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We present a new test of gravitational physics by comparing the growth rate of cosmic structure
measured around voids with that measured around galaxies in the same large-scale structure data set:
the low-redshift 6-degree Field Galaxy Survey. By fitting a redshift space distortion model to the
two-dimensional galaxy-galaxy and void-galaxy correlation functions, we recover the growth rate values
fσ8 ¼ 0.42� 0.06 and 0.39� 0.11, respectively. The environmental dependence of cosmological
statistics can potentially discriminate between modified-gravity scenarios which modulate the growth
rate as a function of scale or environment and test the underlying assumptions of homogeneity and isotropy.
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I. INTRODUCTION

Galaxy peculiar velocities are a powerful probe of
gravitational physics. They are sourced by virialized motion
within halos and the overall bulk-flow motions due to
gravitational interactions, leading to the mass assembly of
halos. Although direct measurement of galaxy peculiar
velocities is challenging, their correlated effect is imprinted
in the clustering of matter through redshift space distortion
(RSD), allowing us to determine the linear growth rate of
structure. This quantity describes the growth of matter
perturbations through cosmic evolution and contains critical
information on cosmic expansion and gravitational physics.
For standard general relativity, in homogeneous and

isotropic cosmologies, the growth rate in linear perturbation
theory does not depend on the comoving spatial scale [1]
and can be approximated by f ∼ ΩmðzÞγ where Ωm is the
matter density parameter at redshift z, and γ is a constant.
For a ΛCDM universe γ ∼ 0.55, independently of scale
and environment. This would not be the case for different
cosmological scenarios. For instance, inhomogeneous
models of dark energy can lead to patches of clustered
dark energy (e.g. Refs. [2,3]) which will have different
expansion histories, and certain models of modified gravity
such as fðRÞ [4] rely on the Chameleon effect [5] that
suppresses the gravitational force in underdense environ-
ments. These theories would naturally lead to an environ-
mentally dependent growth rate and possibly a breakdown
of the cosmological isotropy of our Universe. As pointed

out in Ref. [6], the scale on which the environment is
defined is important. For very large underdense regions,
the effective cosmological parameters are expected to be
different than the global-averaged parameters, but the
quantification of this critical scale can also serve as an
interesting test for departures from Einstein gravity.
A simple test of this physics is to compare the growth

rate around cosmic voids to that inferred from galaxy
clustering. In fact, nonlinear dynamics are expected to be
reduced in cosmic voids compared to galaxy clustering in
overdense regions [7]. Hence cosmic voids can potentially
provide powerful tests of cosmology, for instance using
the integrated Sachs-Wolfe effect [8] (e.g. Ref. [9]), the
Alcock-Paczynski test [10] (e.g. Ref. [11]) or the void
abundance and density profile (e.g. Refs. [12–16]).
In this work we test the consistency of the growth rate

with environment using RSD measurements around voids
and galaxies in the 6-degree Field Galaxy Survey (6dFGS)
[17,18], a low-redshift large-scale structure data set. There
are several advantages to performing these tests near z ¼ 0.
First, cosmic expansion is dominated by dark energy, and
hence ameasurement of the growth rate around cosmic voids
is a particularly interesting test of dark energy clustering.
Second, the impact of the Alcock-Paczynski effect at z ¼ 0
isminimal, such that ourmeasurements have little sensitivity
to the assumed cosmology. Third, low-redshift surveys such
as the 6dFGS have a much higher galaxy number density
than high-redshift surveys, enabling a higher-resolution
measurement of the density field. This is particularly
important for identifying voids in an unbiased fashion.
Finally, the 6dFGS also contains a set of direct galaxy*iachitouv@swin.edu.au
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peculiar velocity measurements derived using fundamental-
plane distances [19]. Although we do not use these mea-
surements in the present work, they offer interesting
opportunities for future investigation.
The measurement of the growth rate using RSD in galaxy

clustering has been previously investigated for many data
sets including the 6dFGS [20], the 2dF Galaxy Redshift
Survey (2dFGRS) [21–23], the Sloan Digital Sky Survey
(SDSS) [24], the WiggleZ Dark Energy Survey [25], the
Baryon Oscillation Spectroscopic Survey (BOSS) [26–28]
and the VIMOS Public Extragalactic Redshift Survey
(VIPERS) [29]. These measurements have shown a general
consistency with the ΛCDM cosmological model, up to a
2.5% precision, albeit in some cases showing tension with
the predictions of the latest cosmic microwave background
measurements [30]. However, the measurement of the
growth using RSD in void-galaxy clustering has not been
widely investigated, although the authors of Refs. [7] and
[31] recently reported measurements using the BOSS-
CMASS sample and VIPERS, respectively. However, none
of these studies has explored the consistency of the growth
rate in different environments using the same galaxy survey.
This paper is organized as follows. In Sec. II we describe

the model we use to fit the measurement of the galaxy-
galaxy and void-galaxy correlation functions. In Sec. III
we test these models using mock catalogues. In Sec. IV
we apply our framework to the 6dFGS data and deduce
constraints on the growth rate in different environments,
and we conclude in Sec. V.

