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We consider the scalar field profile around relativistic compact objects such as neutron stars for a range
of modified gravity models with screening mechanisms of the chameleon and Damour-Polyakov types.
We focus primarily on inverse power law chameleons and the environmentally dependent dilaton as
examples of both mechanisms. We discuss the modified Tolman-Oppenheimer-Volkoff equation and then
implement a relaxation algorithm to solve for the scalar profiles numerically. We find that chameleons and
dilatons behave in a similar manner and that there is a large degeneracy between the modified gravity
parameters and the neutron star equation of state. This is exemplified by the modifications to the
mass-radius relationship for a variety of model parameters.
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I. INTRODUCTION

General relativity is at the heart of our understanding of
compact objects such as neutron stars [1]. This could be
challenged by the observation of the current accelerated
expansion of the universe [2]. Indeed, the cosmological
acceleration has now been corroborated using multiple
probes [3] since the original observations with supernovae
[4,5], and while the addition of a cosmological constant term
to Einstein’s equations fits all the data extremely well, there
are appealing theoretical reasons to investigate alternative
explanations [6]. One of these possibilities could be a
modification of the laws of gravity [7]. As argued by
Weinberg [8] any modification to the framework of general
relativity necessarily introduces additional degrees of free-
dom. This leads to many infrared modified gravity theories
which, in principle, could incorporate the late time accel-
eration of the universe. They all modify the gravitational
interaction, and this is bound by stringent experimental
constraints in our local environment at least [9,10].
Generically, these alternative theories are valid when they
include a screening mechanism that “shields” the effects of
suchmodifications to general relativity (see [7] for a detailed
review). Many proposals exist and they have all been
extensively studied using laboratory [11–22], solar system
[23], cosmological [24], and astrophysical [25] tests. These
investigations all probegravity in theweak field regime.With

advances in experimental techniques, attention has increas-
ingly focused on tests of gravity in the strong regime for
compact objects such as neutron stars and black holes
[26,27]. The effect of modified gravity in the vicinity of
astrophysical black holes has been studied in [28,29].
Many studies of the effects of modifying gravity in the

strong gravity regime have originally been limited to
models subject to the chameleon screening mechanism.
For instance, there is a substantial number of works on the
nature of compact objects such as neutron stars in fðRÞ
gravity. For a long time it was claimed [30,31] that
relativistic stars do not exist in these models due to the
presence of an easily accessible singularity and other
divergences springing from the functional form of fðRÞ
[30,32,33]. Several exceptions are now known to exist; e.g.
[34] gives the first numerical construction of static rela-
tivistic stars in fðRÞ gravity. Other examples are known
[35,36] including numerical solutions corresponding to
static stellar configurations with a strong gravitational field
[37,38]. More recently relativistic stars have been studied in
Horndeski [39,40] and beyond Horndeski models [41–43].
In this paper, we focus on screened modified gravity

[44–46] with two different screening methods: the chame-
leon [23,47,48] and the Damour-Polyakov mechanisms
[49–51]. We concentrate on two typical examples. The
first one is the inverse chameleon model which has already
been analyzed in the strong gravity regime and serves
as a benchmark for our numerical results [38]. The second
one is the environmentally dependent dilaton [50] which
is motivated by string theory in the strong coupling
regime and obeys the conjectured least coupling principle.

*philippe.brax@cea.fr
†A.C.Davis@damtp.cam.ac.uk
‡r.jha@damtp.cam.ac.uk

PHYSICAL REVIEW D 95, 083514 (2017)

2470-0010=2017=95(8)=083514(13) 083514-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.95.083514
https://doi.org/10.1103/PhysRevD.95.083514
https://doi.org/10.1103/PhysRevD.95.083514
https://doi.org/10.1103/PhysRevD.95.083514


It provides a simple and concrete example where the
Damour-Polyakov mechanism is at play. We then apply
the modified Tolman-Oppenheimer-Volkov equations due
to the presence of the screened scalar field to these two
models and study constant density and polytropic models
of neutron stars within the chameleon and dilaton theories.
We also numerically compute the scalar profiles and mass-
radius relationships for chameleons and dilatons [52–54],
and comment on parameter degeneracy for both models.
The outline of this paper is as follows. In Sec. II we

briefly review the screened modified gravity models that
will concern us and restrict ourselves to static, spherically
symmetric spacetimes. In Sec. III we discuss the Tolman-
Oppenheimer-Volkoff equation and our numerical pro-
cedure. We present our numerical results in Sec. IV. We
conclude with possible implications in Sec. V.

II. SCREENED MODIFIED GRAVITY

A. The models

Our starting point is the Einstein-Hilbert action with the
conformally coupled scalar field in the Einstein frame,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
þ Sm½Ψi; A2ðϕÞgμν�: ð2:1Þ

Here M2
Pl ¼ 1=8πGN is the reduced Planck mass and Sm is

the action formatter fields (denoted generically asΨi), which
couple minimally to the Jordan frame metric, ~gμν ¼
A2ðϕÞgμν. We assume AðϕÞ is close to 1 for values of ϕ
in the allowed range below the Planck scale; i.e. we have

AðϕÞ ¼ 1þ
Z

ϕ
d ~ϕ

βð ~ϕÞ
MPl

; ð2:2Þ

where AðϕÞ and βðϕÞ will be specified later explicitly for
both chameleons and dilatons. As we are always in the low
energy regime, we take ϕ ≪ MPl throughout.
The Einstein equation can be derived as

Gμν ¼ 1

M2
pl

ðTμν
m þ Tμν

ϕ Þ; ð2:3Þ

where the energy momentum tensor of the scalar field is
given by

Tμν
ϕ ¼ ∇μϕ∇νϕ − gμν

�
1

2
gαβ∇αϕ∇βϕþ VðϕÞ

�
ð2:4Þ

and Tμν
m is the Einstein frame energy momentum of matter.

