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We investigate the behavior of bouncing Bianchi type IX “mixmaster” universes in general relativity.
This generalizes all previous studies of the cyclic behavior of closed spatially homogeneous universes with
and without an entropy increase. We determine the behavior of models containing radiation by analytic and
numerical integration and show that an increase of radiation entropy leads to an increasing cycle size and
duration. We introduce a null energy condition violating ghost field to create a smooth, nonsingular bounce
of finite size at the end of each cycle and compute the evolution through many cycles with and without an
entropy increase injected at the start of each cycle. In the presence of increasing entropy, we find that the
cycles grow larger and longer and the dynamics approach flatness, as in the isotropic case. However,
successive cycles become increasingly anisotropic at the expansion maxima which is dominated by the
general-relativistic effects of anisotropic 3-curvature. When the dynamics are significantly anisotropic, the
3-curvature is negative. However, it becomes positive after continued expansion drives the dynamics close
enough to isotropy for the curvature to become positive and for gravitational collapse to ensue. In the
presence of a positive cosmological constant, radiation, and a ghost field, we show that, for a very wide
range of cosmological constant values, the growing oscillations always cease and the dynamics
subsequently approach those of the isotropic de Sitter universe at late times. This model is not included
in the scope of earlier cosmic no-hair theorems because the 3-curvature can be positive. In the case of a
negative cosmological constant, radiation, and an ultrastiff field (to create nonsingular bounces), we show
that a sequence of chaotic oscillations also occurs, with sensitive dependence on initial conditions. In all
cases, we follow the oscillatory evolution of the scale factors, the shear, and the 3-curvature from cycle to
cycle.
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I. INTRODUCTION

In 1922, Alexander Friedmann [1] first noted the
existence of “periodic worlds” in his solutions of
Einstein’s equations for isotropic and homogeneous uni-
verses with positive spatial curvature. But the physical
study of cyclic universes in general-relativistic cosmology
begins with the work of Tolman [2], who first considered
the simple situation of a closed Friedmann universe with
zero cosmological constant, Λ, and non-negative pressure.
The evolution of Tolman’s cyclic universes can be con-
tinued periodically through the big crunch singularity if it is
assumed that no new physics arises there and the evolution
can be extended smoothly through it.1 As a next step,
Tolman incorporated the general consequences of an
increase of entropy from cycle to cycle, in accordance
with the second law of thermodynamics. This produced a

monotonic increase in the maximum size and length of
successive cycles, which continues forever. If this entropy
increase is modeled as an increase in the dimensionless
entropy per baryon in a mixture of radiation and baryons
(ignoring baryon nonconserving interactions), then the
increase is a reflection of the asymmetry in the pressure,
p, from cycle to cycle, as energy is transferred from the
baryonic (p ¼ 0) to the radiation (p ≠ 0) gas. Tolman’s
work attracted periodic interest by other astronomers like
Bonnor [4] and Zanstra [5] in the 1950s, before Zeldovich
and Novikov turned Tolman’s result into a theorem for
rather restrictive equations of state of matter obeying
Friedmann’s equations and the laws of thermodynamics.
They also assumed that the cycles could not be continued
indefinitely into the past because they would become
smaller than the smallest finite-sized elementary particles
(not assumed pointlike in those days). As the cycles
continue to increase in size, an oscillating universe appears
increasingly “flat,” although it is closed with positive
spatial curvature [6]. This might even provide an explan-
ation for the proximity of the expansion dynamics to
flatness today that differs in detail from that of the standard
one-cycle inflationary universe model (although the
latter generates proximity to flatness by a large entropy
increase in one cycle through “reheating” rather than by a
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1Tolman’s analysis, which assumed no equation of state

linking the pressure, p ≥ 0, to the density, ρ, required an
additional assumption. To avoid a finite-time (“sudden”) singu-
larity occurring where p → ∞ with finite ρ before the expansion
maximum is reached, one must stipulate some control over p, for
example p < Cρ for constant C > 0 [3].
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progressive buildup over many cycles by all processes).
However, in what follows, we will show that it does not
share other features of an inflationary universe at late times.
Generalizations of this simple oscillatory Tolman uni-

verse produced some interesting new features. Barrow and
Dabrowski [7] show that if there is a positive cosmological
constant (Λ > 0) then the sequence of growing oscillations
always comes to an end after a finite proper time and the
dynamics evolve toward an ever-expanding de Sitter
asymptote as t → ∞ [7]. This end to the oscillations occurs
no matter how small the positive value of the cosmological
constant is; the cycles grow until they inevitably produce
one that is large enough for the Λ term to eventually
dominate the dynamics at large size, and its effect is to stop
a further contraction from occurring. Notice that the final
state is always one which is close to flatness and only just
(depending on the exact size of the intercycle entropy
jump) dominated by the Λ energy density—rather like our
Universe, in fact.
Our paper is organized as follows. We begin in Sec. II by

presenting some simple exact solutions with finite minima
that illustrate the usefulness of introducing ghost fields into
any model of bouncing universes. In Sec. III, we describe
the thermodynamic aspects of the evolution. In Sec. IV, we
give the diagonal Bianchi type IX metric and field
equations and present some simple approximate parametric
solutions for the case of the radiation-dominated axisym-
metric type IX universe as well as a solution for the purely
cosmological constant-dominated axisymmetric type IX
universe (a case which is not encompassed by the cosmic
no-hair theorems). These will serve to guide our interpre-
tation of the numerical solutions of the full dynamical
equations. In the next section, we present the results of
numerically solving the full Bianchi type IX equations, first
during a single cycle without the ghost field and then with
the ghost field over many cycles. We study cases with and
without the injection of radiation entropy. Finally, we study
the same problems with the addition of positive or negative
cosmological constants.

II. SIMPLE ISOTROPIC BOUNCES

The assumption of a “bounce” occurring at zero expan-
sion scale and infinite density is computationally (and
physically) awkward. However, it can be improved upon by
introducing a simple “ghost” field, with negative density,
ρ < 0, that will cause the expansion to go through a smooth
minimum at the beginning and at the end of each cycle
instead of through a singularity where ρ ¼ ∞. Ghost fields
have often been used in bouncing cosmology scenarios to
effect a nonsingular bounce such as in Refs. [8,9] For
illustrations, we can find two simple exact solutions which
are of use in more complicated situations. Suppose that we
have a closed Friedmann universe with scale factor, aðtÞ,
containing two “fluids” having densities ρ > 0 and ρg < 0.
The second ghost fluid with negative density, ρg, acts as a

model stress to dominate at small a and effect a bounce at
a ¼ amin, while the conventional fluid with positive den-
sity, ρ, dominates at larger a. This situation continues to
exist until the spatial curvature creates an expansion
maximum at a ¼ amax. We give two solutions which are
useful models of this type of behavior for more detailed
analyses and illustrate the effects of the two fields:

(i) Ghost fluid with pg ¼ ρg ∝ a−6 < 0 and conven-
tional radiation fluid with p ¼ ρ=3 ∝ a−4 > 0:

The Friedmann equation (setting 8πG ¼ c ¼ 1) is

_a2

a2
¼ −

Σ
a6

þ Γ
a4

−
1

a2
;

with Σ ≥ 0 and Γ ≥ 0 being constants. The exact
solution for the scale factor, when Γ2 ≥ 4Σ, can be
written simply in terms of the expansion maximum
and minimum radii in conformal time, defined by
dt ¼ adη, as [10]

a2ðηÞ¼ 1

2
½a2maxþa2minþða2max−a2minÞsin2ðηþη0Þ�;

where the integration constant η0 can be set to zero
without loss of generality and

a2min ≡ Γ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − 4Σ

p

2
;

a2max ≡ Γþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − 4Σ

p

2
:

Oscillatory solutions occur when Γ2 > 4Σ, and
Γ2 ¼ 4Σ gives a static universe. In the high radiation
entropy (∝ ρ3=4 ∝ Γ3=4) limit Γ2 ≫ 4Σ, we have
amax → Γ and amin → Σ=Γ, and we see that the
maxima grow and the minima decrease in size if we
let the radiation entropy grow from cycle to cycle.