II. MODELS FOR THE TWO-DIMENSIONAL
CORRELATION FUNCTIONS

The peculiar velocities of galaxies, v, due to the local
gravitational potential, result on small scales in random
motions of galaxies within a group. By measuring galaxy
positions in redshift space, we can observe the well-known
“Finger-of-God” (FoG) effect. On large scales, the bulk
flow (coherent infall/outflow in overdense/underdense
regions) is responsible for an overall coherent distortion
known as the “Kaiser effect” [32].
The mapping of the position of a galaxy from real space

r ¼ ðx; y; zÞ to its position in redshift space s is given by

s ¼ rþ ð1þ zÞvpðrÞ
HðzÞ ur; ð1Þ

where ur is the unitary vector along the line of sight,
vp ≡ v:ur and HðzÞ is the Hubble parameter at redshift z.
On large scales, where the matter overdensity grows
coherently [32,33], linear perturbation theory implies that
▽:v ∝ −fδm where δm is the matter density contrast and the
linear growth rate of perturbations f is defined as

f ≡ d ln δmðaÞ
d ln a

: ð2Þ

We need to relate the observed galaxy overdensity, δg, to
the matter density contrast, which we accomplish using a
linear bias b≡ δg=δm, which is independent of scale in the
linear regime.
In what follows we use the notation σ for the component

of galaxy-galaxy or void-galaxy separation perpendicular
to the line of sight, and π for the component parallel to
the line of sight. For both the galaxy-galaxy and the void-
galaxy correlation functions, the random small-scale
component of the peculiar velocity can be described by
convolving the correlation function with a pairwise velocity
distribution [1]. The latter is often modeled as a Gaussian
or Lorentzian distribution; we consider both choices in our
analysis.

A. The galaxy-galaxy correlation function

The redshift-space two-dimensional (2D) correlation
function due to the coherent bulk flow of peculiar velocity
can be described by [32,33]

ξlðσ; πÞ ¼ ξ0ðsÞP0ðμÞ þ ξ2ðsÞP2ðμÞ þ ξ4ðsÞP4ðμÞ; ð3Þ
where PlðμÞ are Legendre polynomials and μ≡ cosðθÞ is
the angle between the separation vector and line of sight.
In the linear regime [32],

ξ0ðsÞ ¼
�
1þ 2

3
β þ 1

5
β2
�
× b2ξðrÞ;

ξ2ðsÞ ¼
�
4

3
β þ 4

7
β2
�
× b2ðξðrÞ − ξ̄ðrÞÞ;

ξ4ðsÞ ¼
8

35
β2 × b2

�
ξðrÞ þ 5

2
ξ̄ðrÞ − 7

2
¯̄ξðrÞ

�
;

where β ¼ f=b, the real-space matter correlation function
is ξðrÞ, and

ξ̄ðrÞ ¼ ð3=r3Þ
Z

r

0

ξðyÞy2dy;

¯̄ξðrÞ ¼ ð5=r5Þ
Z

r

0

ξðyÞy4dy:

Including our model for small-scale random motions, the
total 2D correlation function in redshift space is given by [1]

ξggðσ; πÞ ¼
Z

ξl
�
σ; π −

v
H0

�
PðvÞdv; ð4Þ

where PðvÞ is the probability distribution of the random
pairwise motions. In what follows we model the matter
clustering using the nonlinear power spectrum from CAMB

(halofit) [34] and Fourier transform it to obtain the nonlinear
matter correlation function ξðrÞ in Eq. (4). We adopt a
fiducial cosmology matching that of Mocks A described
below: a flat WMAP 5-year cosmology [35] (Ωm ¼ 0.26,
h ¼ 0.72, σ8 ¼ 0.79, ns ¼ 0.963, Ωb ¼ 0.044).
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B. The void-galaxy correlation function

The previous effects of the peculiar velocity also apply to
the void-galaxy correlation function and we have [1]

ξvgðσ; πÞ ¼
Z

ð1þ ξ1Dvg ðyÞÞ

× P

�
v − vpðyÞ

��
π −

v
H0

�
=y

��
dv − 1; ð5Þ

where ξ1Dvg is the angle-averaged void-galaxy correlation

function in real space and y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ðπ − v=H0Þ2

p
.

