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We study flat Friedmann-Lemaître-Robertson-Walker α-attractor E- and T-models by introducing a
dynamical systems framework that yields regularized unconstrained field equations on two-dimensional
compact state spaces. This results in both illustrative figures and a complete description of the entire
solution spaces of these models, including asymptotics. In particular, it is shown that observational
viability, which requires a sufficient number of e-folds, is associated with a particular solution given by a
one-dimensional center manifold of a past asymptotic de Sitter state, where the center manifold structure
also explains why nearby solutions are attracted to this “inflationary attractor solution.” A center manifold
expansion yields a description of the inflationary regime with arbitrary analytic accuracy, where the slow-
roll approximation asymptotically describes the tangency condition of the center manifold at the
asymptotic de Sitter state.
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I. INTRODUCTION

Recently, there have been considerable developments
as regards large field inflation with plateau-like inflaton
potentials, driven by the models’ compatibility with
observational data [1] and their ties to supergravity
and string theory [2–12]. On the theoretical side, it has,
for example, been shown that such models naturally
arise from phenomenological supergravity. The under-
lying hyperbolic geometry of the moduli space and the
flatness of the Kähler potential in the inflation direction
is conveniently described in terms of a field variable ϕ,
which gives rise to a kinetic term in the Lagrangian with
a pole at the boundary of the moduli space. By making
a transformation to a canonical variable φ, the moduli
space near its boundary becomes stretched, leading to an
inflationary potential VðφÞ with an asymptotic plateau-
like form for VðφÞ. This stretching results in predictions
that are quite insensitive to the original form of the
potential VðϕÞ. In particular, this leads to universal
properties in ns − r diagrams, which motivates calling
these models α-attractors, where α is a constant param-
eter describing the exponential asymptotic flattening of
the potential VðφÞ in the Einstein frame. It should be
noted that this theoretical perspective unifies and con-
textualizes results for several previous models such as
the Starobinski and the Higgs inflation models. For
additional intriguing aspects such as couplings to other
fields with couplings which become exponentially small
for large fields φ, as well as further background
discussions, see [2–12].

We take the Einstein frame formulation as our starting
point and restrict the discussion to the flat, spatially
homogeneous, isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetimes. We thereby consider the
following field equations for a canonically normalized
inflaton field φ with a potential VðφÞ1:

3H2 ¼ 1

2
_φ2 þ VðφÞ ¼ ρφ; ð1aÞ

_H ¼ −
1

2
_φ2; ð1bÞ

0 ¼ φ̈þ 3H _φþ Vφ; ð1cÞ

where Vφ ¼ dV=dφ; an overdot signifies the derivative
with respect to synchronous proper time, t; H ¼ _a=a is the
Hubble variable, where a is the cosmological scale factor,
with evolution equation _a ¼ aH, which decouples from the
above equations. Furthermore, our focus will be on E- and
T-models defined by the potentials

V ¼ V0ð1 − e−
ffiffiffi
2
3α

p
φÞ2n; ð2aÞ

V ¼ V0tanh2n
φffiffiffiffiffiffi
6α

p ; ð2bÞ

with V0 > 0, respectively (see Fig. 1).
The modest aim in this paper is to present a dynamical

systems formulation that allows us to give a complete
global classical description of the solution spaces of the
above models, including asymptotic properties, illustrated
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with pictures describing compactified two-dimensional
state spaces. Our motivation for this is threefold:

(i) As will be discussed, the above equations and
potentials allow one to rather directly get a feeling
for the solution space and its properties, but all
aspects are not obvious. It is therefore of value to
show how a complete understanding can be obtained
in a rigorous manner, especially since this exempli-
fies how one can address other reminiscent problems.

(ii) By reformulating the problem as a regularized
dynamical system on a reduced compactified state
space, we provide an example that helps give the
dynamical systems community access to inflationary
cosmology. This also makes powerful mathematical
tools available to an area where such methods have
not, in our opinion, been used to their full effect. For
example, as will be shown, the universal inflationary
properties of the models are intimately connected
with certain aspects concerning center manifolds,
which also result in approximation methods com-
plementing heuristic methods such as the slow-roll
approximation.

(iii) The present dynamical systems formulation can be
adapted so that it can be used in more general
contexts such as anisotropic, spatially homogeneous
cosmology and even for models without any sym-
metries at all, as shown for perfect fluids in, e.g.,
Refs. [13] and [14]. Such an extension of the present
paper would make it possible to address the issue of
initial conditions for inflation in a generic context.

