
Magnetogenesis during inflation and preheating in the Starobinsky model

S. Vilchinskii,1,2 O. Sobol,1 E. V. Gorbar,1,3 and I. Rudenok1
1Department of Physics, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
2Département de Physique Théorique, Center for Astroparticle Physics, Université de Genève,

1211 Genève 4, Switzerland
3Bogolyubov Institute for Theoretical Physics, Kyiv 03680, Ukraine

(Received 13 February 2017; published 10 April 2017)

By assuming the kinetic coupling f2ðϕÞFF of the effective inflaton field ϕ with the electromagnetic
field, we explore magnetogenesis during the inflation and preheating stages in the R2 Starobinsky model.
We consider the case of the exponential coupling function fðϕÞ ¼ expðαϕ=MpÞ and show that for

α ∼ 12–15 it is possible to generate the large-scale magnetic fields with strength ≳10−15 Gauss at the
present epoch. The spectrum of generated magnetic fields is blue with the spectral index n ¼ 1þ s, s > 0.
We have found that for the relevant values of the coupling parameter, α ¼ 12–15, the model avoids the
backreaction problem for all relevant modes.
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I. INTRODUCTION

A variety of observations imply that stars, galaxies, and
clusters of galaxies are all magnetized. The typical mag-
netic field strengths range from a few μG in the case of
galaxies and galaxy clusters up to 1015 G in magnetars (see,
e.g., Refs. [1–7]. The upper and lower bounds on the
strength of the present large-scale magnetic fields B0 are
given as 10−17 G≲ B0 ≲ 10−9 G by the observations of
the cosmic microwave background (CMB) [8,9] and the
gamma rays from blazars [10–13], respectively. The origin
and evolution of these magnetic fields are the subject of
intense studies.
Two classes of models for the origin of these magnetic

fields are generally discussed (for a review, see Refs. [4–7]).
One possibility is that the observed fields result from the
amplification during the structure formation of primordial
magnetic fields produced in the early Universe. Another
logical possibility is that the observedmagnetic fields are of a
purely astrophysical origin. The recentmultifrequencyblazar
observation of large-scale magnetic fields in voids [10–13]
with strength not less than 10−16 G [11] coherent on a Mpc
scale supports the case for primordial magnetic fields.
Various cosmological phase transitions could be con-

sidered as one of the possible ways of producing primordial
magnetic fields [14–19]. However, the comoving coher-
ence length of such magnetic fields cannot be larger than
the Hubble horizon at the phase transition, which is much
smaller than Mpc today. Consequently, the most natural
mechanism for the generation of the large-coherence-scale
magnetic fields is inflation in the early Universe [20]
through the exponential stretching of wave modes during
the accelerated expansion.
It is well known that quantum fluctuations of massless

scalar and tensor fields are very strongly amplified in
the inflationary stage and create considerable density

inhomogeneities evolving later into the large-scale struc-
ture of the observed Universe [21–25] or relic gravitational
waves [26–28]. However, since the Maxwell action is
conformally invariant, the fluctuations in the electromag-
netic field are not enhanced in the conformally flat
expanding background of inflation [29]. Therefore, in
order to generate magnetic fields, one needs to break
conformal invariance of the electromagnetic field, e.g.,
by coupling it to a scalar or a pseudoscalar field or to a
curvature invariant. Although many ways to break the
conformal invariance of the electromagnetic action during
inflation were suggested in the literature [30–34], we adopt
in our study the kinetic coupling model f2FF firstly
introduced by Ratra [30], where f is a function of the
inflaton field ϕ and F is the electromagnetic field tensor.
Depending on the form of the coupling f, this gives rise
to different magnetic field power spectra [30,35–40].
Alternative models, in which magnetogenesis is driven
by a rolling pseudo Goldstone boson φ through its coupling
to the electromagnetic field in the form φF ~F, are also very
interesting and much studied [41–47].
According to the most recent observational data by the

Planck Collaboration [48], the R2 model proposed by
Starobinsky in 1980 [49] is the most favored among the
models of inflation. For example, the chaotic inflationary
models like large field inflation and natural inflation
are disfavored due to their high tensor-to-scalar ratio.
Therefore, we will study the inflationary magnetogenesis
in the Starobinsky model in the present paper, which to the
best of our knowledge was not previously investigated in
the literature. It is worth mentioning also that supergravity
motivates a potential similar to the Einstein gravity con-
formal representation of the R2 inflationary model [50–54].
If the conformal invariance of the electromagnetic