We calibrate the model using the real-space void-matter
cross-correlation ξv-DMðrÞ measured from N-body simu-
lations (see Sec. III) as our ΛCDM template, such that
including the linear bias factor

ξ1Dvg ðrÞ ¼ bξv−DMðrÞ: ð6Þ

For coherent outflow motion, at linear order, the peculiar
velocity can be expressed as [1]

vpðrÞ ¼ −
1

3
H0rΔðrÞf; ð7Þ

where ΔðrÞ is the average integrated density contrast
around voids. For spherical voids we have

ΔðrÞ ¼ 3

r3

Z
r

0

ξv−DMðyÞy2dy: ð8Þ

C. The pairwise velocity distribution

In this work we will consider two models G and L to
describe the pairwise velocity distribution PðvÞ in Eqs. (4)
and (5): model G will use a Gaussian distribution given by

PðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p exp

�
−

v2

2σ2v

�
; ð9Þ

while model L will use a Lorentzian distribution (in Fourier
space) which corresponds to convolution by an exponential
distribution in configuration space

PðvÞ ¼ 1ffiffiffiffiffiffiffi
2σ2v

p exp

�
−

ffiffiffi
2

p jvj
σv

�
; ð10Þ

where σv is the standard deviation of the peculiar velocity.
Our model hence neglects the scale dependence of σv
[16,36,37].
A Gaussian distribution of peculiar velocities is often

assumed for the random motions which result from halo
relaxation. However, numerical studies (e.g. Ref. [38])
have shown that a Lorentzian distribution can provide a
better empirical description of the distribution of peculiar

velocities which might result from a superposition of
different-mass haloes.

D. Summary of the variables

Ourmodel hence consists of three parameters for both the
galaxy-galaxy and void-galaxy correlation functions: the
linear bias bwhich enters into Eqs. (3) and (6), the standard
deviation of the peculiar velocity σv that enters into Eqs. (9)
and (10), and the linear growth rate f that is part of Eqs. (3)
and (7).We note that, in the linear-theory approximation, the
fitted values of f and b are degenerate with the assumed
normalization of the matter power spectrum, σ8. We reflect
this degeneracy by presenting our results in terms of the
normalized variables fσ8 and bσ8.

E. Remarks on the models

The RSD models we use in our study, while commonly
adopted in the literature, greatly simplify the nonlinear
physics which will be present on these scales. For example,
galaxy bias generally exhibits nonlinear, nonlocal, scale-
dependent and stochastic properties [39] and the galaxy
pairwise velocity dispersion may be scale dependent or
non-Gaussian [16,36,37]. However, in the following sec-
tion we will use mock catalogues to demonstrate that, at the
level of statistical precision of the 6dFGS data set, these
simple models are sufficient to extract unbiased estimates
of the growth rate from both the galaxy-galaxy and void-
galaxy correlations. Many studies have confirmed this
conclusion through comparison with more sophisticated
models (e.g. Ref. [20], in the context of 6dFGS). More
accurate modeling of RSD is a significant challenge for
upcoming galaxy surveys with much greater statistical
precision such as Euclid [40].

III. TESTS ON MOCKS

In order to test our analysis pipeline and the limitations
of our models, we measured the growth rate in two sets of
mock catalogues. Mocks A are flat-sky mocks with no
survey selection function applied, for which we possess the
full set of dark matter and halo information. We used these
mocks to model the extraction of galaxy voids from a
volume-limited observational sample and the fitting of the
void-galaxy correlation function. Mocks B are curved-sky
mocks which incorporate the full 6dFGS selection function
via detailed halo-occupation modeling. Although we do
not have the dark matter information to allow tests of the
void sample, we used these mocks to test the fitting of the
galaxy-galaxy correlation function to the flux-limited
observational sample. We summarize the creation of these
two sets of mocks below.

A. Mocks A: Volume-limited samples

To generate Mocks A, we used a sample of dark matter
particles and halos from the DEUSS simulations [41].
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These simulations were run for several scientific purposes,
as described in Refs. [42–44] and are freely available. The
simulations were carried out using the RAMSES code [45]
for a ΛCDM model calibrated to the WMAP 5-year
cosmological parameters [35]. We used the z ¼ 0 output
of a simulation generated in a 6483 h−3Mpc3 box using
20483 particles.
In Sec. IV we will extract galaxy voids from a volume-

limited sample of 6dFGS galaxies. We built a series of 20
dark matter (b ¼ 1) catalogues approximately matching the
number density and volume of this subsample, by ran-
domly selecting Np ¼ 15 000 DM particles a box of side
length 140 h−1Mpc. We also built 20 biased galaxy mocks
by subsampling Nh ¼ 15000 halos identified with the
Friend-of-Friends algorithm with linking length 0.2, select-
ing the most massive haloes in order to approximately
mimic the 6dFGS selection. Finally, in order to simulate the
RSD we used the flat-sky approximation and shifted the
positions of the DM particles and halos according to
Eq. (1), using their peculiar velocities.
We note that, when generating these mocks, it is

important to match the DM and halo number density to
the galaxy data set in order to avoid introducing a bias in
the identification of voids between the mock and the real
data set. For instance, in Ref. [46], the authors showed that
the density profile of voids is sensitive to the resolution of
the simulation.