Defining the trace of the energy momentum of matter
Tm ≡ gμνTm

μν, the scalar field equation can then be written
as

□ϕ ¼ ∂V
∂ϕ −

∂ lnA
∂ϕ Tm: ð2:5Þ

In particular we need to pay attention to the conformal
transformation between the Einstein frame metric gμν and
the Jordan frame metric ~gμν. The perfect fluid energy
momentum tensor in the Einstein frame can be written as

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð2:6Þ

where (uμ) is the 4-velocity of the fluid elements, ρ
the energy density, and P the pressure. The Jordan frame
energy-momentum tensor ~Tμν and the Einstein frame
energy momentum tensor, Tμν, are related by

Tμ
ν ¼ A4 ~Tμ

ν ð2:7Þ

so that, for a perfect fluid, we have

ρ ¼ A4 ~ρ; P ¼ A4 ~P: ð2:8Þ

The trace of the energy momentum tensor is Tm ≡
gμνTm

μν ¼ −ρþ 3P in the Einstein frame. The numerical
values for the pressure and density are essentially the same
in both frames given our constraint ϕ ≪ MPl and A ∼ 1.
In the following we shall concentrate on two types of

models subject to the chameleon and Damour-Polyakov
mechanisms. Both types of scenarios require the existence
of a minimum of the effective potential ϕð~ρ; ~PÞ,

Veff ¼ V þ 1

4
A4ð~ρ − 3 ~PÞ ð2:9Þ

in terms of the Jordan matter density and pressure, taken as
conserved in the Jordan frame and scalar field independent.
For chameleons the effective mass of the scalar field at the
minimum of the effective potential

m2
effð~ρ; ~PÞ≡ d2Veff

dϕ2

¼ d2V
dϕ2

þ
�
dβ
dϕ

þ 4
β

MPl

�
β

MPl
A4ðϕÞð~ρ − 3 ~PÞ

ð2:10Þ

must be large enough in dense environments, such as the
interior of a star, in order to Yukawa suppress any effect of
the scalar field on outside bodies. On the other hand, the
Damour-Polyakov mechanism operates when βðϕð~ρ; ~PÞÞ
becomes extremely small in dense environments and
effectively suppresses all fifth force effects.
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B. Static and spherically symmetric configurations

In this section, we consider the Einstein and the Klein-
Gordon equations in the Einstein frame. We will restrict
ourselves to spherically symmetric configurations where
we denote by 0 ¼ d=dr where r is the spherical radial
coordinate in the Einstein frame. The resulting dynamical
equations are then expressed with source terms involving
the Jordan frame energy density ~ρ and pressure ~P as they
are taken to be the physical ones. We are interested in the
effect of screened modified gravity in the context of
compact and relativistic objects. In such a case, we restrict
ourselves to a static, spherically symmetric background
geometry with

ds2¼−eνðrÞdt2þeλðrÞdr2þ r2ðdθ2þ sin2 θdϕ2Þ; ð2:11Þ

where the scalar field is such that ϕ ¼ ϕðrÞ and we
parametrize

e−λðrÞ ¼ 1 −
2mðrÞ

r
: ð2:12Þ

The t and r components of Einstein’s equations then
become

m0 ¼ r2

2M2
Pl

�
A4 ~ρþ 1

2
e−λϕ02 þ VðϕÞ

�
; ð2:13Þ

ν0 ¼ eλ
�
2m
r2

þ r
M2

Pl

�
1

2
e−λϕ02 − VðϕÞ

�
þ rA4 ~P

M2
Pl

�
; ð2:14Þ

where the fluid parameters are defined in the Jordan frame;
i.e. we analyze the Einstein equations in the Einstein frame,
where the gravitational constant is a true constant, as a
function of the conserved fluid parameters as defined by the
Jordan frame.1 Therefore we use the conservation equation
in the Jordan frame

~∇μ
~Tm

μν ¼ 0; ð2:15Þ

which gives us the relation

~P0 ¼ −
1

2
ð~ρþ ~PÞ

�
ν0 þ 2

A0

A
ϕ0
�
: ð2:16Þ

The Klein-Gordon equation also simplifies to

ϕ00 þ
�
2

r
þ 1

2
ðν0 − λ0Þ

�
ϕ0 ¼ eλ

�
dV
dϕ

þ A3A0ð~ρ − 3 ~PÞ
�
:

ð2:17Þ

As already stated, the source term on the right-hand side
can be seen as an effective potential for the scalar field up to
the metric component eλ. A local extremum of the potential
is characterized by

dVeff

dϕ
¼ dV

dϕ
þ β

MPl
A4ðϕÞð~ρ − 3 ~PÞ ¼ 0: ð2:18Þ

The effective mass of the scalar field d2Veff
dϕ2 at the minima is

always positive if the potential VðϕÞ is convex and
ð~ρ − 3 ~PÞ > 0. As it turns out, the latter is an important
condition for the stability of the solution.

