. However,
since thermal inflation dilutes the primordial baryon
asymmetry, we need to consider baryogenesis after thermal
inflation. A simple baryogenesis—such as thermal lepto-
genesis [27] or electroweak baryogenesis (for a review, see,
e.g., Ref. [31])—cannot be operative at such low reheating
temperatures in Eqs. (34) and (40). In order for thermal
leptogenesis to work, TRH2 ≳ 103 GeV is necessary [32].
On the other hand, the Affleck-Dine mechanism [25,26]
could be implemented with Eq. (34), as has been studied in
models of thermal inflation [16,21].
We mentioned that the negative mass squared for the

flaton field in Eq. (3) can be realized by the renormalization
group effect [22]. For instance, assume that the flaton mass
squared is positive at a scale where the primordial inflation
ends and the flaton couples to a scalar field through the
Yukawa interaction in the superpotential. Under certain
conditions, the Yukawa interaction drives the flaton mass
squared negative. However, in order to realize this, it is
likely that a Yukawa coupling beyond the perturbative
regime is necessary [22]. In the next section, we propose a
simple scenario to terminate thermal inflation. We also
show that in a proposed scenario the reheating temperature
TRH2 can be much larger than 103 GeV, which makes it
possible to implement thermal leptogenesis.

III. THERMAL INFLATION WITH
CHEMICAL POTENTIAL

In this section, we introduce the chemical potential for
the flaton in the thermal inflation scenario and study its
effect. The existence of the chemical potential means that

the flaton is dense at a vacuum realized after the end of
thermal inflation. It has been shown that there exists such a
vacuum with nonzero chemical potential in N ¼ 1 super-
symmetric QCD [33].
Considering the fact that the moduli problem stems from

the superstring theories, it is natural to embed a model in the
supersymmetry framework. In the following, we consider a
supersymmetric model where the flaton field ϕ and a scalar
fieldX, both ofwhich are complex, are realized as the lowest
components ofN ¼ 1 chiral superfields. We begin with the
following tree-level scalar potential of these fields:

V ¼ V0 þ
λ

M̄2
pl

jϕj6 þm2
X0jXj2 þ gjϕj2jXj2: ð41Þ

The potential (41) exhibitsUð1Þc global symmetry under the
transformation ϕ → eiαϕ. Here the constant α is the Uð1Þc
charge. The chemical potential is introduced by gauging the
Uð1Þc global symmetry for the flaton [30,33]. The spacetime
derivative is replaced with the gauge-covariant derivative
Dμ ¼ ∂μ þ iαAμ, where Aμ is a nondynamical gauge field.
The gauge field has a vacuum expectation value only in the
zeroth component hAμi ¼ ðiμ; 0Þ. Note that the field X,
which is in thermal equilibrium, is neutral under the Uð1Þc
transformation. We also note that although the complex
scalar field ϕ leads to a multiflaton model, we can always
rotate away the imaginary (real) part ofϕ during the inflation
by theUð1Þc transformation. Therefore the inflation dynam-
ics does not differ from that in single-flaton models.
The partition function with nonzero temperature and the

chemical potential is written as

Z ¼ Tre−βðH−μN Þ ¼
Z
ΦiðτÞ¼ΦiðτþβÞ

Y
i

DΦiDΦ†
i e

−
R

β

0
dτ
R

d3xðD0ϕD0ϕ
†þ∂0X∂0X†þ

P
i
∇⃗Φi∇⃗Φ†

iþVÞ; ð42Þ

where N is the Noether charge of the Uð1Þc symmetry,
Φi ¼ ðϕ; XÞ, and D0 ¼ ∂

∂τ − μ with the unit Uð1Þc charge
α ¼ 1. The thermal effective potential for the flaton ϕ after
primordial inflation is obtained by calculating the thermal
one-loop correction of X:

Veff ¼ V0 − μ2jϕj2 þ λ

M̄2
pl

jϕj6 þ
Z

d3k
ð2πÞ3

ωk

2

þ 1

β

Z
d3k
ð2πÞ3 logð1 − e−βωkÞ: ð43Þ

Note that the chemical potential yields a negative mass
squared for the flaton. This potential has the same form
as Eq. (8) when μ is replaced with mϕ0

. However, it
should be emphasized that μ can in general be any

value, while mϕ0 ≃Oð1Þ TeV in the standard thermal
inflation scenario since mϕ0 is considered to be caused by
SUSY breaking. The fourth term in Eq. (43) is the Cole-
man-Weinberg potential, which wewill omit in the follow-
ing discussion. The fifth term is the thermal effective
potential with nonzero chemical potential, where ωk is
given in Eqs. (9) with (10).
We study thermal inflation with this potential and

how the moduli problem is solved in an analytic way.
Performing the high-temperature expansion, we have