(ii) Ghost fluid with pg ¼ ρg=3 ∝ a−4 < 0 and conven-
tional dust fluid with p ¼ 0, ρ ∝ a−3 > 0:

The Friedmann equation is

_a2

a2
¼ −

Γ
a4

þM
a3

−
1

a2
;

and, ifM2 ≥ 4Γ, a new exact solution can be written
simply in conformal time dt ¼ adη in terms of the
expansion maximum and minimum radii as [10]

aðηÞ ¼ 1

4
½amax þ amin þ ðamax − aminÞ sinðηþ η0Þ�;

where

amin ¼
1

2
½M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4Γ

p
�;
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amax ¼
1

2
½M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4Γ

p
�:

In the limit M2 ≫ 4Γ, we have amin → Γ=M and
amax → M, so if we introduce an increase in matter
entropy (∝ M) from cycle to cycle, then wewill have
successively increasing maxima and decreasing
minima.

In what follows, we shall add a ghost field to an
oscillating anisotropic, spatially homogeneous universe
in order to produce a smooth bounce at finite values of
the scale factor where the densities are nonsingular. It
would be possible to effect a smooth bounce with a scalar
field with quadratic potential which has been investigated
in mixmaster universes [11]; however, the probability of
this bounce occurring is small, Oðamin=amaxÞ, in any
universe with amin ≪ amax.
All of the above discussion has focused upon simple

isotropic closed universes with S3 spatial topology. The
situation in simple anisotropic universes of Kantowski-
Sachs type was studied in detail by Barrow and Dąbrowski
[7] and produces a more complicated scenario for cycle to
cycle evolution. The Kantowski-Sachs universes have
special S2 × S1 spatial topology and are far from generic
even among homogeneous anisotropic universes, although
they have inhomogeneous generalizations with no sym-
metries found by Szekeres [12]. Only closed (compact
space sections) universes with S2 × S1 or S3 topologies
possess maximal hypersurfaces and so can recollapse and
bounce when gravitationally attractive matter is present
[13]. Whether or not they will do so depends on the matter
content of the universe.
In this paper, we will study the dynamics of a cyclic

Bianchi type IX “mixmaster” universe with S3 spatial
topology. This is the most general spatially homogeneous
anisotropic closed universe, and it contains the closed
Friedmann universe as an isotropic special case. Exact
solutions are only known for the axisymmetric special
cases in vacuum, containing stiff matter (p ¼ ρ) or electro-
magnetic fields, or a combination of both [14]. We are
particularly interested in the behavior of these anisotropic
universes on approach to an expansion maximum of the
volume and the behavior of the three expansion scale
factors there. Do the cycles grow in maximum size, and do
they become increasingly anisotropic from cycle to cycle?
We will confine our attention to the case where the fluid in
the universe is comoving, although in a subsequent study,
we will generalize this to fluids with noncomoving veloc-
ities. The type IX universe behaves quite differently than
the simple Bianchi type I anisotropic universe because it
has both expansion anisotropy (shear) and 3-curvature
anisotropy. The 3-curvature anisotropy has no
Newtonian analog. The 3-curvature dynamics are compli-
cated, and the sign of the 3-curvature varies in time and is
only positive when the expansion dynamics are sufficiently

close to isotropy. An expansion maximum will only occur
when the 3-curvature, ð3ÞR, becomes positive (as it is all the
time in the closed Friedmann universes). We want to
discover if increasing entropy increases the size of suc-
cessive expansion maxima, as in the cyclic Friedmann
models, but also determine what happens to the expansion
anisotropy over successive cycles. We can also incorporate
a positive or negative cosmological constant to see if it can
terminate a sequence of oscillations in a cyclic type IX
universe in the same way that it does in an isotropic closed
universe.
In order to follow the Bianchi type IX evolution

smoothly from cycle to cycle, we introduce a stiff ghost
field to create an expansion minimum at nonzero volume in
every cycle, as discussed above. This field has no signifi-
cant effect on the expansion maximum or the behavior of
the dynamics in its vicinity. It is well known that the
Bianchi IX model displays formal chaotic behavior in all its
degrees of freedom as the volume tends to zero [15].
However, there is only an unbounded number of chaotic
oscillations of the scale factor on an open interval 0 < t <
T around the time origin for finite T; an infinite number of
scale factor oscillations occur on any such interval no
matter how small the value of T. In any finite interval
T1 < t < T, not including t ¼ 0, the number of oscillations
is finite and not technically chaotic. For realistic choices of
T1 ≈ 10−43 s for the start of classical cosmology, there will
be fewer than about 12 mixmaster oscillations even if they
continued all the way from T1 up to the present day [16].
This is because the overall expansion scale changes rapidly
with the number of scale factor oscillations, which occur in
logarithmic time. Thus, if there is a bounce at finite
volume, the issue of chaotic mixmaster oscillations [17] is
irrelevant to a discussion of the long-term dynamics.
Some bouncing cosmologies deal with the situation at

bounce by incorporating a so-called phase of ekpyrosis
where there is effectively an ultrastiff isotropic fluid with a
p ≫ ρ field added to the matter content of the universe
[18]. If there are no anisotropic pressures, this drives the
dynamics toward isotropy as a singularity is approached.
However, we should expect anisotropic pressures to be
larger than the energy density (as is assumed for the
isotropic pressure), due to the dominance of collisionless
particles when T > 1015 GeV. The presence of these
anisotropic pressures during the phase of ekpyrosis can
reinstate the distorting effects of anisotropies, and they
diverge on approach to the bounce [19,20].
In this work, we shall consider the effect of expansion

and curvature anisotropies on a model of a bouncing type
IX universe. This model incorporates several bounces, and
we increase the entropy of the constituent matter content
via an injection at each bounce. The increased entropy in
each bounce leads to a higher maximum and longer cycles,
as found in the original analysis of Tolman. The claim is
that with increasing maxima simple isotropic bouncing
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models, such as the isotropic Friedmann universe, approach
flatness and begin to resemble the present-day universe in
this respect. We shall investigate this claim in more general
circumstances. We confirm the increasing volume maxima
in successive bounces and the eventual cessation of
bounces in the presence of a cosmological constant, but
with a more complicated transitional evolution for the
isotropization of the three scale factors. However, we find
that in the absence of a cosmological constant successive
cycles become increasingly anisotropic despite the increase
in size and approach to flatness. This is quite different than
the long-term evolution predicted by inflation.
We also investigate the effects of a negative cosmologi-

cal constant. This always produces collapse to a future
singularity [21]. Our aim in doing this is to construct an
anisotropic version of the simple Friedmann universes
which can all be transformed into simple harmonic oscil-
lators in conformal time after rescaling the expansion scale
factor [22]. These models are studied as a further simple
example of a bouncing type IX universe. They include
“domain-wall” matter (p ¼ −2=3ρ) as well as a negative
cosmological constant in a closed Friedmann universe. We
can also include an ultrastiff matter field with isotropic
pressures (p ¼ 5ρ) to subdue the anisotropies on approach
to the bounce. In the absence of pressure anisotropies, this
should work and allow our model to propagate further
without hitting a singularity. In a later study, we will
include both noncomoving velocities and associated pres-
sure anisotropies in the analysis of cyclic type IX universes.

A. Entropy

Our next task is to follow the consequences of a growth
of entropy in the constituents of the system. The definition
of a cosmological entropy is still debated. Here, we shall
use only the thermodynamic entropy of the radiation or
matter content and ignore any contribution from a “gravi-
tational entropy” that might be associated with Weyl
curvature, gravitational clustering, or the area of the particle
horizon [23]. We will use a very simple toy model of
entropy injection in our model of a bouncing universe. We
are, in this analysis, not interested in the physical origin of
the production of entropy by nonequilibrium processes like
quantum particle production or viscous anisotropy damp-
ing, which are dramatic entropy producers as t → 0 [24].
Rather, we will consider a sudden entropy increase at each
expansion minimum and also use the dependence of the
size of the expansion maximum on the entropy to determine
the effect of increasing the entropy in a cycle. To circum-
vent issues regarding the nonconservation of baryon
number, which would hence make the definition of entropy
per baryon ambiguous, we shall consider the effects of an
increase of entropy of radiation. To model this, we consider
first the definition of the entropy of radiation, S, which is
given by

S ∝ T3V; ð1Þ

where T is the temperature at that instant and V is the
volume of the universe. We assume that the entropy per unit
volume, once injected at the minima, remains constant
throughout the duration of the cycle until the next minimum
(we ignore all particle-antiparticle annihilations and mas-
sive particles that become nonrelativistic). The radiation
energy density varies as ρr ¼ CrV−4=3. Hence, during each
cycle, the quantity T3V is a constant, implying that
ρr ∝ T4. So, we can write the entropy as

S ∝ T3

�
Cr

ρr

�
3=4

∝ C3=4
r : ð2Þ

Thus, we can assess the effect of increasing the entropy of
radiation by an increase in the constant Cr. It has been
shown previously, in works such as Ref. [2], that an
increase in the entropy of radiation leads to an increase
in the expansion maxima in closed Friedmann universes.
We expect this to occur also for a Bianchi IX universe.
However, we also wish to study how the shape of the
anisotropy behaves as the cycles get bigger with entropy
injection. For this, we need to specify the form of the type
IX metric and analyze the field equations.