C. Stability

A stability analysis of the scalar equation of motion
(2.17) provides further insight. Following [55] we note that
since we are in a static, spherically symmetric geometry, we
can perturb the scalar into spherical harmonics [YlmðΩÞ]
and ignore all other perturbations to leading order. This is
enough for the qualitative argument presented here, and this
implies that

δϕ ¼
X

δϕlmðrÞYlmðΩÞeiωt ð2:19Þ

and the mode equation becomes

− ω2δϕ − eν−λ
�
δϕ00 þ

�
ν0 − λ0

2
þ 2

r

�
δϕ0

�

þ eν
�
lðlþ 1Þ

r2
þm2

eff

�
δϕ ¼ 0: ð2:20Þ

Focusing on the radial part, we get an approximate
dispersion relation of the form

ω2 ≃ k2 þm2
eff ; ð2:21Þ

where k is proportional to the inverse of the typical length
scale in the problem, the stellar radius r⋆. For stability we
require ω2 > 0. Using ~ρ⋆ ∼M⋆=r3⋆ andΦ⋆ ∼M⋆=ðM2

Plr⋆Þ,
we end up with the condition

ð1 − 3 ~P=~ρÞΦ⋆ ≳ −
1

24β20
; ð2:22Þ

where β0 is the coupling in vacuum outside the object, M⋆
the stellar mass, and Φ⋆ the Newtonian potential at its
surface. For neutron stars with Φ⋆ ∼ 0.1 and β0 ∼ 1, we
find that as soon as ð1 − 3 ~P=~ρÞ ≲ −1 we would generically
expect instabilities to appear. Eventually, this would back-
react and prevent the existence of the object itself.
The nature of this instability depends essentially on one

more ingredient which characterizes the compact object:
the fluid equation of state, or more precisely the relation
between pressure and matter density

1Notice the factors of A4 which explicitly show the mapping
between the Einstein and Jordan energy momentum tensors.
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~P ¼ ~Pð~ρÞ; ð2:23Þ

which we specify in the Jordan frame and which closes the
system of equations. The equation of state deep inside a
neutron star is not very well known. Several approxima-
tions exist and the uncertainties are reasonably large. For
our purposes it will be sufficient to focus on a polytropic
equation of state for the interior region of the neutron star.
See [56,57] for a detailed discussion. We thus use

~ρ ¼
�
~P
K

�1=Γ
þ

~P
Γ − 1

; ð2:24Þ

where Γ is the polytropic index and K, of mass dimension
4ð1 − ΓÞ, is a scale to be determined below. Realistic
neutron stars can be parametrized by piecewise polytropic
equations of state with Γ ∼ 1–3. As it turns out, the lower
the polytropic index, the stiffer the mass radius relationship.
We use values close to 2 for our numerical work.

III. THE SCALAR PROFILE FOR
CHAMELIONS AND DILATONS

A. Tolman-Oppenheimer-Volkoff equation

We have to simultaneously solve Eqs. (2.13)–(2.23), and
given their complexity we will have to resort to numerics.
We will come to the numerical implementation of our
relaxation algorithm in the next section, but before we do
that it is helpful to recall the solution in GR, i.e. when
neglecting the scalar backreaction.
TheGRproblemwas solved byTolman,Oppenheimer, and

Volkoff via what is generally known as the Tolman-
Oppenheimer-Volkoff (TOV) equation. It constrains the
structure of a spherically symmetric body of isotropicmaterial
which is in static gravitational equilibrium, as modeled by
General Relativity (GR). This equation is derived by solving
Einstein’s equations for a general time-invariant, spherically
symmetric metric. Let us consider an interior Schwarzschild
metric which gives the following line element:

ds2 ¼ −eνðrÞdt2 þ
�
1 −

2mðrÞ
r

�
−1
dr2 þ r2dΩ2; ð3:1Þ

where mðrÞ=GN has the simple interpretation of being the
mass inside the radius rwhile νðrÞ ormore precisely νðrÞ=2 is
known as the metric potential. In vacuum, outside the star,
m ¼ GNM⋆, Tμν

m ¼ 0, and νðrÞ ¼ lnð1 − 2GNM⋆=rÞ where
M⋆ is the total stellar mass. Now assuming a barotropic
equation of state (i.e. the pressure is a function of density
alone), the system is governed by the set of equations which
can be obtained by discarding the scalar field from the
equations derived previously

