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There is a wide consensus on the correct dynamics of the background in loop quantum cosmology.
In this article we make a systematic investigation of the duration of inflation by varying what we think to be
the most important “unknowns” of the model: the way to set initial conditions, the amount of shear at the
bounce and the shape of the inflaton potential.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a promising attempt to
perform a nonperturbative background-invariant quantiza-
tion of general relativity (GR). General reviews can be
found, e.g., in [1–10]. Loop quantum cosmology (LQC) is
a quantum theory inspired by LQG that takes into account
the cosmological symmetries. Some recent reviews can be
found, e.g., in [11–22]. The status of perturbations in LQC
is still not fully clear. On the one hand, the deformed
algebra approach, which puts the emphasis on the con-
sistency of the effective gauge theory, has been investigated
in detail (see, e.g., [23–29]). On the other hand, the dressed
metric approach, which puts the emphasis on the quantum
treatment of the background and the perturbations, has been
pushed forward (see, e.g., [30–32]). Other attempts have
also been suggested, for example in [33] and [34]. At this
stage, there is no wide consensus on LQC predictions for
the primordial power spectra although some general trends
can be underlined [35].
Concerning the dynamics of the LQC background

however, different approaches lead to the very same
dynamical equations, underlining the robustness of the
model. The effective modified Friedmann equation,

H2 ¼ κ

3
ρ

�
1 −

ρ

ρc

�
; ð1:1Þ

is one of the general predictions of LQC. In this equationH
stands for the Hubble parameter, ρ for the energy density,
ρc ∼ ρPl for the maximum energy density, and κ ¼ 8π.
Beyond the standard Hamiltonian LQC calculation, the
above equation has even been rederived in quantum

reduced loop gravity [36] and in group field theory
[37,38] (with a possible slight shift in the bounce energy).
In this article, we focus on this robust background
dynamics. Remarkably, in this cosmological paradigm,
inflation occurs naturally, this being a consequence of
the strong attractor status of its solutions when one
considers a scalar field as the content of the Universe.
Probably, the most interesting output of the LQC frame-
work is that the duration of inflation itself can, to some
extent, be predicted.
Still, even at the background level, three main uncer-

tainties remain to be addressed systematically. The first
one is the way to choose initial conditions. There are two
schools of thought: one sets them in the remote past of the
contracting branch, and the other one sets them at the
bounce. The important question here is not related with
the conditions themselves (they are in a one-to-one
correspondence with one another), but with the variable
to which a known (and presumably flat) probability
distribution function (PDF) can be assigned. This is an
important conceptual issue that will be discussed later in
this article. The second uncertainty is associated with the
amount of anisotropic shear at the bounce. As it will be
diluted very fast during the expansion it might be very
high at the bounce and remain compatible with observa-
tional data. In this study, we focus on the Bianchi I
dynamics and consider different contributions from the
shear. Since anisotropies scale as a−6 in a Bianchi I
universe, a being the scale factor, they inevitably grow
during the contracting phase and they are expected to play
an important role in any bouncing model. The third main
uncertainty is associated with the inflaton potential as
LQG does not make any predictions concerning the matter
content of the Universe. So far, the status is unclear and
the matter content has to be assumed independently. In
this paper we focus on four different potentials which are
favored by the latest Planck results [39].
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II. FORMALISM

The metric for a homogeneous Bianchi I universe is
given by

ds2 ¼ −dt2 þ a21dx
2 þ a22dy

2 þ a23dz
2: ð2:1Þ

Anisotropies appear through three independent direc-
tional scale factors fa1; a2; a3g.
The spatial hypersurface Σ of this spacetime has an R3

topology. Since it is not compact, many spatial integrals
will diverge, but one can use the fundamental property of
homogeneous spaces to restrict the study to a fiducial cell V
on the spatial manifold which will not appear in the final
results. Its finite fiducial volume is given by V0 ¼ l1l2l3,
and its edges are chosen to lie along the fiducial ortho-

normal triads eai
∘
. Fiducial orthonormal cotriads ωi

a

∘
are also

introduced in a such a way that the fiducial spatial metric

can be written as q
∘
ab ¼ ωi

a

∘
ωj
b

∘
δij. The Ashtekar connection

Ai
a and the densitized triads Ea

i can be reduced using the
symmetries of the spatial manifold of the homogeneous
Bianchi I spacetime:

Ai
a ¼ ciðliÞ−1ωi

a

∘
and Ea

i ¼
pili
V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðq∘ abÞ

q
eai
∘
; ð2:2Þ

where the coefficients ci and pi are the symmetry-reduced
coefficients of the Ashtekar connection and of the densi-
tized triad. They form a canonical set with the following
Poisson brackets:

fci; pjg ¼ κγδij; ð2:3Þ

where γ ¼ 0.2375 is the Barbero-Immirzi parameter whose
value has been obtained by evaluating the black hole
entropy in LQG [40]. The specific choice of this parameter
is still a source of debates, but the precise numerical value
is not fundamental for the study presented here (the
γ-dependence of the energy density available at the bounce
is quite trivial).
The pi coefficients can be expressed in terms of the

cosmological directional scale factors:

8<
:

p1 ¼ ϵ1l2l3ja2a3j;
p2 ¼ ϵ2l1l3ja1a3j;
p3 ¼ ϵ3l1l2ja1a2j;

ð2:4Þ

where ϵi ¼ �1 depending on the orientation of the triads.
Without any loss of generality, we fix ϵi ¼ þ1 and li ¼ 1,
leading to V0 ¼ 1.
The directional scale factors can be written in terms of

the reduced densitized triads:

a1 ¼
ffiffiffiffiffiffiffiffiffiffi
p2p3

p1

r
; and cyclic expressions; ð2:5Þ

leading to the directional Hubble parameters,

H1 ≔
_a1
a1

¼ −
_p1

2p1

þ _p2

2p2

þ _p3

2p3

;

and cyclic expressions; ð2:6Þ

where the dots refer to derivatives with respect to cos-
mic time.
We define a mean scale factor,

a ≔ ða1a2a3Þ1=3; ð2:7Þ

in order to obtain a mean Hubble parameter

H ≔
_a
a
¼ 1

3
ðH1 þH2 þH3Þ: ð2:8Þ

The classical evolution of the metric is given by the
following Hamiltonian:

H ¼ HGravðci; piÞ þHMðpi;Φ; πÞ; ð2:9Þ

where Φ is a scalar field, and π is its conjugate momentum.
The gravitational and matter Hamiltonians are respectively
given by [41]

HGrav ¼ −
N
κγ2

ða1c2c3 þ a2c1c3 þ a3c1c2Þ; ð2:10Þ

and

HM ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
ρ; ð2:11Þ

where N is the lapse function.
Quantization of the above cosmological model within

the lines of LQC requires the introduction of holonomy
corrections. At the effective level, this procedure basically
consists of the following replacement:

ci →
sinðμ̄iciÞ

μ̄i
; ð2:12Þ

where μ̄i are given by

μ̄i ¼
λ

ai
; ð2:13Þ

with λ ¼ ffiffiffiffi
Δ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ffiffiffi
3

p
πγ

q
, the square root of the minimum

eigenvalue of the area operator in LQG.
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We introduce three fundamental parameters hi:

hi ≔ μ̄ici ¼
λci
ai

: ð2:14Þ

Those three parameters are gauge-invariant variables
which can be interpreted as the classical limits of the
quantum equivalents of the directional Hubble parameters.
After implementing the holonomy corrections, the effective
gravitational Hamiltonian becomes

