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Bouncing solutions are obtained from a generally covariant action characterized by a potential which is
a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are
shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and
a frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterion for the
avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that
turn out to be compatible with a quasiflat spectrum of curvature inhomogeneities for large wavelengths.
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I. INTRODUCTION

The temperature and polarization anisotropies of the
cosmic microwave background can be successfully repro-
duced by assuming that the initial conditions of the
Einstein-Boltzmann hierarchy are predominantly adiabatic
and Gaussian [1,2]. Inflationary models are consistent
with the presence of a dominant adiabatic mode but the
smallness of the tensor to scalar ratio calls for a plateaulike
potential in the Einstein frame implying a minute
energy density of the inflaton in Planck units [typically
ρinf ¼ Oð10−12ÞM4

P]. A very plausible chain of arguments
[3] stipulates that the kinetic energy of the inflaton and the
spatial curvature must then be comparable with the inflaton
potential if we do not want the kinetic energy and the
spatial curvature to dominate even before inflation starts.
This occurrence can be quantitatively scrutinized by
following the evolution of the spatial gradients [4] during
the preinflationary phase. A complete theory of the initial
conditions should account for the emergence of the
observable universe from a sufficiently generic set of initial
data. It might well be, however, that inflation should be
primarily regarded as a model of the spectral indices rather
than a theory of the initial data.
Since bouncing models more often than not lead to small

tensor components over large distance scales, they have
been intensively investigated in the past 20 years with
various independent motivations ranging from string
inspired models to different classes of scenarios concocted
in the framework of effective theories (see, for instance, [5]
for some reviews on the subject). The current versions of
bouncing models have many virtues but they also have

various well known problems which have been scrutinized
in the past and are currently under active consideration
[6,7]. Some of the current approaches even renounce
general covariance and often impose ad hoc symmetries
(like the shift symmetry).
An interesting class of bouncing models can be obtained,

in the low-curvature regime, by the contribution of a
nonlocal, though generally covariant, dilaton potential
[8]. Even if the potential is nonlocal, the corresponding
evolution equations of the background and of the corre-
sponding fluctuations are perfectly local in time. Bouncing
solutions have been studied in this framework. The
production of massless quanta (e.g. gauge bosons) could
heat the background, stabilize the dilaton, and eventually
provide an exit to radiation (see, in particular, the first paper
of [8]). The idea that radiation can arise from the back-
reaction of the produced quanta goes back to the seminal
contributions of various authors [9] (see, in particular, the
analyses of Parker and Ford). Bouncing solutions may also
arise in the context of double field theory [10] which was
first proposed to realize T-duality explicitly at the level
of component fields of closed string field theory; earlier
contributions along this direction can be found in [11].
Since the nonlocal potential of [8] depends on a T-duality
invariant combination, the corresponding solutions can also
be interpreted in a double field theory context [12].
Various bouncing models may experience the so called

gradient instability stipulating that either the scalar or the
tensor modes of the geometry inherit an imaginary sound
speed. The corresponding fluctuations are then exponen-
tially unstable for sufficiently small wavelengths. To cure
this pathology noncovariant terms are often added to the
action of the fluctuations with the purpose of modifying
the effective sound speed without disturbing too much the
evolution of the background. In the present investigation,
after discussing in detail the derivation of the scalar sound
speed, it will be demonstrated that gradient instabilities take
place also in the context of bouncing models induced by a
nonlocal dilaton potential. Unlike other modes, however,
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these instabilities do not arise ubiquitously for any form of
the dilaton potential and are, in this sense, nongeneric. We
provide examples of semirealistic backgrounds where the
instabilities are tamed and the spectrum of the scalar modes
turns out to be quasiflat.
We remark that while the scalar modes of the geometry

may evolve differently in the Einstein and in the string
frames, the curvature perturbations on comoving orthogo-
nal hypersurfaces are both gauge invariant and frame
invariant. The corresponding evolution equations inherit
an effective sound speed. Such a terminology is justified
since the pivotal equation derived in this context coincides,
formally, with the equation derived long ago by Lukash [13]
and described the excitations of a relativistic and irrotational
fluid in a Friedmann-Robertson-Walker background. Note,
however that in the case of Ref. [13] the sound speed is the
square root of the ratio between the derivatives of the
pressure and on the energy density of the relativistic fluid,
as it should be bydefinition of the sound speed; in the present
case, however, the effective sound speed will ultimately be a
functional of the potential. A valid help for this analysis is
represented by the uniform dilaton gauge which has been
discussed in various related contexts [14,15]. In this gauge
the dilaton remains unperturbed, the curvature perturbations
coincide with the longitudinal degrees of freedom of the
perturbed metric, and the scalar modes are automatically
frame invariant.
The present paper is organized as follows. In Sec. II the

bouncing models induced by nonlocal dilaton potentials are
introduced. In Sec. III we derive explicitly the scalar sound
speed and discuss the problem of the gradient instability.
The genericness of the gradient instability is scrutinized in
Sec. IV with the aim of constructing solutions where this
pathology does not arise. A number of potential drawbacks
are suggested anyway in the last part of Sec. IV. Finally
Sec. V contains the concluding remarks. Various results
have been presented and summarized in a self-contained
perspective in the Appendix.

II. NONLOCAL POTENTIALS AND
BOUNCING SOLUTIONS

A smooth bouncing transition at low curvatures can be
achieved in the framework of the following generally
covariant action in four space-time dimensions [8]:

S ¼ −
1

λ2s

Z
d4x

ffiffiffiffiffiffi
−g

p
e−φ½Rþ gαβ∇αφ∇βφþ V�; ð2:1Þ

where we have that V ¼ Vðe−φÞ and

e−φðxÞ ¼ 1

λ3s

Z
d4w

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðwÞ

p
e−φðwÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ∂αφðwÞ∂βφðwÞ

q
δ½φðxÞ − φðwÞ�: ð2:2Þ

For immediate convenience we also define the following
pair of integrals:

I1 ¼
1

λ3s

Z
d4w

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðwÞ

p
V 0ðe−φðwÞÞδ½φðxÞ − φðwÞ�;

I2 ¼
1

λ3s

Z
d4w

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðwÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ∂αφðwÞ∂βφðwÞ

q
× δ0½φðxÞ − φðwÞ�; ð2:3Þ

with a prime denoting differentiation with respect to the
argument.1 The present analysis can be generalized to
include antisymmetric tensor fields, gauge fields, as well as
internal (contracting) extradimensions [16]. These potential
contributions will be ignored, and we shall focus on the
minimal four-dimensional scenario compatible with the
presence of adiabatic curvature perturbations. The variation
of the action (2.1) with respect to gμν and φ leads,
respectively, to the following pair of equations:

Gμν þ∇μ∇νφþ 1

2
gμν½ð∂φÞ2 − 2gαβ∇α∇βφ − V�

−
e−φ

2

ffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2

q
γμνI1 ¼ 0; ð2:4Þ

Rþ 2gαβ∇α∇βφ − ð∂φÞ2 þ V −
∂V
∂φ þ e−φ

∇2φffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2p I1

− e−φV 0I2 ¼ 0; ð2:5Þ

where the shorthand notation gαβ∂αφ∂βφ ¼ ð∂φÞ2 has been
consistently employed; in Eq. (2.5) Gμν denotes the Einstein

tensor and ∇2 is defined as

∇2 ¼ γμν∇μ∇ν; γμν ¼ gμν −
∂μφ∂νφ

ð∂φÞ2 : ð2:6Þ

Note that, by definition, we also have the following chain of
equalities:

∇2φffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2p ¼ ∇μ

�
gμν∇νφffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2p �

¼ 1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi−gp
gμν∂νφffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2p �

:

ð2:7Þ

A detailed derivation of Eqs. (2.4) and (2.5) has been
discussed elsewhere [8], and here we shall only focus on
those aspects that are germane to the main theme of the

