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We derive a direct correlation between the power spectrum and bispectrum of the primordial curvature
perturbation in terms of the Goldstone mode based on the effective field theory approach to inflation.
We show examples of correlated bispectra for the parametrized feature models presented by the Planck
collaboration. We also discuss the consistency relation and the validity of our explicit correlation between
the power spectrum and bispectrum.
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I. INTRODUCTION

The high energy scale during inflation, presumably well
beyond the reach of the current and future particle accel-
erator experiments, calls for an effective theory description
of inflation [1,2]. This is because by construction the
effective field theory approach is systematic through which
we can account for our ignorance. A key observation in
writing the effective field theory of single-field inflation1 is
to note that in the time-dependent background the time
translational symmetry is broken, while spatial diffeomor-
phism is preserved [1]. The couplings that determine the
expansion of the effective theory of the Goldstone mode π,
which realizes the time diffeomorphism, are represented by
a set of mass scalesM4

n. In the so-called decoupling regime
the Goldstone π could decouple from the metric fluctua-
tions and the effective action of π is dramatically simplified.
Especially, the first expansion parameter M4

2 is manifest in
both quadratic and cubic order of π: see (5).
The observation that the coefficientM4

2 is common to the
quadratic and cubic action of π indicates that, to leading order
in the decoupling limit, the corresponding correlation
functions—the power spectrum and bispectrum—are explic-
itly correlated. It means that ideally, given an explicit analytic
form of the power spectrum theoretically, we can find
unambiguously the corresponding bispectrum.Or, at the very
least observationally, it remains tantalizing because of the
existence of outliers in the power spectrum of the temperature
fluctuations of the cosmic microwave background [4]. The
explicit correlation would make possible joint analysis
using the two-and three-point correlation functions [5],which
can place much stronger constraints on cosmological param-
eters. It can also open a compelling way of searching for
new physics beyond the paradigm of standard slow-roll
inflation, since any deviations would strongly signal the
typical mass scale associated with new physics [6].

In this article, we derive a direct and explicit relation
between thepower spectrumandbispectrumof theprimordial
curvature perturbation using the Goldstone mode π. Such a
correlation was first explicitly studied in the top-down
approach [7] and expanded into more general context in
[8], in which heavy degrees of freedom are integrated out to
lead to an effective single field description of inflation [9] (see
also [10]). To leading order of the heavymass scale, the speed
of sound cs uniquely characterizes the effects of the heavy
degrees of freedom [9], i.e., the coefficients of the effective
theory. Our approach here is conversely bottom-up, comple-
mentary to the previous studies aswewill see in themain text.
The article is organized as follows. In thenext section, after

briefly reviewing the effective field theory of inflation, we
derive the simple expression of the correction to the power
spectrum. By inverting it we can write the unknown, model-
dependent effective theory parameter in terms of the power
spectrum which can be constrained observationally. In
Sec. III, we derive a direct and explicit relation between
the corrections of the power spectrum and bispectrum. In
Sec. IV we discuss the consistency relation of the squeezed
bispectrum [11] and the validity of the correlation we derive.
The final section is devoted to summary and conclusions.

II. EFFECTIVE THEORY AND CORRECTION
TO POWER SPECTRRUM

In this section, after briefly reviewing the effective field
theory of inflation, we give the formula of the correction to
the power spectrum due to the deviation from usual slow-
roll phase parametrized by the expansion coefficient of the
effective theory.