HGrav ¼ −
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2p3

p
κγ2λ2

½sinðh1Þ sinðh2Þ

þ sinðh2Þ sinðh3Þ þ sinðh1Þ sinðh3Þ�: ð2:15Þ

Besides, the functional form of the matter Hamiltonian
does not get changed as the matter Hamiltonian does not
depend on the ci coefficients. We therefore assume that it
remains unchanged by the quantization procedure.
Following the pioneering work of [42] and rewriting the

effectively quantized Hamiltonian constraint, H ¼ 0, one
can find the generalized Friedmann equation for a Bianchi I
universe with holonomy corrections [43]:

H2 ¼ σ2Q þ κ

3
ρ − λ2γ2

�
3

2
σ2Q þ κ

3
ρ

�
2

; ð2:16Þ

where σ2Q corresponds to the quantum shear and can be
expressed in terms of the hi coefficients:

σ2Q ≔
1

3λ2γ2

�
1 −

1

3
½cosðh1 − h2Þ

þ cosðh2 − h3Þ þ cosðh3 − h1Þ�
�
: ð2:17Þ

It should be stressed that the way anisotropies are defined
here, in agreement with [43], differs from the usual
cosmological definition. Upper limits for ρ and σ2Q can
easily be obtained by requiring H2 > 0 in Eq. (2.16):

ρ ≤ ρc ¼
3

κλ2γ2
; obtained when σ2Q ¼ 0; ð2:18Þ

σ2Q ≤ σ2Qc
¼ 4

9λ2γ2
; obtained when ρ ¼ 0: ð2:19Þ

The dynamics of the pi-functions is given by

_p1 ¼
1

N
fp1;Hg ¼ p1

γλ
cosðh1Þ½sinðh2Þ þ sinðh3Þ�;

and cyclic expressions: ð2:20Þ

From this, the classical directional Hubble parameters,
Hi, can be expressed as functions of the hi’s:

H1 ¼ −
_p1

2p1

þ _p2

2p2

þ _p3

2p3

¼ 1

2γλ
½sinðh1 − h2Þ þ sinðh1 − h3Þ þ sinðh2 þ h3Þ�;

and cyclic expressions: ð2:21Þ

The total Hubble parameter then reads

H ¼ 1

6γλ
½sinðh1 þ h2Þ þ sinðh1 þ h3Þ þ sinðh2 þ h3Þ�:

ð2:22Þ

In the same way, the dynamics of the hi’s is given by the
following equations:

_h1 ¼
1

N
fh1;Hg

¼ 1

2γλ
½ðh2 − h1Þðsinðh1Þ þ sinðh3ÞÞ cosðh2Þ

þ ðh3 − h1Þðsinðh1Þ þ sinðh2ÞÞ cosðh3Þ�

−
κγλ

2
ðρþ PÞ and cyclic expressions; ð2:23Þ

where the pressure P is defined to fulfill the continuity
equation _ρ ¼ 3Hðρþ PÞ.
In this study, the matter content of the Universe is

assumed to be a scalar field ΦðtÞ. Its evolution is given by
the Klein-Gordon equation:

Φ̈þ 3H _Φþ dV
dΦ

¼ 0: ð2:24Þ

The previous equations drive the dynamics of the
system. They are the basis for the subsequent simulations.

III. SIMULATIONS

A. Description of the chosen potentials

For the purpose of this study, we choose four different
potentials, which are all in good agreement with the most
recent Planck data [39] as far as standard cosmological
models are concerned.

(i) The most common potential when dealing with
slow-roll inflation is the quadratic one:

VðΦÞ ¼ 1

2
m2Φ2: ð3:1Þ

Although it is not the best fit to the most recent CMB
measurements, a massive scalar field is very useful
in order to compare different approaches. For this
potential, we fix mquadratic ¼ 1.21 × 10−6mPl, as
suggested by the Planck data [39].
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(ii) The large tensor-to-scalar ratio r initially reported
by BICEP2 [44] can be generated by an inflation
based on a simple monomial effective potential
VðΦÞ ∝ Φp. Although the initial analysis was
shown to be incorrect and values p > 2 are now
strongly disfavored by Planck [39], some values of
p < 2, like p ¼ 2=3, p ¼ 1 or p ¼ 4=3 are still in
good agreement with the data. In addition to the
quadratic potential previously mentioned, we there-
fore explore the LQC dynamics with the potential
associated with p ¼ 1:

VðΦÞ ¼ Λ3ϒjΦj; ð3:2Þ
with the following parametrization:Λ ¼ 1.23 × 10−3

and ϒ ¼ 1.22 × 10−1 [45]. The mass of the scalar
field with this potential is given by mmonomial;p¼1 ∼
Λ ×ϒ ∼ 1.50 × 10−4mPl [45].

(iii) Inflation can also be motivated by supergravity and
string theory. In the context of type IIB string
compactifications, and with a simple string model
of inflation, the effective inflaton potential is well
approximated by [46]

VðΦÞ≃ C2

hνi10=3
�
:ð3 − RÞ − 4

�
1þ 1

6
R

�
e−

Φffiffi
3

p

þ
�
1þ 2

3
R

�
e−

4Φffiffi
3

p þ Re
2Φffiffi
3

p
:

�
; ð3:3Þ

where the following parametrization has been
chosen: C2 ¼ 5157.35, R ¼ 2.3 × 10−6 and hνi ¼
1709.55 [46]. The mass mstringy ¼ 5.87 × 10−4mPl

of the inflaton field is given by the curvature of the
potential around its minimum V 00ð0Þ. Although this
study is focused on LQG, we investigate this string-
inspired potential as a good phenomenological
description of inflation.

(iv) The last potential we will focus on is the Starobinsky
potential. Even if the statistical significance of this
statement is to be taken with care, models with the
Starobinsky potential have the best accordance [47]
with observational data [39]. The potential is given by

VðΦÞ ¼ 3m2

4κ

�
1 − e−

ffiffiffi
2κ
3

p
Φ
�
2
: ð3:4Þ

The mass value for this potential is fixed to be
mStarobinsky ¼ 2.51 × 10−6mPl [48].

The shapes of the string-inspired potential and of the
Starobinsky potential are displayed in Fig. 1.

B. Duration of slow-roll inflation

Once the inflaton potential VðΦÞ has been chosen, the
key question to address is the one of the associated duration
of inflation for the given initial conditions.