~P0 ¼ −ð~ρþ PÞmþ r3 ~P=2M2
Pl

r2ð1 − 2m=rÞ ; ð3:2Þ

m0 ¼ r2

2M2
Pl

~ρ; ð3:3Þ

ν0 ¼
�
1 −

2m
r

�
−1
�
2m
r2

þ r ~P
M2

Pl

�
; ð3:4Þ

where conventionally Eq. (3.2) is known as the TOVequation.
Using for the density a constant ~ρ ¼ ~ρ0, this leads to

mðrÞ ¼ ~ρ0r3

6M2
Pl

; ð3:5Þ

and one gets for the pressure

~PðrÞ ¼ ~ρ0
ð1 − 2GNM�

r⋆ Þ1=2 − ð1 − 2GNM�r2

r3⋆
Þ1=2

ð1 − 2GNM�r2

r3⋆
Þ1=2 − 3ð1 − 2GNM�

r⋆ Þ1=2
: ð3:6Þ

The trace of the energy momentum tensor can be computed
as

~ρ − 3 ~P ¼ ~ρ0
4ð1 − 2GNM�r2

r3⋆
Þ1=2 − 6ð1 − 2GNM�

r⋆ Þ1=2

ð1 − 2GNM�r2

r3⋆
Þ1=2 − 3ð1 − 2GNM�

r⋆ Þ1=2
: ð3:7Þ

This quantity is of great interest as it directly couples to the
scalar field which is here considered as a test field. As
~ρ − 3 ~P is an increasing function of r, we find its minimal
value at the center of the star

~ρc − 3 ~Pc ¼ ~ρ0
4 − 6ð1 − 2Φ⋆Þ1=2
1 − 3ð1 − 2Φ⋆Þ1=2

; ð3:8Þ

where ~ρc and ~Pc are, respectively, the density and pressure
at the stellar center and Φ⋆ ¼ GNM�=r� is the gravitational
potential at the stellar surface. Thus if Φ⋆ is greater that
5=18, we can see that ~ρ − 3 ~P is negative in the stellar center
and this potentially causes an instability in the scalar
equation of motion [37,38]. When this is not the case,
one needs to resort to numerical results in order to
understand the full dynamics. In the following, we shall
concentrate on inverse power law chameleons and envi-
ronmentally dependent dilatons for which the dynamics
will be analyzed.

B. Chameleons

The inverse power law chameleons combine an inverse
power law potential for a scalar fieldwith a constant coupling
to matter [23]. It is well known that the chameleon mecha-
nismworks for thesemodels and that the local tests of gravity
impose a constraint on the scale M appearing in the scalar
potential, which can be taken of the order of the dark energy
scale [23]. The coupling function is simply given by
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AðϕÞ ¼ eβϕ=MPl ; ð3:9Þ

where β is constant. The interaction potential is

VðϕÞ ¼ M4þnϕ−n ¼ V0ϕ
−n; ð3:10Þ

where n ≥ 1 is an integer of order one, and we define V0 ≡
M4þn to simplify notation. Keeping only the leading order
term from the coupling function, we see that the effective
potential is

Veffðϕ; ρÞ ≈
V0

ϕn þ
βϕ

MPl
ð~ρ − 3 ~PÞ: ð3:11Þ

Numerically, we first focus on the simple case of a constant
density star with an equation of state ~ρ ¼ ~ρ0. For numerical
ease we use a smoothed out (1 − tanh) transition to the
asymptotic matter distribution surrounding the star. This can
be either a vacuum or a constant density Schwarzschild–de
Sitter geometry.Realistic stars should requirematching to the
time dependent cosmological background geometry; how-
ever, our solution should capture all the salient features of this
more general case.

C. Dilatons

We follow a similar procedure for the dilaton fields. The
environmentally dependent dilaton [50] is such that the
coupling function has a minimum at ϕ ¼ ϕd as prescribed
by the least coupling principle. The potential is taken to be
exponentially decreasing as conjectured for the string
dilaton in the strong coupling regime. The screening
behavior of dilatons is a consequence of the fact that their
coupling function has a minimum at ϕd,

AðϕÞ ¼ 1þ a2
2M2

Pl

ðϕ − ϕdÞ2 þ � � � ; ð3:12Þ

or equivalently we have for the coupling

βðϕÞ≡MPl
∂ lnAðϕÞ

∂ϕ ≈
a2
MPl

ðϕ − ϕdÞ: ð3:13Þ

The dilaton self-interaction potential is

VðϕÞ ¼ A4ðϕÞM4e−
ϕ

MPl ≡ A4ðϕÞV0e−ðϕ−ϕdÞ=MPl ; ð3:14Þ

where again we define V0 ≡M4e−ϕd=MPl to simplify
notation. The effective potential is thus

Veffðϕ; ~ρÞ ¼ A4ðϕÞV0e−ðϕ−ϕdÞ=MPl þ ð~ρ − 3 ~PÞðAðϕÞ − 1Þ;
ð3:15Þ

which can be expanded in ϕ=MPl. Solar system tests of the
dilaton models imply that typically one must have a2 ≳ 106

[50] guaranteeing that the mass of the dilaton, on large
cosmological scales, is larger than 103H0 [46], whereH0 is
the Hubble rate now.