B. Mocks B: Selection-function samples

In Sec. IV we will use the magnitude-limited 6dFGS
sample to measure RSD from the galaxy-galaxy correla-
tions. We therefore supplemented Mocks A with a second
simulation set, Mocks B, which provided a more accurate
curved-sky modeling of the survey selection function and
redshift dependence of the galaxy bias.
We built Mocks B from the COLA N-body simulations

introduced in Ref. [47], using a modified version of the
pipeline created by the authors ofRef. [48] to construct BOSS
and WiggleZ mocks. In brief, we first fit the central and
satellite galaxy halo occupation distribution of the 6dFGS
galaxy sample as a function of luminosity [49]. By calibrating
the luminosity-redshift relation, we defined the redshift
evolution of the HOD. Through careful comparison of the
projected and three-dimensional clustering of the mock and
data sample, we iterated the HOD parameters to produce the
closest possible match. We then applied peculiar velocities
along the line of sight, and subsampled the resulting dis-
tribution with the 6dFGS angular selection function [50].
These mocks will be presented in more detail in Ref. [51].

C. Void-finding in Mocks A

In our analysis we identified voids with radius Rv ¼
20 h−1Mpc using the void finder developed in Ref. [16].
This radius is chosen as a compromise between being small

enough to obtain sufficient voids for an accurate measure-
ment of the void-galaxy correlation function, but being
large enough to select genuinely underdense patches of
matter [52].
This void finder uses density criteria to identify voids

with the characteristic profile illustrated in Fig. 1. For each
of the candidate void positions, which are picked at random,
the algorithm first requires that the overdensity δ is below
a threshold in two central bins, δðR0Þ < δ1 ¼ −0.9 and
δðR0 þ ΔRÞ < δ2 ¼ −0.8, where R0 ¼ 0.5 h−1Mpc and
ΔR ¼ 1 h−1Mpc. The third condition ensures a ridge of
the void profile by requiring that δðRv − ΔRÞ < δðRvÞ and
the fourth condition controls the amplitude of the ridge by
requiring that δðRvÞ > δ3 ¼ 0.
We used 10 times the number of candidate positions as

tracers, producing a sample of∼300 voids for eachMockA,
which is similar to the number density of voids we find by
applying the same algorithm to the volume-limited 6dFGS
subsample.We note that about half of these voids have some
portion of overlap; this does not affect our analysis because
overlap does not change the radial density profile [16],
and any covariance between overlapping voids is already
encoded in the measurement scatter between mocks.

D. One-dimensional matter-void
cross-correlation function

We measured the void-tracer cross-correlation functions
using the Landy-Szalay (LS) estimator:

ξvgðRÞ ¼
NrgNrv

RvRg

�
DvDg

NgNv
−

DgRv

NgNrv
−

DvRg

NvNrg

�
þ 1; ð11Þ

FIG. 1. Measurement of the one-dimensional void-DM and
void-galaxy correlation functions. The error bars show the 1−σ
standard deviation computed using the mock catalogues. The
solid and dashed lines show measurements in real space and
redshift space, respectively, for the DM particles (black lines), the
haloes (red lines) and the 6dFGS galaxies (green line, only
available in redshift space).
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whereDvDg is the number of data void-galaxy pairs,RvRg is
the number of random void-galaxy pairs andDg=vRg=v is the
number of galaxy/void data-random pairs, in a bin at
separation R. The total number of galaxies, voids, galaxy-
randoms and voids-randoms are Ng, Nv, Nrg and Nrv,
respectively. In all cases we generated random catalogues
having 10 times the number of galaxies than our data
samples.
The one-dimensional (1D) mock mean void-matter

correlation function, ξv−DMðRÞ, is displayed in Fig. 1 as
the black data points. We also show the void-halo corre-
lation function (red points), using voids identified in real-
space mocks before applying RSD. In addition we compare
the same measurements after RSD is applied (dashed lines),
including the 6dFGS measurement. For clarity we do not
show the errors in the redshift-space measurements, which
are similar to the real-space case. We see that RSD
accentuates the features of the void profile: it makes the
inner density profile steeper and the ridge higher.