action is broken, the generation of cosmological magnetic
fields can occur after inflation before reheating, where the
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conductivity of the Universe becomes high, during the
preheating stage [55]. In this epoch, the inflaton field
oscillates around its potential minimum and the Universe is
effectively dominated by cold matter. Depending on the
coupling between the inflaton and matter fields, this
process sometimes could proceed nonperturbatively and
parametric resonance may play a crucial role for bosonic
fields [56,57]. Since the electromagnetic field could be
significantly amplified during preheating [55,58–64], we
study also the postinflationary amplification of magnetic
fields in the present paper and quantify how it affects the
magnetic fields generated during inflation and preheating in
the Starobinsky model.
This paper is organized as follows. We solve the back-

ground equations of the Starobinsky model during inflation
and preheating in Sec. II. In Sec. III, we consider the kinetic
coupling of the inflaton field ϕ to the electromagnetic field,
calculate the energy density of the generated magnetic
fields and then determine and analyze the evolution of the
magnetic energy density through the subsequent stages of
inflation and preheating. The summary of the obtained
results is given in Sec. IV.

II. INFLATON EVOLUTION DURING
INFLATION AND PREHEATING

Historically, one of the first models that exhibited
inflation was the model suggested by Starobinsky [49],
whose gravitational action reads as

Sgr ¼ −
M2

p

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

R2

6μ2

�
; ð1Þ

where g ¼ det gλν, in which gλν is a metric tensor; μ ¼
1.3 × 10−5Mp is a constant, which is fixed by the require-
ment to have the correct magnitude of the primordial
perturbations [65]; and Mp ¼ MPlffiffiffiffi

8π
p ¼ 2.4 × 1018 GeV is

the reduced Planck mass. A conformal transformation

gλν → χ−1gλν with χ ¼ exp
� ffiffi

2
3

q
ϕ
Mp

�
transforms the

Lagrangian of theory (1) into that of the usual Einstein
gravity with a new spatially uniform scalar field ϕ
(inflaton), whose potential reads

VðϕÞ ¼ 3μ2

4

�
1 − exp

�
−

ffiffiffi
2

3

r
ϕ

��2

: ð2Þ

It is quadratic in the vicinity of its minimum at ϕ ¼ 0 and
becomes flat at large values of ϕ.
The time evolution of the Friedmann-Lemaıtre-

Robertson-Walker (FLRW) universe with zero spatial
curvature is described by the Friedmann equation

H2 ¼ 1

3M2
p

�
1

2
_ϕ2 þ VðϕÞ

�
; ð3Þ

and the equation of motion for the inflaton field in the
FLRW universe reads

ϕ̈þ 3H _ϕþ ∂V
∂ϕ ¼ 0; ð4Þ

where H ≡ _a
a is the Hubble parameter and a ¼ aðtÞ is the

scale factor. It is convenient to use the dimensionless
quantities, where the inflaton field and Hubble parameter
are expressed in Planck masses Mp, time in M−1

p , and the
Lagrangian density and inflaton effective potential in M4

p.
The Universe expands quasiexponentially during the

inflation stage. In this regime the potential term dominates
the kinetic one in Eq. (3) and the “friction” term 3H _ϕ
dominates ϕ̈ in Eq. (4). The slow-roll parameters for
inflaton potential (2) equal

ϵ ¼ 1

2

�
V 0

V

�
2

¼ 4

3ðexp ½
ffiffi
2
3

q
ϕ� − 1Þ2

;

η ¼ V 00

V
¼

4ð2 − exp ½
ffiffi
2
3

q
ϕ�Þ

3ðexp ½
ffiffi
2
3

q
ϕ� − 1Þ2

ð5Þ

(here prime denotes derivatives with respect to the inflaton).
Inflation lasts until the slow-roll conditions are satisfied
ϵ ≪ 1, jηj ≪ 1. The duration of the inflation stage

tinf ≃ 3
2μ e

ffiffi
2
3

p
ϕi depends on the initial value of the inflaton

ϕi. The minimal number of e-folds Ne ¼ ln ainf
ai

≃ 3
4
e

ffiffi
2
3

p
ϕi

necessary to solve the problems of horizon and flatness of
the Universe is approximately Nmin ∼ 60–70. This implies
ϕi ¼ 5.5 andEq. (4) in the slow-roll approximation gives the

initial value of the time derivative _ϕi ¼ − V 0ðϕiÞffiffiffiffiffiffiffiffiffiffi
3VðϕiÞ

p .