Let us now turn to the system (1). By treating _φ as an
independent variable, we obtain a reduced state space
(because the equation for the scale factor a decouples)
described by the state vector ðH; _φ;φÞ obeying the constraint
(1a); i.e., the problem can be regarded as a two-dimensional
dynamical system. The E- and T-models are examples of
models with a non-negative potential VðφÞ with a single
extremum point, a minimum, conveniently located at φ ¼ 0,
for whichVð0Þ ¼ 0. As a consequence, thesemodels admit a
Minkowski (fixed point/critical point/equilibrium point)
solution at ðH; _φ;φÞ ¼ ð0; 0; 0Þ. Due to (1a), all other

solutions either have a positive or negative H. Since we
are interested in cosmology, we consider H > 0. It follows
that H is monotonically decreasing since Eq. (1b) yields
_H ≤ 0, where _H ¼ 0 requires _φ ¼ 0; moreover, _φ cannot
remain zero since _φ ¼ 0 implies that φ̈j _φ¼0 ¼ −Vφ, where
Vφ ≠ 0 since we exclude the only extremum point at
ðH; _φ;φÞ ¼ ð0; 0; 0Þ by assuming that H > 0. Thus, the
graph of H just passes through an inflection point when
_φ ¼ 0.
The system (1) can be discussed in terms of the following

heuristic picture: Equation (1c) can be interpreted as an
equation for a particle of unit mass with a one-dimensional
coordinate φ, moving in a potential VðφÞ with a friction
force −3H _φ, while 3H2 can be viewed as a monotonically
decreasing energy in the constraint (1a). Running back-
wards in time leads to a particle with ever-increasing
energy moving in the potential VðφÞ, where 3H2 → ∞.
In combination with the shape of a given potential, this
yields an intuitive picture of the dynamics. Let us now turn
to the specific potentials (2). In the case of the E- and
T-models, both potentials behave as ∼φ2n for small φ. The
potential for the E-models (T-models) has a plateau given
by V0 when φ → þ∞ (φ → �∞), while V behaves as
V0 expð−2n

ffiffiffiffiffiffiffiffiffiffi
2=3α

p
φÞ when φ → −∞. In contrast to the

E-models, the potential, and thereby the field equations, of
the T-models exhibits a discrete symmetry under the
transformation φ → −φ.
Let us begin our heuristic discussion of the dynamics of

the E- and T-models with dynamics toward the future.
In both cases, if a solution has obtained an “energy”
3H2 < V0, it follows straightforwardly that the solution
will end up at the Minkowski fixed point. But does it do so
by just “gliding” down the potential, or does it do so by
damped oscillations; i.e., is the motion of φ overdamped or
underdamped? This does not follow from the heuristic
particle discussion but requires further analysis. Attempting
to do so by solving the constraint (1) for H, i.e., by setting
H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_φ2=2þ VðφÞ

p
=

ffiffiffi
3

p
in (1c), leads to an unconstrained

two-dimensional dynamical system for ð _φ;φÞ. This system,
however, has an unbounded state space and differentiability

FIG. 1. The potentials of the E- and T-models.
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problems at φ ¼ 0 for potentials that behave as ∼φ2n for
small φ. These problems are of course not insurmountable,
but they prevent global pictures of the solution spaces that
accurately reflect the asymptotic features of the solutions.
Nevertheless, it is not difficult to show that the motion is
underdamped and that solutions with 3H2 < V0 undergo
damped oscillations. But do all solutions end at the
Minkowski state, or are there solutions that asymptotically
end with an energy V0 at infinitely large φ? In other words,
is the Minkowski state a global future attractor? (As we will
see, the answer is “yes” for the present potentials.) One
would also perhaps guess that there is a single solution that
begins at an infinite value of the scalar field with an initial
energy 3H2 ¼ V0, corresponding to an asymptotic de Sitter
state, with the solution initially slowly rolling down the
potential, which, as we will show, is indeed the case.
What about the past dynamics? From an inflationary

point of view, one would perhaps argue that solutions are
only physically acceptable with initial data for which
3H2 ≈ V0. However, all solutions, except for the single
one coming from the de Sitter plateau with an initially
infinite scalar field, originate from 3H2 → ∞. One might
then take the viewpoint that the previous evolution of
solutions before 3H2 ≈ V0 is physically irrelevant.
However, all this assumes that the inflationary scenario
is correct and prevents investigations that either justify this
or cast doubt on it. Moreover, even if this is assumed to be
correct, one still wants approximations for the solutions
before the quasi–de Sitter stage, as done in, e.g., Ref. [7],
where a massless state is used for this purpose. But this is
intimately connected with the limit 3H2 → ∞, so let us
therefore consider this limit from the present heuristic
perspective.
Because the potential (2b) is symmetric and bounded, the