D. Numerical procedure for neutron stars

The solution of the equations of motion given a specified
equation of state requires a numerical procedure. We solve
the above set of equations (2.13)–(2.17) together with the
equation of state numerically. We follow the general
framework of [58] where the authors study relativistic
stars in fðRÞ gravity. In our case we expect the scalar field
to exhibit a smoothed out kinklike behavior extrapolating
between the minimum inside the neutron star to the
minimum of the ambient matter density outside the stellar
surface. The boundary conditions are set at r ¼ 0 and not at
the surface of the star r ¼ r⋆. For numerical ease we begin
by rescaling all the variables

a¼ r
r0
; ϕ̂¼ ϕ

M0

; ρ̂¼ r20
M2

Pl

~ρ; P̂¼ r20
M2

Pl

~P; ð3:16Þ

where r0, M0 are parameters specific to the star/modified
gravity theory being considered. We will make them
explicit later.
Substituting the above variables into the Einstein and

scalar equations of motion we obtain

ðað1−e−λÞÞ0
a2

¼ ρ̂e4βM0ϕ̂=MPl þ
�
M0

MPl

�
2
�
1

2
e−λϕ̂02þV

r20
M2

0

�
;

ν0e−λðrÞ

a
¼ð1−e−λÞ

a2
þ P̂e4βM0ϕ̂=MPl

þ
�
M0

MPl

�
2
�
1

2
e−λϕ̂02−V

r20
M2

0

�
;

P̂0 ¼−
1

2
ðρ̂þ P̂Þ

�
ν0 þ2β

M0

MPl
ϕ̂0
�
;

0¼ ϕ̂00 þ
�
2

a
þ1

2
ðν0−λ0Þ

�
ϕ̂0

−eλ
�
dV̂

dϕ̂
þMPl

M0

βe4βM0ϕ̂=MPlðρ̂−3P̂Þ
�
:

ð3:17Þ

The parameter M0 essentially sets a mass scale for the
scalar field and will depend on the modified gravity theory
considered. To close this system of equations, we also need
the equation of state for the fluid making up the star, and
written out in terms of the rescaled variables, this reads

P̂ ¼ P̂ðρ̂Þ: ð3:18Þ

We use a polytropic equation of state and in our rescaled
variables we get
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ρ̂ ¼
�
P̂

K̂

�
1=Γ

þ P̂
Γ − 1

: ð3:19Þ

K̂ here is the overall normalization of the polytropic
equation of state, and for us it is just a numerical constant.
We pick the value of 0.39 which is consistent with what is
used in the literature [60]. We now need to pick a value for
the scale r0 used to normalize all length scales in our
problem. A convenient choice is of the order of

r0 ¼ MPl ~ρ
−1=2
c ð3:20Þ

so that for Γ ¼ 2 and K̂ ¼ 0.39 we get ρ̂c ¼ 1 and
P̂c ≃ 0.23. With these choices r� ≃ r0 ×Oð1Þ for highly
relativistic stars, where r� is the stellar radius.
The choice of the various numerical parameters is moti-

vated by fixing the normalization scale to a specific, stable,
stellar solution of the Tolman-Oppenheimer-Volkoff equa-
tions in GR. It can be shown [58] that such a solution
corresponds to a star with central energy density of ~ρc ¼
6.47 × 1014 g=cm3, a global mass ofM⋆ ¼ 3.10 M⊙, and a
gravitational potential of jΦ⋆j≃ 0.21. The stellar configu-
ration in chameleon and dilaton gravity theories is almost
identical to this solution. We use a relaxation type algorithm
and vary the relaxation parameter to ensure fast and smooth
convergence. We vary the grid size by hand to zoom in on
regions where the scalar field varies rapidly. A nonhomo-
geneous grid would provide better resolution but is beyond
the scope of this work. We do, however, note that for the
theories and parameter ranges considered, there is no
significant loss of resolution.
We now turn to the boundary conditions. We have

three first-order differential equations and one second-order
differential equation, and thus we require five boundary
conditions.
(1) Demanding regularity at the center of the star

(a ¼ 0) implies

ϕ̂0ð0Þ ¼ 0;

ðað1 − e−λÞÞja→0 ¼ 0; ð3:21Þ
where the second condition ensures that the metric
functions are well behaved at the stellar center. This
corresponds to a vanishing mass functionmðrÞ at the
origin.

(2) The condition on ν corresponds to defining the time
coordinate as the proper time of a static observer at a
point a1 far from the stellar surface,

νða1Þ ¼ 0: ð3:22Þ

(3) As a1 → ∞ we expect

ϕ̂ða1Þja1→∞ ¼ ϕ̂∞: ð3:23Þ

This “asymptotic” value ϕ̂∞ corresponds to the
minimum of the effective potential Veff far from
the star where this behavior can be solved for
analytically. In the limit of a → ∞ the scalar
equation becomes

ϕ̂00 þ 2

a
ϕ̂0 ¼ dV̂

dϕ̂
; ð3:24Þ

and for a massive scalar field the solution looks like

ϕ̂ ¼ ϕ̂∞ þ B
e−m̂a

a
; ð3:25Þ

where m̂ is the scalar mass and B is a constant.
Numerically it is easier to use this falloff rather than
imposing a hard boundary condition.

(4) The boundary conditions for the pressure are either

P̂ð0Þ ¼ P̂c;

P̂ða1Þ ¼ P̂∞: ð3:26Þ

For a constant density star we choose P̂ða1Þ ¼ −ρ̂∞ so that
the solution is asymptotically de Sitter, while for the
polytropic equation of state it is easier to fix the pressure
at the stellar center and this once again gives an asymptoti-
cally de Sitter solution.

IV. NUMERICAL RESULTS

In this section we present the results of our numerical
integration. We carry out the integration for chameleon and
dilaton modified gravity models.