To determine the time dependence of the inflaton field
and the scale factor, Eqs. (3) and (4) were integrated with
the initial conditions, discussed above, and the following
approximate solution has been obtained by using the slow-
roll conditions:

aðtÞ ¼ exp

�
μt
2

��
1 −

t
tinf

�
3=4

; ð6Þ

ϕðtÞ ¼ ϕi þ
ffiffiffi
3

2

r
ln

�
1 −

t
tinf

�
: ð7Þ

This solution satisfactorily fits the numerical solution to
Eqs. (3) and (4) for μðtinf − tÞ ≫ 1. The time dependence of
the inflaton is plotted in the left panel in Fig. 1. The time
dependences of the scale factor and the slow-roll param-
eters are plotted in Fig. 2.
The inflaton field during preheating after the end of

inflation behaves like a dust (pressure p ¼ 0); therefore,
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a ∼ ðt − tsÞ2=3, where ts is the moment of time when
the Universe became dust dominated. Since the amplitude
of fast oscillations decreases in time as ∼a−3=2, the
approximate solution during the preheating stage is
ϕðtÞ ¼ C

μðt−tsÞ sin ½μðt − t0Þ�, where C ¼ ffiffiffiffiffiffiffiffi
8=3

p
was found

by taking into account that the inflaton potential (2) in the

vicinity of its minimum behaves like a parabola VðϕÞ ≈ μ2ϕ2

2

and the Hubble parameter equals H ¼ 2
3ðt−tsÞ during pre-

heating. The phase shift time t0 and ts could be determined
numerically from the best fit condition. We found ts ¼
1.008 × 107 and t0 ¼ 1.0216 × 107. Introducing the shifted
time τ ¼ t − ts, we obtain

aðτÞ ¼ ainf

�
τ

τ0

�
2=3

; HðτÞ ¼ 2

3τ
; ð8Þ

ϕðτÞ ¼
ffiffiffiffiffiffiffiffi
8=3

p
μτ

sin½μðτ − τ0Þ�; ð9Þ

where μτ0 ¼ 1.77 and ainf is the value of the scale factor at
the end of inflation. The approximate solution (9) is shown
in the right panel of Fig. 1 by the blue dashed line.

Obviously, it fits the exact solution (red solid line)
very well.

III. MAGNETIC FIELD GENERATION

In order to study magnetogenesis in the Starobinsky
model, we consider the kinetic coupling of the inflaton field
ϕ to the electromagnetic field Fλν ≡ ∂λAν − ∂νAλ, charac-
terized by its four-vector potential Aν,

Sint ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lint; Lint ¼ −

f2ðϕÞ
4

FλνFλν; ð10Þ

where Fλν ¼ gλγgβνFγβ, and fðϕÞ is the coupling function
introduced by Ratra [30]

fðϕÞ ¼ expðαϕÞ: ð11Þ

This function with free parameter α gives the correct value
f ¼ 1 after the end of preheating and, consequently, the
correct value of the electron charge today. In addition, this
function does not cause the strong coupling problem during
the inflation stage, where ϕ ≫ 1.
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FIG. 2. Left panel: The time dependence of the scale factor during inflation and preheating. Right panel: The time dependence of the
slow-roll parameters ϵ (blue solid line) and η (red dashed-dotted line) during inflation.
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FIG. 1. Left panel: The time dependence of the inflaton field during and after inflation. Right panel: Oscillations of the inflaton field
after the end of inflation (red solid line) and the approximate function (blue dashed line).
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The equation of motion for the electromagnetic vector
potential in the Coulomb gauge A0 ¼ 0, ∂iAi ¼ 0 has
the form

Äiðt; xÞ þ
�
H þ 2

_f
f

�
_Aiðt; xÞ − ∂j∂jAiðt; xÞ ¼ 0: ð12Þ

Quantizing the electromagnetic field, the vector potential
can be decomposed into the sum over creation b̂†k;λ and
annihilation operators b̂k;λ:

Âjðt; xÞ ¼
Z

d3k

ð2πÞ2=3

×
X2
λ¼1

½ϵλjðkÞb̂k;λAðt; kÞeik·x

þ ϵ�λj ðkÞb̂†k;λA�ðt; kÞe−ik·x�; ð13Þ

where ϵλjðkÞ, λ ¼ 1, 2, are two independent transverse
polarization vectors. The time evolution of the function
Aðt; kÞ ¼ fðtÞaðtÞAðt; kÞ is governed by the equation

Äðt; kÞ þH _Aðt; kÞ þ
�

k2

a2ðtÞ −H
_f
f
−
f̈
f

�
Aðt; kÞ ¼ 0:

ð14Þ

The scale factor aðtÞ in the definition of A originates from
the presence of the polarization vectors ϵλj in the Fourier
expansion (13), which contain the scale factor in their
explicit expressions [37].
One rewrites this equation in conformal time ηðtÞ ¼R

t dt0
aðt0Þ as

A00ðη; kÞ þ
�
k2 −

f00

f

�
Aðη; kÞ ¼ 0; ð15Þ

where prime denotes derivatives with respect to the
conformal time. We can determine the initial condition
to Eq. (15) from the asymptotic behavior in the early stages,
where we assume f ¼ fðϕiÞ ¼ const, that gives