E. Model fits to the mock 2D correlation functions

We computed the 2D void-halo correlation function for
Mocks A, and the halo-halo correlation functions for both
MocksAandB, using theLS estimator of Eq. (11). Indeed, it
is interesting to also measure the galaxy-galaxy correlation
in mocks A in order to (i) test if the inferred linear bias is the
same as the one inferred from the galaxy-voidmeasurement,
and (ii) confirm that the inferred value of the growth rate is
the same as the one inferred from the galaxy-void clustering.
In fact, there should be a limit of the void size where
nonlinear effects should impact the value of the growth rate
inside largevoids.Hencewe checked that this effect does not
occur for our selected voids by testing the consistency of the
growth rate within the same mocks A. When measuring
the correlation functions for Mocks B, which include the
varying survey selection function, we used minimum
variance weights [20,53]

wi ¼
1

1þ niP0

; ð12Þ

where (following Ref. [20]) P0 ¼ 1600 h−3Mpc3 and ni is
the galaxy number density at the location of the ith object.
In Eq. (11), the ratio of random objects to data objects then
becomes

Nrg

Ng
→

PNrg

i¼1 wiPNg

j¼1 wj

: ð13Þ

We computed the 2D correlation functions of 20 mocks in
ðσ; πÞ bins of width 3 h−1 Mpc in the range 0–54 h−1Mpc,
and used these measurements to construct the standard
deviation in each bin, σmocks.
For our first analysis we fitted the model to the mock

mean 2D correlation function, with an error in each bin
given by Δξ ¼ σmocks=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmocks

p
. This allows us to perform

precise systematic tests of Eqs. (4) and (5), using a mock
data set with a statistical error far smaller than the real
6dFGS data set.
At small scales the galaxy-galaxy correlation function is

dominated by the FoG effect, which cannot be described by
the linear theory and pairwise velocity dispersion models of
Eq. (4). Therefore, small σ bins are often excluded when
computing the χ2 [Eq. (14)]. For these reasons we apply a
cut σcut > 7.5 h−1Mpc when fitting the galaxy-galaxy
correlation function, while we keep all the separation bins
for the void-galaxy correlation function. We consider below
the sensitivity of our results to these choices.
We performed our fit using aMetropolis-HastingsMarkov

chain Monte Carlo (MCMC) analysis for the parameters
Θ ¼ ðfσ8; bσ8; σvÞ, analyzing our Monte Carlo chains
using the module GetDist developed by Lewis [54]. We
used priors fσ8 ¼ ½0.02; 0.71�, bσ8 ¼ ½0.4; 1.58� and σv ¼
½25; 600� km s−1, although our results are not sensitive to
these choices. We computed the likelihood of each model
assuming

χ2ðΘÞ ¼
X
σ;π

�
ξdataðσ; πÞ − ξtheoðΘ; σ; πÞ

Δξðσ; πÞ
�
2

: ð14Þ

TABLE I. Parameter constraints obtained from fitting to the mock mean 2D galaxy-galaxy correlation function ξgg
and void-galaxy correlation function ξvg for Mocks A and B, assuming Lorentzian (L) and Gaussian (G) models for
the pairwise velocity dispersion. The reported parameter errors are the scatter in the fits to individual mocks, scaled
by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmocks

p
. The χ2 values are derived from the MCMC fit to the mock mean, which is impacted by neglecting off-

diagonal covariance. The fiducial cosmology in the mocks is fσ8 ¼ 0.260.55 × 0.79 ∼ 0.38.

Mocks bσ8 σIM fσ8 σIM σv½km:s−1� σIM χ2=d:o:f

ξgg L A 0.66 �0.02 0.37 �0.03 134 �21 497=192

ξvg L A 0.67 �0.01 0.38 �0.02 126 �8.5 920=277

ξgg G A 0.66 �0.02 0.37 �0.03 118 �19 497=192

ξvg G A 0.67 �0.01 0.38 �0.02 122 �9 925=277

ξgg G B 1.01 �0.01 0.38 �0.01 102 �21 327=192

ξgg L B 1.00 �0.01 0.38 �0.01 100 �25 326=192
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We cannot numerically determine the large covariance
matrix between different ðσ; πÞ bins sufficiently accurately
to allow it to be inverted when determining the χ2 statistic,
so in Eq. (14) we assumed no correlation between bins. Our
MCMC fit will therefore not produce robust parameter
errors, and we instead used the dispersion of the best-fitting
parameter values between individual mocks, σIM, as a more
accurate estimate of the resulting errors. This scatter, which
is typically double the parameter error obtained by the
MCMC, naturally includes the effect of data correlations.

When fitting to the mock mean, we report a scaled
parameter error σIM=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmocks

p
.

We report the best-fitting parameter values and errors of
our fits to the mock mean galaxy-galaxy and void-galaxy
correlation functions, and minimum χ2 values, in Table I. In
Fig. 2, left panels, we show the mean measurement of the
mock 2D void-galaxy and galaxy-galaxy correlation func-
tion. The solid lines correspond to the isocontour of our
best fitting models. The right panels show the residual
between the data and our models. We find that both the