For this purpose, we express the number of e-folds of
slow-roll inflation as the integral

N ¼
Z

af

ai

d lnðaÞ ¼
				
Z

Φf

Φi

1ffiffiffiffiffiffiffiffi
2ϵV

p ffiffiffi
κ

p dΦ
mPl

				: ð3:5Þ

In this expression, Φi stands for the value of the scalar
field at the beginning of the slow-roll phase and Φf is such
that ϵVðΦfÞ ¼ 1, where

ϵVðΦÞ≡ 1

2κ

�
V;Φ

V

�
2

m2
pl ð3:6Þ

is the first slow-roll parameter which is equivalent to the
first Hubble flux parameter under slow-roll assumptions.
This expression for N leads to the following results for

the different potentials considered in this study:

Quadratic potential∶ N ¼ 2πΦ2
i −

1

2
; ð3:7Þ

Linear potential∶ N ¼ 4πΦ2
i −

1

4
; ð3:8Þ

Starobinsky potential∶

N ¼ 3

4
ln
�
1þ 2ffiffiffi

3
p

�
−
3

4

�
1þ 2ffiffiffi

3
p

�

−
ffiffiffiffiffi
3κ

8

r
Φi þ

3

4
e

ffiffiffi
2κ
3

p
Φi : ð3:9Þ

In the case of the string theory potential the integral is
computed numerically.

5 10
mPl

2

4

6

8

10

V 10 7 mPl
4

0.5

1.

1.5

2.

1 0 1 2 3 4
mPl

V 10 13 mPl
4

FIG. 1. Upper panel: String-theory-inspired inflaton potential
according to the chosen parametrization. Lower panel: Starobin-
sky potential for a mass of the inflaton field mStarobinsky ¼
2.51 × 10−6mPl.
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The last ingredient needed to fully describe the dynamics
of the Universe is the choice of a set of initial conditions. As
mentioned in the Introduction, there are two main schools of
thought about the way to implement initial conditions in
LQC. The first line of thought [49,50] follows the argumen-
tation that setting initial conditions in the remote past makes
sense since it is the classical phase where physics is well
under control, and this is logically consistent if causality is to
be taken seriously. In addition, there is then a variable to
which a flat PDF can naturally be assigned: the phase of the
oscillations of the scalar field. This flat PDF is, in addition,
preserved over time when quantum corrections remain
small. The other point of view [51] is to set initial conditions
at the bounce,which is the only specialmoment in the cosmic
history. The relevant variable to which one can assign a flat
PDF is then the fraction of potential energy at the bounce. In
the following, wewill study both possibilities and investigate
the effects of anisotropies in each case. We will, however,
argue that setting initial conditions in the remote past is in our
opinion more consistent.

C. Initial conditions in the remote past

Using a Taylor expansion, we assume that all potentials
can be approximated by a quadratic form far enough from the
bounce in the classical contracting phase. This is possible
becausewhen the energy density is very small, as expected in
the remote past of the prebounce branch, the field is near the
bottom of its potential.

1. Initial conditions for the matter sector

In order to describe the evolution of the scalar field, we
introduce two dynamical parameters, the potential energy
parameter x and the kinetic energy parameter y, defined by

xðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffi
VðΦÞ
ρc

s
; yðtÞ ≔

ffiffiffiffiffiffiffi
_Φ2

2ρc

s
: ð3:10Þ

They satisfy

x2ðtÞ þ y2ðtÞ ¼ ρðtÞ
ρc

: ð3:11Þ

In the case of the quadratic potential, xðtÞ becomes

xðtÞ ¼ mΦðtÞffiffiffiffiffiffiffi
2ρc

p : ð3:12Þ

The Klein-Gordon equation (2.24) can therefore be
written as 


_x ¼ my;

_y ¼ −3Hy −mx:

The evolution of the scalar field is driven by two
different time scales: the classical one 1=m, and the
quantum one 1=

ffiffiffiffiffiffiffiffiffi
3κρc

p
. The ratio of these two time scales

is given by

Γ ≔
mffiffiffiffiffiffiffiffiffi
3κρc

p : ð3:13Þ

In the classical phase before the bounce, we assume that
the following conditions are satisfied:

HðtÞ < 0; σ2QðtÞ ≪
κ

3
ρðtÞ and

ffiffiffiffiffiffiffiffi
ρðtÞ
ρc

s
≪ Γ:

ð3:14Þ
As long as the assumption

ffiffiffiffiffiffiffiffiffiffi
ρ=ρc

p
≪ Γ holds, the Klein-

Gordon equation (2.24) reduces to the one of a simple
harmonic oscillator, and x and y are thus given by8<

:
xðtÞ≃

ffiffiffiffiffiffi
ρð0Þ
ρc

q
sinðmtþ δÞ;

yðtÞ≃
ffiffiffiffiffiffi
ρð0Þ
ρc

q
cosðmtþ δÞ:

ð3:15Þ

The δ-parameter, i.e. the phase of the oscillating scalar
field, plays an important role in this study. Still under the
hypothesis given byEq. (3.14), and by using the derivative of
the Friedmann equation restricted to lowest order terms in x
and y, one obtains the expression for the energy density:

ρðtÞ≃ ρc

�
Γ
α

�
2
�
1 −

1

2α

�
mtþ 1

2
sinð2mtþ 2δÞ

��
−2
;

ð3:16Þ
where α is a free parameter set to ensure that Eq. (3.14)
remains valid. It has been shown in [52] that the shape of the
PDF of the duration of slow-roll inflation does not depend on
the value of α as long as it is high enough. For the purpose of
this study, we have chosen α ¼ 17=4π þ 1. This value
induces enough oscillations of the field in the contracting
phase (more than 10) and is convenient to derive analytical
solutions in the case of the quadratic potential.
Setting t ¼ 0 in Eqs. (3.18) and (3.16) gives the initial

conditions for the matter sector:(
Φð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2ρð0Þp
sinðδÞ=m;

_Φð0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2ρð0Þp

cosðδÞ;
ð3:17Þ

and

ρð0Þ ¼ ρc

�
Γ
α

�
2
�
1 −

1

4α
sinð2δÞ

�
−2
: ð3:18Þ

Since we have no constraint on the initial PDF of the
quantumshearσ2Qð0Þ, except that itmust fulfill Eq. (3.14),we
express the initial quantum shear as a fraction of the initial
energy density:

σ2Qð0Þ ¼ f
κ

3
ρð0Þ: ð3:19Þ

The parameter f ≪ 1 represents the ratio of the initial
quantum shear over the initial energy density.
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For fixed values of α and f, the only free variable which
remains to be chosen in order to fix the initial parameters
fΦð0Þ; _Φð0Þ; ρð0Þ; σ2Qð0Þg completely is the initial phase of
the scalar field δ. The question of how to fix δ is therefore
crucial to determine the dynamics. The most reasonable
PDF choice for the δ-parameter is a flat one, since the phase
of the field is purely contingent without any physically
preferred value. Most importantly, as shown in [52], and as
explained before, this PDF is preserved over time as long as
one does not approach the bouncing phase. The fact that
there exists a specific variable to which a physically well-
motivated PDF can be assigned is a very important feature
of the model. This is the main reason why predictions for
the duration of inflation can be made.