heuristic description of the dynamics of the T-models is
simpler than that for the E-models. We therefore begin with
the T-models. Since the potential in this case is bounded,
VðφÞ ≤ V0, it follows from (1a) that the limit 3H2 → ∞
implies that _φ2=2VðφÞ → 0 and hence that the influence of
the potential on the dynamics becomes asymptotically
negligible; i.e., the asymptotic state is expected to be
that of a massless scalar field. Furthermore, we expect
two physically equivalent representations associated with
φ → �∞ toward the past.
For the E-models the potential is no longer bounded, and

this results in a somewhat more complicated situation.
Nevertheless, toward the past, irrespective of the value of α,
we would expect an open set of models to approach a
massless state toward φ → þ∞ for similar reasons as for
the E-models. Furthermore, we expect that whether or not
all solutions end up there depends on the steepness of the
potential in the limit φ → −∞. In this limit the potential
behaves as an exponential, and problems with an expo-
nential can be viewed as scattering a particle against a
potential wall if the potential is steep enough; in such a

situation we expect that the massless state with φ → þ∞
describes the past asymptotic behavior of all solutions. If
the potential is not steep enough to accomplish this, the
situation becomes more complicated. Nevertheless,
based on the knowledge of the dynamics of a single
exponential, one might guess that there is an open set of
solutions that approaches a massless state at φ → −∞
and that there exists a single solution that approaches
this limit in a power-law fashion. Moreover, if the
steepness of the exponential limit is sufficiently mod-
erate, we expect this solution to describe an early
inflationary power-law state.
Although quite helpful, the above heuristic consider-

ations lead to a rather scattered impression of the global
dynamics and leave some remaining unanswered ques-
tions. In addition, we have not obtained any quantitative
results, and, what is even worse, the heuristic picture runs
into increasing problems when trying to use it in more
general contexts involving additional degrees of freedom.
In contrast, the dynamical systems formalism presented
below is applicable to more general situations than the
present one, which rather acts as a pedagogical example.
With this in mind we will now develop a formalism that
addresses the above issues and, at a glance, describes the
global situation rigorously and also makes techniques
available for describing quantitatively correct approxima-
tions for solutions in the past and future regimes (indeed,
they can be combined to even give global approximations
for the solutions to arbitrary accuracy if one is so inclined,
see [15]).
To avoid differentiability problems and to obtain

asymptotic approximations and a global picture of the
solution space, we change variables. We do so by
following the treatment of monomial potentials V ∝ φ2n

in [15] and [16], but adapting the formulation to the
particular features of the potentials (2a) and (2b).2 We
derive three complementary dynamical systems since the
global one is not optimal for quantitative descriptions in
all parts of the state space; instead, the global picture
should be seen as a collecting ground which gives the
overall picture. Since the dependent variables are defined
in a similar manner for E- and T-models, while the
independent variables differ, we define the three comple-
mentary sets of dependent variables in this section, while
the independent variables and the dynamical systems and
their analysis will be presented in the subsequent two
sections.
We begin by defining the Hubble-normalized or, equiv-

alently in the present flat FLRW cases, energy density-
normalized dimensionless variables (thereby capturing the

2To treat models with positive potentials, see e.g., [17] and
[18]; for examples of other work on scalar fields using dynamical
systems methods, see e.g., [19–24]. For a recent rather general
discussion on dynamical systems formulations and methods in
other cosmological contexts, see [25].
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physical essence of the problem), by making the following
variable transformation, ðH; _φ;φÞ → ð ~T;Σφ; XÞ3:

~T ¼
�

V0

3H2

� 1
2n ¼

�
V0

ρφ

� 1
2n

; ð3aÞ

Σφ ¼ 1ffiffiffi
6

p _φ

H
¼ 1ffiffiffi

6
p dφ

dN
; ð3bÞ

X ¼
�
VðφÞ
3H2

� 1
2n ¼

�
VðφÞ
ρφ

� 1
2n

; ð3cÞ

where X takes the following explicit form for the E- and
T-models,

X ¼
�

V0

3H2

� 1
2nð1 − e−

ffiffiffi
2
3α

p
φÞ ¼ ~Tð1 − e−

ffiffiffi
2
3α

p
φÞ; ð3dÞ

X ¼
�

V0

3H2

� 1
2n

tanh
φffiffiffiffiffiffi
6α

p ¼ ~T tanh
φffiffiffiffiffiffi
6α

p ; ð3eÞ

respectively. The quantity N ¼ lnða=a0Þ in (3b) represents
the number of e-folds with respect to some reference time
t0 where aðt0Þ ¼ a0. Below, for simplicity, we assume that
n is a positive integer.
Since H is monotonically decreasing, it follows that ~T is

monotonically increasing. Furthermore, when H → 0 ⇒
~T → ∞, H → ∞ ⇒ ~T → 0, and 3H2 → V0 ⇒ ~T → 1.
With the above definitions, the Gauss constraint (1a) takes
the form