A≃Afreeðη; kÞ ¼
1ffiffiffiffiffi
2k

p e−ikη; −kη ≫ 1: ð16Þ

Covariantly defined electric and magnetic fields seen by
an observer characterized by the 4-velocity vector uμ have
the following form [66]:

Eμ ¼ uνFμν; Bμ ¼
1

2
ημνρσFνρuσ; ð17Þ

where ημνρσ is the totally antisymmetric tensor with

η0123¼ ffiffiffiffiffiffi−gp
. For the comoving observer with uμ ¼ ð1; ~0Þ,

we find in the Coulomb gauge

Ei ¼ −∂tAi; Bi ¼
1

a
ϵijk∂jAk; ð18Þ

with ϵ123 ¼ 1.
The interaction Lagrangian (10) makes the following

contribution to the stress-energy tensor:

Tλν ¼ −
2ffiffiffiffiffiffi−gp δSint

δgλν
¼ −f2ðϕÞgγβFλγFβν þ gλνLint: ð19Þ

Then, we could determine the energy density of the
electromagnetic field as ρ ¼ −hT0

0i. The “magnetic” part of
the energy density ρB does not contain time derivatives of
the vector potential ∂0Ai, while only the “electric” part ρE
contains such derivatives. They equal [37]

ρBðtÞ ¼
Z þ∞

0

dk
k
dρBðt; kÞ
d ln k

¼ 1

2π2

Z þ∞

0

dk
k

�
k

aðtÞ
�

4

kjAðt; kÞj2; ð20Þ

ρEðtÞ ¼
Z þ∞

0

dk
k
dρEðt; kÞ
d ln k

¼ 1

2π2

Z þ∞

0

dk
k

�
k

aðtÞ
�

2

kf2ðtÞ
				 ∂∂t

�
Aðt; kÞ
fðtÞ

�				2:
ð21Þ

Numerically solving Eq. (14) with the corresponding
boundary conditions, we determine the vector potential
Aðt; kÞ and the power spectrum of generated magnetic and

electric fields dρBðt;kÞ
d ln k and dρEðt;kÞ

d ln k .
Once we obtained the spectrum of the magnetic field, we

should rescale it up to the present time. For this, we should
determine the value of the scale factor at the present time
compared to its value at the end of preheating:

a0
ae

∼
Tmax

T0

: ð22Þ

If we take Tmax ∼ 1015 GeV and T0 ¼ 2.3 × 10−13 GeV,
we obtain

a0
ae

∼ 1028: ð23Þ

The authors of Ref. [5] defined the so-called cosmic
diffusion length as the minimal size of a magnetic configu-
ration which can survive diffusion during the Universe’s
lifetime and estimated it as rdiff ∼ 1 A:U: ¼ 1.5 × 1013 cm.
The corresponding wave vector in our epoch is kdiff=a0∼
1 A:U:−1 ≈ 1.3 × 10−27 GeV. Therefore, in what follows,
we will be interested only in modes with k < kdiff .

A. Magnetogenesis during inflation

It is interesting to follow the time evolution of the
amplitude of a given mode. The left panel in Fig. 3
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shows the time dependence of the square modulus of
the electromagnetic potential 2kjAðk; tÞj2 for two differ-
ent momenta. When the mode is inside the horizon
(k > aH) it oscillates in time without significant
changes of its amplitude (see the blue dashed line in
the left panel of Fig. 3 for μt≲ 30). As the mode
crosses the horizon its amplitude decreases due to the
Universe’s expansion (see Fig. 3 for 30≲ μt≲ 100).
Therefore, the earlier the mode crosses the horizon, the
smaller the amplitude it has at the end (compare the red
and blue curves in Fig. 3). This process lasts nearly to
the end of inflation, when the evolution of the inflaton
field starts to deviate from the slow-rolling regime.
Let us rewrite Eq. (14) in terms of a rescaled field
F ðt; kÞ ¼ a1=2ðtÞAðt; kÞ:

F̈ ðk; tÞ þ ω2
kðtÞF ðk; τÞ ¼ 0;

ω2
kðtÞ ¼

k2

a2ðtÞ −H
_f
f
−
f̈
f
þ 1

4
H2 −

1

2

ä
a
: ð24Þ

Taking into account the explicit form of the coupling
function (11), we can represent ω2

k as follows:

ω2
kðtÞ ¼

k2

a2ðtÞ −Hα _ϕ − α2 _ϕ2 − αϕ̈ −
1

4
H2 −

1

2
_H: ð25Þ

Let us examine the behavior of different terms in
Eq. (25) using expressions (6) and (7):