A. Brief review of effective field theory of inflation

We begin with a brief review of the effective field theory of
inflation [1]. In unitary gauge, the information on the
primordial curvature perturbation is encoded in geometrical
quantities respecting the time-dependent spatial diffeomor-
phismsymmetry.Then, theaction for the primordial curvature
perturbation is written in general as

1Extensions to the multifield case are possible under certain
constraints [3].
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Fðgμν; gμν; Kμν; Rμνρσ;∇μ; tÞ; ð1Þ

where Kμν is the extrinsic curvature with respect to t ¼
constant hypersurface. Since the zeroth and first order terms
aredeterminedby thebackgroundquantities, the actioncanbe
expanded as

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
m2

PlRþm2
Pl
_HðtÞg00−m2

Pl½3H2ðtÞþ _HðtÞ�

þFðδg00;δKμν;δRμνρσ;gμν;gμν;∇μ;tÞ
�
; ð2Þ

where F represents second and higher order perturbation
terms and is given by

F¼1

2
M4

2ðtÞðδg00Þ2þ
1

3!
M4

3ðtÞðδg00Þ3þ���

−
1

2
M̄3

1ðtÞδg00δK−
1

2
M̄3

2ðtÞKδK−
1

2
M̄3

3ðtÞKμ
νδKν

μ− � �� ;
ð3Þ

with K ≡ Kμ
μ. It is noticed that time diffeomorphism invari-

ance is broken in this action. But, it can be recovered by the
introduction of the Stückelberg field πðxÞ, which corresponds
to the Nambu-Goldstone boson and transforms under the
coordinate transformations t → ~t ¼ tþ ξ0ðxÞ and x → ~x as

πðxÞ → ~πð~xðxÞÞ ¼ πðxÞ − ξ0ðxÞ: ð4Þ

In the decoupling regimeH ≳M2
2=mPl, the action reduces to

Sπ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

Pl

2
R −m2

Pl
_H

�
_π2 −

ð∇πÞ2
a2

�

þ 2M4
2

�
_π2 þ _π3 − _π

ð∇πÞ2
a2

�
−
4

3
M4

3 _π
3 þ � � �

�
; ð5Þ

where the dots represent the higher derivative terms. The
sound velocity cs is related to M2 as

c−2s ¼ 1 −
2M4

2

m2
Pl
_H
: ð6Þ

In this article, we further set M3ðtÞ ¼ 0 because M4
3∼

ð1 − c−2s ÞM4
2 on general arguments [12]. π andR are related

to linear order by π ¼ −R=H, so in the regime (5) is valid we
can to first approximation consider _π ≈ − _R=H.

B. Corrections to the power spectrum

We first concentrate on the quadratic part and evaluate
the correction to power spectrum originating from the term
with M4

2. Since the standard slow-roll terms multiplied by
_H in (5) are dominant as various observations indicate, we

treat the quadratic contribution of M4
2 as perturbation. In

terms of the speed of sound (6), we assume that for a
limited duration cs deviates from unity, with the deviation
being not too far away from unity. Neglecting the metric
perturbation as we consider the decoupling regime so thatffiffiffiffiffiffi−gp ¼ a3 simply, from (5) the quadratic part other than the
usual slow-roll, which we may call second order inter-
action, is

S2;int ¼
Z

d4xa32M4
2ðtÞ _π2: ð7Þ

The interaction Hamiltonian is then2

Hint ¼
Z

d3xa3ð−2Þc2sM4
2ðtÞ _π2 ≈

Z
d3xa3ð−2ÞM4

2ðtÞ _π2;

ð8Þ

where we have used the assumption that cs is not too far
away from unity. This interaction Hamiltonian can be
expressed in terms of the Fourier mode as

Hint ¼ −2aM4
2

Z
d3q1d3q2
ð2πÞ3 δð3Þð−q12Þπ0q1π0q2 ; ð9Þ

where q12���n ≡ q1 þ q2 þ � � � þ qn, a prime represents a
derivative with respect to the conformal time dτ ¼ dt=a,
and

πðτ; xÞ ¼
Z

d3q
ð2πÞ3 e

iq·xπqðτÞ: ð10Þ

Now we can compute the corrections using the standard in-
in formalism. We can straightly obtain

Δhπk1πk2ðτÞi≡ ð2πÞ3δð3Þðk12Þ
2π2

k31
ΔPπ

¼ i
Z

τ→0

τ0→−∞
adτ0h0j½Hintðτ0Þ;πk1πk2ðτÞ�j0i

¼ ð2πÞ3δð3Þðk12Þ2ℜ

×

�
2iπ̂�k1 π̂

�
k2
ð0Þ

Z
0

−∞
dτð−2a2M4

2Þπ̂0k1 π̂0k2ðτÞ
�
;