III. MODEL OF THE BOUNCING BIANCHI
TYPE IX UNIVERSE

A. Einstein equations for diagonal type IX universes

We aim to study the effects of entropy growth in
anisotropic oscillating models of Bianchi type IX. We
divide the problem into several subcases. We are interested
in discovering whether the present-day universe would
isotropize and approach flatness in a bouncing universe
model after many cycles of entropy growth. In all cases, we
take our cosmological model to be the spatially homo-
geneous Bianchi type IX spacetime containing radiation
with pressure p ¼ ρ=3 and a “dust” matter field with
equation of state p ¼ 0. We use the radiation field to
assess the effects of increasing the entropy of radiation
from cycle to cycle in a bouncing universe. If only these
two fluids are present, the universe will evolve toward a
strong curvature singularity and experience only one
cycle unless we assume a periodic continuation through
the singularity. If we add the ultrastiff ghost field with
ρg < 0 and pg=ρg ≫ 1, then we create a smooth non-
singular bounce and can follow the evolution through
several cycles. We can then introduce a growth of entropy
in the radiation field in the vicinity of the bounce in order to
study the long-term effects of the shear anisotropy and the
3-curvature on the expansion maximum. In the last section
of the paper, we introduce a positive cosmological constant
and also a negative cosmological constant, to see how the
evolution is changed by their presence. In the latter case, we
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will add a domain-wall fluid (p ¼ −2ρ=3) and an ultrastiff
fluid (p ¼ 5ρ) to facilitate smooth nonsingular bounces.
Note that when a ghost field is added to create a

nonsingular bounce it means that the dynamics will be
dominated by this isotropic matter field at the expansion
minima and so it will have a small isotropizing effect over
small time intervals around the minima. However, it is
outweighed by the lengthening of the evolution time
produced by the growing size of successive maxima. It
would be possible to effect nonsingular bounces with an
anisotropic ghost field, but this complication has been
avoided here.
We study the solution of the Einstein equations for a

diagonal spatially homogeneous Bianchi type IX universe
with metric [25]

ds2 ¼ dt2 − γabðtÞeaμebνdxμdxν;
γabðtÞ ¼ diag½a2ðtÞ; b2ðtÞ; c2ðtÞ�;

eaμ ¼

2
64

cos z sin z sin x 0

− sin z cos z sin x 0

0 cos x 1

3
75; ð3Þ

containing noninteracting perfect fluids, each with a perfect
fluid equation of state p ¼ ðγ − 1Þρ. The equations of state
parameters for the radiation, dust, and ghost fields are
given by γr ¼ 4=3, γm ¼ 1, and γg ¼ 2, respectively. The
orthogonal expansion scale factors aðtÞ, bðtÞ, and cðtÞ for
the Bianchi type IX universe with the specified matter
content satisfy the field equations

ä
a
þ b̈
b
þ _a _b

ab
þ a2

4b2c2
þ b2

4a2c2
−

3c2

4a2b2
þ 1

2a2
þ 1

2b2

−
1

2c2
¼ −

X
i¼r;m;g

ðγi − 1Þρ; ð4Þ

b̈
b
þ c̈
c
þ

_b _c
bc

þ b2

4a2c2
þ c2

4a2b2
−

3a2

4b2c2
þ 1

2b2
þ 1

2c2

−
1

2a2
¼ −

X
i¼r;m;g

ðγi − 1Þρ; ð5Þ

c̈
c
þ ä
a
þ _c _a

ca
þ a2

4b2c2
þ c2

4a2b2
−

3b2

4a2c2
þ 1

2a2
þ 1

2c2

−
1

2b2
¼ −

X
i¼r;m;g

ðγi − 1Þρ: ð6Þ

The constraint equation reduces to

_a _b
ab

þ
_b _c
bc

þ _c _a
ca

þ 1

2a2
þ 1

2b2
þ 1

2c2
−

a2

4b2c2

−
b2

4a2c2
−

c2

4a2b2
¼

X
i¼r;m;g

ρ: ð7Þ

From the fluid continuity equations, we have

ρrðtÞ ∝ ðabcÞ−4=3
ρgðtÞ ∝ ðabcÞ−2
ρmðtÞ ∝ ðabcÞ−1:

If we introduce a new time coordinate, τ, by defining

dτ ¼ dt=abc; ð8Þ

then the field equations become ( 0 denotes d=dτ)

2ðln aÞ00 þ a4 − ðb2 − c2Þ2 ¼ a2b2c2
X

i¼r;m;g

ðρi − piÞ; ð9Þ

2ðln bÞ00 þ b4 − ðc2 − a2Þ2 ¼ a2b2c2
X

i¼r;m;g

ðρi − piÞ; ð10Þ

2ðln cÞ00 þ c4 − ða2 − b2Þ2 ¼ a2b2c2
X

i¼r;m;g

ðρi − piÞ; ð11Þ

and the constraint equation simplifies to

4½ðln aÞ0ðln b0Þ þ ðln bÞ0ðln cÞ0 þ ðln cÞ0ðln aÞ0�
¼ a4 þ b4 þ c4 − 2c2ða2 þ b2Þ − 2a2b2

þ 4a2b2c2
X

i¼r;m;g

ρi: ð12Þ

Before we attempt to study the full numerical evolution
of the type IX equations of motion with an increase in
entropy of the radiation field in the presence of the ultrastiff
ghost field and a dust field, we shall try to construct an
approximate parametric solution for the type IX evolution
containing only the radiation field. Detailed studies of the
behavior of the most general Bianchi type universes at
intermediate times have been conducted in Refs. [26,27].
What they reveal is that at a very early time there is a
reduction in anisotropy by quantum effects which is
significant. To the future of such a time, the evolution
enters a long quasiaxisymmetric phase. Two scale factors
are larger than the third, and differences between the first
two are insignificant compared to their size relative to the
other. This situation is familiar from the evolutionary
pattern during isotropization of Kasner metrics containing
collisionless particles [28] where the anisotropic pressures
created by the particles mimic the 3-curvature anisotropies
in type IX. It is as if the dynamics has entered a time reverse
of one of the long cycles that a Bianchi type IX universe
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encounters on approach to small times. Following
Doroshkevich et al. [26], we use the approximation
a ¼ b ≫ c, which reduces Eqs. (9)–(11) to

ðln aÞ00 þ a2c2 ¼ 1

3
ρra4c2; ð13Þ

ðln cÞ00 ¼ 1

3
ρra4c2; ð14Þ

2ðln aÞ0ðln cÞ0 þ ðln aÞ02 ¼ −a2c2 þ ρra4c2: ð15Þ

We find the parametric solution quoted in Ref. [26],
as follows. Defining ω, the ratio of the two terms on the
right-hand side of (14), by

ω2 ≡ a2c2

3ρra4c2
; ð16Þ

we can express the radiation density in terms of the
scale factors using ρr ¼ Crða2cÞ−4=3 and find ω in terms
of the scale factors as 3ω2 ¼ a2=3c4=3=Cr. Hence, using
(12)–(14), we can write

2ðlnωÞ00 ¼ 2

3
ðρra4c2 − a2c2Þ ¼ 2

3
ρra4c2ð1 − 3ω2Þ: ð17Þ

Inspecting the above equation, we see that the ρra4c2 term
must be a function of the form fðω;ω0;ω00Þ. Our next task
is to determine the form of this function, so that once we
substitute this form in, we can get a self-consistent solution
for the evolution equation for the parameter ω, both by
following the route of using Eq. (15) to obtain ω in terms of
the scale factors and then using the equations of motion of
the scale factors and also by using the functional form in
terms of the parameter ω that we choose for ρra4c2 in its
own evolution equation. After a few simple trials, it luckily
turns out that the ansatz ρra4c2 ¼ αω0 gives us the self-
consistent solution we desire, by following both of the
routes we described. We shall demonstrate that this is in
fact the case. We choose the ansatz ρra4c2 ¼ αω0 and
absorb the constant of integration Cr into the constant α.
Then, we have

ðlnωÞ0 ¼ 1

3
αðω0 þ ω − ω3Þ; ð18Þ

where ω0 is a constant of integration. We now examine the
equation we get for ρra4c2 by substituting in the equations
of motion. This is