1In Eq. (2.5) as well as in Eqs. (2.3) and (2.8) the prime denotes
a derivation with respect to the argument of the given functional
and not the derivative with respect to the conformal time
coordinate. The two notations cannot be confused since the
conformal time derivative only appears in connection with the
explicit form of the equations discussed in Eqs. (2.11)–(2.13) and
in the forthcoming sections.
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analysis. By combining Eqs. (2.4) and (2.5) the Ricci scalar
can be eliminated and the following equation is readily
obtained:

Rμν þ∇μ∇νφ −
1

2
gμν

�∂V
∂φ þ e−φV 0I2

�

þ 1

2
e−φ

�
gμν

∇2φffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2p − γμν

ffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2

q �
I1 ¼ 0: ð2:8Þ

In the case of a homogeneous dilaton and for a conformally
flat metric of Friedmann-Robertson-Walker type Eqs. (2.4)
and (2.8) lead, in units 2λ2s ¼ 1, to the following system of
equations2:

_φ2 − 3H2
s − V ¼ 0; _Hs ¼ _φHs; ð2:9Þ

2φ̈ − _φ2 − 3H2
s þ V −

∂V
∂φ ¼ 0; ð2:10Þ

where the overdot denotes a derivation with respect to the
cosmic time coordinate t; as usual H ¼ _as=as, and in the
homogeneous limit φ ¼ φ − 3 ln as. Equations (2.9) and
(2.10) hold in the string frame.3 For the discussion of
the fluctuations it is practical to write Eqs. (2.9) and (2.10)
in the conformal time coordinate τ and, eventually, in
the Einstein frame. Unlike the cosmic time coordinate the
conformal time is frame invariant (i.e. τs ¼ τe ¼ τ). The
equations for the background in the Einstein frame are4

6H2
e ¼

1

2
φ02 þ eφa2eV; ð2:11Þ

4H0
e þ 2H2

e ¼ −
�
φ02

2
− eφa2eV

�
− eφa2e

∂V
∂φ ; ð2:12Þ

φ00 þ 2Heφ
0 þ eφa2e

�
V −

1

2

∂V
∂φ

�
¼ 0: ð2:13Þ

Equations (2.11)–(2.13) can be simply derived by first
writing Eqs. (2.9) and (2.10) in terms of the conformal time
τ and by then transforming the result to the Einstein frame
(see, in particular, the last part of Appendix). In what

follows we shall use indifferently either Eqs. (2.9) and
(2.10) or (2.11)–(2.13). Note finally that the energy density
and pressure in the Einstein frame description are simply
given by

ρe ¼
φ02

2a2e
þ eφV; pe ¼

φ02

2a2e
− eφV þ eφ

∂V
∂φ : ð2:14Þ

In terms of ρe and pe Eq. (2.13) simply becomes
ρ0e þ 3Heðρe þ peÞ ¼ 0, as expected.
As already mentioned in the Introduction, even if the

potential is nonlocal in field space the evolution equa-
tions (2.11)–(2.13) seem perfectly local in time [8]. The
effect of the nonlocal modification of the action (2.1) is,
however, apparent in the equations of motion in a way that
makes possible the bouncing solution. To appreciate this
relevant point, let us suppose, for a moment, that the
potential term in Eq. (2.1) is just a local function of φ, i.e.
V ¼ VðφÞ and not V ¼ VðφÞ, as Eq. (2.2) stipulates. To
avoid confusion between the two situations let us write,
for notational convenience, that the local potential corre-
sponds to WðφÞ. In this case the evolution equations can
be immediately obtained either in the string frame or in the
Einstein frame. To make the comparison clearer let us
therefore write the analog of Eqs. (2.11)–(2.13) when the
action is given by Eq. (2.1) but the potential is WðφÞ,

6H2
e ¼

1

2
φ02 þ eφa2eW; ð2:15Þ

4H0
e þ 2H2

e ¼ −
�
φ02

2
− eφa2eW

�
; ð2:16Þ

φ00 þ 2Heφ
0 þ eφa2e

�
W þ ∂W

∂φ
�

¼ 0: ð2:17Þ

Note that in Eq. (2.17) we also have a term going as W;
this can be understood by conformally transforming the
action (2.1) in the Einstein frame where the potential
term is weighted by the dilaton coupling as eφWðφÞ. If
we now subtract Eq. (2.16) from Eq. (2.15) we simply
obtain H2

e −H0
e ¼ φ02. Since φ02 is always positive semi-

definite there is no way of obtaining bouncing solutions
in this context. Let us now do the same exercise with
Eqs. (2.11)–(2.13); more specifically let us subtract
Eq. (2.12) from Eq. (2.11). The result of this manipulation is

H2
e −H0

e ¼ φ02 þ eφa2e
∂V
∂φ ; ð2:18Þ

showing that in this case, depending on the sign of the
derivative of V with respect to φ, bouncing solutions become
possible. All in all we can therefore conclude that even if
the evolution equations (2.11)–(2.13) are local in time, the
nonlocality of the potential which depends on the shifted

2The discussion of the gradient instability and of its implica-
tions can easily be extended to the case D ¼ dþ nþ 1 where d
and n denote the number of external and internal (i.e. compacti-
fied) dimensions [16]. Since this analysis is not central to the
theme of this paper, it will be omitted.

3The evolution of the background (and of its fluctuations) can
be described either in the string frame (where the dilaton and the
Ricci scalar are explicitly coupled) or in the Einstein frame. A
self-contained discussion of the relation between the two con-
formally related frames can be found in the Appendix.

4Equations (2.11)–(2.13) are written in natural gravitational
units 16πG ¼ 1; similarly Eqs. (2.9) and (2.10) have been written
in natural string units 2λ2s ¼ 1.
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dilaton φ is reflected in a substantially different form of the
equations which cannot be mimicked by a potential term
depending only on φ.
While it is always difficult to make general statements,

we can say that the isotropy of the metric is not essential for
the bouncing solutions. Indeed when the potential depends
on the shifted dilaton the solutions can be anisotropic both
in (3þ 1) dimensions as well as in higher dimensions [8].
In particular ten-dimensional solutions have been used to
discuss the evolution of the vector modes of the geometry
(see, in this respect, the first paper of Ref. [8]). Depending
on the frame where the solutions are described the features
of the solutions will be slightly different. In the anisotropic
case, however, the solutions will be of Kasner type: some of
the dimensions will expand and some will contract.
Let us finally remark, as we close the section, that the

potentials depending on the shifted dilaton may be inter-
preted as string loop corrections preserving the T-duality
symmetry [8]. This interpretation is particularly intriguing
in the light of the potential interpretation of the solutions in
the context of double field theory [10–12]. Having said this,
not all the potentials depending on φ induce bouncing
solutions: this method of regularizing the bouncing sol-
utions remains after all heuristic. Similar heuristic methods
appear in the effective approaches to bouncing solutions
[6,7] where general guiding principles still seem lacking.

III. GRADIENT INSTABILITIES

In the present framework the gradient instabilities do not
affect the evolution of the tensor modes while the scalar
modes inherit an effective sound speed which may get
imaginary. Denoting, in general terms, by c2t and c2s the
sound speeds of the tensor and of the scalar modes of the
geometry we have that a gradient instability is said to arise
either when c2t < 0 or when c2s < 0. The tensor modes of
the geometry are both gauge invariant (i.e. invariant under
infinitesimal coordinate transformations) and frame invari-
ant (i.e. invariant for the transition from the string to the
Einstein frame). The scalar modes are not automatically
frame invariant but, as we shall discuss, the gauge-invariant
curvature perturbations are also frame invariant (see also
Appendix). Finally, as already mentioned, the conformal
time coordinate (unlike the cosmic time parametrization) is
frame invariant.
The evolution equations of the fluctuations in the string

frame can be obtained by perturbing to first order Eq. (2.4).
Denoting by δgμν the total fluctuation of the metric, the
tensor, scalar, and vector modes will be

δgμν ¼ δtgμν þ δsgμν þ δvgμν; ð3:1Þ

where the subscripts remind one, respectively, of the tensor,
scalar, and vector perturbations. We shall discuss hereunder
the tensor and the scalar modes of the bounce. As a
consequence of the bounce the vector zero modes may

increase, but their fate depends upon the dynamics. This
problem has been specifically addressed (see second paper
in Ref. [8]) and the result can be summarized by saying that
for nonsingular bounces in four dimensions the growing
mode customarily present during the contracting phase
matches with the decaying mode after the bounce.5