−Hα _ϕ≃
ffiffiffi
6

p

4

μ2α

ðμtinf − μtÞ > 0;

−α2 _ϕ2 ≃ −
3

2

μ2α2

ðμtinf − μtÞ2 < 0;

−αϕ̈≃
ffiffiffi
6

p

2

μ2α

ðμtinf − μtÞ2 > 0;

H2 ≲ μ2

4
;

_H ≃ −
3

4

μ2

ðμtinf − μtÞ2 :

To estimate each of these terms we must take into account
that μtinf ¼ 3=2 expð ffiffiffiffiffiffiffiffi

2=3
p

ϕiÞ ≈ 130 ≫ 1 for our choice of
the inflaton initial value ϕi ¼ 5.5. At the beginning of the
inflation when t ≪ tinf , the largest values have k2=a2, H2,
and the term with the first power of (μtinf − μt) in the
denominator, namely, −Hα _ϕ > 0. However, near the end
of inflation the other terms could not be neglected. Their
relative contributions depend on the coefficients in the
numerators. Since we consider α ∼ 10–20 ≫ 1, the term
−α2 _ϕ2 < 0 dominates the rest of the terms in Eq. (25). The
moment of time when this happens could be estimated as
μðtinf − tÞ ∼ ffiffiffi

6
p

α when the second and third terms in
Eq. (25) are equal by the absolute values. This condition
could also be expressed in terms of the slow-roll param-
eters. The third term on the right-hand side of Eq. (25) starts
to dominate, when α _ϕ=H ∼

ffiffiffiffiffi
2ϵ

p
α=3≳ 1. For α ∼ 10–20,

this happens for
ffiffiffi
ϵ

p
∼ η ∼ 0.1 (see the right panel in Fig. 2).

We illustrate this behavior of the function ω2
kðtÞ in the

right panel of Fig. 3. As the figure shows, the function
ω2
kðtÞ turns its sign to negative at μt≃ 90 and an instability

occurs. It is important that for all modes, which have
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FIG. 3. Left panel: The time dependence of the square modulus of the electromagnetic potential 2kjAðk; tÞj2 for two different modes
k ¼ 10μ (red solid line) and k ¼ 106μ (blue dashed line) for α ¼ 15. Right panel: The functionω2

kðtÞ (blue solid line) defined by Eq. (25)
and its constituent terms k2

a2ðtÞ (yellow dashed line), −Hα _ϕ (green dashed-dotted line), −α2 _ϕ2 (red dashed line), −αϕ̈ (purple dashed-

dotted line with two dots), and − 1
4
H2 − 1

2
_H (black dotted line). The function and the corresponding terms are plotted

for α ¼ 15 and k ¼ 106μ.
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already crossed the horizon at that time (k < aH), the term
k2=a2 is suppressed compared to the other terms, especially
to −α2 _ϕ2, which causes the instability. As a result, the
amplification occurs for all such modes (see the left panel
in Fig. 3 for μt > 100). We would like to emphasize that
such an amplification is a built-in property of the model
under consideration. Indeed, first, the growth by modulus
of the time derivative of the inflaton field near the end of
inflation is connected with the form of the effective
potential (2) in the Starobinsky model. Second, the pres-
ence of the term −α2 _ϕ2 in Eq. (25) is due to the exponential
form of the kinetic coupling function. Finally, large values
α ≫ 1 ensure the dominance of this term.
We plot the power spectrum of magnetic and electric

fields at the end of inflation in the left panel of Fig. 4 for
two different values of parameter α. Clearly, these spectra
have similar behavior. Modes that are outside the horizon
even at the beginning of the inflation (k ≪ μ=2, i.e.,
k=a0 ≪ 4 × 10−6 Mpc−1) are unphysical ones and should
not be taken into account. The corresponding region is
shaded in purple in the right panel of Fig. 4. For modes that
cross the horizon during inflation, the spectrum scales like
∝ k4þs, where s is the anomalous slope. This behavior is
expected to be true up to momenta k ∼ ainfHinf , which
cross the horizon at the end of inflation. For larger
momenta, the corresponding modes never cross the hori-
zon. Therefore, these modes oscillate in time during the
whole inflation stage and undergo neither diminishing
nor amplification. As a result, their spectrum remains
unchanged and behaves like ∝ k4. We are interested among
all modes only in those with momenta up to k=a0 ∼ 1 A:U:
(dashed vertical line), because shorter waves would not
survive the cosmic diffusion [5]. Therefore, the spectrum
for larger momenta is shaded in blue in Fig. 4.