1 ¼ Σ2
φ þ X2n: ð4Þ

The state space thereby has a cylinderlike structure (cyl-
inder structure when n ¼ 1). The constraint can be solved
globally by introducing an angular variable θ according to

Σφ ¼ GðθÞ sin θ; X ¼ cos θ; ð5aÞ

GðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2nθ
1 − cos2θ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn−1
k¼0

cos2kθ

vuut ; ð5bÞ

which leads to an unconstrained dynamical system for the
state vector ð ~T; θÞ. For future purposes we note that G ≥ 1
(with G≡ 1 when n ¼ 1), and

Gð0Þ ¼ ffiffiffi
n

p
: ð6Þ

To obtain a bounded (relatively compact) state space with
state vector ðT; θÞ, we make the transformation

T ¼
~T

1þ ~T
; ~T ¼ T

1 − T
: ð7Þ

Thus, T is monotonically increasing where H → 0 ⇒
T → 1, H → ∞ ⇒ T → 0, and 3H2 → V0 ⇒ T → 1

2
.

The deceleration parameter q is defined and given by

q ¼ −
ä

aH2
¼ −ð1þH−2 _HÞ ¼ −1þ 3Σ2

φ ¼ 2 − 3cos2nθ:

ð8Þ

To proceed with the choice of independent variables, we
treat the E- and T-models separately in the following two
sections, where we also perform a complete local and
global dynamical systems analysis of these models. We end
the paper with some concluding remarks in Sec. IV, e.g.,
about the relationship between the center manifold analysis
performed in the two E- and T-model sections and the slow-
roll approximation.

II. E-MODELS

A. Dynamical systems formulations

Using the dependent variables given in Eq. (3) for the
E-models and N ¼ lnða=a0Þ as the independent variable,
where

dN
dt

¼ H; ð9Þ

results in the following evolution equations for the state
vector ð ~T;Σφ; XÞ,

d ~T
dN

¼ 3

n
Σ2
φ
~T; ð10aÞ

dΣφ

dN
¼ −3ðΣφX þ λ̄ð ~T − XÞÞX2n−1; ð10bÞ

dX
dN

¼ 3

n
ðΣφX þ λ̄ð ~T − XÞÞΣφ; ð10cÞ

and the constraint

1 ¼ Σ2
φ þ X2n; ð10dÞ

where it has been convenient to define

λ̄ ¼ 2n
3

ffiffiffi
α

p : ð11Þ

The state space is bounded by the conditions that ~T > 0
and that

3The notation Σφ is used because Σφ, in a multidimensional
Kaluza-Klein perspective, is analogous to Hubble-normalized
shear in anisotropic cosmology, where Σ is standard notation; see,
e.g., Ref. [26].
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~Te−
ffiffiffi
2
3α

p
φ ¼ ~T − X > 0: ð12Þ

Since

d
dN

ð ~T − XÞ ¼ 3

n
ðΣφ − λ̄ÞΣφð ~T − XÞ; ð13Þ

it follows that the physical state space is bounded toward
the past by the invariant subsets ~T ¼ 0 for X ≤ 0 and
~T − X ¼ 0 for X ≥ 0 (recall that ~T is monotonically
increasing toward the future and therefore decreasing
toward the past). Their intersection, Σφ ¼ �1, X ¼ 0,
corresponds to two fixed points M�. Furthermore, the
~T − X ¼ 0 subset is divided into two disconnected parts by
a fixed point dS located at ~T ¼ 1 ¼ X. Due to the regularity
of the above equations, we can include the invariant
boundary, ð ~T¼0forX≤0Þ∪ð ~T−X¼0forX≥0Þ, which
we refer to as the past boundary. Indeed, it is necessary
to include this boundary in order to describe past asymp-
totics since, as will be shown, all solutions originate from
the fixed points on this boundary. Note further that the
equations on the ~T ¼ 0 subset are identical to those for an
exponential potential V ¼ V0e−

ffiffi
6

p
λ̄φ since in this case

dΣφ

dN
¼ −3ðΣφ − λ̄ÞX2n ¼ −3ðΣφ − λ̄Þð1 − Σ2

φÞ: ð14Þ

Moreover, the equations on the ~T ¼ X subset are identical
to those that correspond to a constant potential, which can
be seen by setting λ̄ ¼ 0 in the above equation.
By globally solving the constraint by using Eq. (5), we