Veff ¼ V0 −
π2T4

45
þ T2

12
m2

X0 þ
�
−μ2 þ gT2

12

�
jϕcj2

þ λ

M̄2
pl

jϕcj6 þ � � � : ð44Þ
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When the coefficient of jϕcj2 is positive, the potential
minimum is at the origin for ϕc and thermal inflation takes
place. According to the expansion of the Universe, the
temperature is decreasing, and thermal inflation eventually
ends at the critical temperature given by

TC ¼ 2μ

ffiffiffi
3

g

s
: ð45Þ

Below this temperature, the flaton rolls down to the vacuum
which is determined by the extreme condition

∂2V
∂ϕ∂ϕ†

����
X¼0;T¼0

¼ 0: ð46Þ

From this condition, we have

ϕc ¼ ð3λÞ−1=4
ffiffiffiffiffiffiffiffiffiffi
μM̄pl

q
≡Mc: ð47Þ

The flaton mass at the vacuum is given as

m2
ϕ ¼ ∂2V

∂ϕ∂ϕ†

����
T¼0;ϕc¼Mc

¼ μ2: ð48Þ

The potential energy V0 is determined so that the scalar
potential is vanishing at the vacuum:

V0 ¼
2

3
ffiffiffiffiffi
3λ

p μ3M̄pl ¼
2

3
μ2M2

c: ð49Þ

The flaton oscillates around the vacuum and thermal-
ization occurs. In order to evaluate the reheating temper-
ature, we need to specify the interaction of the flaton with
the Standard Model fields. The interaction considered in
Eq. (15) cannot be employed since this does not preserve
the Uð1Þc symmetry related to the chemical potential.
Instead, we consider the following Uð1Þc-preserving inter-
action (see Appendix B for the derivation):

Lint ¼
X3
a¼1

ca
Mc

M̄2
pl

χ

�
−
1

4
FaμνFa

μν

�
; ð50Þ

where χ ≡ ReðϕÞ, caða ¼ 1; 2; 3Þ is a constant, and Fa
μν is

the gauge field strength. Here the index a ¼ 1, 2, 3
corresponds to the Standard Model gauge groups,
SUð3Þ × SUð2ÞL × Uð1ÞY . The partial decay widths of χ
into the Standard Model gauge bosons are calculated
to be [34]

Γðχ → ggÞ ¼ c23
2π

�
Mc

M̄2
pl

�
2

μ3; ð51Þ

Γðχ → γγÞ ¼ ðc1cos2θW þ c2sin2θWÞ2
16π

�
Mc

M̄2
pl

�
2

μ3; ð52Þ

Γðχ → ZZÞ ¼ ðc1cos2θW þ c2sin2θWÞ2
128π

×

�
Mc

M̄2
pl

�
2

μ3βZð3þ 2β2Z þ 3β4ZÞ; ð53Þ

Γðχ → WWÞ ¼ c22
64π

�
Mc

M̄2
pl

�
2

μ3βWð3þ 2β2W þ 3β4WÞ;

ð54Þ

Γðχ → γZÞ ¼ ðc1 − c2Þ2sin2θWcos2θW
8π

�
Mc

M̄2
pl

�
2

μ3

×

�
1 −

m2
Z

μ2

�
3

; ð55Þ

where θW is the weak mixing angle, and βZ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

Z=μ
2

p
and βW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

W=μ
2

p
. Here mZ and

mW are the masses of the Z and W bosons. With the use of
these decay widths, the reheating temperature is

TRH2 ≃
�

90

π2g�

�1
4

ffiffiffiffiffiffi
3

4π

r
μ2

ð3λÞ1=4M̄pl
; ð56Þ

where we have chosen c1 ¼ c2 ¼ c3 ¼ 1 for simplicity,
and have put βZ≃1 and βW≃1 since we assume
mZ;mW ≪ μ.
We now evaluate the yield (23) through the flaton

decay in two scenarios: the moduli starts to oscillate
before (Scenario 1) or after (Scenario 2) the reheating
by primordial inflation. The chemical potential only plays
the role of the flaton mass and does not affect the derivation
of the yield from Eqs. (19)–(30) for Scenario 1 and from
Eqs. (35)–(37) for Scenario 2 in the previous section.
Therefore, we have the same formula for the yield as
Eq. (30) for Scenario 1 and Eq. (37) for Scenario 2.
For Scenario 1, substituting Eqs. (45), (49), and (56) into