ð11Þ

where we have expanded the free field πk using the creation
and annihilation operators as

2One should be careful when the interaction Lagrangian
includes derivative terms. Conjugate momentum must be defined
by use of the full Lagrangian rather than the free part.
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πk ¼ akπ̂k þ a†−kπ̂
�
k

with ½ak; a†q� ¼ ð2πÞ3δð3Þðk − qÞ; ð12Þ

and π̂kðτÞ is the mode function solution given by

π̂kðτÞ ¼ −
R̂k

H
¼ −iffiffiffiffiffiffiffiffiffi

4ϵk3
p

mPl

ð1þ ikτÞe−ikτ: ð13Þ

Thus, we immediately find the correction to the power
spectrum as

ΔPπ

Pπ
ðkÞ ≈ ΔPR

PR
ðkÞ ≈ k

m2
PlϵH

2

Z
0

−∞
dτð−2M4

2Þ sinð2kτÞ;

ð14Þ

where

Pπ ¼
PR

H2
¼ 1

8π2m2
Plϵ

ð15Þ

is the featureless flat spectrum.

C. Inverting the power spectrum

For future convenience, let us return to (11) and write it
in an alternative form. The real part is obtained by adding
the complex conjugate:

2π2

k31
ΔPπ ¼ 2ℜ

�
2iπ̂�k1 π̂

�
k2
ð0Þ

Z
0

−∞
dτð−2a2M4

2Þπ̂0k1 π̂0k2ðτÞ
�

¼ 2iπ̂�k1 π̂
�
k2
ð0Þ

Z
0

−∞
dτð−2a2M4

2Þπ̂0k1 π̂0k2ðτÞ þ c:c:

ð16Þ

By noting from (13) that π̂kð−τÞ ¼ −π̂�kðτÞ and π̂0kð−τÞ ¼
π̂�kðτÞ, and by oddly extending M4

2 to define ~M4
2 as

~M4
2ðτÞ≡

�
M4

2ðτÞ if τ < 0

−M4
2ð−τÞ if τ > 0

; ð17Þ

(16) can be written as3

2π2

k31
ΔPπ ¼ 2iπ̂�k1 π̂

�
k2
ð0Þ

Z
∞

−∞
dτð−2a2 ~M4

2Þπ̂0k1 π̂0k2ðτÞ

¼ 2π2Pπ
1

k1k2

1

2

Z
∞

−∞
dτ

−2 ~M4
2

ϵm2
PlH

2
ie−ik12τ: ð18Þ

Since we have defined ~M4
2 oddly, only the odd part of e−ik12τ

survives and finally we have, setting k1 ¼ k2 ¼ k,

ΔPπ

Pπ
¼ k

2

Z
∞

−∞
dτ

−2 ~M4
2

ϵm2
PlH

2
sinð2kτÞ: ð19Þ

From (19) we can write the coefficient ~M4
2, which is

essentiallyM4
2 in the effective action (5), in terms ofΔPπ=Pπ

as follows. From sinð2kτÞ ¼ ðe2ikτ − e−2ikτÞ=ð2iÞ, we can
multiply e2ikτ

0
to both sides of (19) and integrate over k to

obtain

Z
∞

−∞
dke2ikτ

0 2i
k
ϵm2

PlH
2
ΔPR

PR
ðkÞ

¼ 1

2

Z
∞

−∞
dτð−2 ~M4

2Þ
Z

∞

−∞
dk½e2ikðτþτ0Þ − e−2ikðτ−τ0Þ�

¼ 2π ~M4
2ðτ0Þ: ð20Þ

Thus,

2 ~M4
2ðτÞ ¼ i

2ϵm2
PlH

2

π

Z
∞

−∞

dk
k
ΔPR

PR
ðkÞe2ikτ: ð21Þ

This is the inverse formula, in whichM4
2 can be expressed in

terms of the correction to power spectrum.