2. Initial conditions for the background dynamics

Far before the bounce, one can approximate Eqs. (2.17)
and (2.22) by their Taylor development at first order. This
leads to the following initial conditions:

Hð0Þ≃ 1

3γλ
ðh1ð0Þ þ h2ð0Þ þ h3ð0ÞÞ; ð3:20Þ

and

σ2Qð0Þ≃ 1

18γ2λ2
½ðh1ð0Þ − h2ð0ÞÞ2 þ ðh1ð0Þ − h3ð0ÞÞ2

þ ðh2ð0Þ − h3ð0ÞÞ2�: ð3:21Þ

We define a symmetry variable for the anisotropy:

S ≔
ðh2 − h1Þ − ðh3 − h2Þ

ðh3 − h1Þ
: ð3:22Þ

Without any loss of generality, we choose the following
labeling,

h1 ≤ h2 ≤ h3; ð3:23Þ

such that 0 ≤ jSj ≤ 1.
Solving Eqs. (3.20) and (3.21) with Eq. (3.22) provides

the initial conditions for the hi-parameters:

8>>>>><
>>>>>:

h1ð0Þ≃ γλHð0Þ − γλ 3þSffiffiffiffiffiffiffiffi
3þS2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2Qð0Þ

q
;

h2ð0Þ≃ γλHð0Þ þ γλ 2Sffiffiffiffiffiffiffiffi
3þS2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2Qð0Þ

q
;

h3ð0Þ≃ γλHð0Þ þ γλ 3−Sffiffiffiffiffiffiffiffi
3þS2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2Qð0Þ

q
:

ð3:24Þ

Since it has been shown in [50] that the value of S has no
influence on the duration of slow-roll inflation, it will be set
to zero in the following.

Finally, the initial Hubble parameter can also be
expressed as

Hð0Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Qð0Þ þ

κ

3
ρð0Þ − λ2γ2

�
3

2
σ2Qð0Þ þ

κ

3
ρð0Þ

�
2

s
:

ð3:25Þ

Equations (3.30) and (3.25) define the initial conditions
for the background dynamics.

3. Simulations

The histograms in the first columns of Figs. 2, 3, 4 and 5
are estimators of the PDFs of the duration of slow-roll
inflation, with respect to the measure dN, and for different
values of the initial rate of anisotropies: f ¼ 0, f ¼ 10−4

and f ¼ 10−2. They tend toward the real PDFs in the limits
Δδ → 0 and ΔN → 0. The second columns of those figures
represent the duration of inflation as a function of the initial
phase of the inflaton field for a given value of f. This
investigation has already been performed for a quadratic
potential [50], and it was shown that, as anisotropies grow
up, the mean value of the PDF for the number of e-folds
decreases. We recover this result in Fig. 2. For high
amounts of shear, the distribution becomes bimodal, one

FIG. 2. Quadratic inflaton potential with initial conditions set
before the bounce. Left column: Probability distribution func-
tions for the number of e-folds of inflation. Right column:
Number of e-folds of inflation as a function of the initial phase
of the inflaton field. Upper panels: Isotropic universe f ¼ 0.
Middle panels: Anisotropic universe, f ¼ 10−4. Lower panels:
Anisotropic universe, f ¼ 10−2.
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side corresponding to “energy-dominated” bounces and the
other one to “shear-dominated” bounces.
An important comment is here in order. When consid-

ering models leading to very high numbers of e-folds, a
logarithmic scale is useful for a better visualization of the
full dynamics. In this case, however, the usual PDF
normalization fails to capture the most important feature.
The standard normalization is indeed such that the sum of
the contents of each bin multiplied by its width is equal
to 1. With this choice, the contents of the last bins—when
using a log scale—will be very suppressed in the plot just
because the width is large, thus giving the wrong feeling
that a high number of e-folds is improbable. For this reason,
when using a logarithmic scale, we superimpose on each
plot the PDF and what we call the probability estimator
function (PEF). This estimator uses a normalization such
that the sum of the contents of the bins is unitary. Although
not strictly a PDF this estimator is more intuitive and allows
the reader to immediately see what is the most probable
number of e-folds. We recommend to base the conclusions
on the PEF rather than on the PDF when both are given.
When using linear scales, both estimators coincide (with
just a different y scale). To avoid making the text too heavy
we use the term PDF as a generic one in the following.
However, when a log scale is used on the plot, the trend
which is mentioned will appear more clearly on the PEFs.

When a PDF is represented alone on a plot it is always a
solid line; however when it is superimposed with a PEF,
the PDF is then represented as a dotted line to emphasize
the clearer interpretation of the PEF.
It can be seen in Figs. 3, 4 and 5 that this trend also

appears for the other potentials. This, however, is not
surprising when considering models with anisotropic shear:
the three scale factors associated to the three spatial
directions will not reach their minimum value at the same
time during the contraction phase. Thus, the maximum
amount of energy density available for the scalar field
during the bouncing phase will be lower than in the
isotropic case. The inflaton field will not be pushed along
its potential as far as in the isotropic case, leading to a
shorter phase of slow-roll inflation. The major effect of
anisotropies is therefore not a modification in the dynami-
cal equations of the Universe1 but a shift in the maximum
amount of energy available for the scalar field at the
bounce. It is mainly this effect which leads to a smaller
number of e-folds of slow-roll inflation.
As explained above, one of the most important features

of LQC relies on the fact that the duration of slow-roll
inflation is well constrained when initial conditions are set

FIG. 3. Linear inflaton potential with initial conditions set
before the bounce. Left column: Probability distribution func-
tions for the number of e-folds of inflation. Right column:
Number of e-folds of inflation as a function of the initial phase
of the inflaton field. Upper panels: Isotropic universe f ¼ 0.
Middle panels: Anisotropic universe, f ¼ 10−4. Lower panels:
Anisotropic universe, f ¼ 10−2.

FIG. 4. String theory inflaton potential with initial conditions
set before the bounce. Left column: Probability distribution
functions for the number of e-folds of inflation. Right column:
Number of e-folds of inflation as a function of the initial phase of
the inflaton field. Upper panels: Isotropic universe f ¼ 0. Middle
panels: Anisotropic universe, f ¼ 10−4. Lower panels: Aniso-
tropic universe, f ¼ 10−2.

1Since anisotropies scale as a−6, the dynamics is almost always
equivalent to the isotropic LQC one.
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in the contracting phase. This remains partially true when
anisotropies are taken into account, although the relative
widths of the PDFs increase and their mean values
decrease. It should however be emphasized that this
important feature of LQC is actually only true as long
as the inflaton potential is sufficiently confining. If one
considers for example the Starobinsky potential, as shown
in Fig. 5, the period of slow-roll inflation lasts much longer
compared to the cases with other potentials. This is because
of the large “plateau.” We recall here that this potential has
initially been introduced for quantum gravity reasons, and,
at the phenomenological level, for obtaining a long enough
phase of inflation, even when the energy density remains
small. However, the LQC dynamics automatically provides
highly energetic field configurations at the onset of
inflation. The inflaton field is therefore “pushed” far away
on the plateau, leading to a very long phase of slow-roll
inflation. The peak of the PDF (without shear) of the
number of e-folds around 150–200 e-folds, which is
generic for confining potentials in LQC, is now shifted
to very different values around 108.
In addition, the bimodal shape of the PDFs in the cases of

the string theory and of the Starobinsky potentials is due to
the fact that those two potentials are highly asymmetric, as
described in [46] and [48]. The low-N peaks correspond to
cases where the scalar field is negative at the beginning of
inflation, i.e. in the region where the potential is sharp.