ðln ρra4c2Þ00 ¼
2

3
ρra4c2ð1 − 6ω2Þ: ð19Þ

Using our ansatz, ρra4c2 ¼ αω0, we also find that

ðln αω0Þ00 ¼ 2

3
αω0ð1 − 6ω2Þ: ð20Þ

We can write the left-hand side of this equation as
ðln αþ lnω0Þ00 ¼ ðlnω0Þ00 as ln α is a constant. We can
integrate the above equation once as

ðlnω0Þ0 ¼ 2

3
ðω0 − 2ω3 þ ωÞ: ð21Þ

We can write out the left-hand side of this equation as
follows:

ðlnω0Þ0 ¼ ω0 d
dω

ðlnðω0=ωÞ þ lnωÞ: ð22Þ

Differentiating and canceling factors of ω0 from the first
term in the brackets in the above equation and then
substituting in the right-hand side of Eq. (17) for ðlnωÞ0,
we get

ðlnω0Þ0 ¼ ðlnωÞ0 þ 1

3
αωð1 − 3ω2Þ: ð23Þ

Using the expression we found previously for ðlnωÞ0, in
Eq. (17), we recover the same right-hand side as Eq. (21) up
to some additive integration constants, confirming that our
ansatz gives us a self-consistent solution. Hence, we can
write the evolution equation for the parameter ω as

ðlnωÞ0 ¼ Q1=2ðω0 þ ω − ω3Þ; ð24Þ

where we have redefined our constant α to be the constant
3Q1=2 for notational consistency with Ref. [27]. In con-
clusion, we have the following radiation-era solution in
terms of the parameter ω as in Ref. [27]:

aðτÞ ¼ 31=2Qðω0 þ ω − ω3Þ; ð25Þ

and

cðτÞ ¼ 31=2ω3=2

Q1=2ðω0 þ ω − ω3Þ1=2 : ð26Þ

By inspecting the solution, from the evolution equ-
ation of the parameter ω, that is (17), we find that, for
ω¼−1, 0, 1, the equation yields a simple form,

ðlnωÞ0 ¼ Q1=2ω0: ð27Þ

However, for the special choices of ω ¼ −1, 0, the scale
factor cðτÞ becomes imaginary and zero, respectively. On
computing the volume maximum in terms of ω for all
positive values of ω numerically, we find that the value of ω
at which the volume maxima occur is very close to 1. Thus,
we conclude that ω ∼ 1 is the point marking the volume
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maximum as well as the end point of the validity of this
parametric solution.2

We now use the axisymmetric solution for the type IX
universe to see how the anisotropy behaves at the maximum
of each cycle as we increase the radiation entropy, which is
proportional to C3=4

r . Keeping in mind that the limit ω → 1
corresponds to the instant of the maximum volume of the
expansion, we can see how the ratios of the scale factors in
the two directions behave in this limit. In the limit of
ω → 1, the ratio a=c reduces to

a2

c2
¼ Q3ω3

0: ð28Þ

We have seen that the quantity Q is related to the constant
α, and hence to the constant Cr (which has been absorbed
into the constant α as stated above). Therefore, an increase
in the entropy of radiation [note that Eq. (8) ensures that
dS=dt > 0 if and only if dS=dτ > 0] causes a correspond-
ing increase in the ratio of the scale factors, which indicates
that the universe is becoming more anisotropic as the
heights of the successive expansion maxima increase.

B. Adding a positive cosmological constant

We can use a similar approximation, but this time in
comoving proper time, t, instead of the conformal time
coordinate, τ. Using the approximation that c ≪ a ¼ b, we
can reduce the Einstein equations to the following form,

2
ä
a
þ _a2

a2
þ 1

a2
¼ Λ;

c̈
c
þ ä
a
þ _c
c
_a
a
¼ Λ; ð29Þ

where Λ is the cosmological constant. If we rewrite the first
equation in the form

a
d
da

ð _a2Þ þ _a2 ¼ Λa2 − 1; ð30Þ

it integrates to

_a2 ¼ Λa2

3
− 1þ C1

a
; ð31Þ

where C1 is an integration constant. In order to determine
the value of the constant C1, we can choose Kasner initial
conditions where the scale factor aðtÞ ∼ t2=3 as t → 0.
Substituting this into Eq. (27), we get C1 ¼ 4=9 as t → 0.
The above equation resembles the equation for ordinary
dust and a cosmological constant in an isotropic closed
Friedmann universe. In the case of cosmological constant
domination, the solution for aðtÞ tends to the de Sitter
solution, that is,

aðtÞ ∼ exp

� ffiffiffiffi
Λ
3

r
t

�
: ð32Þ

Under the approximation a ∼ b ≫ c, the Friedmann
constraint becomes

_a2

a2
þ 2

_a
a
_c
c
þ 1

a2
¼ Λ: ð33Þ

Substituting in (27), we get

2
_a
a
_c
c
þ C1

a3
¼ 2Λ

3
: ð34Þ

Substituting in the solution for the cosmological constant
dominated aðtÞ and taking the limit of very late times
(which is the limit in which we expect cosmological
constant domination), we get

cðtÞ ∼ exp

� ffiffiffiffi
Λ
3

r
t

�
: ð35Þ

Thus, we see that for cosmological constant domination
isotropization is achieved as t → ∞, with the scale factors
evolving toward

aðtÞ ¼ bðtÞ ∼ cðtÞ ∼ exp

� ffiffiffiffi
Λ
3

r
t

�
: ð36Þ

It is worth noting that this result is not just a case of the
standard cosmic no-hair theorem for spatially homo-
geneous universes due toWald [31] because the 3-curvature
can be positive in type IX universes and all cosmological
no-hair theorems assume that 3R ≤ 0 [32–34]. Ostensibly,
this is to ensure the universe does not suffer collapse to a
future singularity before the Λ term can dominate.
However, the Kantowski-Sachs spatially homogeneous
universe has 3R > 0 and need not approach the de Sitter
metric at large t when Λ > 0 [35]. In fact, the conditions
necessary (and sufficient) for type IX models with Λ ¼ 0 to
recollapse are extremely subtle [3,13], and examples have
been found where type IX universes expand forever even
though the sum of the density and the three principal
pressures is positive [36]. Typically, the 3-curvature is
negative as long as the dynamics are significantly

2Well before the volume maximum is approached, the effects
of the anisotropic 3-curvature are similar to the addition of a
trace-free anisotropic pressure stress (long-wavelength homo-
geneous gravitational wave modes) on a background of simple
Bianchi I form [29] or Friedmann form [30]. In the presence of
isotropic blackbody radiation, the two scale factors evolve as
aðtÞ ∝ t1=2ðln tÞ2n1 and cðtÞ ∝ t1=2ðln tÞn2 , with 2n1 þ n2 ¼ 0, so
the volume a2b ∝ t3=2 evolves as in Friedmann, to leading order
[26,29], but the shear falls more slowly than when the 3-curvature
is isotropic.
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anisotropic (3R ¼ 2=c2 − b2=2c4 for axisymmetric (3)
when a ¼ b ≫ c). This causes the expansion to continue
until there is sufficient isotropization for the 3-curvature to
become positive, and only then does an expansion maxi-
mum of the volume become possible. This occurs unless a
positive cosmological constant comes to dominate before it
is reached, as in Eq. (32).
Hence, we see that the results of Barrow and Dabrowski

[7] showing the inevitable termination of oscillations in a
closed oscillation universe with Λ > 0 continue to hold in
Bianchi type IX universes. Eventually, cycles will grow
large enough for the Λ term to dominate the dynamics.
When it does so, it quickly stops the scale factors from
reaching expansion maxima. They all continue to expand,
and the dynamics are increasingly dominated by the Λ term
and approach the de Sitter metric.

IV. NUMERICAL SOLUTIONS OF THE
TYPE IX EQUATIONS

We move now to consider the numerical integration of
the full (nonaxisymmetric) type IX equations, first, in the
presence only of radiation, ρr, and then with radiation and a
ghost field, ρg, that will create a smooth bounce at a finite-
volume minimum. In each case, we will be interested in the
behavior with ( _S > 0) and without ( _S ¼ 0) an entropy
increase and with and without a cosmological constant.
These computations will enable us to confirm the general
picture found from the analytic approximations of the
previous section.