A. Chameleons

For fixed values of the coupling β ∼ 1 and the parameter
n ¼ 1, the numerical solution changes with the central
density ρ̂c, the mass scale M0, and the asymptotic density
~ρ∞.More concretely, we take the density to vary according to

ρ̂ðaÞ ¼ ρ̂c
2

�
1 − tanh

�
a − 1

ϵ

��
þ ρ̂∞: ð4:1Þ

Choosing ϵ to be sufficiently small we recover the step
function profilewhere ρ̂ ∼ ρ̂c fora≲ 1 and ρ̂ ∼ ρ̂∞ fora ≳ 1,
and thus the stellar radius is around a ∼ 1. The ρ̂∞ value
should be the typical galactic density ~ρ∞ ∼ 10−24 g=cm3.
This implies that ρ̂∞ ∼ 10−38. This is a more appropriate
asymptotic density than typical cosmological densities as we
expect neutron stars to be in galaxies and as is apparent from
Eq. (4.1) for small enough values of ϵ, ρ̂ ∼ ρ̂∞ for a ≳ 1. We
do, however, note that given the large density contrast
between the neutron star interior and the asymptotic density
used, we do not find our numerics to be very sensitive to this
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parameter. For numerical convenience we will use a larger
value of ρ̂∞ ∼ 10−4. Realistic stars will require matching to
the time dependent cosmological background geometry;
however, our solution should capture all the salient features
of this more general case.
We always set M0 such that the asymptotic value of the

scalar field is normalized to a value Oð1Þ. This is done
purely for numerical ease, and in particular we use the
convenient value of

M0 ¼
1

2.6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V0MPl

β ~ρ∞

s
: ð4:2Þ

Thus the asymptotic value of the scalar field is given by

ϕ̂∞ ≃ 2.6

�
~ρ∞

~ρ − 3 ~P

�
1=2

ð4:3Þ

so that we have ϕ̂∞ ∼ 1.3. We define the rescaled potential

as V̂ ¼ V
r2
0

M2
0

expressed in terms of the rescaled variables as

V̂eff ¼
V̂0

ϕ̂
þ M2

0

4M2
Pl

e4βM0ϕ̂=MPlðρ̂ − 3P̂Þ ð4:4Þ

and the effective mass as

m̂2
eff ¼

2V̂0

ϕ̂3
min

þ 4β2e4βM0ϕ̂min=MPlðρ̂ − 3P̂Þ: ð4:5Þ

For our numerics, we use the central density of the star to
define the effective mass. Note that all of this is defined up
to an overall numerical parameter V̂0. Realistic values for
the chameleon with n ¼ 1 are such that V0 ∼ 10−15 eV.
This is far too small a number for numerics, and we instead
use V̂0 ∼Oð0.01Þ.

The effective rescaled mass is large in the stellar interior
and small outside, and thus we expect the scalar to track the
local minima of the effective potential in the stellar interior
and smoothly evolve toward ϕ̂∞ outside the star. We can
further see that the sign of ðρ̂ − 3P̂Þ is crucial in determin-
ing if this effective mass is well defined and consequently if
the solution is stable.
We plot the scalar field profile for a range of central

densities ρ̂c in the left panel of Fig. 1. For low central
densities the field smoothly transitions from its minima
inside the star to the asymptotic minimum far from the
stellar surface. Increasing this scaled central density while
keeping the radius fixed has the effect of increasing the
physical density of the star, and this in turn means that
the field is very stiffly held on to its minimum value inside
the star. There is now a sharp transition close to the surface
of the star, much like the chameleon thin shell effect. The
field then smoothly approaches its asymptotic global
minimum outside the star. It is interesting to note that this
behavior is almost exactly what we get if we keep the
central density of the star fixed and tune the effective mass
of the chameleon scalar inside the star. This is shown in the
right panel of Fig. 1. There are two complementary
explanations for this behavior. In the first case it is easier
to think in terms of stellar parameters. Our relaxation
algorithm tries to minimize the net energy (potential plus
gradient) with our boundary conditions of ϕ̂0 ¼ 0 at a ¼ 0

and ϕ̂ fixed asymptotically. As the energy density inside the
star increases, it is increasingly unfavorable for the scalar to
deviate significantly from its minimum value. Close to the
stellar surface the smoothed out kink in ρ forces the scalar
to quickly evolve to its asymptotic value. Changing the
mass of the scalar has a similar effect, a large mass, i.e. a
small Compton wavelength, scalar switches between the
two minima sharply, whereas a small mass, large Compton
wavelength, scalar has a sluggish transition.
For a polytropic equation of state for the neutron star we

get a qualitatively similar behavior. A slight modification to

FIG. 1. In the left panel, numerical solutions for the chameleon field for a range of values of the stellar central density for a constant
density star with M0 ¼ 0.01MPl, m̂ ¼ 100. In the right panel, the chameleon field for a range of values of the chameleon mass for a
constant density star with ρ̂c ¼ 0.1, M0 ¼ 0.01MPl.
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Eq. (3.19) means that we can smoothly transition to the
ambient background/cosmological density, and this also
helps us avoid certain numerical instabilities close to the
stellar surface. This point is discussed in greater detail in
[58]. We thus use

ρ̂ ¼
�
P̂þ ρ̂∞
0.39

�
1=Γ

þ P̂
Γ − 1

; ð4:6Þ

where ρ̂∞ is the ambient density outside the star and is
equal to zero for vacuum. The left panel in Fig. 2 shows the
evolution of the scalar field for a range of scalar masses
respectively. The right panel shows that similar profiles for
different values of the central masses can be obtained by
changing Γ respectively. Hence there is a strong degeneracy
between the neutron star equation of state and the modified
gravity model parameters.
Finally for the sake of completeness we plot the scalar

field profile for the case of ρ̂ − 3P̂ < 0 in the center of the
star in the left panel of Fig. 3. As mentioned previously, in
this case the scalar field does not have a well defined
minimum inside the star and diverges. This divergence
obviously means that the system is no longer stable as the

energy momentum tensor associated with the scalar also
diverges, implying that the background geometry is no
longer stable.