On the other hand, the high-N peak corresponds to positive
values of the scalar field at the beginning of inflation, i.e.
where the potentials have a plateau.
It is important to underline that for all the considered

potentials, the way the number of e-folds varies with
respect to the phase δ is highly nontrivial. This is one of
the reasons why exhaustive simulations are necessary.
From the phenomenological viewpoint, it is worth stressing
that for all potentials but the Starobinsky potential, the
predicted number of e-folds, especially when anisotropies
are taken into account, is not much higher than the
minimum value favored by observations (around 70
e-folds). We want to stress that this provides an opportunity
to make quantum gravity effects potentially observable.
If inflation lasts much longer than 70 e-folds, physical
modes with the size of a Planck length at the bouncing time
become larger than the Hubble radius at present times,
which would make the detection of possible quantum
gravity effects very difficult, if not hopeless. But if inflation
was not much longer than 70 e-folds, an interesting
window opens up on LQC phenomenology.

D. Initial conditions at the bounce

In this section, we consider the case in which initial
conditions are set at the bounce (t ¼ 0 now refers to the
bouncing time). The variable to which a presumably known
PDFcanbe assigned is no longer the initial phase of the scalar
field δ, but the initial potential energy parameter xð0Þ. A flat
PDF will be assumed for xð0Þ, as in [51] and many historical
studies, although it is far less motivated than the flat PDF for
the δ-parameter used in the previous section.
The initial shear is still introduced as a fraction of the initial

energy density, σ2Qð0Þ ¼ fκ=3ρð0Þ, in order to be able to
properly compare the effects of anisotropies with what
happened in the previous case, where initial conditions were
set before the bounce. The initial value of f is obtained by
averaging its values over all phases at the bounce in the case
of initial conditions set in the remote past.
The value of the initial energy density can easily be

calculated:

Hð0Þ ¼ 0 ⇔ σ2Qð0Þ þ
κ

3
ρð0Þ

− λ2γ2
�
3

2
σ2Qð0Þ þ

κ

3
ρð0Þ

�
2

¼ 0 ⇔ ρð0Þ ¼ 3
f þ 1

κλ2γ2
1

ð1þ 3
2
fÞ2 : ð3:26Þ

To obtain the initial conditions for the hi-coefficients, we
fix one of them to hið0Þ ¼ nπ=2; n ∈ N; i ¼ 1, 2, 3 and the
two others [hjð0Þ and hkð0Þ, j, k ¼ 1, 2, 3, i ≠ j ≠ k] are
then fixed by the following constraints,

sinðh1 þ h2Þ þ sinðh1 þ h3Þ þ sinðh2 þ h3Þ ¼ 0; ð3:27Þ

FIG. 5. Starobinsky potential with initial conditions set before
the bounce. Left column: Probability distribution functions (and
PEFs when useful) for the number of e-folds of inflation. Right
column: Number of e-folds of inflation as a function of the initial
phase of the inflaton field. Upper panels: Isotropic universe
f ¼ 0. Middle panels: Anisotropic universe, f ¼ 10−4. Lower
panels: Anisotropic universe, f ¼ 10−2.
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and

cosðh1 − h2Þ þ cosðh1 − h3Þ þ cosðh2 − h3Þ

¼ 3 − 9f
f þ 1

ð1þ 3f=2Þ2 ; ð3:28Þ

obtained from Eqs. (2.22) and (2.17). One of the hið0Þ’s
must be a multiple of π; otherwise solutions to this system
are nonreal.
Figures 6 and 7 display the results of the simulations

obtained for the quadratic and the linear potentials, for
positive values of Φð0Þ and _Φð0Þ. It is clear that anisot-
ropies have no significant effects on the shapes of the
probability distribution functions for N. However, the mean
value of N decreases when f increases, similar to the
behavior of N when initial conditions are set in the
prebouncing phase. This is not surprising since the major
effect of the shear is a decrease in the energy density
available for the scalar field at the bounce. It should also be
underlined that N increases significantly when xð0Þ grows
up. Those large values of N were nearly never reached in
the previous scenario, when initial conditions are set before
the bounce, because a very high level of fine-tuning of the
initial phase δ would have been required to generate a
nontiny value of xð0Þ. Obviously, the duration of inflation
is less constrained when initial conditions are set at the
bounce with a flat PDF on xð0Þ. The total number of e-folds

is much higher than N⋆ ∼ 60–70 which would correspond
to visible inflation.
It should be underlined that a flat PDF for xð0Þmay not be

relevant when setting initial conditions in the case of non-
symmetric potentials, such as the string theory potential or
the Starobinsky potential. For those potentials, a given value
of VðΦÞ corresponds to two different values of jΦj, and
consequently to two different evolutions of the scalar field.
The case of the string theory potential is presented in

Fig. 8. Positive values of Φð0Þ and _Φð0Þ were chosen in
order to probe the right part of the potential, and in order to
be comparable with the two previous potentials. The first
two lines show that in the cases f ¼ 0 and f ¼ 0.31, the
duration of slow-roll inflation does not vary a lot with xð0Þ.
This behavior is due to the fact that for nearly all the
displayed values of xð0Þ, the value of the potential energy at
the beginning of the slow-roll phase is higher than the
plateau. On the third line, however, the amount of shear
becomes high enough so that, at low xð0Þ, the potential
energy becomes lower than the plateau. This implies much
shorter durations of inflation.
The case of the Starobinsky potential is slightly more

complicated. The initial value of the inflaton fieldΦð0Þ can
be expressed as a function of xð0Þ:

Φð0Þ ¼ −
ffiffiffiffiffi
3

2κ

r
log

�
1 ∓

ffiffiffiffiffiffiffiffiffi
4κρc
3m2

r
xð0Þ

�
; ð3:29Þ

FIG. 6. Quadratic inflaton potential with initial conditions set at
the bounce and positive values of Φð0Þ and _Φð0Þ. Left column:
Probability distribution functions (and PEFs) for the number of
e-folds of inflation. Right column: Number of e-folds of inflation
as a function of x0. Upper panels: Isotropic universe f ¼ 0.
Middle panels: Anisotropic universe, f ¼ 0.57. Lower panels:
Anisotropic universe, f ¼ 118.