obtain the following unconstrained dynamical system:

d ~T
dN

¼ 3

n
ð1 − cos2nθÞ ~T; ð15aÞ

dθ
dN

¼ −
3

2n
ðG sin 2θ þ 2λ̄ð ~T − cos θÞÞG: ð15bÞ

Finally, by using T and θ and changing the time variable
from N to τ̄ according to

dτ̄
dN

¼ 1þ ~T ¼ 1

1 − T
; ð16Þ

we obtain the regular dynamical system

dT
dτ̄

¼ 3

n
Tð1 − TÞ2ð1 − cos2nθÞ; ð17aÞ

dθ
dτ̄

¼ −
3

2n
½ð1 − TÞG sin 2θ þ 2λ̄ðT − ð1 − TÞ cos θÞ�G:

ð17bÞ

Apart from including the past boundary, which in the
present variables is given by T ¼ 0 when cos θ ≤ 0 and
T − ð1 − TÞ cos θ ¼ 0 for cos θ ≥ 0, we also include the
future boundary T ¼ 1, which corresponds to H ¼ 0 and
the final Minkowski state. Thus, the resulting extended
state space is given by a finite cylinder with the region
T − ð1 − TÞ cos θ < 0 with cos θ > 0 removed (see Fig. 2).

B. Dynamical systems analysis

From the definitions, and the fact that H is monoton-
ically decreasing, it follows that ~T and T are monotonically
increasing. This is also seen in Eqs. (10a), (15a), and (17a),
although further insight is gained by considering how ~T,
and hence T, behaves when Σφ ¼ 0 ⇒ θ ¼ mπ, where
q ¼ −1:

FIG. 2. State space and boundary structures for the E-models with V ¼ V0ð1 − e−
ffiffiffi
2
3α

p
φÞ2n. Recall that λ̄ ¼ 2n

3
ffiffi
α

p .
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d ~T
dN

����
q¼−1

¼ 0;
d2 ~T
dN2

����
q¼−1

¼ 0;

d3 ~T
dN3

����
q¼−1

¼ 54λ̄2

n
ð ~T − cosðmπÞÞ2 ~T: ð18Þ

Since ~T > 1 when m is even and ~T > 0 when m is odd in
the physical state space, it follows that by viewing the
above as the coefficients in a Taylor expansion, ~T, and
hence T, is monotonically increasing, although the graphs
of ~T and T go through inflection points when q ¼ −1.
Furthermore, since

dθ
dN

����
q¼−1

¼ −
3λ̄ffiffiffi
n

p ð ~T − cosðmπÞÞ; ð19Þ

it follows that θ is monotonically decreasing at q ¼ −1 and
thus that the solution curves in the T, θ state space become
horizontal in T at q ¼ −1 (see Fig. 3).
The monotonicity properties of T show that there are no

fixed points or recurring orbits in the physical state space
(i.e., the extended state space with the future and past
invariant boundaries excluded). All orbits originate from
the past boundary and end at the future boundary at T ¼ 1,
where

FIG. 3. Representative solutions describing the solution spaces for E-models with V ¼ V0ð1 − e−
ffiffiffi
2
3α

p
φÞ2n. In panels (a) and (b),

0 < λ̄ < 1, which corresponds to α > ð2n=3Þ2, represented by the values n ¼ 1 and α ¼ 1. In panels (c) and (d), λ̄ ≥ 1, which
corresponds to α ≤ ð2n=3Þ2, represented by n ¼ 1 and α ¼ 1=4.
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dθ
dτ̄

����
T¼1

¼ −
3λ̄

n
G < 0; ð20Þ

i.e., T ¼ 1 corresponds to a periodic orbit [i.e., a periodic
solution trajectory to the dynamical system (17)], L, with
monotonically decreasing θ, and, hence, to a limit cycle for
all solutions in the physical state space.
The structure on the past boundary is easily found since

it consists of two parts, one corresponding to an exponen-
tial potential and one to a constant potential. It consists of
fixed points and heteroclinic orbits (orbits that originate
and end at distinct fixed points) that join them. Since there
are no heteroclinic cycles on the past boundary, it follows
that all interior physical orbits originate from the fixed
points, which are given by

M�∶ ~T ¼ 0; T ¼ 0; Σφ ¼ �1;

X ¼ 0; θ ¼
�
2m� 1

2

�
π; ð21aÞ

dS∶ ~T ¼ 1; T ¼ 1

2
; Σφ ¼ 0;