Eq. (30), we find

YΦ ¼ 9π

4g3=2

�
3g�
10

�
3=4 λ1=4μ2

M̄2
pl

× 107
�

TRH1

1010 GeV

�

×

�
1 TeV
mΦ

��
Φ0

M̄pl

�
2

≃ 1.5 × 109 ×
λ1=4μ2

M̄2
pl

�
TRH1

1010 GeV

��
1 TeV
mΦ

��
Φ0

M̄pl

�
2

;

ð57Þ

where we have taken g ¼ 1 and g� ¼ 200. The moduli
problem is resolved when the yield (57) satisfies the
condition (32). In other words, λ and μ should satisfy
the following condition:
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1.5 ×
λ1=4μ2

M̄2
pl

≲ 10−22: ð58Þ

For Scenario 2, repeating the same derivation for
Eq. (37), we obtain

YΦ ¼ 81

2× 23=4ð10gÞ3=2
�
πg�
5

�
1=2 λ1=4μ2

M̄3=2
pl

�
1 TeV
mΦÞ

�1
2

�
Φ0

M̄pl

�1
2

≃ 2.7× 102×
λ1=4μ2

M̄3=2
pl

�
1 TeV
mΦ

�1
2

�
Φ0

M̄pl

�1
2

: ð59Þ

This expression with the condition (32) leads to

2.7 ×
λ1=4μ2

M̄3=2
pl

≲ 10−15: ð60Þ

Allowed values for λ and μ for the conditions (58) and
(60) determine the reheating temperature (56). We may
require that the reheating temperature be high enough to
realize thermal leptogenesis [27], such as TRH2 ≳ 1 TeV.
On the other hand, the consistency of our discussion
requires TC > TRH2, which leads to

λ >
1

3

�
90

π2g�

��
g

32π

�
2 μ2

M̄2
pl

; ð61Þ

where we have used Eqs. (45) and (56). The coupling
constant λ and the chemical potential μ are also constrained
from the condition that the vacuum expectation value of the
flaton should be less than the Planck scale Mc < M̄pl. This
results in the following condition:

λ >
μ2

3M̄2
pl

: ð62Þ

Figure 2 shows the parameter region for Scenario 1
that satisfies Eqs. (58), (61), and (62) together with

the lines corresponding to the reheating temperatures
TRH2 ¼ 103; 104; 105, and 106 GeV. Here we have taken
g� ¼ 200 and g ¼ 1. We can see that the condition (62)
is stronger than Eq. (61). Indeed, Eq. (62) with Eq. (58)
sets the upper bound on the chemical potential as
μ≲ 7.2 × 109 GeV. Considering that thermal leptogenesis
is operative at least for TRH2 ≳ 103 GeV along with
Eq. (62), we find that the lower bound on λ is
λ≳ 7.5 × 10−21. It is possible to increase TRH2 up to
around 9.0 × 104 GeV, beyond which the vacuum expect-
ation value Mc is larger than the Planck scale.
A similar figure for Scenario 2 is shown in Fig. 3.

The upper bound on the chemical potential is given as
μ≲ 1.5 × 109 GeV and the lower bound on λ such that
thermal leptogenesis is operative is found to be
λ≳ 7.5 × 10−21. The reheating temperature can be taken
up to 8.6 × 103 GeV, which is smaller than the one in
Scenario 1.
It should be emphasized that in the standard thermal

inflation scenario, TRH2 cannot be large enough to
implement the baryogenesis scenario except for the
Affleck-Dine mechanism. The reheating temperature
(18) is proportional to λ

1
4 and the flaton mass.

Recalling that mϕ ≃ 1 TeV and λ should be small
enough to satisfy Eq. (33), we see that TRH2 in the
standard thermal inflation scenario is at most
Oð100Þ MeV. However, in our scenario the reheating
temperature (56) is proportional to λ−1=4 and μ2. Since μ
is taken to be larger than 1 TeV and in addition λ can be
taken to be small to satisfy Eqs. (58) and (60) [but it is
constrained by Eq. (62)], one can realize a reheating
temperature that is high enough to implement thermal
leptogenesis.

IV. CONCLUSION

In this paper, we have studied the models of thermal
inflation with the flaton chemical potential which was
implemented naturally by using the VEV of the zeroth
component of the Uð1Þc (nondynamical) gauge field.

FIG. 2. Allowed parameter region for λ and μ in Scenario 1.
Here we have taken g� ¼ 200 and g ¼ 1.