A. Evolution of the tensor modes

In spite of the specific background solution deduced
from the action (2.1) the tensor modes do not experience
any sort of gradient instability. To demonstrate this state-
ment the tensor fluctuations can be defined, in the string
frame, as

δtgij ¼ −a2shij; ∂ihij ¼ hii ¼ 0; ð3:2Þ

where as denotes the scale factor in the string frame metric
and δt stands for the tensor fluctuation of the correspond-
ing quantity. Let us therefore perturb Eq. (2.4) when the
indices are mixed (i.e. one covariant and the other
contravariant),

δtGν
μ þ ð∇α∇μφÞδtgνα − ðgνα∂σφÞδtΓσ

αμ ¼ 0: ð3:3Þ

All the quantities not preceded by δt in Eq. (3.9) must be
understood as evaluated on the background. Recalling
Eq. (3.2) the explicit fluctuations of the Einstein tensor
and of the Christoffel connections can readily be com-
puted; the equation for hij becomes then

h00ij − ðφ0 þHsÞh0ij −∇2hij ¼ 0; Hs ¼
a0s
as

; ð3:4Þ

where the prime denotes the derivation with respect to the
conformal time coordinate; the relation between Hs and
Hs [defined after Eqs. (2.9) and (2.10)] is given as usual
by Hs ¼ asHs. The equations for the tensors in the
Einstein frame are given by

h00ij þ 2Heh0ij −∇2hij ¼ 0; He ¼
a0e
ae

: ð3:5Þ

Equation (3.5) can be obtained from Eq. (3.4) by appre-
ciating that the tensor amplitudes are frame invariant (see
Appendix for further details).
All in all Eqs. (3.4) and (3.5) show that there are no

problems with the gradient instability in the case of the
tensor modes which are automatically gauge invariant

5In the multidimensional case the situation becomes increas-
ingly interesting [16]: the vector modes are more numerous than
in the four-dimensional case and their quantum mechanical
fluctuations can be amplified (see first paper of [8]). We shall
therefore neglect the dynamics of the vector modes since they are
not central to the theme of discussion which is bound to four
space-time dimensions.
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and frame invariant. This conclusion should be contrasted
with the remark mentioned at the beginning of this section
where, in general terms, it has been said that the tensor
modes may inherit an effective sound speed. This can
happen, for instance, if the bounces are described using
effective field theory methods [6,7] analog to the ones
employed in the context of inflationary models [17].

B. Evolution of the scalar modes

The scalar fluctuations of the geometry are given by

δsg00 ¼ 2a2sϕ;

δsg
ðsÞ
ij ¼ 2a2sðψδij − ∂i∂jEÞ;

δsg0i ¼ −a2s∂iB; ð3:6Þ
where δs denotes the scalar fluctuation of the corresponding
quantity. We fix the coordinate system by setting to zero the
perturbation of the dilaton field and of the off-diagonal
fluctuations of the metric. This is often referred to as the
uniform field gauge [14,15], and it is particularly practical
in the present context. Since the dilaton and its fluctuation
are frame invariant, we can denote by δsφ ¼ χ the common
value of the dilaton fluctuation either in the Einstein or in
the string frame. The uniform field gauge stipulates that
χ ¼ 0 and B ¼ 0. Clearly for an infinitesimal coordinate
transformation6 parametrized as xμ → exμ ¼ xμ þ ϵμ the
fluctuation of a rank-two tensor in four dimensions (like
δsgμν) changes according to the Lie derivative in the
direction ϵμ. In explicit terms we will have that

B → eB ¼ Bþ ϵ0 − ϵ0;

χ → eχ ¼ χ − φ0ϵ0; ð3:7Þ

where we also reported, for immediate convenience,
the gauge transformation of χ. If we start from a generic
gauge, we can arrive at the uniform dilaton gauge by setting
ϵ0 ¼ χ=φ0. Furthermore by setting ~B ¼ 0 in Eq. (3.7) the
value of ϵ can be determined and it is

ϵ ¼
Z

ðBþ χ=φ0Þdτ þ c1; ð3:8Þ

where c1 is an integration constant which does not depend
on the conformal time coordinate. Since gauge freedom is
not completely fixed, the evolution equations of the scalar
modes (see below) depend on E0 (and not on E) which is
related to the gauge-invariant dilaton fluctuation in the
uniform field gauge.7 In the case of the scalar modes of the

geometry the perturbed version of Eq. (2.4) can be written
in a more explicit form as

δsGν
μ þ δsgνα½∂α∂μφ − Γσ

αμ∂σφ� − gναδsΓσ
αμ∂σφ

þ 1

2
δνμ½δsgαβ∂αφ∂βφ − 2δsgαβð∂α∂βφ − Γσ

αβ∂σφÞ

þ 2gαβδsΓσ
αβ∂σφ� −

1

4
e−φ

δsgαβ∂αφ∂βφffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2p γνμI1

−
1

2
e−φ

ffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2

q
δsγ

ν
μI1 −

1

2
e−φ

ffiffiffiffiffiffiffiffiffiffiffiffi
ð∂φÞ2

q
γνμδsI1 ¼ 0;

ð3:9Þ

where, as in the case of Eq. (3.3), all the quantities
not preceded by δs in Eq. (3.9) must be understood as
evaluated on the background. Equation (3.9) shall be
further simplified by noting that, in the uniform field
gauge, the scalar fluctuations of e−φ, I1, and γνμ vanish
[i.e. δsðe−φÞ ¼ δsI1 ¼ δsγ

ν
μ ¼ 0]. Using the decomposition

(3.6) and imposing the uniform dilaton gauge, the (00) and
ð0iÞ components of Eq. (3.9) can be written respectively as

3ðφ0 þHsÞψ 0 − ðφ02 − 3H2
sÞϕ

þ 2∇2ψ − ðφ0 þHsÞ∇2E0 ¼ 0; ð3:10Þ

ðφ0 þHsÞϕ ¼ 2ψ 0: ð3:11Þ

Similarly the component (i ≠ j) of Eq. (3.9) becomes

∂i∂j½E00 − ðφ0 þHsÞE0 þ ψ − ϕ� ¼ 0: ð3:12Þ

Finally the explicit form of the (i ¼ j) component of
Eq. (3.9) is given by

2ψ 00 − 2ðφ0 þHsÞψ 0 − ðφ0 þHsÞϕ0

−∇2½E00 − ðφ0 þHsÞE0 þ ðψ − ϕÞ�

− ϕ

�
2φ00 − φ02 −

a2s
2

∂V
∂φ þ 2H0

s − 5H2
s − 4Hsφ

0
�
¼ 0:

ð3:13Þ

The coefficient of ϕ in Eq. (3.13) can be expressed as
ða2s=2Þð∂V=∂φÞ − Va2s by repeated use of Eqs. (A9) and
(A10). In the uniform field gauge the fluctuations of the
spatial curvature are given solely in terms of ψ ,

δsRð3Þ ≡ 4

a2s
∇2ψ : ð3:14Þ

Up to a sign which changes depending on different
conventions, the value of ψ in the uniform field gauge
coincides with the curvature perturbations customarily
indicated by R. Strictly speaking R defined the curvature

6The following notations shall be employed: ϵμ¼ðϵ0;ϵiÞ
implying ϵμ ¼ a2sðϵ0;−ϵiÞ with ϵi ¼ ∂iϵ.