X ¼ 1; θ ¼ 2mπ; ð21bÞ

PL∶ ~T ¼ 0; T ¼ 0; Σφ ¼ λ̄;

X ¼ −ð1 − λ̄2Þ 1
2n; θ ¼ arccosX; ð21cÞ

where PL only exists on the extended physical state space if
λ̄ < 1. This fixed point corresponds to the self-similar
solution for an exponential potential, which yields a power-
law solution, explaining the nomenclature. If λ̄ < 1=

ffiffiffi
3

p
this solution is accelerating since q ¼ 3λ̄2 − 1 for PL. The
nomenclature M� corresponds to a massless scalar field
with q ¼ 2 (i.e., it corresponds to setting the potential to
zero), where M� implies Δφ ¼ � ffiffiffi

6
p

N, due to (3b).
Finally, dS stands for de Sitter since q ¼ −1 for this fixed
point, although note that this de Sitter state corresponds to
φ → ∞; i.e., it is an asymptotic state and not a physical de
Sitter solution with finite constant φ.
A local analysis of the fixed points shows that if

0 < λ̄ < 1, then both Mþ and M− are sources while PL
is a saddle with a single solution entering the physical state
space. If λ̄ ≥ 1 then M− is a source, while Mþ is a saddle
from which no solutions enter the physical state space.
Arguably, the most interesting fixed point is dS, which is a
center saddle, with a one-dimensional center manifold
corresponding to the “attractor solution” or the “infla-
tionary trajectory.” To describe this interior state space
solution, which originates from dS, we follow [15,16] and
perform a center manifold analysis. Since it is more
convenient to use ~T than T, we use the system (15), which
results in the following center manifold expansion (without
loss of generality, we choose θ ¼ 0 for dS):

θð ~TÞ ¼ −
λ̄ffiffiffi
n

p ð ~T − 1Þ
�
1 −

λ̄

2
ffiffiffi
n

p ð ~T − 1Þ þ � � �
�
: ð22Þ

The periodic orbit L corresponds to a blowup of the
completely degenerate Minkowski fixed point in the
ð _φ;φÞ formulation. As discussed in [15,16], to obtain
explicit expressions for future asymptotics, one can use
available approximations for late stage behavior when
V ∼ φ2n, or one can use the averaging techniques devel-
oped in [16]. The overall global solution structure for the
E-models is depicted in Fig. 3. Note that L is the true future
attractor and that it represents the future asymptotic
behavior of all physical solutions.
Finally, let us translate the above results to the original

scalar field picture. Let us first consider the inflationary
solution coming from the dS fixed point. In the vicinity of
dS, Σφ ¼ dφ

dN =
ffiffiffi
6

p
is negative, which means that toward the

past, φ is increasing. It is not difficult to use the approxi-
mation (22) to show that φ to leading order can be written in
the form φ ¼ A lnð1 − BNÞ, where A and B are positive
constants and where N → −∞ toward the past; i.e., the
solution originates from φ → þ∞ with a subsequently
slowly decreasing φ, as expected. Furthermore, note that
initial data with an energy that is close to that of an initial
quasi–de Sitter state correspond to T ≈ 1

2
, where Fig. 3

conveniently, at a glance, shows how solutions, and their
properties, are distributed in terms of such initial data. From
this figure it is obvious that there exists an open set with
initial data with such initial energies that do not have a
quasi–de Sitter phase in their evolution. Moreover, solu-
tions that do have an intermediate de Sitter stage have
solution trajectories that shadow the heteroclinic orbits
M� → dS, which correspond to scalar field models with a
constant potential V0.
From Σφ ¼ dφ

dN =
ffiffiffi
6

p
it follows directly that M− corre-

sponds to a massless initial asymptotic state for which
φ → þ∞. If 0 < λ̄ < 1, i.e., if α > ð2n=3Þ2, then Mþ
corresponds to a massless initial asymptotic state with
φ → −∞ from which an open set of solutions originates.
Similarly, it follows that in this case the single solution that
originates from PL corresponds to an initial power-law
state for which φ → −∞ toward the past; furthermore, if
λ̄ < 1=

ffiffiffi
3

p
this is an initial power-law inflation state. Since

PL is a saddle, it follows that there is an open set of
solutions that undergo an intermediate stage of power-law
inflation in this case, but note that (i) this stage is much
shorter than the de Sitter stage since PL is a hyperbolic
saddle in contrast to the center saddle dS and (ii) this
inflationary stage takes place at a much larger energy scale
than that of the present quasi–de Sitter inflation. On the
other hand, if λ̄ ≥ 1, i.e., if α ≤ ð2n=3Þ2, then all solutions
originate from φ → þ∞. Finally, all solutions end at the
Minkowski state associated with L.
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III. T-MODELS