The power spectrum of the electric fields, generated
during inflation, shows much larger values and scales
∝k2þs for modes, which cross the horizon during inflation.
It should be noted that the anomalous slope s is the same as
that for the magnetic field power spectrum. This numerical
fact could be explained as follows. As it could be seen from
Eq. (21), the electric field power spectrum is proportional to
f2j ∂∂t ðA=fÞj2 ¼ jAj2j _A=A − α _ϕj2. Figure 3 shows that at
the end of inflation the mode Aðk; tÞ does not have the
oscillatory behavior ∼ expð−ikηÞ as at the beginning, but it
grows exponentially. The origin of this growth is connected
with the fast change of the coupling function at the end of
inflation. The rate of this growth does not depend on the
momentum for modes with k ≪ ainfHinf , because the term
ðk=aÞ2 in Eq. (25) is strongly suppressed at the end of
inflation and the term −α2 _ϕ2 dominates. Therefore, the
quantity j _A=A − α _ϕj2 does not depend on k for k ≪
ainfHinf and it could not change the slope of the spectrum.
Then, comparing Eqs. (20) and (21), we conclude that the
magnetic and electric power spectra are proportional to
k5jAðk; tÞj2 and k3jAðk; tÞj2, respectively. As a result, the
slopes of these power spectra differ by 2 and they have the
same anomalous slope s. The right panel in Fig. 4 shows
that the dependence of the anomalous slope s on α is linear
and can be approximated as

sðαÞ ≈ 1.98 − 0.04α: ð26Þ

Let us estimate whether the backreaction problem
occurs. According to Refs. [37,67], the model is free of
this difficulty when the following condition is satisfied for
all modes with k < kdiff :

inf

k2 s

k4 s
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FIG. 4. Left panel: The power spectrum of magnetic (solid lines) and electric (dashed lines) fields generated during inflation for
α ¼ 12 (blue lines) and α ¼ 15 (red lines). The purple shaded region to the left of the vertical dashed-dotted line separates the
nonphysical modes which were outside the horizon even at the beginning of the inflation. The blue shaded region to the right from the
vertical dashed line shows the modes with k=a0 ≳ 1 A:U: which would not survive diffusion during the evolution of the Universe.
The horizontal dashed line shows the energy density of the inflaton field ρinf during the inflation. Right panel: The dependence of the
anomalous slope s on the parameter α. The shaded area is excluded because of the strong backreaction.
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dρEðt; kÞ
d ln k

				
inf

þ dρBðt; kÞ
d ln k

				
inf

< ρinf ; ð27Þ

where ρinf is the energy density of the inflaton field during
inflation. In our case it could be estimated as

ρinf ¼ 3H2
infM

2
p ≈

3

4
μ2M2

p ∼ 10103 Gauss2: ð28Þ

It is shown in the left panel of Fig. 4 by a horizontal green
dashed line. This figure implies that the backreaction
problem does not occur for all cosmologically relevant
modes for α ¼ 12. As for α ¼ 15, condition (27) is violated
only near kdiff. All calculations were done assuming that
a0=ae ∼ 1028, which corresponds to Tmax ∼ 1015 GeV. The
electric part gives the leading contribution to the back-
reaction and it scales like ∝ ða0=aeÞ2þs. Therefore, if the
maximal temperature during preheating were lower, then
the ratio a0=ae would be less and the comoving wave
number, which corresponds to the present cosmic diffusion
scale of 1 A.U., kdiff , would be lower. As a result, the
backreaction problem would be ameliorated.
As it was discussed in Ref. [37], during reheating, the

conductivity jumps and, as a consequence, the electric field
vanishes. Thus, if one checks that, at the end of inflation,
the electric field cannot cause a backreaction problem, then
we are guaranteed that the complete scenario is consistent.
As we will see in the next subsection, the stage of
preheating also contributes to the generated spectrum,
but for α ¼ 12–15 this contribution is negligible compared
to that during inflation; therefore, it cannot cause the
backreaction problem, if it was not caused during inflation.

B. Magnetogenesis during preheating

In the previous subsection, we found the power spectrum
of the magnetic field generated during the inflation stage.
After inflation the scalar field oscillates in the vicinity of

the minimum of its potential, producing various particles. It
is important to study how these fast oscillations affect the
power spectrum of the magnetic fields obtained earlier. For
this purpose we define the transfer function T ðk; τ; τ0Þ,
which shows the relative enhancement of a given mode k at
the moment of time τ compared to the moment of the
beginning of the preheating stage τ0,

T ðk; τ; τ0Þ ¼
jAðk; τÞj2
jAðk; τ0Þj2

: ð29Þ

Then we obtain the power spectrum at the end of the
preheating stage and rescale it to the present time:

dρB
d ln k

				
now

¼ dρB
d ln k

				
inf

· T ðk; τe; τ0Þ
a4e
a40

; ð30Þ

where τe is the time of the end of the preheating stage, when
the amplitude stops increasing.
To obtain the transfer function we have to solve Eq. (14).