FIG. 7. Linear inflaton potential with initial conditions set at the
bounce and positive values of Φð0Þ and _Φð0Þ. Left column:
Probability distribution functions (and PEFs) for the number of
e-folds of inflation. Right column: Number of e-folds of inflation
as a function of x0. Upper panels: Isotropic universe f ¼ 0.
Middle panels: Anisotropic universe, f ¼ 8.73 × 10−2. Lower
panels: Anisotropic universe, f ¼ 288.
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where the “minus” solution in the logarithm corresponds to
positive values of Φð0Þ whereas the “plus” solution
corresponds to negative ones. If we consider positive
values of Φð0Þ, a specific value of xð0Þ appears:

xcð0Þ ¼
ffiffiffiffiffiffiffiffiffi
3m2

4κρc

s
¼ 6.77 × 10−7: ð3:30Þ

It corresponds to the value of xð0Þ for which the potential
energy is equal to the value of the plateau of the poten-

tial: xcð0Þ ¼
ffiffiffiffiffiffiffiffi
Vplate

ρc

q
.

We distinguish two cases:
(i) xð0Þ < xcð0Þ: For those values of xð0Þ, the initial

potential energy density at the bounce is lower than
the plateau. As mentioned previously, a single value
of V corresponds to two different values ofΦ, one of
them being positive and the other one negative.

(ii) xð0Þ > xcð0Þ: These values of xð0Þ correspond to
potential energy densities which are higher than the
plateau. For a given value of V, there is now only one
negative value of Φ.

Since xcð0Þ ≪ 1, if one wants to vary xð0Þ between 0
and 1, and probe the plateau part of the potential, it is
necessary to take negative values of Φð0Þ, together with
positive values of _Φð0Þ. It remains possible to probe
the plateau with positive values of Φð0Þ and _Φð0Þ if

xð0Þ ∈ ½0; xcð0Þ�. It should be noticed that, if initial con-
ditions are set in the contracting phase, positive values of
the field at the bounce are highly favored in the isotropic
case, and remain favored in the presence of anisotropic
shear, as shown in Fig. 5.2 We therefore choose to show
some results associated with Φð0Þ and _Φð0Þ with xð0Þ ∈
½0; xcð0Þ� in Fig. 9. It can be seen that without shear the
inflaton field is pushed far away on the plateau, leading to
large numbers of e-folds. However, when the initial shear is
nonvanishing, the energy density which remains available
for the scalar field is smaller, such that the field cannot
reach the plateau anymore. This leads to a shorter slow-roll
phase. It is difficult to probe the plateau with a flat PDF for
xð0Þ if anisotropies are taken into account. Since the
cosmological interest of the Starobinsky potential is mostly
associated with the plateau, this means that setting initial
conditions at the bounce, at least in the presented way, is
not very relevant in this case.
From the viewpoint of phenomenology, it is important

to notice that the predicted number of e-folds, if initial
conditions are believed to be set at the bounce, is generi-
cally very high. Unless a huge amount of fine-tuning is
applied, the observation of possible quantum gravity effects
in the CMB is virtually impossible. Only in the case of a

FIG. 8. String-theory inflaton potential with initial conditions
set at the bounce and positive values of Φð0Þ and _Φð0Þ. Left
column: Probability distribution functions (and PEFs when
useful) for the number of e-folds of inflation. Right column:
Number of e-folds of inflation as a function of x0. Upper panels:
Isotropic universe f ¼ 0. Middle panels: Anisotropic universe,
f ¼ 0.31. Lower panels: Anisotropic universe, f ¼ 355.

FIG. 9. Starobinsky inflaton potential with initial conditions set
at the bounce and positive values ofΦð0Þ and _Φð0Þ. Left column:
Probability distribution functions (and PEFs when useful) for the
number of e-folds of inflation. Right column: Number of e-folds
of inflation as a function of x0. Upper panels: Isotropic universe
f ¼ 0. Middle panels: Anisotropic universe, f ¼ 3.87. Lower
panels: Anisotropic universe, f ¼ 28.0.

2In most cases, the field has the same sign at the bounce and at
the beginning of the slow-roll phase.
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strongly shear-dominated bounce does the number of
e-folds become close to the observational bound.
The usually much smaller number of e-folds of inflation

when initial conditions are set in the classical prebounce
phase can be understood as follows: setting initial con-
ditions, i.e. fixing the initial phase of the inflaton field,
when the energy density is very small leads—for almost all
values of the phase—to solutions without deflation. This
has already been (implicitly) shown in the frame of
standard cosmology by Gibbons and Turok [53] and the
consequences of these results for LQC were explained in
detail in [54]. Solutions to the given set of differential
equations without deflation cannot bring the field to high
values at the bounce, since the accelerated contraction stops
almost immediately. One therefore encounters a kinetic-
energy dominated bounce which subsequently leads to a
small number of e-folds, as shown in Fig. 2 of [54]. On the
other hand, varying the value of the field at the bounce—
hence making potential-energy dominated bounce scenar-
ios likely—results in very large numbers of e-folds for
many solutions. The above arguments were shown for the
quadratic potential, but they still hold for the linear
potential and the string-theory-inspired potentials. Taking
anisotropies into account makes the energy density avail-
able for the scalar field even smaller and subsequently
decreases the resulting number of e-folds for a particular
solution.

IV. DISCUSSION AND CONCLUSION

A. Discussion

Let us begin by discussing the issue of the best choice for
initial conditions. If the word “initial” is taken in its literal
sense, it is certainly reasonable to set them in the remote
past and respect the causal evolution of the system. As
shown in [49], the evolution across the bounce is not time
symmetric. From the mathematical viewpoint this is how-
ever not necessary and some physical arguments are
required. It seems to us that assigning a flat PDF to the
phase of the field in the remote past of the contracting
branch is a better choice than assigning a flat PDF to the
fraction of potential energy at the bounce. The first reason
for this is that the vicinity of the bounce is the most
“quantum” period in the history of the Universe. It is
therefore the one where the semiclassical approach used
here is the most questionable—backreaction might not be
negligible—and hence the worst one to assign specific
values to the dynamical variables. This is precisely the time
when the considered system is not under perfect control and
obviously not the most natural one to set initial conditions
in a safe way. The second reason is that a flat PDF for the
fraction of potential energy is a completely arbitrary choice.
It has no physical motivation; the PDF could be chosen to
be anything else with the same credibility. There is no
reason to chose all potential energies with the same

probability. Describing the very same system with other
variables to which flat PDFs could be assigned would lead
to completely different PDFs for the fraction of potential
energy and to completely different results for the number of
expected e-folds. This is to be contrasted with the flat PDF
assigned to the phase of the oscillations. In this case, the
phase has a clear physical meaning and is a random variable
with a known PDF during an oscillatory process. One could
discuss the details of the PDF but the rough shape is known
just because the field is an oscillator. It could be argued that
the fraction of potential energy is also known and this is
true, but not at the bounce time where the dynamics is
modified with respect to the trivial nearly oscillatory
process. The third reason is that a flat PDF assigned to
the phase is preserved over time. This is very important and
means that this choice is consistent in the sense that it does
not depend on the chosen hypersurface at which initial
conditions are set. Obviously, a flat PDF for the fraction of
potential energy is not time preserved and there is no reason
for the bounce to be the precise time when assigning a flat
PDF to this variable.
Knowing the PDF for any dynamical variable describing

the system allows one to know the PDF for the number of
e-folds. There are two kinds of “predictive powers” that
need to be distinguished at this stage. Let us call “strong
predictive power” the case in which the number of e-folds
of inflation is (roughly) known and “weak predictive
power” the case in which the PDF for the number of
e-folds is known. The strong case basically requires that the
PDF is not only known (that is, the weak case) but also
requires that it is highly peaked.