A. Dynamical systems formulations

Using the dependent variables given in Eq. (3) and a new
time variable ~τ, defined by

d~τ
dt

¼ H ~T−1; ð23Þ

results in the following evolution equations for the state
vector ð ~T;Σφ; XÞ,

d ~T
d~τ

¼ 3

n
Σ2
φ
~T2; ð24aÞ

dΣφ

d~τ
¼ −3

�
ΣφX ~T þ 1

2
λ̄ð ~T2 − X2Þ

�
X2n−1; ð24bÞ

dX
d~τ

¼ 3

n

�
ΣφX ~T þ 1

2
λ̄ð ~T2 − X2Þ

�
Σφ; ð24cÞ

and the constraint

1 ¼ Σ2
φ þ X2n; ð24dÞ

where again

λ̄ ¼ 2n
3

ffiffiffi
α

p : ð25Þ

The constrained dynamical system (24) admits a discrete
symmetry ðΣφ; XÞ → −ðΣφ; XÞ, because the potential is
invariant under the transformation φ → −φ.
The state space is bounded by the conditions that ~T > 0

and that �
~T

cosh φffiffiffiffi
6α

p

�2

¼ ~T2 − X2 > 0: ð26Þ

Since

d
d~τ

ð ~T2 − X2Þ ¼ 6

n
Σφ

�
Σφ

~T −
1

2
λ̄X

�
ð ~T2 − X2Þ; ð27Þ

it follows that the physical state space is bounded toward
the past by the invariant subset ~T2 − X2 ¼ 0 for ~T ≥ 0. Due
to the discrete symmetry, this invariant subset consists of
two equivalent disconnected parts, one with X > 0 and one
with X < 0, separated by the equivalent (massless state)
fixed points M� at X ¼ 0, Σφ ¼ �1. The equations on
the two branches of the boundary subset, defined by
~T2 − X2 ¼ 0, are identical to those for a constant potential.
Thus, there are also two physically equivalent de Sitter
fixed points dS� at Σφ ¼ 0, X ¼ �1. As for the previous
E-models, we use the regularity of the equations to include
the above boundary subset in our analysis.

By solving the constraint using Eq. (5), we obtain the
following dynamical system:

d ~T
d~τ

¼ 3

n
ð1 − cos2nθÞ ~T2; ð28aÞ

dθ
d~τ

¼ −
3

2n
ðG ~T sin 2θ þ λ̄ð ~T2 − cos2θÞÞG: ð28bÞ

Changing ~T to T and the independent variable ~τ to τ̌
according to

dτ̌
d~τ

¼ ð1þ ~TÞ2 ¼ ð1 − TÞ−2 ð29Þ

results in

dT
dτ̌

¼ 3

n
T2ð1 − TÞ2ð1 − cos2nθÞ; ð30aÞ

dθ
dτ̌

¼ −
3

2n
ðGTð1 − TÞ sin 2θ þ λ̄ðT2 − ð1 − TÞ2cos2θÞÞG:

ð30bÞ
Apart from including the past boundary, which in the
present variables is given by T2 − ð1 − TÞ2cos2θ ¼ 0, we
also include the future boundary T ¼ 1, which corresponds
to H ¼ 0 and the final Minkowski state. The resulting
extended state space is therefore given by a finite
cylinder with the region T2 − ð1 − TÞ2cos2θ < 0 removed
(see Fig. 4).

B. Dynamical systems analysis

As for the E-models, since H is monotonically decreas-
ing, it follows that ~T and T are monotonically increasing.
Again, further insight is gained by considering how ~T, and
hence T, behave when Σφ ¼ 0 → θ ¼ mπ, where q ¼ −1:

FIG. 4. State space and boundary structures for T-models with
V ¼ V0tanh2n

φffiffiffiffi
6α

p .
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d ~T
d~τ

����
q¼−1

¼ 0;
d2 ~T
d~τ2

����
q¼−1

¼ 0;

d3 ~T
d~τ3

����
q¼−1

¼ 27

2n
λ̄2ð ~T − 1Þ2 ~T2: ð31Þ

Since ~T > 1when q ¼ −1, it follows that ~T, and hence T, is
monotonically increasing, although the graphs of ~T andT go
through inflection points when q ¼ −1. Furthermore, since

dθ
d~τ

����
q¼−1

¼ −
3

2n
λ̄ð ~T2 − 1ÞG; ð32Þ

it follows that θ is monotonically decreasing at q ¼ −1, and
thus the solution curves in the T, θ state space, also for the T
models, become horizontal in T at q ¼ −1 (see Fig. 5).
From the monotonicity of T, and the discrete symmetry

that makes the two fixed points Mþ and M− physically
equivalent, it follows that both these fixed points are sources,
corresponding to asymptotic massless self-similar states.
The two physically equivalent fixed points dSþ and dS− are
center saddles, each yielding a single (physically equivalent)
“inflationary attractor solution” entering the physical state
space, which, as for the E-models, corresponds to a center
manifold. A center manifold expansion gives the following
approximation for the inflationary attractor solution (with-
out loss of generality, we choose dSþ and θ ¼ 0):