7Indeed the gauge-invariant fluctuation of the dilaton (see also
Appendix) is frame invariant, and it is given byX¼ χþφ0ðB−E0Þ;
in the uniform dilaton gauge X ¼ −φ0E0.
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perturbation on comoving orthogonal hypersurfaces.
However, since R is by definition gauge invariant, its
evolution equations can be derived in any gauge, such as
the one employed in the present discussion.8

The strategy will therefore be to derive the equations
first in the string frame by combining Eqs. (3.10) and (3.11)
as well as (3.12) and (3.13). From Eq. (3.11) we have
ϕ ¼ 2ψ 0=ðφ0 þHsÞ; inserting this relation into Eq. (3.10)
the following expression can be readily obtained:

ψ 0 ¼ −
2ðφ0 þHsÞ
ðφ0 þ 3HsÞ2

∇2ψ þ ðφ0 þHsÞ2
ðφ0 þ 3HsÞ2

∇2E0: ð3:15Þ

Equation (3.15) holds in the string frame but it can easily be
transformed into the Einstein frame by using the properties
of the uniform dilaton gauge. Indeed recalling Eqs. (A5),
(A6), and (A7) we also have that Hs ¼ He þ φ0=2. Since
φ ¼ φ0 − 3Hs, Eq. (3.15) can be immediately written as

ψ 0 ¼ 4He

φ02 ∇2ðψ þHeE0Þ: ð3:16Þ

According to Eq. (3.14) in the uniform dilaton gauge
R ¼ −ψ ; in the same gauge we can compute the Bardeen
potential, and the result isΨe ¼ ψ þHeE0 [see also Eq. (A8)
in the Appendix]. We thus obtain from Eq. (3.15) the
following simple equation R0 ¼ −4ðHe=φ02Þ∇2Ψe. Let
us finally mention that the relation ϕ ¼ 2ψ 0=ðφ0 þHsÞ
derived from Eq. (3.11) implies that Eq. (3.13) is identically
satisfied and does not imply further conditions. Indeed
inserting ϕ ¼ 2ψ 0=ðφ0 þHsÞ into Eq. (3.13) we have

ψ 0

ðφ0 þHsÞ
�
2H0

s þ 4H2
s − 2φ00 þ a2s

∂V
∂φ

�
¼ 0; ð3:17Þ

but this is an identity since the expression between square
brackets vanishes on the background. In fact, inserting the
two relations of Eq. (A9) into Eq. (A10) we obtain that the
combination appearing in Eq. (3.17) between square brackets
is bound to vanish.

C. Frame invariance and scalar sound speed

To derive the gauge-invariant and frame-invariant evo-
lution of the curvature perturbations it is appropriate to
rewrite the system of scalar perturbations in a more
compact form by using Eqs. (A9) and (A10),

E00 − y1E0 þ ψ − ϕ ¼ 0; y1ϕ ¼ 2ψ 0; ð3:18Þ

2ðψ 00 − y1ψ 0Þ ¼ y1ϕ0 þ ðy01 − y21Þϕ; ð3:19Þ

3y1ψ 0 − Va2ϕþ 2∇2ψ − y1∇2E0 ¼ 0; ð3:20Þ

where the new background variable y1 ¼ φ0 þHs has been
introduced. It is now evident from Eqs. (3.18), (3.19), and
(3.20) that once the second relation of Eq. (3.18) is inserted
into (3.19) an identity is swiftly obtained. Using then
y1ϕ ¼ 2ψ 0 into Eq. (3.20) the background equations imply

ψ 0 ¼ −
2y1
y22

∇2ψ þ
�
y1
y2

�
2∇2E0; ð3:21Þ

where the background combination y2 ¼ φ0 þ 3Hs has
been defined. Equation (3.21) has the same dynamical
content of Eq. (3.15) but it is more practical. Let us now
take the conformal time derivative of both sides of
Eq. (3.21) and replace the terms ∇2E00 and ∇2E0 by means
of Eqs. (3.18) and (3.21). The final result of this lengthy
but straightforward procedure is the following decoupled
equation for ψ :

ψ 00 −
�
2

�
y2
y1

��
y1
y2

�0
þ y1

�
ψ 0 −

�
y21 þ 2y01

y22

�
∇2ψ ¼ 0:

ð3:22Þ

Recalling now the explicit expressions of y1 and y2 we can
rewrite some of the background dependent quantities
appearing in Eq. (3.22). In particular the following identity
is verified:

2
z0s
zs

¼ −
�
2

�
y2
y1

��
y1
y2

�0
þ y1

�
;

zs ¼ −2
φ0 þ 3Hs

φ0 þHs
ase−φ=2: ð3:23Þ

Thus from Eq. (3.22) the evolution equation for curvature
perturbations Rs ¼ −ψ becomes

R00
s þ 2

z0s
zs
R0

s − c2s∇2Rs ¼ 0; ð3:24Þ

and the sound speed squared is

c2s ¼
y21 þ 2y01

y22
¼ 1þ 2φ00 − 6H2

s þ 2Hsφ
0

φ02 : ð3:25Þ

The second equality in Eq. (3.25) follows directly from
the expressions of y1 and y2; note, in particular, that
y2 ¼ φ0 þ 3Hs ≡ φ0 and y1 ¼ y2 − 2Hs. It is furthermore
easy to prove that a combination of Eqs. (A11) and (A12)
implies the following identity:

6H2
s − 2φ00 þ 2Hsφ

0 þ ∂V
∂φ a2s ¼ 0: ð3:26Þ

8In what follows we shall deduce the equation for R, and we
shall demonstrate that R is not only the correct gauge-invariant
variable to be used but it is also frame invariant. See, in this
respect, also the discussion of Appendix.
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Inserting Eq. (3.26) into Eq. (3.25) the expression for the
sound speed can easily be determined,

c2s ¼ 1þ ∂V
∂φ

a2s
φ02 : ð3:27Þ

The results of Eqs. (3.24) and (3.27) have a direct
counterpart in the Einstein frame where

R00
e þ 2

z0e
ze
R0

e − c2e∇2Re ¼ 0; ð3:28Þ

and

ze ¼
aeφ0

He
; c2e ¼ 1þ ∂V

∂φ
eφa2e
φ02 : ð3:29Þ

When φ → φ and Hs → Hs ¼ He þ φ0=2 [see also
Eq. (A3)], we also have that zs → ze and c2s → c2e, as
expected.9 Unlike the Bardeen potentials (which are gauge
invariant but not necessarily frame invariant), the variable
R will then denote the common value of the curvature
perturbations either in the string or in the Einstein frame
(i.e. R ¼ Re ¼ Rs). This is in full analogy with the case
of the tensor modes of the geometry discussed at the
beginning of this section.
It is natural, at this point, to identify c2s or c2e with an

effective sound speed. We note that this identification rests
on the analogy of Eqs. (3.24) and (3.28) with the equation
describing the normal modes of a gravitating, irrotational,
and relativistic fluid first discussed by Lukash [13],

R00 þ 2
z0

z
R0 − c2t∇2R ¼ 0;

z ¼ a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pt þ ρt

p
=H;

c2t ¼
p0
t

ρ0t
; ð3:30Þ

where pt and ρt denote, in the context of Eq. (3.30), the
pressure and the energy density of a perfect and irrotational
fluid. The canonical normal mode identified in Ref. [13] is
invariant under infinitesimal coordinate transformations as
required in the context of the Bardeen formalism [18] (see
also [19]). The subsequent analyses of Refs. [20] follow the
same logic of [13] but in the case of scalar field matter; the
normal modes of Refs. [13,20] coincide with the (rescaled)
curvature perturbations on comoving orthogonal hyper-
surfaces [18,20]. Owing to the analogy of Eq. (3.28) with
the Lukash equation (3.30) it would be tempting to carry
this analogy even further by recalling that the evolution

equations in the Einstein frame can be phrased in terms of
an effective energy density ρe supplemented by an effective
pressure [see, in this respect, Eq. (2.14) and discussion
therein]. This literal correspondence is, however, mislead-
ing since ze ≠ a2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe þ ρe

p
=He as it would follow from a

naive combination of Eqs. (2.14) and (3.30). This is why, in
the present context, we shall always qualify the sound
speed as effective.
The evolution equations of the linearized fluctuations

discussed here are all local in time; however, it is true that
the presence of the potential induces a sound speed for the
scalar modes of the geometry. This is particularly clear if
we notice that the sound speed goes to 1 in the limit of
vanishing nonlocal potential: if the potential would just be
local (i.e. only dependent on φ) the sound speed would
coincide with the speed of light. It is therefore correct to
conclude that the presence of a potential depending on the
shifted dilaton φ induces a scalar sound speed.