FIG. 2. The mean measurement of the mock 2D void-galaxy correlation function (upper-left panel) and galaxy-galaxy correlation
function (lower-left panel). The solid lines show the best-fitting model assuming a Gaussian pairwise velocity distribution, and the
dotted lines show isocontours of the data, noting that the fitting region for the galaxy-galaxy correlation function is σ > 7.5 h−1 Mpc.
The right-hand panels show the residual between the measurements and best-fitting theory in each case, scaled by the standard deviation
across the mocks. For the galaxy-galaxy residual we impose a min/max cut of −10=þ10 in order to distinguish the variations across the
right-hand side of the plot. We note that the mock mean is a substantially more accurate test of the model than a single data set, and some
significant deviations from the model are detected. However, the resulting growth rate fits are unbiased.
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Gaussian and the Lorentzian models lead to similar con-
straints on the growth rate, and that the best-fitting growth
rates are consistent with the fiducial cosmology of the
mocks (fσ8 ¼ 0.260.55 × 0.79 ∼ 0.38), validating our mod-
els. The fits to Mocks A show that the fiducial growth rate
is recovered around both voids and galaxies for a consistent
tracer population, and that our choice of void size produces
no unwanted systematic effect due to nonlinearity or
inhomogeneity. The best-fitting χ2 values are high for both
statistics, although we note that these values neglect the off-
diagonal elements of the covariance matrix, and that the
mock mean provides a far more precise diagnostic of
systematics than the real survey data.
The galaxy-galaxy RSD provides weaker constraints on

σv than the void-galaxy correlation function, due to our
exclusion of small σ scales from the fit in this case. The
error in σv is sensitive to this cut, as we will see in Fig. 4.
Table I also lists best-fitting values for the galaxy bias
factor. We note that the galaxy bias factor for Mocks B is
significantly higher than for Mocks A, because of the
selection of more massive halos required to match the
6dFGS sample at higher redshifts, and the upweighting of
those halos by the Feldman-Kaiser-Peacock weights. The
comparison of the results of the void-galaxy and galaxy-
galaxy correlation function fits for Mocks A allows us to
verify that the measured tracer bias is consistent in the two
cases, implying that there is not an environmental depend-
ence of this parameter.
In Table II we report summary statistics of the fits of our

model to the individual mock catalogues, listing the mean
values of the best-fitting parameters ( ¯fσ8, ¯bσ8, σ̄v) and their
dispersion across the mock catalogues (σfσ8 , σbσ8 , σσv). The
mean values are consistent with the best fit to the mock
mean, indicating that our approach is unbiased.
We checked the dependence of the best-fitting parameter

values on the range of scales included in our analysis.
In the upper panel of Fig. 4, we show the variation of the

best-fitting values with the cutting scale σcut, for the fits to
the galaxy-galaxy correlation function of Mocks B. The
triangles (red for modelG and orange for model L) show the
result from fitting to the mock mean, while the unfilled
circles correspond to the mean parameter fit to the individual
mocks. The minimum reduced χ2 is shown in the bottom
panel. Deviations are seen when including the first bin,
which we expect to be most strongly affected, although our
results do not show a strong dependence on σcut and we
adopt a baseline σcut ¼ 7.5 h−1 Mpc for our analyses.
A similar analysis of the void-galaxy correlation function

of Mocks A is shown in the lower panel of Fig. 4 where,
given the absence of nonlinear pairwise velocities, we now
consider a cut as a function of the total separation,
Rcut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ σ2

p
. This is motivated by the possibility that

linear theory may break down at the center of the voids
where δvðR → 0Þ ≈ −1 [6]. We plot the best-fitting param-
eters as a function of Rcut as well as the reduced χ2 for
model G (blue lines) and model L (cyan lines). The fits to
the mock mean are shown by the triangles, while the
unfilled circles correspond to the mean parameter fit to the
individual mocks. In this case, we find a low sensitivity of
the results to the value of Rcut. The best-fitting parameters
are consistent with our fiducial cosmology when we use all
scales ðRcut ¼ 0Þ in Eq. (14).

IV. APPLICATION TO 6DFGS

A. Galaxy and void samples

The6dFGalaxySurveywas undertakenwith themultifiber
instrument on the UK Schmidt Telescope between 2001 and
2006. The median redshift of the survey is z ¼ 0.052 and it
covers nearly the entire southern sky. A full description of the
survey can be find in refs. [17,18] including comparisons
between 6dFGS, 2dFGRS and SDSS. In this analysis we
utilized the same K-band selected 6dFGS sub sample,
consistingof∼70 500galaxies, as constructed for the analysis
of the baryon acoustic peak inRef. [50].We also used random
catalogues following the same angular and redshift selection
as the data sample, generated in Ref. [50].
We constructed different 6dFGS subsamples for analyz-

ing the galaxy-galaxy and void-galaxy correlation functions.
For the measurement of the void-galaxy correlation func-
tion, we first constructed a volume-limited catalogue cor-
responding to an approximately constant number density.
This step is crucial in order to apply our measurement of the
1D real-space void-matter correlation function in Eq. (6),
and to avoid any evolution in the void properties with
redshift. We built the volume-limited catalogue by deter-
mining the absolute magnitude M of each galaxy using

m −M ¼ 5 log10DLðzÞ þ 25þ KðzÞ; ð15Þ

where m is the apparent K-band magnitude, DLðzÞ is the
luminosity distance in Mpc and KðzÞ is the K correction