III. CORRELATION BETWEEN POWER
SPECTRUM AND BISPECTRUM

In this section, we first give the formula of bispectrum
coming from the cubic action (5), and then derive the
explicit relation between the correction to the power
spectrum and the bispectrum.

A. Bispectrum

As advertised before, we only consider the cubic order
action with the coefficient M4

2:

S3 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
2M4

2

�
_π3 − _π

ð∇πÞ2
a2

�
: ð22Þ

We can follow the same steps as before: the interaction
Hamiltonian is

Hint ¼ −
Z

d3xa3 · 2M4
2

�
_π3 − _π

ð∇πÞ2
a2

�

¼ −2a3M4
2

Z
d3q1d3q2d3q3

ð2πÞ3·2 δð3Þð−q123Þ

×

�
_πq1 _πq2 _πq3 þ

q1 · q2
3a2

πq1πq2 _πq3 þ 2 perm

�
: ð23Þ

Then, the bispectrum of π becomes

3Notice that we are at this stage not directly computing the
propagator by adopting the iε prescription of the contour, which
remains unchanged though. Our goal is to invert (14) by
incorporating mathematical manipulations in such a way that
the model-dependent parameter M4

2 is given in terms of ΔPπ
which can be observationally constrained.
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hπk1πk2πk3ðτÞi≡ ð2πÞ3δð3Þðk123ÞBπðk1; k2; k3Þ

¼ ð2πÞ3δð3Þðk123Þ
�
iπ̂�k1 π̂

�
k2
π̂�k3ð0Þ

Z
0

−∞
dτð−2aM4

2Þ

× ½6π̂0q1 π̂0q2 π̂0q3ðτÞ þ 2ðk1 · k2Þπ̂q1 π̂q2 π̂0q3ðτÞ þ 2 perm� þ c:c:

�
: ð24Þ

Again, we can find that by extending M4
2 oddly the complex conjugate includes the integral from 0 to ∞, so

Bπðk1; k2; k3Þ ¼ iπ̂�k1 π̂
�
k2
π̂�k3ð0Þ

Z
∞

−∞
dτð−2a ~M4

2Þ½6π̂0q1 π̂0q2 π̂0q3ðτÞ þ 2ðk1 · k2Þπ̂q1 π̂q2 π̂0q3ðτÞ þ 2 perm�: ð25Þ

B. Bispectrum in terms of the power spectrum

In this subsection, we can use (21) and write the bispectrum (25) purely in terms of the power spectrum and its
derivatives. Let us first consider the first term of (25). We can straightforwardly write, with K ≡ k123,

iπ̂�k1 π̂
�
k2
π̂�k3ð0Þ

Z
∞

−∞
dτð−2a ~M4

2Þ6π̂0q1 π̂0q2 π̂0q3ðτÞ ¼ ð2π2PπÞ2
H
π

3H
k1k2k3

Z
∞

−∞

dk
k
ΔPR

PR
ðkÞ

Z
∞

−∞
dττ2eið2k−KÞτ

¼ ð2π2PπÞ2
3

4
H

1

k1k2k3

Z
∞

−∞

dk
k
ΔPR

PR
ðkÞ d2

dk2
δ

�
k −

K
2

�

¼ ð2π2PπÞ2
3

4
H

1

k1k2k3

d2

dk2

�
1

k
ΔPR

PR
ðkÞ

�				
k¼K=2

; ð26Þ

where for the second equality we have replaced τ2 in the
time integral with two derivatives with respect to k, and for
the last equality we have iteratively integrated by parts.
To proceed further, with PðtotalÞ