D. Imaginary sound speed and gradient instability

We are now going to show that a four-dimensional
curvature bounce connecting analytically two duality
related solutions leads to a gradient instability. For those
wave numbers k exceeding the typical scale of the bounce
(of the order of 1=t0 in the example discussed below), the
solutions of the evolution equation for R instead of
oscillating are exponentially amplified. To demonstrate
this point let us focus on the following well known solution
(see [8]):

VðφÞ ¼ −V0e4φ; Hs ¼
1ffiffiffi

3
p

t0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt=t0Þ2 þ 1

p ; ð3:31Þ

φ ¼ φ − 3 ln asðtÞ ¼ −
1

2
log ½1þ ðt=t0Þ2� þ φ0; ð3:32Þ

where t is the cosmic time coordinate. Equations (3.31) and
(3.32) are a solution of the background equations in the
string frame. In particular to solve Eqs. (2.9) and (2.10) the
constants t0, V0, and φ0 appearing in Eqs. (3.31) and (3.32)
must satisfy t0e2φ0

ffiffiffiffiffiffi
V0

p ¼ 1. The potential (3.31) is always
negative and, in practice, it only modifies the solution
for jtj < Oðt0Þ. Conversely in the asymptotic region the
potential is always negligible in comparison with the
remaining terms of the equations (i.e. V ≪ 3H2

s and
V ≪ _φ2); thus for jtj > Oðt0Þ the approximate solutions
are as ≃ ð−t=t0Þ−1=

ffiffi
3

p
(for t ≪ −t0) and as ≃ ðt=t0Þ1=

ffiffi
3

p

(for t ≫ t0). These asymptotic solutions can be derived from
Eqs. (2.9) and (2.10) by neglecting the potential altogether.
If we now compare Eqs. (3.4) and (3.24) in the light

of the solution (3.31) and (3.32) we conclude that the
evolution equation for the tensor modes obtained in
Eq. (3.4) does not lead to any gradient instability. The
effective sound speed cs appearing in Eq. (3.24) can instead
become imaginary when jtj < t0, i.e. exactly in the regime

9This means, in particular, that once expressed on a given
background solution and in terms of the conformal time coor-
dinate c2sðτÞ≡ c2eðτÞ and z0s=zs ≡ z0e=ze.
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where the potential modifies the asymptotic “vacuum”
solutions: this means that in the limit kt0 > 1 and for
jtj < t0 the corresponding Fourier modes of R are expo-
nentially amplified. To prove this statement we can
compute c2s and simply demonstrate that it is not positive
semidefinite. Indeed using Eqs. (3.31) and (3.32) inside
Eq. (3.27) we obtain

c2sðtÞ ¼ 1þ 1

_φ2

�∂V
∂φ

�

¼ 1þ 4

−3 − 4ðt=t0Þ2 þ 2
ffiffiffi
3

p ðt=t0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðt=t0Þ2

p ;

ð3:33Þ

where the first equality merely follows from Eq. (3.27) by
recalling the definition of the cosmic time parametrization
[i.e. asðτÞdτ ¼ dt]. According to Eq. (3.33) we have that
c2sðtÞ → 1 away from the bounce [i.e. for jtj > Oðt0Þ]
while10 c2s → −1 for jtj ≤ t0. For jtj < t0 the square of
the effective sound speed can be expanded as

c2sðtÞ ¼ −
1

3
−

8

3
ffiffiffi
3

p
�
t
t0

�
þOðt2=t20Þ: ð3:34Þ

When kt0 ≪ 1 [or for kt0 ∼Oð1Þ], values c2s < 0 around
the origin are never problematic and typically lead to a
steeply increasing spectrum of scalar modes [8]. However,
when kt0 ≫ 1 we can have that the Laplacian of Eq. (3.24)
becomes −c2sðtÞ∇2R → k2c2sðtÞ; but since this term gets
sharply negative, all modes kt0 are exponentially amplified
for jtj < t0. Since the whole description of curvature
perturbations is frame invariant, the occurrence of the
gradient instability is also frame invariant.
If we would assume that gradient instabilities are

generically present in the bouncing model, the problem
could be cured (or at least alleviated) by the arbitrary
addition of further terms in the action of the scalar modes of
perturbations. For instance, the evolution equations of
curvature perturbations could be written as

Sð2Þ ¼ 1

2

Z
d3x

Z
dτz2s

�
ð∂τRÞ2 − c2sδij∂iR∂jR

þ q1ðτÞ
M2

ð∇2RÞ2 þ q2ðτÞ
M4

δijð∂i∇2RÞð∂j∇2RÞ
�
;

ð3:35Þ

where M is a mass scale possibly related to the
maximal curvature scale reached at the bounce, i.e.
M ¼ OðHmaxamaxÞ ¼ Oð1=τmaxÞ. In the limit q1ðτÞ ¼
q2ðτÞ ¼ 0 the variation of the second-order action of

Eq. (3.35) leads immediately to Eq. (3.24). Conversely if
these two terms are present, the evolution equation of R
can be written as

∂τ½z2s∂τR� − c2sz2s∇2R −
q1
M2

z2s∇4R −
q2
M4

z2s∇6R ¼ 0:

ð3:36Þ

Let us now suppose, for the sake of concreteness, that the
two background dependent functions q1ðτÞ and q2ðτÞ will
be continuous and differentiable everywhere. Going to
Fourier space and rearranging the terms of Eq. (3.36)

R00
k þ 2

z0s
zs
R0

k þ k2c2totRk ¼ 0;

c2tot ¼ c2s − q1κ2 þ q2κ4; ð3:37Þ

where κ ¼ k=ðamaxHmaxÞ. Even if c2s becomes negative in
Eq. (3.37), c2tot may well be positive depending on the sign
of q1 and q2. More specifically let us suppose that c2s
becomes negative in the neighborhood of the origin (say for
jτj < τ0); even if, in the same region, q1ðτÞ > 0, we will
have that c2tot ≥ 0 for κ ≫ 1 provided q2ðτÞ ≥ 0 when
jτj < τ0. Note that corrections such as the ones appearing
in Eq. (3.35) arise naturally when applying the methods of
effective field to the analysis of generic theories of inflation
with a single inflaton field [17]. In generic theories of
inflation the dependence of the action on the inflaton field
is unconstrained, and a similar analysis translates to the
case of bouncing models even if a shift symmetry may be
imposed on the action so that the Lagrangian density will
involve only space-time derivatives rather than the field
itself [6,7]. We will now argue that the gradient instability
of Eqs. (3.33) and (3.34) is a property of the solution but
not necessarily a property of the model. In other words we
can expect that by changing the solution also the gradient
instability might disappear.

IV. TAMING THE GRADIENT INSTABILITY

The gradient instability arising in the bouncing models
based on the action (2.1) and scrutinized in Sec. III is
nongeneric. For this purpose, a purely qualitative analy-
sis shows that the sign of the effective scalar sound
speed, in both frames, is determined by the sign of the
derivative of VðφÞ with respect to φ. Let us now consider
the form of the potential reported in Eq. (3.31): away
from the bounce, the potential and its derivative are both
subleading and this is the reason why, incidentally, the
solution in the asymptotic regions exactly matches the
(duality related) vacuum solutions. Near the bounce
the contribution of the potential and of its derivative
always enters the effective scalar sound speed with a
negative sign: this is ultimately the reason why c2s < 0 for
jtj < t0. To construct examples where the gradient

10As an example, for two particular values of t=t0, we have
c2sð0Þ ¼ −1=3 and c2sðt0=

ffiffiffi
2

p Þ ¼ −1.
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instability is tamed we must therefore consider more
seriously those models where ∂V=∂φ does not have a
definite sign in the bouncing region.