For the rescaled field F ðk; τÞ ¼ a1=2ðτÞAðk; τÞ [here τ is a
shifted time, defined before Eq. (8)], we obtain Eq. (24),
which, taking into account the coupling function (11),
Eq. (9), and retaining the monotonous term and the largest
oscillating terms in the brackets, could be brought to
the Mathieu-like equation by the change of variable
μðτ − τ0Þ ¼ 2z − π=2:

F 00ðzÞ þ ½aMðk; zÞ − 2qMðzÞ cosð2zÞ�F ðzÞ ¼ 0; ð31Þ

where aMðk; zÞ ¼ 4k2

μ2a2ðzÞ þ 8
9ð2z−π=2þμτ0Þ2 and qMðzÞ ¼

4α
ffiffi
2

pffiffi
3

p ð2z−π=2þμτ0Þ are the monotonously decreasing functions

of z. For constant and sufficiently large qM the Mathieu
equation has exponentially growing solutions. This is the
parametric resonance situation. However, qMðzÞ decreases
with time, the system exits the resonance band, and, as a
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FIG. 5. Left panel: The transfer function of the power spectrum at the end of the preheating stage for α ¼ 9 (red line), α ¼ 12 (yellow
line), α ¼ 15 (green line), and α ¼ 20 (blue line). The vertical dashed line shows the last mode which survives the cosmic diffusion until
the present time. Right panel: The transfer function for the mode with momentum k=a0 ¼ 1 A:U:−1 as a function of the parameter α.
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result, the exponential growth stops. Therefore, the most
considerable enhancement takes place during the first few
oscillations of the inflaton.
The transfer function of the power spectrum fixed at

μτe ¼ 1000 (at the end of the preheating stage) is plotted in
the left panel of Fig. 5. Obviously, for k ≪ ainfHinf,
i.e., k=a0 ≪ 1021 Mpc−1, the transfer function is constant.
For modes that reentered the horizon k≳ ainfHinf , the
transfer function demonstrates an oscillatory behavior
and its amplitude grows faster. At very large momenta,
k=a0 ≳ 1024 Mpc−1, enhancement is absent and we
observe the original spectrum. The picture is qualitatively
similar to Fig. 1(d) in Ref. [55]. As it was mentioned above,
we are interested in modes with momenta k=a0 ≲ 1 A:U:
For these modes, we can consider the transfer function as a
constant. Its dependence on α is shown in the right panel
of Fig. 5.
There are some interesting features in the time evolution of

the transfer function during preheating; see Fig. 6. For the
modes with small momenta, which can survive diffusion,
k=a0 < 1 A:U:−1, parametric resonance is rather inefficient
and an amplification occurs only during the first oscillation of
the inflaton (the blue line in Fig. 6). The situation changes for
the modes with the physical momentum at the beginning of
preheating kph ¼ k=aðτ0Þ, which is comparable with the
frequency of the inflaton oscillations μ. For these modes
parametric resonance is more efficient and the amplitude
grows during the first 5–10 oscillations; see the green line in
Fig. 6. This causes the peak in the spectrum; see the left panel
in Fig. 5. However, for larger momenta, the resonance does
not occur at the beginning of the preheating stage and a
stochastic behavior is observed (the red line in Fig. 6 for
μτ < 60). When the Universe’s expansion redshifts the
physical momentum to the values comparable with μ, the
resonance turns on and we observe the amplification of
the amplitude during a few oscillations (the red line in Fig. 6

for 60 < μτ < 150). This amplification is not as large as for
the green line, because at the moment, when it starts, the
value of the parameter qM is smaller due to the Universe’s
expansion. This explains the decreasing “tail” of the spec-
trum in Fig. 5. Although these modes demonstrate a rather
interesting behavior, they would not survive the diffusion
during further evolution of the Universe, therefore, they do
not contribute to the present value of the magnetic field.
Taking into account all previous results, we can now

calculate the generated magnetic field:

B0 ¼
ffiffiffiffiffiffiffiffi
2ρB

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Z
kdiff

0

dk
k

dρB
d ln k

s
: ð32Þ

The strength of this magnetic field strongly depends on α.
The corresponding dependence is plotted in Fig. 7. This
figure implies that the magnetic fields which correspond to
the present observations could be obtained for α ∼ 12–15.