R ¼ PR þ ΔPR, from

logPðtotalÞ
R ≈ logPR þ ΔPR

PR
; ð27Þ

with PR being flat, we can find the spectral index and the
running respectively as4

nR − 1≡ d logPðtotalÞ
R

d log k
¼ k

d
dk

�
ΔPR

PR

�
; ð28Þ

αR ≡ dnR
d log k

¼ k2
d2

dk2

�
ΔPR

PR

�
þ k

d
dk

�
ΔPR

PR

�
: ð29Þ

Thus (26) can be now written as

iπ̂�k1 π̂
�
k2
π̂�k3ð0Þ

Z
∞

−∞
dτð−2a ~M4

2Þ6π̂0q1 π̂0q2 π̂0q3ðτÞ

¼ ð2πÞ4P2
π
3

2
H

1

k1k2k3

1

K3

×

�
αR − 3ðnR − 1Þ þ 2

ΔPR

PR

�				
k¼K=2

: ð30Þ

We can proceed in a similar manner for the second term of
(25) and find

iπ̂�k1 π̂
�
k2
π̂�k3ð0Þ

Z
∞

−∞
dτð−2a ~M4

2Þ2ðk1 · k2Þπ̂q1 π̂q2 π̂0q3ðτÞ

¼ ð2πÞ4P2
π
1

H
−k1 · k2
ðk1k2Þ3k3

��
1þ k12

K
þ 2k1k2

K2

�
ΔPR

PR

þ
�
−
k12
K

−
3k1k2
K2

�
ðnR − 1Þ þ k1k2

K2
αR

�				
k¼K=2

:

ð31Þ

Thus, the bispectrum can be expressed in terms of
the correction to power spectrum, its first and second
derivatives as

4In case one takes into account the slight tilt ofPR, the spectral
index and the running given here represent only the effect of
ΔPR=PR. Since we assumed that for a limited duration cs
deviates from unity, we can separate the correction part from the
standard slow-roll part, for both of which, the spectral index and
the running can be defined, respectively.

JINN-OUK GONG and MASAHIDE YAMAGUCHI PHYSICAL REVIEW D 95, 083510 (2017)

083510-4



Bπðk1; k2; k3Þ

¼ ð2πÞ4P2
π

H
ðk1k2k3Þ3

�
Aðk1; k2; k3Þ

ΔPR

PR

þ Bðk1; k2; k3ÞðnR − 1Þ þ Cðk1; k2; k3ÞαR
�				

k¼K=2
;

ð32Þ

where the functions of momenta A, B, and C are given by,
respectively,

Aðk1; k2; k3Þ ¼ −
1

K2

X
i≠j

k2i k
3
j þ 2

1

K

X
i>j

k2i k
2
j −

1

4

X
i

k3i ;

ð33Þ

Bðk1; k2; k3Þ ¼ 2
1

K2

X
i≠j

k2i k
3
j − 3

1

K

X
i>j

k2i k
2
j

þ 1

4

X
i≠j

kik2j −
1

4
k1k2k3; ð34Þ

Cðk1; k2; k3Þ ¼ −
1

K2

X
i≠j

k2i k
3
j þ

1

K

X
i>j

k2i k
2
j −

1

4
k1k2k3:

ð35Þ
This expression is one of the main results in this article.
In Fig. 1, we show a few examples using the following

parametrized feature models [13]: a localized oscillatory
burst due to e.g. step in the inflaton potential, logarithmic
and linear oscillations and cutoff models given by

FIG. 1. (Upper panels) power spectrum and (lower panels) the corresponding bispectrum for various feature models (36) discussed in
[13]. For simplicity, we have set the amplitudes of the features as As ¼ Alog ¼ Alin ¼ 1 and phases as φlog ¼ φin ¼ 0. For the step
model, we have also set the damping scale xd ¼ 1. Meanwhile, following [13] we have set log10 ωlog ¼ 1.25, log10 ωlin ¼ 1.02 and
nlin ¼ 0.66. We show the bispectrum projected onto the equilateral (red dashed), folded (blue dotted), and squeezed (black solid)
configurations.
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ΔPR

PR
¼

8>>>>>>>><
>>>>>>>>:

AsW0



k
ks

�
D


k=ks
xd

�
ðstepÞ

Alog cos
h
ωlog log



k
klog

�
þ φlog

i
ðlogarithmic oscillationsÞ

Alin



k
klin

�
nlin cos



ωlin

k
klin

þ φlin

�
ðlinear oscillationsÞ

log



π
16

k
kc
jCc −Dcj2

�
ðcutoff modelÞ

; ð36Þ

where the functions that appear in these parametrized
feature models are

W0ðxÞ ¼
1

2x4
½ð18x − 6x3Þ cosð2xÞ þ ð15x2 − 9Þ sinð2xÞ�;

ð37Þ

DðxÞ ¼ x
sinh x

; ð38Þ

Cc ¼ exp

�
−ik
kc

��
Hð2Þ

0

�
k
2kc

�
−
�

1

k=kc
þ i

�
Hð2Þ

1

�
k
2kc

��
;

ð39Þ

Dc ¼ exp

�
ik
kc

��
Hð2Þ

0

�
k
2kc

�
−
�

1

k=kc
− i

�
Hð2Þ

1

�
k
2kc

��
;

ð40Þ

with Hð2Þ
n being the Hankel function of the second kind. As

we can see, each power spectrum gives distinctively
different patterns of the corresponding bispectrum in
various configurations.

IV. SQUEEZED BISPECTRUM AND
CONSISTENCY RELATION

We can note that (32) vanishes in the squeezed limit, say,
k1 ≈ k2 and k3 → 0.5 This seems to contradict the con-
sistency relation between the power spectrum and the
squeezed limit of the bispectrum [11],

BRðk1; k2; k3Þ →
k3→0

ð1 − nRÞPRðk1ÞPRðk3Þ; ð41Þ

because as (14) shows the power spectrum is well away
from featureless flat one, so the corresponding spectral
index is nontrivial. Indeed, in [7], the consistency relation is
recovered for features caused by nontrivial speed of sound.
Let us first return to the quadratic action for the

curvature perturbation. Including the speed of sound, it
is written as

S2 ¼
Z

d4xa3m2
Plϵ

�
_R2

c2s
−
ð∇RÞ2
a2

�
; ð42Þ

so there are two possible sources of departure from the
usual canonical slow-roll [15]: ϵ and cs. Let us consider
these two cases separately. Our goal here is to see the form
of the corrections to the power spectrum for each case. But
this seems unclear, since the form of the interaction part of
the quadratic action—just _R2 for cs, and _R2 and ð∇RÞ2 for
ϵ—is different. Thus naively thinking the resulting correc-
tion terms would be of different structure. We first assume
that cs solely supplies the deviations from the standard
slow-roll in such a way that for a limited duration cs
deviates from unity, with the deviation being not too far
away from unity. We may then write, with the canonical
slow-roll part being the leading, free part,

S2 ¼
Z

d4xa3m2
Plϵ

�
_R2 −

ð∇RÞ2
a2

�

þ
Z

d4xa3m2
Plϵ

�
1

c2s
− 1

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡S2;int

: ð43Þ

Following the same steps as in Sec. II B, we find

ΔPR

PR
¼ k

Z
0

−∞
dτðc2s − 1Þ sinð2kτÞ; ð44Þ

which is of the same structure as (14).
For the case in which ϵ is responsible for the departure

from the standard slow-roll, let us split ϵ into the slowly
varying part ϵ0 and the rapidly varying but transient
part Δϵ:

ϵ ¼ ϵ0 þ Δϵ: ð45Þ

We can rewrite Δϵ as

Δϵ ¼
Z

_ϵdt ≈Hϵ0

Z
ηdt ≈ ϵ0ηHΔt; ð46Þ

where Δt ¼ Oð1=HÞ is the duration of departure and we
have defined another slow-roll parameter η≡ _ϵ=ðHϵÞ.
Then the quadratic action (42), with cs ¼ 1 this time,
can be written as