A. A class of semirealistic backgrounds

Guided by the logic spelled out in the previous paragraph
let us therefore consider, for the sake of concreteness, the
following class of potentials:

VðφÞ ¼ V1

cosh2½βðφ − φ1Þ�
; ð4:1Þ

whose derivative with respect to φ changes sign for φ ¼ φ1.
Inserting Eq. (4.1) into Eqs. (2.11), (2.12), and (2.13) the
evolution equations of the background can be solved in
explicit terms. Without loss of generality we shall focus
on the solution in the Einstein frame and in the conformal
time parametrization which is the most convenient for the
analysis of the inhomogeneities. Note, in particular, that in
the Einstein frame the following useful relation can be
obtained after repeated combinations of Eqs. (2.11), (2.12),
and (2.13):

∂
∂τ ðφ

0 þ 2HeÞ þ 2Heðφ0 þ 2HeÞ ¼ 0: ð4:2Þ

The bouncing solution corresponding to Eq. (4.1) can then
be written as

HeðτÞ ¼
H1

2β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p ; x ¼ τ

τ1
; ð4:3Þ

φðτÞ ¼ φ1 −
1

β
log ½xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
�; ð4:4Þ

aðτÞ ¼ a1½xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
� 12β; ð4:5Þ

where τ1 denotes the typical scale of the bounce and
H ¼ a1H1 ¼ 1=τ1; in the rescaled coordinate x the bounc-
ing region corresponds to jxj < 1. To satisfy consistently all
the equation the relation between the integration constants
H1, V1, and φ1 must be given by H1 ¼ β

ffiffiffiffiffiffi
V1

p
exp ½φ1=2�.

The solution (4.3), (4.4), and (4.5) holds in the Einstein
frame and (most importantly) in the conformal time
parametrization.11

From Eqs. (4.3) and (4.4) the total sound speed of the
scalar fluctuations can easily be computed from the general
expression, and the result of this manipulation is given by

c2eðτÞ ¼ 1þ 2β
xffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p : ð4:6Þ

Note that once expressed in the conformal time coordinate
and on the explicit solution the sound speeds in the string
and Einstein frames coincide [i.e. c2eðτÞ ¼ c2sðτÞ]. From
Eq. (4.6) the overall sign of c2e is determined by the value of
beta. In principle we could concoct a value of beta leading
to c2s > 0 and simultaneously describing an accelerated
contraction before the bounce. However, for the sake of
concreteness, it seems more useful to compute the spectrum
and select those values of β allowing for a quasiflat
spectrum of curvature perturbations, as we shall show in
a moment.
Even if Eq. (4.5) does not allow for an analytic

connection between the conformal and the cosmic time
coordinate over the whole range of variation of τ (or x) the
relation of τ to t can easily be determined piecewise in the
asymptotic regions. In particular in the limits τ ≪ −τ1 and
τ ≫ τ1 the scale factor evolves, respectively, as

lim
τ≪−τ1

aeðτÞ →
�
−

τ

τ1

�
− 1
2β ¼

�
−
te
t1

� 1
1−2β

; ð4:7Þ

lim
τ≫τ1

aeðτÞ →
�
τ

τ1

� 1
2β ¼

�
te
t1

� 1
1þ2β

; ð4:8Þ

where the last two equalities at the right hand side follow
from the relation between the cosmic and the conformal
time coordinate [i.e. aeðτÞdτ ¼ dte]. The solution of
Eqs. (4.1), (4.3), and (4.4) is a special case of a more
general set of solutions characterized by

φ ¼ φ1 − 2 ln ae þ f1

Z
τ

τi

�
a1

aeðτ0Þ
�
2

dτ0; ð4:9Þ

where f1 is a dimensional constant. By making use of
Eq. (4.9) we can easily write the explicit form of the sound
speed. More specifically thanks to Eqs. (2.11), (2.12), and
(2.13) the result can be expressed as c2s ¼ 1 −N s=Ds
where N s and Ds can be written, respectively, as

N sðxÞ ¼ 16He
∂He

∂x þ 4

�
a1
ae

�
2

λ

�∂He

∂x − 10H2
e

�

þ λ3
�
a1
ae

�
6

;

DsðxÞ ¼
�
λ

�
a1
ae

�
2

− 2He

�
2
�
λ

�
a1
ae

�
2

þ 4He

�
: ð4:10Þ

Note that He is dimensionless, i.e. He ¼ H1He, and
λ ¼ f1=H1 is also a dimensionless constant. For
ae ≫ a1 (i.e. away from the bounce) the terms weighted
by λ are always negligible and Eq. (4.10) reduces to

11This new solution superficially resembles the one of
Eqs. (3.31) and (3.32): it should, however, be clear that the
two solutions are totally different since Eqs. (3.31) and (3.32)
hold in the string frame and their Einstein frame form cannot be
obtained analytically for the whole time range but only in the
asymptotic regions. Furthermore, as stressed, the properties of the
potential are completely different.
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c2eðτÞ ¼ 1 −
1

He

∂He

∂x : ð4:11Þ

As far as the power spectra are concerned, what matters
is not the behavior in the region jxj < 1 (i.e. jτj < τ1) but
rather the evolution in the asymptotic regions and, in
particular, in the prebounce stage. In this respect we can
mention that there are different solutions with the same
asymptotic behavior of Eq. (4.3) which have, however, a
different analytical structure in the region jxj < 1. A class
of models sharing this property is given by

He ¼
αH1

ðx2γ þ 1Þ1=ð2γÞ ; c2e ¼ 1þ 1

α

x2γ−1

ð1þ x2γÞ1− 1
2γ

;

ð4:12Þ

where γ ¼ 1; 2;…, is an integer. Note that the solution of
Eq. (4.5) corresponds to γ ¼ 1 in Eq. (4.12). For γ > 1 the
analytical behavior of the solution is different from the
ones discussed before. The relevant point, however, is not
the specific analytic form of the solution but rather the
positivity of c2e which can be realized in different ways.

B. The spectrum of inhomogeneities

The results obtained so far demonstrate that the occur-
rence of the gradient instability is nongeneric when the
bounce is regularized by means of a nonlocal dilaton
potential. We now want to fix the value of β in a more
realistic way. In what follows we shall analyze specifically
the class of models of Eqs. (4.6) and (4.7) and show that the
spectrum of curvature perturbations may indeed be flat
when β≃ −1=4. From Eq. (4.7) the first and second
(cosmic) time derivatives of the scale factor in the asymp-
totic region t < −t1 are given, respectively, by

_ae ¼ −
1

ð1 − 2βÞt1

�
−
te
t1

� 2β
1−2β

;

äe ¼
2β

t21ð1 − 2βÞ2
�
−
te
t1

�4β−1
1−2β

: ð4:13Þ

Equation (4.13) indicates that the case of accelerated
contraction (i.e. _ae < 0 and äe < 0) is realized when
β < 0. Thus values β < 0 will be regarded as the most
physical ones. Different choices are possible but they are
not central to the present discussion.
The amplified curvature perturbations in the case where

the relevant modes exited the Hubble radius for τ < −τ1
will now be computed. This terminology is inaccurate but
often used. What matters here is not the Hubble radius itself
but the nature of the pump field governing the evolution of
the scalar modes. The exit refers here to the moment where
pump field z00e=ze equals approximately c2ek2 [see below
Eq. (4.19)]. At this turning point the solutions of the mode

functions change behavior. Since the initial conditions of
the curvature perturbations are set by quantum mechanics,
it is essential to remind one of the canonical structure of the
problem. To be specific we could say that the quantization
of the fluctuations follows exactly the same steps outlined
by Lukash [13] when discussing the scalar modes of an
irrotational relativistic fluid. The main difference is that,
unlike the case of Ref. [13], the sound speed, in the present
context, is only effective. The evolution equation (3.28) can
then be obtained by functional variation from the following
action:

SR ¼ 1

2

Z
d4xz2e½R02 − c2eð∂iRÞ2�; ð4:14Þ

which falls into the same equivalence class of Eq. (3.35).
The normal modes of Eq. (4.14) are q ¼ zeR; inserting the
normal modes in Eq. (4.14) and dropping an irrelevant total
time derivative we get