B. Conclusion

This study is dedicated to the systematic investigation of
the duration of inflation in LQC with holonomy correc-
tions. We have addressed the three main unknown points:
the way to set initial conditions, the amount of shear and
the shape of the inflaton potential. The conclusions of this
study are the following: (i) As far as the capability of the
model to predict the distribution of the number of e-folds is
concerned, it is, in our opinion, more appealing to set
initial conditions in the remote past of the classical
contracting branch of the Universe. In this case, a flat
PDF can easily be associated to the δ-parameter for all the
potentials. (ii) Furthermore, in this case, the duration of
inflation is indeed severely constrained, and most interest-
ingly to values which are not much higher than the
minimum value required by observations (but only for
“confining” potentials). (iii) When anisotropies are taken
into account the PDF of the number of e-folds is widened
and its mean value decreases, confirming the strong
predictive power of LQC for a massive scalar field.
(iv) For potentials with a plateau such that the favored
value of the amount of potential energy at the beginning of
the slow-roll phase is larger than the height of the plateau,
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the predicted number of e-folds can become very large and
the predictive power is only weak. (v) When the potential is
asymmetric, the PDF can become bimodal. (vi)When initial
conditions are set at the bounce, even the weak predictive
power of LQC is basically lost as everything is then
determined by the arbitrary choice of the variable to which
a known PDF is assigned.
In summary, if the shape of the inflaton potential can be

experimentally determined (this is already partially the
case) and if, following the logics of causality, the initial
conditions are set in the remote past, there is an obviously
interesting predictive power of LGC for the duration of
inflation. This predictive power is strong if the potential is
confining and weak if the potential has a plateaulike shape.
It is not so because of the specific quantum dynamics but
because of the existence of a preferred amount of potential
energy at the onset of inflation which is naturally selected

by the semiclassical trajectory. The most difficult point to
address remains the one of anisotropies as no simple
physical argument allows one to choose a preferred amount
of shear. If the potential is confining enough this is however
not necessarily a problem as the predicted number of
e-folds is then restricted to a quite small interval (bounded
from above by the model in the isotropic case and from
below by observations as N > N⋆ ≈ 70) which happens to
be the most interesting one for phenomenology.

ACKNOWLEDGMENTS

We thank B. Bolliet for helpful discussions. K. M. is
supported by a grant from the Capital Fund Management
(CFM) foundation. S. S. is supported by grants from the
Heinrich-Böll-Stiftung e.V. and the Studienstiftung des
deutschen Volkes e.V.

[1] C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity
(Cambridge University Press, Cambridge, England, 2014),
ISBN 9781107069626.

[2] R. Gambini and J. Pullin, A First Course in Loop Quantum
Gravity (Oxford University Press, Oxford, 2011),
ISBN 0199590753.

[3] C. Rovelli, Proc. Sci. QGQGS2011 (2011) 003 [arXiv:
1102.3660].

[4] P. Dona and S. Speziale, http://inspirehep.net/record/
860342/files/arXiv:1007.0402.pdf.

[5] T. Thiemann, Lect. Notes Phys. 631, 41 (2003).
[6] T. Thiemann, Modern Canonical Quantum General Rela-

tivity (Cambridge University Press, Cambridge, England,
2008), ISBN 0521741874.

[7] C. Rovelli, Quantum Gravity (Cambridge University Press,
Cambridge, 2007), ISBN 0521715962.

[8] C. Rovelli, Living Rev. Relativ. 11, 5 (2008).
[9] L. Smolin, arXiv:hep-th/0408048.

[10] A. Perez, arXiv:gr-qc/0409061.
[11] A. Ashtekar and A. Barrau, Classical Quantum Gravity 32,

234001 (2015).
[12] A. Barrau, T. Cailleteau, J. Grain, and J. Mielczarek,

Classical Quantum Gravity 31, 053001 (2014).
[13] A. Barrau and J. Grain, arXiv:1410.1714.
[14] I. Agullo and A. Corichi, arXiv:1302.3833.
[15] G. Calcagni, Ann. Phys. (Amsterdam) 525, 323 (2013);

Ann. Phys. (Berlin) 525, A165(E) (2013).
[16] M. Bojowald, Classical Quantum Gravity 29, 213001

(2012).
[17] K. Banerjee, G. Calcagni, and M. Martin-Benito, SIGMA 8,

016 (2012).
[18] M. Bojowald, Quantum Cosmology (Springer-Verlag, New

York, 2011), ISBN 978-1-4419-8275-9.
[19] A. Ashtekar and P. Singh, Classical Quantum Gravity 28,

213001 (2011).

[20] M. Bojowald, Living Rev. Relativ. 11, 4 (2008), http://www
.livingreviews.org/lrr‑2008‑4.

[21] A. Ashtekar, Gen. Relativ. Gravit. 41, 707 (2009).
[22] A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv.

Theor. Math. Phys. 7, 233 (2003).
[23] M. Bojowald and G.M. Paily, Phys. Rev. D 86, 104018

(2012).
[24] A. Barrau, M. Bojowald, G. Calcagni, J. Grain, and M.

Kagan, J. Cosmol. Astropart. Phys. 05 (2015) 051.
[25] J. Mielczarek, T. Cailleteau, A. Barrau, and J. Grain,

Classical Quantum Gravity 29, 085009 (2012).
[26] T. Cailleteau, J. Mielczarek, A. Barrau, and J. Grain,

Classical Quantum Gravity 29, 095010 (2012).
[27] T. Cailleteau, A. Barrau, J. Grain, and F. Vidotto, Phys. Rev.

D 86, 087301 (2012).
[28] L. Linsefors, T. Cailleteau, A. Barrau, and J. Grain, Phys.

Rev. D 87, 107503 (2013).
[29] S. Schander,A.Barrau,B.Bolliet, L.Linsefors, J.Mielczarek,

and J. Grain, Phys. Rev. D 93, 023531 (2016).
[30] I. Agullo, A. Ashtekar, and W. Nelson, Classical Quantum

Gravity 30, 085014 (2013).
[31] I. Agullo, A. Ashtekar, and W. Nelson, Phys. Rev. Lett. 109,

251301 (2012).
[32] I. Agullo, A. Ashtekar, and W. Nelson, Phys. Rev. D 87,

043507 (2013).
[33] E. Wilson-Ewing, Classical Quantum Gravity 29, 215013

(2012).
[34] L. C. Gomar, M. Martín-Benito, and G. A. M. Marugán,

J. Cosmol. Astropart. Phys. 06 (2015) 045.
[35] B. Bolliet, J. Grain, C. Stahl, L. Linsefors, and A. Barrau,

Phys. Rev. D 91, 084035 (2015).
[36] E. Alesci and F. Cianfrani, Europhys. Lett. 111, 40002

(2015).
[37] S. Gielen, D. Oriti, and L. Sindoni, Phys. Rev. Lett. 111,

031301 (2013).