θð ~TÞ ¼ −
λ̄ffiffiffi
n

p ð ~T − 1Þ
�
1 −

1

2

�
λ̄2

n
þ 1

�
ð ~T − 1Þ þ � � �

�
:

ð33Þ
As in the E-model case, the periodic orbit L corresponds

to a blowup of the degenerate Minkowski fixed point in the

ð _φ;φÞ formulation, where L is the future attractor. The
overall global solution structure is depicted in Fig. 5. All
physical solutions originate from Mþ and M− (forming
two physically equivalent sets of solutions), apart from the
two physically equivalent inflationary attractor solutions
that originate from dS�, and all solutions end at the
Minkowski state associated with the future attractor and
limit cycle L.
In this case it is quite easy to translate the results to the

original scalar field picture. A similar analysis to that for
the E-models shows that the open sets of physically
equivalent solutions that originate from the massless states
M− and Mþ correspond to initial states for which φ → þ∞
and φ → −∞, respectively. The single solutions that come
from the de Sitter fixed points dSþ and dS− correspond to
the limits φ → þ∞ and φ → −∞, respectively, from which
they slowly evolve. As in the E-model case, all solutions
end at the Minkowski state associated with the limit
cycle L.

IV. CONCLUDING REMARKS

We begin this final section with some remarks on the
relationship between the center manifold and the slow-roll
approximation for the inflationary attractor solution. In
the slow-roll approximation H ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðφÞ=3p

(i.e., X ¼ 1) is
inserted into _φ ¼ −2 ∂H

∂φ, which gives

_φ ≈ −
ffiffiffiffi
V
3

r �
Vφ

V

�
: ð34Þ

In terms of ð ~T;Σφ; XÞ, this yields the following expressions
for E- and T-models:

FIG. 5. Representative solutions describing the solution space for the T-models with the potential V ¼ V0tanh2n
φffiffiffiffi
6α

p (n ¼ 1, α ¼ 1 in
the figure).
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Σφ ≈ −λ̄ð ~T − XÞXn−1; ð35aÞ

Σφ ≈ −
λ̄

2

�
~T −

X2

~T

�
Xn−1: ð35bÞ

In the vicinity of the asymptotic de Sitter state, where ~T ≈ 1

and θ ≈ 0, and therefore Σφ ≈
ffiffiffi
n

p
θ [recall that Gð0Þ ¼ffiffiffi

n
p

], X ≈ 1, these expressions yield

θð ~TÞ ≈ −
λ̄ffiffiffi
n

p ð ~T − 1Þ; ð36Þ

to lowest order. It follows that the slow-roll approximation
leads to a curve in the ðT; θÞ state space that is tangential to
the center manifold in the limit toward the de Sitter state
from which the center manifold, i.e., the inflationary
attractor solution, originates, as is also true for monomial
potentials as discussed in [15,16].
The inflationary “attractor” solution, being a one-

dimensional center manifold, attracts nearby solutions
exponentially rapidly, which then move along the center
manifold in a relatively slow power-law manner in the
vicinity of the de Sitter fixed point.4 Thus, the center

manifold structure explains both the attracting nature of
the inflationary attractor solution and the fact that
nearby solutions obtain a sufficient number of e-folds
to be physically viable in an inflationary context.
Nevertheless, although this holds for an open set of
solutions that shadow the past boundary from fixed points
that are sources to a de Sitter state on this boundary, it
should also be pointed out that there exists an open set of
solutions that behave differently, as seen in Figs. 3 and 5.
Ruling out these other solutions as physically irrelevant,
and explaining the special role of the inflationary attractor
solution beyond its center manifold structure, thereby
relies on paradigmatic assumptions relating the problem
to broader contexts. Examples of such contexts involve
various proposed theoretical frameworks as well as,
e.g., scale considerations, illustrated in the discussion of,
e.g., Ref. [11], and various measures, motivated by, e.g.,
symplectic structures; for a recent discussion on measures
which might be applicable to the present models, see [28].
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