A. Radiation universe with no entropy increase: _S= 0

1. No ghost field: ρg = 0

In the case of the Bianchi IX universe containing just the
radiation field, we have followed the initial assumption of
Ref. [26] that two of the scale factors approach the same
value in the expanding half of the cycle. Thus, on approach
to the maximum of the scale factor, the universe resembles
an axisymmetric type IX universe. The scale factors that are
similar to each other approach their maxima first, and then,
after reaching their maxima, they start contracting and then
oscillate around an almost constant value. The third scale
factor approaches its maximum at a later time and goes past
the peaks of the other two scale factors before reversing into
contraction. We can now follow the evolution of the
quantities in this scenario, without needing to assume axial
symmetry, by computing the behavior of the scale factors
from various sets of initial conditions.
We start with initial conditions that are similar to the

ones chosen in Ref. [26], that is,

½aðtÞ; bðtÞ; cðtÞ� ∝ ½t1=2; t1=2; t5=8�: ð37Þ

In this case, in the absence of the ghost field, we find that
the universe is unable to reexpand after collapsing. The
addition of the radiation or dust field does not cause a
qualitative change in the behavior of the scale factors but
causes the system to reach stiffness faster. Thus, we choose
values for the initial conditions for the density of radiation
to be ρrðtiÞ ¼ 1 where ti refers to the initial instant of time
at which we start the integration. The scale factors in two
directions oscillate about each other as they follow the
evolution trend of the volume scale factor. The third scale
factor is then smaller than the other two scale factors and
does not display the oscillatory behavior undergone by the
other two scale factors. The shear and the 3-curvature show
oscillatory profiles before blowing up on approach to the
strong curvature singularity at the “big crunch.” The
presence of the singularity at the end of the collapse phase
is inferred by the fact that the density of the matter and
radiation components diverge there.
Running the simulation with arbitrarily selected initial

conditions or even Kasner-like initial conditions makes the
collapse occur closer to the starting instant, in comparison
to the case done with the initial conditions in (33), and little
information can be extracted from the results. For the
Kasner initial conditions, however, before the collapse
occurs, the individual scale factors show some oscillatory
behavior.
We see a single oscillation of the volume scale factor in

Fig. 1(a). The behaviors of the individual scale factors are
seen in Fig. 1(b), where the blue dashed line corresponds to
the scale factor aðtÞ and the green dotted and the yellow
solid lines correspond to the scale factors bðtÞ and cðtÞ,
respectively. As we have noted before, the scale factors aðtÞ
and bðtÞ show small oscillations around each other, while
the scale factor cðtÞ has a much smaller amplitude and does
not show such oscillations. This is reminiscent of a long era
in the evolution of type IX on approach to an initial
singularity seen in Ref. [17]. On looking at the shear and
the spatial 3-curvature, we see that they display oscillatory
behavior as well, before blowing up on approach to the
singularity. The shear evolution is shown in Fig. 2(a), and
the 3-curvature evolution is shown in Fig. 2(b).

2. Ghost field present: ρg ≠ 0

We create a simple bouncing cosmological model by
adding a ghost field to create a nonsingular bounce. The
other fields in the system are the radiation fields and
the dust fields. As before, we again choose initial values for
the radiation, the dust, and the ghost fields to be of order 1,
as ρrðtiÞ ¼ 8, ρmðtiÞ ¼ 5, and ρgðtiÞ ¼ −5, respectively.
Again, as long as the initial conditions for the densities are
of the same order, their exact numerical value does not
much affect the results of the computation qualitatively.
Changing these numbers significantly changes the number
of bounces the system undergoes in the same time frame of
integration, but qualitatively the features are not altered.
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Of course, as one might expect, changing the initial
conditions for the density of the ghost field to be orders
of magnitude smaller than the radiation and dust fields
causes the system to collapse and not undergo the non-
singular bounce. On evolving this system through several
successions of bounces, we find that the scale factors
oscillate rapidly from cycle to cycle as do the energy
densities of the radiation, matter, and ghost field. The
square of the shear tensor and the 3-curvature also show
similar oscillatory behavior.
The evolution of the volume scale factor from cycle to

cycle is oscillatory, as can be seen in Fig. 3(a), as are the
behaviors of the scale factors in the three orthogonal

directions. As before, in Fig. 3(b), the blue dashed, solid
yellow, and dotted green lines trace the aðtÞ, bðtÞ, and cðtÞ
scale factors. The shear and the 3-curvature also display
oscillatory behavior and are shown in Figs. 4(a) and 4(b),
respectively.
Therefore, we see that adding the ghost field is essential

for avoiding collapse to a singularity after just one cycle
and for allowing it to actually propagate smoothly through
successive bounces. We will include the ghost field in the
model in the rest of the paper when we examine the effects
of entropy injection, or the effects of adding a cosmological
constant, so that we can evolve the model through a series
of cycles without encountering singularities.

B. Radiation universe with entropy increase: _S > 0

1. Ghost field present: ρg ≠ 0

We now consider our bouncing anisotropic cosmological
model with dust, radiation, and a ghost field to prompt and
to allow it to propagate through several cycles when there is
an entropy increase from cycle to cycle.

FIG. 1. Time evolution of the volume (top) and three orthogo-
nal scale factors (bottom) of a type IX universe with only
radiation and no ghost field in comoving proper time t during
a single cycle. The blue dashed, green dotted, and yellow solid
lines correspond to scale factors aðtÞ, bðtÞ, and cðtÞ, respectively.

FIG. 2. From top to bottom: Evolution of shear and 3-curvature
scalars during a single cycle of a type IX universe containing
radiation and no ghost field, with comoving proper time, t.
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We start with Kasner initial conditions and with the same
initial scale-factor evolution equation (33) and the respec-
tive energy densities as before [ρrðtiÞ ¼ 8, ρmðtiÞ ¼ 5 and
ρgðtiÞ ¼ −5]. This time, we increase the value of the
constant of radiation (Cr) by a factor of 2, to model the
effects of the entropy increase on the dynamics. We find
that the volume scale factor shows an increase in cycle-to-
cycle expansion maxima as expected. The individual scale
factors proceed through several chaotic oscillations in each
cycle, and the three directions seem to oscillate increasingly
out of phase as the volume maxima get larger.

Figure 5(a) represents the evolution of the volume scale
factor, and Fig. 5(b) represents the evolution of the
individual scale factors.
To see if greater expansion volume maxima lead to an

increase in the anisotropy, we plot the square of the shear
tensor [Fig. 6(a)], denoted by σ2, and we see that the shear
tensor indeed shoots up to larger and larger values, at each
successive minimum, as the corresponding radiation maxi-
mum is increased. We can see that a similar increase occurs
when we track the difference in the expansion rates of the
scale factors in the three directions. A significant increase
in the differences of the expansion rates in the a and the b
directions and in the difference of the expansion rates in the
b and c directions is seen as the expansion maxima get

FIG. 3. Evolution of volume (top) and individual scale factors
(bottom) with radiation, ordinary dust, and the ghost field
included, with time. The blue dashed, green dotted, and yellow
solid lines correspond to aðtÞ, bðtÞ, and cðtÞ, respectively.

FIG. 4. From top to bottom: evolution of shear and curvature
with radiation, ordinary dust, and the ghost field included, with
time.
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bigger. There is not such a large increase in the difference in
the expansion rates in the a and c directions. We can also
look at the 3-curvature [Fig. 6(b)], and we find that it
oscillates to a greater extent initially, but as time increases,
the amplitude and frequency of these oscillations decrease,
and the universe seems to approach flatness, albeit with
strong expansion and 3-curvature anisotropy.
We can understand this intuitively in another way. The

shear is at its highest near the minimum of each cycle. As
the expanding phase of the cycle begins, the shear is diluted

rather slowly as σ ∼ ðt ln tÞ−1. Until the shear is diluted
sufficiently, the universe cannot recollapse. When the shear
enters the contracting phase, shear anisotropy accumulates.
The longer the model evolves before the bounce, the greater
the amount of shear anisotropy is accumulated. Thus, by
injecting radiation entropy and effectively increasing the
expansion maxima, we give the shear anisotropy more time
to increase in the contracting phase, and thus more time to
dilute in the expanding phase. Hence, despite the increase
in the shear anisotropy, we still see the universe recollapse
and bounce.

FIG. 5. Evolution of the volume (top) and individual scale
factors (bottom) of a type IX universe with entropy increase from
cycle to cycle (dS=dt > 0), with t time. The blue dashed, green
dotted, and solid yellow lines correspond to the orthogonal scale
factors aðtÞ, bðtÞ, and cðtÞ respectively. The model includes
radiation, dust matter, and the ghost field. The ghost field ensures
that the cycles bounce smoothly at finite values of the volume.

FIG. 6. Evolution of shear (top) and the 3-curvature (bottom)
scalars with time in a type IX universe with entropy increase. The
model includes radiation, dust, and the ghost field to create
smooth nonsingular bounces.