B. Dilaton

In the case of dilatons, we get the following expansion in
ϕ=MPl for the effective potential:

Veffðϕ; ρÞ≃ V0 − V0

�
ϕ − ϕd

MPl

�
þ 1

2

�
ϕ − ϕd

MPl

�
2

× a2ð4V0 þ ð~ρ − 3 ~P � � � : ð4:7Þ

The minimum of the effective potential is obtained at a
value ϕmin defined by

ðϕmin − ϕdÞ ¼
MPlV0

a2ð4V0 þ ð~ρ − 3 ~PÞÞ : ð4:8Þ

As for chameleons we rescale the field so that at infinity
when ~P∞=~ρ∞ ¼ −1 we get a rescaled field of order
Oð1Þ. Moreover, it is convenient to shift and redefine
ðϕ − ϕdÞ → ϕ. Using the scale

FIG. 2. In the left panel, the chameleon field for a range of values of the chameleon mass and a polytropic neutron star. The parameters
used here are Γ ¼ 2, P̂c ¼ 0.23, ρ̂∞ ¼ 10−4, M0 ¼ 0.01MPl. In the right panel the chameleon field with Γ ¼ 2.12 which mimics the
behavior of the m̂ ¼ 190 in the right panel even though the parameters are M0 ¼ 0.01MPl, m̂ ¼ 100, and ρ̂∞ ¼ 10−4.

FIG. 3. In the left panel, we show an example of unstable chameleon solution while in the right panel we have an unstable dilaton.
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M0 ¼
V0MPl

2a2ðV0 þ ~ρ∞Þ
ð4:9Þ

we obtain that

ϕ̂min ¼
2ðV0 þ ~ρ∞Þ

4V0 þ ð~ρ − 3 ~PÞ ð4:10Þ

and at infinity, ϕ̂∞ ¼ 0.5. We can now express the rescaled
effective potential V̂eff in terms of the rescaled variables

V̂effðϕ̂; ρ̂Þ ¼
r20
M2

0

�
A4ðϕÞV0e−ϕ=MPl þ 1

4
A4ðϕÞð~ρ − 3 ~PÞ

�

¼ e4βðϕ̂ÞM0ϕ̂=MPl

�
V̂0e−M0ϕ̂=MPl þ M2

0

4M2
Pl

ðρ̂ − 3P̂Þ
�

ð4:11Þ
and derive the corresponding mass. It should be noted that
these expressions are defined up to an overall numerical
constant V̂0 whichwe take to beOð0.01Þ for numerical ease.
We begin with a constant density star with equation

of state ρ ¼ ρ0 and a smoothed out transition to the

asymptotic matter distribution surrounding the star. We
plot the scalar field profile for a range of central densities ρ̂c
in the left panel of Fig. 4 and for a range of effective dilaton
masses in the right panel of Fig. 4. We can see that for low
central densities the field smoothly transitions from its
minimum inside the star to the asymptotic minimum far
from the stellar surface. Increasing the central density or the
mass of the dilaton have a similar effect on the scalar
profile. The transition becomes sharper and more kinklike
and occurs closer to the surface. The dilaton scalar profiles
are, however, noticeably smoother than the chameleon
profiles from the previous section.
For a polytropic neutron star we use the modified

equation of state (4.6). In the panels of Fig. 5, we show
the evolution of the scalar field for a range of scalar masses.
Again and as for chameleons we show in the left panel that
changing Γ can be mimicked by a change of the central
mass and vice versa; i.e. the equation of state is degenerate
with a change of the dilaton parameters.
Finally in Fig. 3 we exemplify the scalar instability that

develops in the dilatonic case for ρ̂ − 3P̂ < 0. This criterion
therefore appears to be a good model independent way to

FIG. 4. In the left panel, numerical solutions for the dilaton field for a range of values of the stellar central density and a constant
density star withM0 ¼ 0.01MPl and m̂ ¼ 500. In the right panel, the dilaton field for a range of values of the dilaton mass and a constant
density star with ρ̂c ¼ 0.1 and M0 ¼ 0.01MPl.

FIG. 5. In the right panel, numerical solutions for the dilaton field for a range of values of the dilaton mass for a polytropic neutron star
with Γ ¼ 2, ρ̂∞ ¼ 10−4, andM0 ¼ 0.01MPl. In the left panel the dilaton field with Γ ¼ 2.07 for a polytropic star mimics the behavior of
the m̂ ¼ 200 curve in the right panel while here M0 ¼ 0.01MPl, m̂ ¼ 100, and ρ̂∞ ¼ 10−4.
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test the onset of such an instability for stellar structures in
both the chameleon and dilaton cases.