Sq ¼
1

2

Z
d4x

�
q02 − c2eð∂iqÞ2 þ

z00e
ze

q2
�
; ð4:15Þ

so that a convenient form of the canonical Hamiltonian can
be obtained

HqðτÞ ¼
1

2

Z
d3x

�
π2q þ c2eð∂iqÞ2 −

z00e
ze

q2
�
; ð4:16Þ

where π ¼ q0. We can therefore promote q and π to field
operators obeying equal-time commutation relations, i.e.
½q̂ð~x; τÞ; π̂ð~y; τÞ� ¼ iδð3Þð~x − ~yÞ in units ℏ ¼ 1. We even-
tually want to compute the spectrum of R̂ ¼ q̂=ze so that
we can write the Fourier representation directly for R̂,

R̂ð~x; τÞ ¼ 1

ð2πÞ3=2
Z

d3k½FkðτÞâ~ke−i
~k·~x þ F�

kðτÞâ†~ke
i~k·~x�;

ð4:17Þ

where ½â~k; â†~p� ¼ δð3Þð~k − ~pÞ. The evolution of the mode

functions FkðτÞ and F�
kðτÞ can be immediately deduced

from Eqs. (3.28), (4.14), and (4.15). More specifically Fk
will obey

F00
k þ 2

z0e
ze
F0
k þ k2c2eFk ¼ 0: ð4:18Þ

The mode function fk ¼ zeFk will instead follow the same
equation obeyed by q̂ in the Heisenberg representation,

f00k þ
�
k2c2e −

z00e
ze

�
fk ¼ 0: ð4:19Þ
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Using the rescaled conformal time coordinate Eq. (4.19)
becomes12

d2fk
dx2

þ
�
κ2c2e −

1

ze

d2ze
dx2

�
fk ¼ 0;

fkðτÞ ¼ zeðτÞFkðτÞ; ð4:20Þ

where c2eðxÞ has already been written in Eq. (4.6) while the
second term appearing inside the squared brackets of
Eq. (4.20) is given by

1

ze

d2ze
dx2

¼ ðx2 þ 1Þ − 2βx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p

4β2ðx2 þ 1Þ2 →
1

2β

�
1

2β
þ 1

�
1

x2
:

ð4:21Þ

The limit in Eq. (4.21) follows easily from the first term
when x < −1 (i.e. τ < −τ1). Consequently the solution of
Eq. (4.21) with the correct boundary conditions can be
written, for β < 0, as

FkðτÞ ¼
1

zeðτÞ
ffiffiffiffiffiffiffiffiffi
2kce

p N
ffiffiffiffiffiffiffiffiffiffiffiffi
−kceτ

p
Hð1Þ

μ ð−cekτÞ;

μ ¼
���� 1

2β
þ 1

2

����; ð4:22Þ

where N ¼ eiα=2
ffiffiffiffiffiffiffiffi
π=2

p
and α ¼ iðμþ 1=2Þπ. The two-

point function computed from Eq. (4.17) is then given by

hR̂ð~x; τÞR̂ð~xþ ~r; τÞi ¼
Z

d ln kPRðk; τÞ
sin kr
kr

;

PRðk; τÞ ¼
k3

2π2
jFkðτÞj2: ð4:23Þ

The expectation value in Eq. (4.23) is performed over the
state minimizing the Hamiltonian of the fluctuations [see
Eq. (4.16)]. Since in the limit τ → −∞ the space-time
is flat, the initial state is well defined. The scale-invariant
limit for the large-scale modes is therefore realized when
μ≃ 3=2 which implies that for β≃ −1=4 the spectrum of
curvature perturbations is quasiflat and the scale-invariant
limit is reached in the case β → −1=4. In summary we can
say that the gradient instability does not generically appear
in bouncing cosmologies constructed from the action (2.1).
We even presented a series of examples where the bounce is
correctly regularized, the gradient instability does not arise,
and the Universe evolves from a stage of decelerated
contraction.

C. Postbounce evolution and potential drawbacks

The sound speed obtained within the strategy presented
in this paper does not lead to a gradient instability (i.e. c2e is
correctly positive semidefinite) but the condition of sub-
luminal sound speed (i.e. c2e ≤ 1) is not always respected.
This is an improvement in comparison with the original
instability. It is, however, clear that this class of models can
only be viewed as semirealistic even if there are other
bouncing models with similar drawbacks [6,7]. Another
point of concern is that the obtained bouncing backgrounds
do not exit to radiation but to an expanding solution. As
argued in the past this problem is closely related to the
dilaton stabilization. This drawback is common to other
scenarios and it is potentially very serious. In this respect
the idea that backreaction effects can produce dynamically
a radiation-dominated background has been previously
discussed. The possibility of a gravitational reheating of
the Universe was pointed out by various authors [9], and
here we shall follow, in particular, the approaches devel-
oped by Parker and Ford. In [8] a model of gravitational
heating of the cold bounce has been proposed by consid-
ering the effects coming from the production of Abelian
gauge bosons which are directly coupled to φ and are
copiously produced. The frequencies that are maximally
amplified are comparable with the typical curvature of the
Universe at the bounce and effectively behave like a gas
of massless gauge bosons. Their energy density for τ > τ1
will be13 ρrðτÞ ¼ ϵ0H4

1ða1=aÞ4 with ϵ0 ≃ 0.2. While fields
of different spins will contribute with similar values of ϵ0,
in the postbounce regime the dynamically produced radi-
ation may quickly dominate and stabilize the evolution
of φ as argued in the context of specific solutions (see, in
particular, the first paper of Ref. [8]).

V. CONCLUDING REMARKS

Bouncing models may experience gradient instabilities
when the effective sound speed of the fluctuations becomes
imaginary for some of the time range where the background
solution is defined. While this pathology can happen either
in the case of the tensor or in the case of the scalar modes,
the cures vary depending on the specific context.
Gradient instabilities arise in a class of bouncing models

regularized by the presence of a nonlocal dilaton potential
which is a scalar under general coordinate transformations
but depends on the values of the dilaton at two different
space-time points. Even if the potential is nonlocal in field
space the evolution equations of the background and of the
fluctuations are perfectly local in time. The potential is
invariant under T-duality transformations and may also
arise in cosmological models inspired by double field
theory. If the dilaton potential is only relevant around

12The rescaled variable x ¼ τ=τ1 appearing ubiquitously in this
section should not be confused with the spatial coordinate ~x.

13See Eq. (4.11) in the second paper of Ref. [8] and discussion
therein.
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the bounce and negligible elsewhere, the asymptotic back-
ground solutions follow from the corresponding equations
with vanishing potential. In this case the effective sound
speed of the scalar modes becomes imaginary for typical
time scales comparable with the size of the bounce. The
tensor modes are automatically gauge invariant and frame
invariant and do not suffer any instability.
Following a simple heuristic criterion dictated by the

properties of the scalar sound speed, different classes of
solutions can be found where the instability does not arise
and the effective sound speed is never imaginary. The
gradient instabilities are tamed for a set of solutions
leading, incidentally, to a quasiflat spectrum of curvature
inhomogeneities. We suggest or speculate that the exit to
radiation (a long-standing problem of bouncing scenar-
ios) can be naturally addressed by considering the back-
reaction effects on nonconformally coupled species as
suggested long ago by Ford and Parker. The current
proliferation of bouncing scenarios suggests a number of
interesting possibilities which will certainly mature in
the years to come. According to some, realistic scenarios
competitive with inflation, are already in sight. The
viewpoint of this paper is more modest, and we just
regard the present model as a useful but not yet ultimate
theoretical laboratory.

APPENDIX: GAUGE INVARIANCE
AND FRAME INVARIANCE

A series of technical results that have been employed in
the bulk of the paper will now be presented and derived in a
self-contained perspective. We shall focus on the case of
four space-time dimensions even if most of the obtained
results can easily be generalized to higher dimensions
[8,16]. The relation between the metric tensors in the
Einstein and in the string frames14 is given by

gðeÞμν ¼ e−φgðsÞμν ; φs ¼ φe ¼ φ: ðA1Þ

The metric fluctuations admit frame-invariant and gauge-
invariant descriptions. In the uniform field gauge [14,15]
the scalar perturbation variables are unaltered under a frame
redefinition, and this property makes this choice particu-
larly effective. Conversely the tensor modes of the geom-
etry are automatically frame invariant and also gauge
invariant. The above statements will now be scrutinized
in some detail.