CYCLIC MIXMASTER UNIVERSES PHYSICAL REVIEW D 95, 083515 (2017)

083515-11



We can also compare the pattern of entropy growth in the
anisotropic Bianchi IX case with its isotropic subcase, the
closed Friedmann universe.
We see in Fig. 7(a) for the case of the Bianchi IX

universe and in Fig. 7(b) for the case of the isotropic closed
Friedmann universe that the variation of successive volume
scale factor maxima in the Friedmann and the type IX
universes with increasing radiation entropy show very
similar, almost linear behavior (this would be different if
we injected entropy according to a different rule). We also
show what happens to the range of the bounce with entropy
injection in the Bianchi IX case.
It should come as no surprise that the range is also

increasing fairly linearly with the injection of entropy as

can be seen in Fig. 8. The increase in volumemaxima simply
means that the model takes a longer time to recollapse.

V. ADDING A COSMOLOGICAL CONSTANT

We have seen in previous work that the addition of
cosmological constant to the closed Friedmann model
which incorporates increasing volume maxima with the
injection of radiation entropy results in the model ceasing
to oscillate before expanding exponentially toward the de
Sitter metric [7]. Now, we study the effects of adding both a
positive or a negative cosmological constant in type IX
universes. The motivation for doing this, for the case of the
positive cosmological constant, is to see if a similar
exponential expansion to the isotropic case takes place.
It is also interesting to investigate the effect the expansion
prompted by the cosmological constant has on the
anisotropy and the spatial 3-curvature. The negative cos-
mological constant models create an interesting anisotropi-
cally recollapsing counterpart to the closed Friedmann
models. These models are among the simplest versions
of a closed isotropic bouncing universe as they incorporate
a negative cosmological constant as well as a curvature
“field” which behaves as a fluid with equation of state
p ¼ −1=3ρ. They admit a simple periodic solution in the
isotropic case. It is expected that when anisotropy is
included, in the absence of an ultrastiff matter field, the
universe will quickly approach an anisotropic singularity
since the negative Λ term is only influential at large
volumes to affect a collapse but has a negligible effect
as the future singularity is reached.

A. Positive cosmological constant

We study the effect of adding a positive cosmological
constant to a type IX model containing radiation with

FIG. 7. (Top) Volume maxima plotted against the entropy of
radiation in Bianchi IX universes and (bottom) in isotropic
Friedmann universes.

FIG. 8. Range of bounces vs entropy of radiation in the
presence of ordinary dust and radiation in oscillating Bianchi
IX universes.
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entropy injection, a dust field, and the ultrastiff (p ¼ 5ρ)
ghost field to ensure a smooth nonsingular bounce. The
results depend on the value of the cosmological constant
relative to the initial energy densities of the other fields. If
the cosmological constant is set to have a value of the same
order of magnitude as the other components in the system,
then the model displays a very sudden increase in all the
scale factors in each of the three directions without any of
the oscillating behavior that we have seen in the other

cases; it quickly asymptotes to de Sitter behavior. On the
other hand, if the cosmological constant is too small, then
its effects cannot be seen in the time interval that we have
set for integration. Thus, for an intermediate range of values
of the cosmological constant, we find that as soon as the
cosmological constant starts to dominate the volume scale
factor, which was hitherto showing an oscillatory behavior
with increasing maxima from cycle to cycle, does not
recollapse beyond the point of maxima. Instead, it enters a
final phase of exponential expansion. The individual scale
factors all undergo exponential expansion, asymptoting to
de Sitter behavior. However, they have different rates of
expansion in this phase, with two of the scale factors having
nearly the same rate, oscillating around each other in this
phase (this is reminiscent of the axisymmetric behavior that
motivated our analytic approximation in Sec. III above).
The third scale factor expands much less than the other two.
As soon as the cosmological constant starts to dominate,
the shear and the 3-curvature, which were oscillating before
Λ domination as in the previous case with Λ ¼ 0, now start
oscillating with smaller and smaller amplitudes as time
progresses. For the purposes of our computation, we set the
cosmological constant to be a value which is approximately
Λ ≈ 3H2 which can be taken to mark the onset of
cosmological constant domination.
In Fig. 9(a), we show the evolution of the volume scale

factor, and in Fig. 9(b), we show the evolution of the
individual scale factors, where the blue dashed, yellow
solid, and green dotted lines represent the scale factors aðtÞ,

(a)

(b)

FIG. 9. Evolution of (top) the volume and (bottom) the
individual scale factors of a type IX universe with positive Λ,
with time, t. The blue dashed, green dotted, and solid yellow lines
correspond to scale factors aðtÞ, bðtÞ, and cðtÞ, respectively. The
model includes radiation, dust, and a ghost field to create
nonsingular bounces. Note that the oscillations cease after a
finite time when Λ term dominates the dynamics at large volume.
All scale factors then asymptote to the de Sitter expansion after a
few transitionary oscillations.

FIG. 10. Evolution of the Hubble rates in the presence of a
positive cosmological constant with time. The blue dashed, green
dotted, and solid yellow lines trace the Hubble rates _aðtÞ=aðtÞ,
_bðtÞ=bðtÞ, and _cðtÞ=cðtÞ. Oscillations cease when Λ dominates.
The Hubble rates then undergo an anisotropic transition phase
before eventually approaching isotropic de Sitter-like expansion
where the individual Hubble rates approach the same constant
value.
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bðtÞ, and cðtÞ, respectively. We can see the domination of
the Λ term leading to de Sitter-like expansion in all of the
scale factor directions by looking at the Hubble rates.
We see in Fig. 10 that the Hubble rates undergo several

oscillations and enter into a transition phase when the
cosmological constant starts to dominate. However, with
positive cosmological constant domination, the oscillations
cease, and as the scale factors undergo exponential expan-
sion, their Hubble rates tend to a constant value.
Figures 11(a) and 11(b) show the behavior of the shear

tensor squared σ2 and of the 3-curvature, respectively. They
show a decrease with time, with the shear showing
oscillations, as before, but with decreasing amplitude.

The curvature also shows oscillations as before but falls
to very small values as the cosmological constant starts to
dominate.

B. Negative cosmological constant

We can also try to look at the case of the negative
cosmological constant to find the role of anisotropies in the
simple isotropic universe model. This is the closed
Friedmann universe with curvature parameter k ¼ þ1,
consisting of “domain-wall matter” which is just matter
with an equation of state p ¼ −2ρ=3 ∝ a−1 and a negative
cosmological constant. The Friedmann equation is now
(Σ > 0, constant)

_a2

a2
¼ 8πG

3

�
Λþ Σ

a

�
−

1

a2
: ð38Þ

This model has been studied as a simple model of a
bouncing universe admitting a simple solution (Fig. 12).
Consider an extension of this model to the anisotropic

type IX case. In the absence of a stiff field to smooth out the
anisotropies on approach to the bounce, it is expected that
the universe on collapse will not be able to reexpand from a
singularity. To prevent this, we add an ultrastiff matter field,
with positive energy density, as we expect the bounce to be
produced by the negative cosmological constant. We find
that the volume scale factor undergoes a bounce. The
individual scale factors undergo several oscillations with
different time periods and different amplitudes. The shear
undergoes oscillations with amplitudes that decrease as the
volume scale factor expands and starts increasing again as
the contraction phase begins. The 3-curvature also shows
oscillatory behavior as the expansion phase is followed by
the contraction.
On changing the sign of the cosmological constant in the

model, with the same initial conditions as we have been
using previously, we see that with the injection of entropy

FIG. 11. (Top) Evolution with time, t, of the shear and (bottom)
3-curvature scalars in type IX universes with positive Λ. The
model includes radiation, dust, and a ghost field to create
nonsingular bounces.