V. IMPLICATIONS AND CONCLUSIONS

We have studied scalar field profiles around neutron stars
for different modified gravity models corresponding to two
screening mechanisms, i.e. the chameleon and Damour-
Polyakovmechanisms. This has been done for two classes of
models: the inverse power law chameleons and the environ-
mentally dependent dilaton. The latter is particularly inter-
esting as it is expected to arise in the strong coupling regime
of string theory. We have solved the dynamics of these
models using a relaxation algorithm allowing us to study the
modified Tolman-Oppenheimer-Volkoff equations for con-
stant density stars and the slightly more realistic polytropic
neutron stars for a range of model parameters.
We find nontrivial modifications to the stellar structure

due to the addition of a scalar degree of freedom to gravity.
In particular we find that deep inside the star, the scalar
field settles down to the minimum of the effective potential
which depends on the modified gravity model used and the
details of the equation of state used to model the neutron
star. Close to the stellar surface, the scalar field starts
responding to the changing ambient density, and this
response is either sluggish or extremely rapid depending
on the model parameters used, i.e. eventually on the central
mass of the scalar field. Finally far away from the neutron
star the scalar field settles down to the minimum of the
effective potential with the ambient cosmological density.
Thus the scalar profile on average looks like a smoothed out
kinklike solution extrapolating between the two minima.
We find that the scalar field develops an instability deep in
the stellar center for ~ρ − 3 ~P < 0. This criterion appears to
be robust for a range of parameter values and for both
chameleon and dilaton theories. Indeed a crude theoretical
estimate shows that we would expect the radial mode of
spherically symmetric scalar perturbations to develop an
instability for ~ρ − 3 ~P≲ 0.

For realistic models which pass the solar system tests, we
expect the mass of the scalar field to be very large deep
inside the star, due to the very large central density. Hence
the kinklike solution should vary very abruptly when
interpolating between the two minima, implying that the
effects of the scalar field on the dynamics of star should be
reduced. This can be inferred from Fig. 5 where the profile
is depicted and Fig. 7 where the change of the mass-radius
relationship is shown to be smaller when the central mass
increases. Of course, taking into account the actual solar
system constraints on the models and the resulting effects
on the field profile and the mass radius relationship is
beyond the scope of the present paper, as it is very likely
that different numerical methods would have to be used.
Another interesting aspect of the numerical solutions is

the very high degree of degeneracy between parameters of
the modified gravity theory and parameters of the neutron
star equation of state. We find that by changing the effective
mass parameter of chameleons and dilatons we can mimic
any change in the scalar profile that results from varying
the stellar central density or the polytropic index of the
equation of state. This can be strengthened by analyzing the
mass-radius relationship for the chameleon, as in Fig. 6,
and for the dilaton, as in Fig. 7. We have determined the
radius r⋆ of the star as the point where the pressure vanishes
~Pðr⋆Þ ¼ 0 and the mass as GNM⋆ ¼ mðr⋆Þ. We have used
the rescaled mass and radius defined by

M̂ ¼ K1=4ðΓ−1ÞM⋆; R̂ ¼ K−1=4ðΓ−1Þr⋆ ð5:1Þ

as K has mass dimension 4ð1 − ΓÞ, which has the advan-
tage of making the overall normalization of the polytropic
equation of state K not very relevant to our results [59].
It can be seen that varying the central mass of the scalar

for instance has a similar effect on the mass-radius
relationship as varying the polytropic index for the stellar
equation of state. As the experimental constraints on the
stellar equation of state for neutron stars are weak [60], it is
likely that for dilatons and chameleons the neutron star

FIG. 6. In the left panel we show the scaled mass-radius relationship of a polytropic star (Γ ¼ 2) for a range of values of the chameleon
mass. In the right panel, the scaled mass-radius relationship of a polytropic star with Γ ¼ 2.23 in pure GR. This mimics the m̂ ¼ 1000
curve of the left panel reasonably well.
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observables that depend only on the mass and the radius of
the star are not guaranteed to distinguish between small
differences in the equation of state versus small modifi-
cations to gravity. It was argued in [61] that observables
that depend on the effective surface gravity of the neutron
star can in principle break this degeneracy. However, it has
been shown that this might not be the case for fðRÞ
theories [62]. It may be possible to break such a degen-
eracy by using the near independence on the equation of
state of the relationship between the reduced moment of
inertia Ī ¼ I=G2

NM
3⋆ and the compactness C ¼ GNM⋆=r⋆

of the star [63]. Other observables might be useful, such as
cooling rates of neutron stars. A neutron star cools via
photon and neutrino emission. While the photon lumi-
nosity depends only on the density of the photosphere
surrounding the neutron star, neutrino cooling is sensitive
to the central temperature. As a result, it would be
interesting to analyze if observations of the surface
temperatures of neutron stars could lead to useful con-
straints on the deviations from general relativity [64].

Such an analysis for chameleons and dilatons, however, is
beyond the scope of this work. Finally it would be
extremely interesting to study how our results change
when the equation of state for the matter in the star is
modified, i.e. not of the polytropic type anymore. We hope
to come back to this point in another publication.
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