FIG. 3. Same as Fig. 2 but for Scenario 2.
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This leads to a negative mass squared of the flaton. On
the other hand, in standard thermal inflation a negative
mass squared of Oð1Þ TeV—which is the soft SUSY-
breaking scale—can be realized by the renormalization
group flow with a large coupling constant (most likely
in the nonperturbative regime); otherwise, it is intro-
duced by hand. We have evaluated the yield of the
moduli in two scenarios: the moduli field starts to
oscillate before (Scenario 1) or after (Scenario 2) the
reheating by primordial inflation. In both scenarios, the
yield depends on λ (the coefficient of the sixth-order
term of the flaton potential) and the chemical potential
μ. We have found the allowed parameter region in
the ðλ; μÞ plane in which, after thermal inflation, the
reheating temperature can be high enough for thermal
leptogenesis to be operative. This is in sharp contrast to
standard thermal inflation, in which the reheating
temperature is at most Oð100Þ MeV.
In this work we have introduced the flaton chemical

potential as a free parameter. It is worth investigating a
possible origin of the chemical potential in the frame-
work of superstring theories. It is also interesting to
consider a possibility to relate the global Uð1Þc to the
baryon or lepton numbers in the Standard Model.
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APPENDIX A: THERMAL ONE-LOOP
CORRECTION

In this appendix, we give a sketch of the derivations
for Eqs. (8) and (43). For details, we refer the reader to
Refs. [35,36].
At the one-loop level, the correction of the effective

potential from the thermal effect for a real scalar field is
given by the determinant

log ðdet ð∂2 þm2ÞÞ1=2 ¼ 1

2
tr log ð∂2 þm2Þ

¼ 1

2β

Xþ∞

n¼−∞

Z
d3k
ð2πÞ3

× log ðð2πβ−1nÞ2 þ ωkÞ ðA1Þ

in the absence of the chemical potential. After formally
differentiating Eq. (A1) with respect to ωk, we can sum
over the discrete momentum 2πβ−1n,

Xþ∞

n¼−∞

∂
∂ωk

log ðð2πβ−1nÞ2 þ ω2
kÞ

¼
Xþ∞

n¼−∞

2ωk

ð2πβ−1nÞ2 þ ω2
k

¼
Xþ∞

n¼−∞

�
1

ωk − ið2πβ−1nÞ þ
1

ωk þ ið2πβ−1nÞ
�

¼ β coth

�
βωk

2

�
: ðA2Þ

Here we use the partial fraction expansion formula,

π cothðπxÞ ¼
Xþ∞

n¼−∞

1

xþ in
: ðA3Þ

Integrating Eq. (A2) with ωk, we obtain

logðdet ð∂2þm2ÞÞ1=2≃ 1

β

Z
d3k
ð2πÞ3 log

���� sinh
�
βωk

2

�����
≃
Z

d3k
ð2πÞ3

�
ωk

2
þ 1

β
log j1− e−βωk j

�
;

ðA4Þ
up to an irrelevant constant. In the case of a complex scalar,
the correction is twice that of a real scalar.

APPENDIX B: INTERACTION TERMS
OF THE FLATON WITH THE STANDARD

MODEL SECTOR

We consider the following higher-dimensional term
invariant under the Uð1Þc transformation for the flaton,
ϕ → eiαϕ, associated with the chemical potential:

Lint ¼
1

4

Z
d4θ

X3
a¼1

ca
Φ†Φ
M̄2

pl

ðWaαWa
αδ

2ðθ̄Þ þ H:c:Þ; ðB1Þ

whereΦ is a chiral superfield associated with the flaton and
Wa

α is a superfield strength with the index a ¼ 1, 2, 3
corresponding to the Standard Model gauge groups
SUð3Þ × SUð2ÞL × Uð1ÞY . In order to consider the inter-
action at the vacuum hΦi ¼ Mc, we substitute the shift

Φ → Mc þΦ ðB2Þ
into Eq. (B1) and pick up the following three-point vertex
part:

Lint ⊃
Mc

4M̄2
pl

Z
d4θ

X3
a¼1

caðΦþΦ†ÞðWαaWa
αδ

2ðθ̄Þ þ H:c:Þ:

ðB3Þ
Since we are interested in the flaton decay, we focus on the
scalar part of the flaton superfield, ϕ ¼ Φjθ¼0, in Eq. (B3):
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Lint ⊃
Mc

M̄2
pl

χ
X3
a¼1

ca

�
−
1

4
Fa
μνFμνa − iλaσμ∂μλ̄

a

�
; ðB4Þ

where χ ≡ ReðϕÞ, and Fa
μν and λa are the field strength

and the gaugino, respectively. This interaction leads to the

decays χ → AμAν and χ → λλ̄. The decaywidths are obtained
as Γðχ → AμAνÞ ∝ ðMc=M̄2

plÞ2μ3 and Γðχ → λλ̄Þ ∝
ðMc=M̄2

plÞ2m2
λμ, where mλ ≃ 1 TeV is the gaugino mass.

Since we take μ ≫ 1 TeV in our scenario (see Figs. 2
and 3), the flaton mainly decays to the Standard Model
gauge bosons.
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