FIG. 12. Evolution in time, t, of the scale factor for an isotropic
closed Friedmann universe with negative cosmological constant
and domain-wall matter (p ¼ −2ρ=3). The domain-wall matter
acts like a ghost field to produce smooth nonsingular bounces. No
entropy production is included.
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into the radiation field, to facilitate an increase in the
expansion maxima, the volume scale factor undergoes
irregular oscillations. These can be seen in Fig. 13(a).
The individual scale factors are seen in Fig. 13(b) and are

given as before by the blue dashed, green dotted, and solid
yellow lines representing the scale factors aðtÞ, bðtÞ, and
cðtÞ, respectively. They appear to undergo oscillations as
well.
Looking at Figs. 14(a) and 14(b), the shear and the

curvature also show several rapid and irregular oscillations
as they approach minima. On the collapse of the model, they

showno signof approaching isotropy, blowing up instead. To
demonstrate that the long-term evolution is chaotic, we find
that on slightly changing the initial conditions by �0.001
(where the initial conditions we have chosen for ½x; y;H� as
well as the densities of the ghost and radiation fields are of
order 1) the number of oscillations in the shear and the
curvature, as well as their amplitude and shape, drastically
change (especially for the initial few cycles of the model).
The behavior for the shear for the second set of initial
conditions is shown in Fig. 15(a).
Looking at the 3-curvature next, we find a similar

situation, where the shape of the oscillations as well as

FIG. 13. Evolution of the (top) volume and (bottom) individual
scale factors for a type IX universe with negative Λ, with time, t.
The blue dashed, green dotted, and yellow solid lines correspond
to aðtÞ, bðtÞ, and cðtÞ, respectively. The model includes an
ultrastiff matter field (p ¼ 5ρ) with positive energy density in
addition to the negative cosmological constant.

(a)

(b)

FIG. 14. (Top) Evolution of the shear and (bottom) the
3-curvature, with negative Λ, vs time, t. The model includes
an ultrastiff field (p ¼ 5ρ) with positive energy density in
addition to a negative cosmological constant.
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their frequency and amplitude vary greatly with the same
slight change in the initial conditions. We see this in the
Fig. 15(b).
It is interesting to note that this chaotic behavior from

cycle to cycle occurs in t time, rather than in its logarithms
as is the case in the chaotic behavior seen on approach to
the singularity if bounces do not occur [15,17].

VI. CONCLUSIONS

We have investigated the fate of cyclic universes in the
most general spatially homogeneous closed universes of
Bianchi type IX. These models are considerably more

general than those previously used to study oscillating
universes. We include radiation, matter, and a stiff ghost
field with negative density to produce a smooth, non-
singular bounce at finite volume at the end of each cycle.
A bounce at any finite volume, no matter how small, avoids
the issue of chaotic oscillations [17] of the scale factors on
approach to the expansion minima. We investigate the
effects of an increase in radiation entropy from cycle to
cycle, in accord with the second law of thermodynamics,
and also the effects of adding a positive or negative
cosmological constant to the Einstein equations. We find
the following:

A. Flatness and shape evolution

When Λ ¼ 0, we studied the evolution of type IX
universes by analytic approximations and by numerical
evolution (starting with Kasner initial conditions). The
evolution follows an approximately axisymmetric form in
which different scale factors attain their maxima at different
times before turning around and collapsing toward their
next minima. We found that as the size of the volume
maximum increases, the model approaches flatness in the
same way that isotropic closed universes do. However, the
dynamics do not approach isotropy as the volume maxi-
mum is approached or as the ensuing minimum is
approached. The successive expansion maxima grow
increasingly out of phase. The long-term dynamics are
therefore anisotropic and differ significantly from those
predicted for inflationary universes.

B. General relativistic effects

The late-time evolution of the type IX universe is
dominated by intrinsically general-relativistic effects asso-
ciated with its 3-curvature anisotropy (for which there is no
Newtonian analog). The sign of the 3-curvature scalar, 3R,
can change with time. When the type IX universe is
significantly anisotropic, 3R is negative, and the dynamics
cannot have an expansion maximum. The universe there-
fore keeps on expanding and eventually becomes close
enough to isotropy for 3R to become positive, and then it is
able to experience a volume maximum and recollapse.

C. The effects of entropy increase

We injected radiation entropy at each finite expansion
minimum to model the effect of increasing entropy. We
found that the entropy increase leads to a steady increase in
the size of the volume maxima of successive cycles and to
their temporal duration, but these maxima are anisotropic.

D. The effect of Λ > 0

The addition of a cosmological constant is always found
to bring the oscillations in the volume of the universe to an
end. This occurs no matter how small the value of Λ is.
Oscillations of the universe occur and grow anisotropically

(a)

(b)

FIG. 15. Evolution of the shear (a) and curvature (b) in the type
IX universe with negative Λ and ghost field, with time, with
initial conditions differing by �0.001, to illustrate the chaotic
sensitivity of the dynamics to small changes in initial data over
many cycles of time evolution.
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as in the case ofΛ ¼ 0 until the size of the maximum grows
large enough for Λ to become dynamically important there.
Subsequently, after a few scale factor transitory changes, it
will dominate before any expansion maximum can occur
and accelerate the expansion toward an increasingly de
Sitter-like metric evolution. This behavior is in accord with
cosmic no-hair theorems even though, technically, they do
not apply to the type IX metric because it permits positive
3-curvature, which is excluded by the theorems.

E. The effect of Λ < 0

The addition of a negative cosmological constant causes
any cosmological model to recollapse, regardless of the
sign of the 3-curvature. We use the addition of Λ < 0 to
produce a simple bouncing model that experiences a finite
nonsingular minimum at the end of each cycle because of
the presence of a ghost field. We follow the chaotic
evolution of the scale factors, the shear, and the 3-curvature
from cycle to cycle. We showed that there is sensitive
dependence on initial conditions.
Our analysis introduced some simplifying assumptions.

We consider only the diagonal Bianchi IX metric with fluids
that possess comovingvelocity fields and isotropic pressures.

In a separate study, wewill relax these assumptions and show
that a similar analysis is possible which leads to similar
conclusions. Thus, we have shown that in the most general
spatially homogeneous anisotropic cyclic universes in gen-
eral relativity with Λ ¼ 0 the growth of entropy leads to
never-ending cycles of increasing size and duration, as
Tolman first showed for isotropic models. However,
although these cycles approach flatness, they do not
approach isotropy and do not resemble our observed
Universe. If we add Λ > 0 then, no matter how small the
magnitude of Λ is, the growing oscillations always come to
an end, and subsequently the dynamics pass through a quasi-
isotropic phase before asymptoting toward the isotropic
dynamics of a de Sitter metric. These analyses can also be
readily extended to other cyclic universe scenarios that are
based upon extensions of general relativity [18,37–43].

ACKNOWLEDGMENTS

J. D. B. is supported by the Science and Technology
Facilities Council (STFC) of the United Kingdom. C. G. is
supported by the Jawaharlal Nehru Memorial Trust
Cambridge International Scholarship.

[1] A. A. Friedmann, Z. Phys. 10, 377 (1922) [Gen. Relativ.
Gravit. 31, 1991 (1999)]; A. Friedmann, Die Welt als Raum
und Zeit (Verlag Harri Deutsch, Frankfurt am Mein, 2006),
translated by G. Singer from 1923 Russian original; English
translation: A. A. Friedmann, The World as Space and Time
(Minkowski Institute Press, Montreal Canada, 2014), trans-
lated by S. Andrenenko from 1923 Russian original.

[2] R. C. Tolman, Phys. Rev. 38, 1758 (1931); Relativity,
Thermodynamics and Cosmology, (Oxford University,
New York, 1934).

[3] J. D. Barrow, G. J. Galloway, and F. J. Tipler, Mon. Not. R.
Astron. Soc. 223, 835 (1986); J. D. Barrow, Classical
Quantum Gravity 21, L79 (2004).

[4] W. B. Bonnor, Z. Astrophys. 35, 10 (1954),
[5] H. Zanstra, Proceedings of the Koninklijke Nederlandse

Akademie van Wetenschappen: Series B (1957), Vol. 60,
p. 285.

[6] P. T. Landsberg and D. Park, Proc. R. Soc. A 346, 485
(1975).

[7] J. D. Barrow and M. Dąbrowski, Mon. Not. R. Astron. Soc.
275, 850 (1995).

[8] Y.-F. Cai, T. Qiu, X. Zhang, Y.-S. Piao, and M. Li, J. High
Energy Phys. 10 (2010) 071.

[9] Y.-F. Cai, E. N. Saridakis, M. R. Setare, and J.-Q. Xia, Phys.
Rep. 493, 1 (2010).

[10] J. D. Barrow and C. G. Tsagas, Classical Quantum Gravity
26, 195003 (2009).

[11] J. D. Barrow and R. A. Matzner, Phys. Rev. D 21, 336
(1980).

[12] P. Szekeres, Commun. Math. Phys. 41, 55 (1975).
[13] J. D. Barrow and F. J. Tipler, Mon. Not. R. Astron. Soc. 216,

395 (1985).
[14] M. Ryan and L. Shepley, Homogeneous Relativistic

Cosmologies (Princeton University, Princeton, 1975);
J. D. Barrow, Nature (London) 272, 211 (1978).