MARTINEAU, BARRAU, and SCHANDER PHYSICAL REVIEW D 95, 083507 (2017)

083507-12

http://arXiv.org/abs/1102.3660
http://arXiv.org/abs/1102.3660
http://inspirehep.net/record/860342/files/arXiv:1007.0402.pdf
http://inspirehep.net/record/860342/files/arXiv:1007.0402.pdf
http://inspirehep.net/record/860342/files/arXiv:1007.0402.pdf
http://inspirehep.net/record/860342/files/arXiv:1007.0402.pdf
http://inspirehep.net/record/860342/files/arXiv:1007.0402.pdf
https://doi.org/10.1007/b13561
https://doi.org/10.12942/lrr-2008-5
http://arXiv.org/abs/hep-th/0408048
http://arXiv.org/abs/gr-qc/0409061
https://doi.org/10.1088/0264-9381/32/23/234001
https://doi.org/10.1088/0264-9381/32/23/234001
https://doi.org/10.1088/0264-9381/31/5/053001
http://arXiv.org/abs/1410.1714
http://arXiv.org/abs/1302.3833
https://doi.org/10.1002/andp.201200227
https://doi.org/10.1088/0264-9381/29/21/213001
https://doi.org/10.1088/0264-9381/29/21/213001
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.12942/lrr-2008-4
http://www.livingreviews.org/lrr-2008-4
http://www.livingreviews.org/lrr-2008-4
http://www.livingreviews.org/lrr-2008-4
https://doi.org/10.1007/s10714-009-0763-4
https://doi.org/10.4310/ATMP.2003.v7.n2.a2
https://doi.org/10.4310/ATMP.2003.v7.n2.a2
https://doi.org/10.1103/PhysRevD.86.104018
https://doi.org/10.1103/PhysRevD.86.104018
https://doi.org/10.1088/1475-7516/2015/05/051
https://doi.org/10.1088/0264-9381/29/8/085009
https://doi.org/10.1088/0264-9381/29/9/095010
https://doi.org/10.1103/PhysRevD.86.087301
https://doi.org/10.1103/PhysRevD.86.087301
https://doi.org/10.1103/PhysRevD.87.107503
https://doi.org/10.1103/PhysRevD.87.107503
https://doi.org/10.1103/PhysRevD.93.023531
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1103/PhysRevLett.109.251301
https://doi.org/10.1103/PhysRevLett.109.251301
https://doi.org/10.1103/PhysRevD.87.043507
https://doi.org/10.1103/PhysRevD.87.043507
https://doi.org/10.1088/0264-9381/29/21/215013
https://doi.org/10.1088/0264-9381/29/21/215013
https://doi.org/10.1088/1475-7516/2015/06/045
https://doi.org/10.1103/PhysRevD.91.084035
https://doi.org/10.1209/0295-5075/111/40002
https://doi.org/10.1209/0295-5075/111/40002
https://doi.org/10.1103/PhysRevLett.111.031301
https://doi.org/10.1103/PhysRevLett.111.031301


[38] S. Gielen, D. Oriti, and L. Sindoni, J. High Energy Phys. 06
(2014) 013.

[39] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 594, A13 (2016).

[40] K. A. Meissner, Classical Quantum Gravity 21, 5245
(2004).

[41] A. Ashtekar and E. Wilson-Ewing, Phys. Rev. D 79, 083535
(2009).

[42] B. Gupt and P. Singh, Classical Quantum Gravity 30,
145013 (2013).

[43] L. Linsefors and A. Barrau, Classical Quantum Gravity 31,
015018 (2014).

[44] P. A. R. Ade, R. W. Aikin, D. Barkats, S. J. Benton, C. A.
Bischoff, J. J. Bock, J. A. Brevik, I. Buder, E. Bullock, C. D.
Dowell et al. (BICEP2 Collaboration), Phys. Rev. Lett. 112,
241101 (2014).

[45] K. Harigaya, M. Ibe, K. Schmitz, and T. T. Yanagida, Phys.
Rev. D 90, 123524 (2014).

[46] M. Cicoli, C. Burgess, and F. Quevedo, J. Cosmol.
Astropart. Phys. 09 (2009) 013 (2009).

[47] J. Martin, C. Ringeval, and V. Vennin, Phys. Dark Univ.
5–6, 75 (2014).

[48] B. Bonga and B. Gupt, Gen. Relativ. Gravit. 48, 71
(2016).

[49] L. Linsefors and A. Barrau, Phys. Rev. D 87, 123509
(2013).

[50] L. Linsefors and A. Barrau, Classical Quantum Gravity 32,
035010 (2015).

[51] A. Ashtekar and D. Sloan, Gen. Relativ. Gravit. 43, 3619
(2011).

[52] L. Linsefors and A. Barrau, Phys. Rev. D 87, 123509
(2013).

[53] G.W. Gibbons and N. Turok, Phys. Rev. D 77, 063516
(2008).

[54] B. Bolliet, A. Barrau, K. Martineau, and F. Moulin,
arXiv:1701.02282.

DETAILED INVESTIGATION OF THE DURATION OF … PHYSICAL REVIEW D 95, 083507 (2017)

083507-13

https://doi.org/10.1007/JHEP06(2014)013
https://doi.org/10.1007/JHEP06(2014)013
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1088/0264-9381/21/22/015
https://doi.org/10.1088/0264-9381/21/22/015
https://doi.org/10.1103/PhysRevD.79.083535
https://doi.org/10.1103/PhysRevD.79.083535
https://doi.org/10.1088/0264-9381/30/14/145013
https://doi.org/10.1088/0264-9381/30/14/145013
https://doi.org/10.1088/0264-9381/31/1/015018
https://doi.org/10.1088/0264-9381/31/1/015018
https://doi.org/10.1103/PhysRevLett.112.241101
https://doi.org/10.1103/PhysRevLett.112.241101
https://doi.org/10.1103/PhysRevD.90.123524
https://doi.org/10.1103/PhysRevD.90.123524
https://doi.org/10.1088/1475-7516/2009/03/013
https://doi.org/10.1088/1475-7516/2009/03/013
https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1016/j.dark.2014.01.003
https://doi.org/10.1007/s10714-016-2071-0
https://doi.org/10.1007/s10714-016-2071-0
https://doi.org/10.1103/PhysRevD.87.123509
https://doi.org/10.1103/PhysRevD.87.123509
https://doi.org/10.1088/0264-9381/32/3/035010
https://doi.org/10.1088/0264-9381/32/3/035010
https://doi.org/10.1007/s10714-011-1246-y
https://doi.org/10.1007/s10714-011-1246-y
https://doi.org/10.1103/PhysRevD.87.123509
https://doi.org/10.1103/PhysRevD.87.123509
https://doi.org/10.1103/PhysRevD.77.063516
https://doi.org/10.1103/PhysRevD.77.063516
http://arXiv.org/abs/1701.02282