TABLE II. Parameter constraints obtained by fitting to each
individual mock and measuring the resulting mean and standard
deviation of the best-fitting parameters, for the 2D galaxy-galaxy
correlation function ξgg and void-galaxy correlation function ξvg,
assuming Lorentzian (L) and Gaussian (G) models for the
pairwise velocity dispersion. The fiducial cosmology in the
mocks is fσ8 ¼ 0.260.55 × 0.79 ∼ 0.38.

Mocks ¯σ8b=σσ8b
¯fσ8=σfσ8 σ̄v=σσv ½km:s−1�

ξgg L A 0.58=0.20 0.36=0.24 293=166

ξvg L A 0.70=0.08 0.44=0.18 164=68

ξgg G A 0.58=0.19 0.38=0.29 270=150

ξvg G A 0.70=0.08 0.42=0.19 181.5=72

ξgg G B 1.0=0.06 0.39=0.06 111=92

ξgg L B 1.0=0.06 0.39=0.06 125=113
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[55,56]. For this analysis we set the maximum redshift of the
sample to zmax ¼ 0.05, in order to obtain a sample with a
sufficiently high number density. The faintmagnitude limit of
the survey is mfaint ¼ 12.75, and we selected all galaxies
brighter than Mfaint in the redshift range z < zmax, where
Mfaint is computed fromEq. (15)with z ¼ zmax.We identified
voids in the catalogue using the algorithm described in
Sec. III, leading to the identification of ∼1400 voids.

B. Measurement of the correlation function

We transformed the angular coordinates and redshifts
of the galaxies to comoving Cartesian coordinates assuming

the same fiducial cosmology as our mock catalogue
ðΩm ¼ 0.26Þ, although we note that the Alcock-Paczynski
effect is negligible at low redshift. The separation of two
galaxies along the line of sight π and across the line of sight σ
is measured in the same manner as Mocks B using

π ¼ ∥s:h∥
∥s∥

;

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥h∥2 − π2

p
; ð16Þ

whereh ¼ s1 − s2 is the separation of the galaxies in redshift
space and s ¼ ðs1 þ s2Þ=2 is the mean distance to the
galaxy pair.

FIG. 3. The 2D void-galaxy correlation function (upper left panel) and galaxy-galaxy correlation function (lower left panel) of the
6dFGS data set. The solid lines show the best-fitting model assuming a Gaussian pairwise velocity dispersion, and the dotted lines
show isocontours of the data, noting that the fitting region for the galaxy-galaxy correlation function is σ > 7.5 h−1 Mpc. The right-hand
panels show the corresponding residual between the measurement and best-fitting model, scaled by the error in each bin. In general,
there are not significant residuals within the fitted region.
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Figure 3 displays the measured 2D galaxy-galaxy
correlation function (lower left) and void-galaxy correla-
tion function (lower right) for the 6dFGS data set. For the
galaxy-galaxy correlation function, we can see the elongation
at small scales along the line of sight (FoG), due to the random
motion of galaxies within halos. On larger scales, we observe
the Kaiser effect due to coherent bulk flows. For the void-
galaxy correlation function, we can detect an apparent
asymmetry within the void (<15 h−1 Mpc): the “emptiness”
is larger along the line of sight due to the cosmic expansion,
and the ridge of the void (∼20 h−1Mpc) tends to be erased
due to the velocity dispersion. The Kaiser effect can also be
observed: the signal is enhanced across the line of sight,
especially on the ridge.
We obtained the error in the 6dFGS void-galaxy and

galaxy-galaxy correlation functions using the dispersion in

the measurements from Mocks A and B, respectively. We
scaled the standard deviation of the void-galaxy mock
measurements to allow for the slightly different volumes of
Mock A and the real data set:

Δξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmock

V6dFGS-cut

s
× σmock ð17Þ

where V6dFGS-cut ∼ 1793h−3 Mpc3 and the scaling factor is
0.64. The parameter errors are also scaled by this correction
factor. No volume scaling is needed for the galaxy-galaxy
correlation functions, since Mocks B sample the exact
survey selection function.