IV. CONCLUSION

In this work, we studied the generation of large-scale
magnetic fields in the Starobinsky model of inflation, which
is favored by the latest results of Planck 2015 [48]. In order to
break the conformal invariance of the electromagnetic action,
we chose the kinetic coupling f2ðϕÞFF of the inflaton field
with the electromagnetic field through the exponential
coupling function fðϕÞ ¼ expðαϕÞ, which does not cause
the strong coupling problem during inflation. To the best of
our knowledge, this form of coupling function in combina-
tion with the Starobinsky model of inflation has not been
considered in the literature before.
In addition, we examined the possibility of further

amplification of generated magnetic field during the
preheating stage, when the inflaton oscillates in the vicinity
of the minimum of its potential. During this stage, the
Universe is effectively matter dominated, and the inflaton’s
amplitude of oscillations decreases in time. This reduces
the effectiveness of the parametric resonance and causes the
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FIG. 6. The time dependence of the transfer function during
the preheating stage for three modes k=a0 ¼ 2 × 1011 Mpc−1

(blue line), k=a0 ¼ 1.5 × 1023 Mpc−1 (green line), and k=a0 ¼
7 × 1023 Mpc−1 (red line).
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FIG. 7. The generated magnetic field as a function of α. The
dashed area is excluded because of the strong backreaction.
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exponential amplification of magnetic field only during the
first few oscillations of the inflaton field.
We found that it is possible in such a model to generate

the large-scale magnetic fields with strength ≳10−15 Gauss
at the present epoch during the inflation and preheating
stages in a certain range of the parameter α ∼ 12–15. The
spectrum of generated magnetic fields is blue with the
spectral index n ¼ 1þ s, s > 0. When a certain mode
crosses the horizon, its amplitude diminishes due to the
Universe’s expansion. Therefore, the earlier the mode
crosses the horizon, the smaller the amplitude it has in
the end. This explains the blue spectrum of generated
magnetic fields. It is necessary to emphasize that near the
end of inflation the evolution of the inflaton field starts to
deviate from the slow-rolling regime and leads to a
significant increase by modulus of the time derivative of
the inflaton field. As we showed in Sec. III A, this causes an
instability in the equation governing the evolution of the
electromagnetic field. As a result, all modes which are
outside the horizon at that time undergo amplification. This
is a consequence of the three independent features of the
model under consideration: (i) the effective potential of the
Starobinsky model (2) causes the growth of j _ϕj near the end
of inflation, (ii) the exponential form of the kinetic coupling
function produces the term α2 _ϕ2 in Eq. (14), and (iii) large
values α ≫ 1 lead to the domination of this term and to an
instability. Of course, the modes that do not exit the horizon
until the end of inflation undergo neither diminishment nor
amplification and so remain unchanged.
According to Refs. [38,40,64], the kinetic coupling

model often faces the backreaction problem. In the model
considered in this paper, the kinetic coupling function does
not scale like f ∝ aα during the inflation stage and,
therefore, the backreaction could not be treated by the
methods considered in Ref. [38]. Therefore, we used a
numerical analysis and found that for a certain range of
values of the coupling parameter, α ¼ 12–15, the model
under consideration avoids the backreaction problem for all
relevant modes. Other constraints on inflationary magneto-
genesis are often enforced by the requirement that the
backreaction of generated magnetic fields on the evolution
of primordial curvature perturbations is small [40]. We plan
to address this issue elsewhere.
We found also that the value of the generated magnetic

field scales with the maximal temperature during

preheating as B0 ∝ Ts=2
max. Therefore, a lower maximal

temperature Tmax would give a lower value of B0 for a
given α. On the other hand, the energy density of
electromagnetic fields at the end of inflation, which
can cause the backreaction, scales like ∝ T2þs

max and
decreases much faster compared to B0 as Tmax decreases.
Therefore, lower values of Tmax make it possible to
extend the range of possible values of α.
Finally, we would like to mention that it would be

interesting to extend our study by taking into account the
role of chiral anomaly [68] and helicity [69] on the
evolution of magnetic fields in the early Universe.
According to Ref. [70], the inclusion of anomalous currents
leads to an inverse cascade, where a part of the energy of
magnetic fields is transferred from shorter to longer wave-
lengths and, thus, escapes the dissipation during the
evolution of the Universe (for a recent discussion, see
Ref. [71]). The role of inhomogeneities in primordial chiral
plasma was addressed in Refs. [72,73]. By numerically
studying the anomalous Maxwell equations, it was shown
[74] that due to the effects of diffusion these inhomoge-
neities do not prevent the anomaly-driven inverse cascade.
On the other hand, it was shown a long time ago [75] that
the inverse cascade is driven by helical magnetic turbu-
lence. Therefore, it is interesting and urgent to study the
magnetohydrodynamics of the primordial plasma account-
ing for the effects of both chirality and turbulence. A first
step in such an analysis was recently taken in Ref. [76].
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