[15] J. D. Barrow, Phys. Rev. Lett. 46, 963 (1981); Phys. Rep.
85, 1 (1982); D. Chernoff and J. D. Barrow, Phys. Rev. Lett.
50, 134 (1983); J. D. Barrow, Classical General Relativity,
edited by W. Bonnor, J. Islam, and M. A. H. MacCallum
(Cambridge University Press, Cambridge, England, 1984),
p. 25.

[16] Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophys-
ics (University of Chicago, Chicago, 1983), Vol. 2, p. 658.

[17] C. W. Misner, Phys. Rev. Lett. 22, 1071 (1969); Phys. Rev.
186, 1328 (1970); V. A. Belinskii and I. M. Khalatnikov,
Sov. Phys. JETP 29, 911 (1969); V. A. Belinskii, I. M.
Khalatnikov, and E. M. Lifshitz, Sov. Phys. Usp. 13, 745
(1971).

[18] P. J. Steinhardt and N. Turok, Phys. Rev. D 65, 126003
(2002).

[19] J. D. Barrow and K. Yamamoto, Phys. Rev. D 82, 063516
(2010).

[20] J. D. Barrow and C. Ganguly, Classical Quantum Gravity
33, 125004 (2016).

CYCLIC MIXMASTER UNIVERSES PHYSICAL REVIEW D 95, 083515 (2017)

083515-17

https://doi.org/10.1007/BF01332580
https://doi.org/10.1023/A:1026751225741
https://doi.org/10.1023/A:1026751225741
https://doi.org/10.1103/PhysRev.38.1758
https://doi.org/10.1093/mnras/223.4.835
https://doi.org/10.1093/mnras/223.4.835
https://doi.org/10.1088/0264-9381/21/11/L03
https://doi.org/10.1088/0264-9381/21/11/L03
https://doi.org/10.1098/rspa.1975.0187
https://doi.org/10.1098/rspa.1975.0187
https://doi.org/10.1093/mnras/275.3.850
https://doi.org/10.1093/mnras/275.3.850
https://doi.org/10.1016/j.physrep.2010.04.001
https://doi.org/10.1016/j.physrep.2010.04.001
https://doi.org/10.1088/0264-9381/26/19/195003
https://doi.org/10.1088/0264-9381/26/19/195003
https://doi.org/10.1103/PhysRevD.21.336
https://doi.org/10.1103/PhysRevD.21.336
https://doi.org/10.1007/BF01608547
https://doi.org/10.1093/mnras/216.2.395
https://doi.org/10.1093/mnras/216.2.395
https://doi.org/10.1038/272211a0
https://doi.org/10.1103/PhysRevLett.46.963
https://doi.org/10.1016/0370-1573(82)90171-5
https://doi.org/10.1016/0370-1573(82)90171-5
https://doi.org/10.1103/PhysRevLett.50.134
https://doi.org/10.1103/PhysRevLett.50.134
https://doi.org/10.1103/PhysRevLett.22.1071
https://doi.org/10.1070/PU1971v013n06ABEH004279
https://doi.org/10.1070/PU1971v013n06ABEH004279
https://doi.org/10.1103/PhysRevD.65.126003
https://doi.org/10.1103/PhysRevD.65.126003
https://doi.org/10.1103/PhysRevD.82.063516
https://doi.org/10.1103/PhysRevD.82.063516
https://doi.org/10.1088/0264-9381/33/12/125004
https://doi.org/10.1088/0264-9381/33/12/125004


[21] F. J. Tipler, Astrophys. J. 209, 12 (1976).
[22] J. D. Barrow, Observatory 105, 120 (1985).
[23] W. B. Bonnor, Phys. Lett. 112A, 26 (1985); N. Pelavas

and A. Coley, Int. J. Theor. Phys. 45, 1258 (2006);
T. Clifton, G. F. R. Ellis, and R. Tavakol, Classical Quantum
Gravity 30, 125009 (2013); J. D. Barrow and S. Hervik,
Classical Quantum Gravity 19, 5173 (2002).

[24] J. D. Barrow and R. A. Matzner, Mon. Not. R. Astron. Soc.
181, 719 (1977).

[25] L. Landau and E. M. Lifshitz, The Classical Theory of
Fields, 4th rev. ed. (Pergamon, Oxford, 1975).

[26] A. D. Doroshkevich, V. N. Lukash, and I. D. Novikov, Sov.
Phys. JETP 37, 739 (1973); I. D. Novikov, IAU Symposium
63, edited by M. S. Longair (Reidel, Dordrecht, 1974),
p. 273.

[27] V. N. Lukash, Sov. Astron. 18, 164 (1974).
[28] V. N. Lukash and A. A. Starobinsky, Sov. Phys. JETP 39,

742 (1974).
[29] J. D. Barrow, Phys. Rev. D 55, 7451 (1997).
[30] L. P. Grishchuk, A. G. Doroshkevich, and V. M. Yudin, Sov.

Phys. JETP 42, 943 (1976).
[31] R. Wald, Phys. Rev. D 28, 2118 (1983).

[32] L. G. Jensen and J. A. Stein Schabes, Phys. Rev. D 35, 1146
(1987).

[33] J. D. Barrow, Phys. Lett. B 187, 12 (1987).
[34] J. D. Barrow and G. Götz, Classical Quantum Gravity 6,

1253 (1989).
[35] R. Kantowski and R. K. Sachs, J. Math. Phys. (N.Y.) 7, 443

(1966); E. Weber, J. Math. Phys. (N.Y.) 26, 1308 (1985); J.
Yearsley and J. D. Barrow, Classical Quantum Gravity 13,
2693 (1996).

[36] S. Calogero and J. M. Heinze, Phys. Rev. D 81, 023520
(2010); Physica (Amsterdam) 240D, 636 (2011).

[37] J. D. Barrow, D. Kimberly, and J. Magueijo, Classical
Quantum Gravity 21, 4289 (2004).

[38] R. Brandenberger and P. Peter, arXiv:1603.05834.
[39] J. Haro, J. Amorós, and L. A. Saló, arXiv:1703.03710.
[40] D. C. F. Celani, N. Pinto-Neto, and S. D. P. Vitenti, Phys.

Rev. D 95, 023523 (2017).
[41] J. D. Barrow and D. Sloan, Phys. Rev. D 88, 023518 (2013).
[42] E. O. Pozdeeva, M. A. Skugoreva, A. V. Toporensky, and S.

Yu. Vernov, J. Cosmol. Astropart. Phys. 12 (2016) 006.
[43] R. Moriconi, G. Montani, and S. Capozziello, Phys. Rev. D

94, 023519 (2016).

JOHN D. BARROW and CHANDRIMA GANGULY PHYSICAL REVIEW D 95, 083515 (2017)

083515-18

https://doi.org/10.1086/154687
https://doi.org/10.1016/0375-9601(85)90454-2
https://doi.org/10.1007/s10773-006-9124-1
https://doi.org/10.1088/0264-9381/30/12/125009
https://doi.org/10.1088/0264-9381/30/12/125009
https://doi.org/10.1088/0264-9381/19/20/311
https://doi.org/10.1093/mnras/181.4.719
https://doi.org/10.1093/mnras/181.4.719
https://doi.org/10.1103/PhysRevD.55.7451
https://doi.org/10.1103/PhysRevD.28.2118
https://doi.org/10.1103/PhysRevD.35.1146
https://doi.org/10.1103/PhysRevD.35.1146
https://doi.org/10.1016/0370-2693(87)90063-3
https://doi.org/10.1088/0264-9381/6/9/010
https://doi.org/10.1088/0264-9381/6/9/010
https://doi.org/10.1063/1.1704952
https://doi.org/10.1063/1.1704952
https://doi.org/10.1063/1.526935
https://doi.org/10.1088/0264-9381/13/10/009
https://doi.org/10.1088/0264-9381/13/10/009
https://doi.org/10.1103/PhysRevD.81.023520
https://doi.org/10.1103/PhysRevD.81.023520
https://doi.org/10.1016/j.physd.2010.11.015
https://doi.org/10.1088/0264-9381/21/18/001
https://doi.org/10.1088/0264-9381/21/18/001
http://arXiv.org/abs/1603.05834
http://arXiv.org/abs/1703.03710
https://doi.org/10.1103/PhysRevD.95.023523
https://doi.org/10.1103/PhysRevD.95.023523
https://doi.org/10.1103/PhysRevD.88.023518
https://doi.org/10.1088/1475-7516/2016/12/006
https://doi.org/10.1103/PhysRevD.94.023519
https://doi.org/10.1103/PhysRevD.94.023519