C. Growth rate measurement in different environments

We fitted our RSD model to the 6dFGS data using the
MCMC pipeline described in Sec. III. As previously
discussed, we obtain robust parameter errors using the
dispersion of the fits to the mock catalogues.
We report the best-fitting parameter values and their errors

in Table III. Our measurement of the growth rate for the
average of models L and G is fσ8 ¼ 0.42� 0.06 for the
galaxy-galaxy RSD and fσ8 ¼ 0.39� 0.11 for the void-
galaxy RSD. We observe larger uncertainties in the growth
rate measured using the void-galaxy correlation function,
although the two measurements are consistent within the
statistical errors. The minimum χ2 values, also listed in
Table III, are lower than those found for the more accurate
mock mean data set, but we note that they are still impacted

TABLE III. Parameter constraints obtained from fitting to the
6dFGS 2D galaxy-galaxy correlation function ξgg and void-
galaxy correlation function ξvg, assuming Lorentzian (L) and
Gaussian (G) models for the pairwise velocity dispersion. We
determine the parameter errors using the standard deviation of the
parameter fits to individual mocks.

bσ8 σIM fσ8 σIM σv½km:s−1� σIM χ2=d:o:f

ξgg L 1.17 �0.06 0.43 �0.06 273 �92 114=192

ξvg L 0.76 �0.05 0.36 �0.11 390 �43 530=289

ξgg G 1.17 �0.06 0.42 �0.06 261 �113 116=192

ξvg G 0.80 �0.05 0.43 �0.12 515 �46 536=289

FIG. 4. The influence of the fitting range on parameter fits to the galaxy-galaxy (left panel) and void-galaxy (right panel) correlation
functions. In both cases we show the result using the Gaussian pairwise velocity model (blue and red) and the Lorentzian model (orange
and light blue). The squares correspond to the 6dFGS constraints, the triangles correspond to the fits to the mock mean, and the
open circles correspond to the mean of the fits to individual mocks, with the error bars as the standard deviation. We offset points along
the x axis for clarity.
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by the assumption of a diagonal covariance matrix. The
right-hand panels of Fig. 3 show the residuals between the
data and best-fitting models. Our measurement is in very
good agreement with the previous 6dFGS galaxy-galaxy
RSD analysis [20], which obtained fσ8 ¼ 0.42� 0.05.
The difference in the best-fittingbias parameters for ξgg and

ξvg is due to the different galaxy samples used: for the galaxy-
galaxy analysis we adopt a flux-limited sample across awider
redshift range, and upweight more luminous, highly biased
galaxies. The best-fitting bias values are comparable with
those found in the corresponding mock catalogue analyses in
each case, although some differences remain.
These results are obtained with a cut σcut ¼ 7.5 h−1Mpc

for the galaxy-galaxy correlation function, and using all bins
for the void-galaxy correlation function. This is motivated by
themock-catalogue analysis and the lack of sensitivity of our
best-fitting parameters to these choices,which is illustrated in
Fig. 4. For σcut > 4.5 h−1Mpc, the goodness-of-fit and
best-fitting parameters do not significantly change for the
galaxy-galaxy correlation function (left panel), independ-
ently of the model (see the red/orange solid lines). The best-
fitting χ2 of thevoid-galaxy correlation function (right panel)
remains unchanged at all scales, independently of the model
(see the blue/light blue solid lines).
Overall, the growth rate measurements are consistent

between the void-galaxy and galaxy-galaxy RSD. One
might think about combining these measurements to
improve the uncertainties. However we do not expect a
significant improvement since the growth uncertainties
from the void-galaxy RSD are double those of the galaxy-
galaxy RSD, and the measurements are correlated. Hence,
the novelty of our result relies on the comparison of the
growth between different environments.

V. CONCLUSION

In this work we provided the first direct comparison of
the cosmic growth rate measured in two different environ-
ments of the same galaxy survey, by fitting to redshift space
distortion in the galaxy-galaxy and void-galaxy correlation
functions of the 6-degree Field Galaxy Survey. As a low-
redshift survey, our 6dFGS measurements are particularly
relevant for probing the late-time domination of dark
energy, and are insensitive to the Alcock-Paczynski effect.

We found voids using a new void-finder which identifies
underdensities matching supplied density profile criteria
[16]. We also note that our measurement of the growth
using RSD around voids is the first performed at low
redshift and in the southern hemisphere.
We determined similar growth rate measurements around

galaxies (fσ8 ¼ 0.42� 0.06) and ∼20 h−1Mpc underden-
sities (fσ8 ¼ 0.39� 0.11), finding no evidence of an
environmental dependence of gravitational physics. We
validated our models, and estimated the errors in our
measurements, using mock galaxy catalogues. Extracting
the complementary cosmological information present in
different environments [57,58] will be a powerful test of
physics for both current galaxy redshift surveys and future
projects such as Euclid [40].
Our analysis could be extended in several ways: direct

measurements of peculiar velocities using standard-candle
indicators could further constrain their radial profile around
voids; combining our results with analyses of other data
sets such as SDSS [59] and GAMA [60] can probe these
effects as a function of redshift; and a comparison of our
measurements with the predictions of nonstandard cosmo-
logical models, in particular modified gravity and interact-
ing dark energy models, would place new constraints on
those frameworks.
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