5It was recently claimed that for local observers, the squeezed
limit vanishes in single-field inflation [14]. But in this article we
do not take such effects into account and hence the consistency
relation should hold if we would calculate it adequately.
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S2 ¼
Z

d4xa3m2
Plϵ0

�
_R2 −

ð∇RÞ2
a2

�

þ
Z

d4xa3m2
PlΔϵ

�
_R2 −

ð∇RÞ2
a2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡S2;int

; ð47Þ

and the corresponding correction to the power spectrum is

ΔPR

PR
¼ k

Z
0

−∞
dτ

�
−2

Δϵ
ϵ0

�
sinð2kτÞ: ð48Þ

Comparing this with (44), we see that two sources of the
departure from the standard slow-roll leads to the same
structure of the correction as (14). This seems to suggest
that indeed M4

2 captures the deviation from usual slow-roll
on general ground.
We now return to our starting equation (5) to clarify this

inconsistency. A key observation is that unlikeR, which is
frozen on super-horizon scales, π evolves as

_π ¼ −
_R
H

− ϵRþ
_R2

H2
þ 3ϵ

_RR
H

þ � � � ; ð49Þ

where the nonlinear terms follow from the fact that
essentially π is the time translation between spatially flat
and comoving hypersurfaces [16]. Also we have omitted
terms that are further suppressed in slow-roll parameters.
Taking into account the subleading terms in _π, at quadratic
order of the curvature perturbation M4

2 contributes6

SR ⊃
Z

d4a3
�
2M4

2

H2
_R2 þ 2ϵ

�
−3M4

2 þ
_M4
2

H

�
R2

�
: ð50Þ

Thus, the speed of sound of the curvature perturbation is
identical to that of π given by (6). At the same time there do
exist changes in R2 terms as (47), but they are slow-roll
suppressed. Since we have only considered the leading
effects that only capture the speed of sound, the bispectrum
(32) is enhanced in the equilateral configuration while it is
not in the squeezed limit. Indeed, by considering the
subleading terms in (49), we have at cubic order new
terms _R2R and Rð∇RÞ2 that lead to nonvanishing
bispectrum in the squeezed limit [17]. More specifically,
the new terms _R2R and Rð∇RÞ2 in the cubic order action
give up to numerical coefficient

k1k2k3
k31 þ k32 þ k33

ðk1k2k3Þ2BRðk1; k2; k3Þ
ð2πÞ4P2

R
→

k3→0
ϵ
ΔPR

PR
; ð51Þ

with k1 ≈ k2 ≡ k. Still the consistency relation is not
recovered, but this is because we are not taking into
account all the next-to-leading terms in the decoupling
limit, such as the modification of the mode functions: terms
of Oð1=c2sÞ and Oðϵ=c2sÞ do not contribute to the squeezed
limit while only terms of OðϵÞ do [18]. Our calculation is
done only up to the leading order.

V. SUMMARY

In this article, we have derived the direct relation
between the corrections of power spectrum and bispectrum
of the primordial curvature perturbation. Our formula is
based on the effective field theory approach to inflation,
which to first approximation captures the effects of the
nontrivial speed of sound. If we would observationally
detect the deviation from the standard slow-roll inflation, it
is important to check the relation derived here, which could
prove/disprove whether such a deviation can be attributed
to the variation of sound velocity.
We have also shown that the corrections to the power

spectrum from nontrivial features of sound velocity and
expansion rate of the universe, which characterize the
deviation from the standard slow-roll inflation, have the
same form. It is interesting to check whether we can extend
this kind of unified treatment to higher order correlation
functions. We have also discussed the squeezed limit of the
bispectrum and the consistency relation. In the leading
order calculations we have adopted in this article, the
squeezed limit vanishes. But, if we take into account
subleading orders adequately, the consistency relation
would be recovered.
The next step is to include the subleading order effects

such as the terms beyond decoupling limit and the M3

terms. Then, we will have further (consistency) relation,
which is useful to identify new physics causing such a
deviation.
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