1. Frame invariance of the tensor modes

By perturbing Eq. (A1) it is immediately clear that the
tensor modes of the geometry are unaltered when going

from one frame to the other. Let us consider the tensor
fluctuation of Eq. (A1),

δtg
ðeÞ
μν ¼ e−φδtg

ðsÞ
μν ; ðA2Þ

where, as in Eq. (3.2), δt denotes the tensor fluctuation of
the corresponding quantity. The fluctuation of φ (i.e.
δsφ ¼ χ) affects the scalar but not the tensor modes of
the geometry. Therefore recalling Eq. (3.2) and its Einstein

frame analog we have, from Eq. (A2), that a2eh
ðeÞ
ij ¼

e−φa2sh
ðsÞ
ij . Since the scale factor (and the extrinsic curva-

ture) transform as15

as ¼ eφ=2ae; Hs ¼ He þ
φ0

2
; ðA3Þ

we obtain from Eq. (A2) that hðeÞij ¼ hðsÞij ¼ hij as antici-
pated in Sec. III.

2. Frame-invariant variables for the scalar modes

The scalar fluctuations of the geometry in the two frames
are in principle different, and they are related as

δsg
ðeÞ
μν ¼ e−φ½−χgðsÞμν þ δsg

ðsÞ
μν �; χs ¼ χe ¼ χ; ðA4Þ

where χ denotes the common value of the dilaton fluc-
tuation either in the string or in the Einstein frame16 in
Eq. (A4) δs denotes the scalar fluctuation of the corre-
sponding entry of the metric tensor. Recalling the conven-
tional decomposition of the scalar fluctuations in the string
frame [see e.g. Eq. (3.6)] and analogously in the Einstein
frame, Eq. (A4) implies the following set of relations
between the perturbed entries of the metric in the two
frames:

ϕs ¼ ϕe þ
χ

2
; ψ s ¼ ψe −

χ

2
;

Es ¼ Ee ¼ E; Bs ¼ Be ¼ B; ðA5Þ

where E and B denote the common values of the corre-
sponding fluctuations either in the string or in the Einstein
frame. The gauge-invariant curvature fluctuation in string
and Einstein frames are defined as

Re ¼ −ψe −
He

φ0 χ; Rs ¼ −ψ s −
Hs

φ0 χ: ðA6Þ

14As in the bulk of the paper the subscripts e and s will
distinguish the quantities evaluated, respectively, in the Einstein
and in the string frames.

15We consider here the case of conformally flat background
geometries in each frame, i.e. gðeÞμν ¼a2eðτÞημν and gðsÞμν ¼ a2sðτÞημν.

16This result is true in four space-time dimensions. In higher
dimensions the Einstein frame dilaton and its fluctuation are
redefined as φe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðd − 1Þp

φs and as χe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðd − 1Þp

χs
where d denotes the number of spatial dimensions (d ¼ 3 in the
case discussed here).
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Equation (A6) seems to imply that Re ≠ Rs: on the one
hand, ψe ≠ ψ s and, on the other hand, Eq. (A3) implies that
He ≠ Hs. However, the mismatch between ψe and ψ s is
exactly compensated by ðHe −HsÞ ¼ −φ0=2 so that,
eventually, Eqs. (A6) and (A5) imply

Rs ¼ Re ¼ R; ðA7Þ

where R denotes the common value of the curvature
perturbations on comoving orthogonal hypersurfaces in
the two conformally related frames. In the uniform dilaton
gauge (i.e. χ ¼ 0) we have that R ¼ −ψ where ψ denotes
the common value of the longitudinal degree of freedom
of the metric since, in this case, ψe ¼ ψ s ¼ ψ . All in all
we can say that the curvature perturbations on comoving
orthogonal hypersurfaces are both gauge invariant
and frame invariant. Unlike curvature perturbations,
the Bardeen potentials are gauge invariant but not frame
invariant17

Φe ¼ Φs −
χ

2
−
φ0

2
ðB − E0Þ ¼ Φs −

1

2
Xs;

Ψe ¼ Ψs þ
χ

2
þ φ0

2
ðB − E0Þ ¼ Ψs þ

1

2
Xs; ðA8Þ

while, as anticipated,Xe¼Xs andRe ¼ Rs. Equation (A8)
demonstrates that the Bardeen potentials are not frame
invariant and are therefore not the best quantities to
analyze when discussing the fluctuations of this model.
Still from Eq. (A8) we might notice that the combination
ðΦe þΨeÞ ¼ ðΦs þ ΨsÞ is both gauge invariant and frame
invariant.

3. Frame transformations for the background

We shall now apply the transformation (A1) to the
evolution equations of the background in different coor-
dinate systems. Since the conformal time coordinates are
frame invariant, to perform swiftly the correct transition
from string to the Einstein frames, it is appropriate to
rewrite the system of Eqs. (2.9) and (2.10) in the conformal
time coordinate; i.e. asðτÞdτ ¼ dt where τe ¼ τs ¼ τ is the
common value of the conformal time coordinate either in
the string or in the Einstein frame and t is the cosmic time

coordinate in the string frame. After this coordinate change,
Eqs. (2.9) and (2.10) are

φ02 ¼ 3H2
s þ Va2s ; H0

s −H2
s ¼ Hsφ

0; ðA9Þ

φ02 − 2φ00 þ 2Hsφ
0 þ 3H2

s þ
∂V
∂φ a2s − Va2s ¼ 0: ðA10Þ

Equations (A9) and (A10) can be phrased directly in terms
of φ by recalling that φ0 ¼ φ0 − 3Hs,

φ02þ6H2
s−6Hsφ

0 ¼Va2s ; H0
s¼Hsφ

0−2H2
s ; ðA11Þ

2φ00 þ4Hsφ
0−6H0

s−6H2
sþVa2s−

∂V
∂φa

2
s ¼0; ðA12Þ

where Hs ¼ a0s=as and the prime denotes derivation with
respect to τs ¼ τe ¼ τ. The dilaton and the conformal time
coordinate do not transform under conformal rescaling so
that τ and φ denote the common values of the correspond-
ing variables in both frames. With this observation by
inserting Eq. (A3) into Eqs. (A11) and (A12) the explicit
form of Eqs. (2.11), (2.12), and (2.13) appearing in Sec. II
is readily obtained.

4. Frame transformation for the fluctuations

Equations (3.18), (3.19), and (3.20) account for the
evolution of the scalar modes in the string frame in the
uniform dilaton gauge. One of the virtues of this coordinate
system is that the corresponding Einstein frame equations
follow from Eqs. (3.18), (3.19), and (3.20) by transforming
the background according to Eq. (A3). Therefore, using
Eq. (A3) into Eqs. (3.18), (3.19), and (3.20) we obtain
without problems the following set of equations:

E00 þ 2HeE0 þ ψ − ϕ ¼ 0; ðA13Þ

ψ 0 þHeϕ ¼ 0; ðA14Þ

½ψ 00 þ 2Heψ
0� þHeϕ

0 þ ðH0
e þ 2H2

eÞϕ ¼ 0; ðA15Þ

−6Heψ
0 − Va2eeφϕþ 2∇2½ψ þHeE0� ¼ 0; ðA16Þ

where, as already mentioned, ϕ, ψ , and E denote the
common values of the metric fluctuations either in the
string or in the Einstein frame and the conformal time
coordinate is unaltered in the transition between the two
frames.

17In general terms the two Bardeen potentials and the dilaton
fluctuation are defined, respectively, as Φ ¼ ϕþ ½ðB − E0Þa�0=a,
Ψ ¼ ψ −HðB − E0Þ, and X ¼ χ þ φ0ðB − E0Þ.
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