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The detection of unmodeled gravitational wave transients (bursts) using a network of interferometric
detectors affected by non-Gaussian (glitchy) noise is studied, starting from first principles, for the simplest
case where the source position on the celestial sphere is fiducially known from different (e.g., optical, radio,
or neutrino) observations. Interferometer noise modelling is preliminarily discussed in an operational
perspective. Two alternative, locally optimum detectors are proposed and evaluated in simulated realistic
non-Gaussian (glitchy) noise, together with robust implementations which are tolerant against incomplete
knowledge or fluctuations of the noise features. These detectors outperform those based on the unrealistic
stationary/Gaussian noise assumption, and in principle, do not require preliminary ad hoc data vetoing or
laundering. They are structurally akin to those adopted in current data analysis pipelines, preserving their
correlation structure, and use simple memoryless nonlinearities for data preprocessing, with only a minor
added computational burden.
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I. INTRODUCTION

The first direct detection of gravitational radiation by the
two LIGO detectors [1,2] marks the opening of gravita-
tional wave (GW) astronomy.
This milestone result was largely due to the increased

sensitivity and reliability of advanced LIGO [3,4], that started
operation in the second half of 2015 and observed the first
signal in September 2015, during its 8th engineering run. The
first and second observedGWswere transient signals emitted
during the final inspiral merger and ringdown phases of two
black hole binaries [1,2], for which accurate numerical and
analytical waveforms are available, that helped to reconstruct
the source with remarkable accuracy [5–9].
More general, short transients (bursts) of gravitational

radiation may be emitted by a variety of strong-gravity
cosmic events, including core-collapse supernovae, gamma
ray bursters, compact object mergers, and newborn black
holes (see [10] for a broad overview), forming a substantial
fraction of observable GWs.
For this broader class of GW bursts (henceforth GWBs),

we are facing the problem of detecting transients of
basically unmodeled shape.
As a further complication, spurious transients of instru-

mental and/or environmental origin, known as glitches,
appear frequently in the data channel of interferometric
detectors of gravitational waves. Distinguishing GWBs
from spurious glitches using data from a single detector
is almost hopeless. GWBs should be accordingly sought
using data from several detectors (network detection).

Remarkably, the data holding the observed GW signals
were clean [11] from glitches, which allowed to claim the
detection with high confidence. More second generation
(advanced) detectors will come into operation soon: includ-
ing Advanced Virgo [12] and the advanced version of
GEO600 [13] in Europe, the large scale cryogenic japanese
detector KAGRA [14] will join in a few years, plans for a
LIGO-sibling observatory in India (IndIGO [15]) have been
officially approved, and new players (Australia, China and
Russia) may join in the mid future. The foundations of
network detection of unmodeled signals were laid out in a
number of seminal papers.
In the era of acoustic GW detectors [16], various

coincidence algorithms based on consistency tests among
candidate events gathered by different detectors were
envisaged [17,18]. These laid the foundations of noncoher-
ent or coincidence-based network data analysis [19–21].
A more effective way [22] to combine data from several

wide-band interferometric detectors is to construct a single
detection statistic (coherent network data analysis) to be
used as a likelihood ratio [23] for classical hypothesis test
[24–41].
The network likelihood ratio can be easily written,

assuming independent noises in the sensors [42], and is
a function of the source location on the celestial sphere
(aka, the direction of arrival, henceforth DOA), and the two
GW polarization components. The DOA uniquely deter-
mines the arrival time of the gravitational wave transients at
the various sensors, and the directional response of each. In
some cases, the DOA can be fiducially estimated from
different (e.g., optical, radio, or neutrino) observations of
the same cosmic events (in this case one speaks of a
triggered search/observation).
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The possibility of reconstructing the waveform directly
from the (noisy) data, in a network of three or more
interferometers by solving an inverse problem was first
discussed by Gürsel and Tinto [25]. They also pointed out
the possibility of identifying the DOA by seeking the
minimum of a certain linear combination of the data
themselves. Such a combination (actually, N − 2 such
combinations exist in a network of N nonaligned detectors)
is known as a Sagnac-mode or null-stream [26].
The Maximum Likelihood (ML) principle [23] can also

be invoked, in order to estimate unmodeled GWBs, using
the (unknown) waveform time samples (or projections on a
suitable functional set, e.g., sine-Gaussian waveforms
[38,40,43]) to parameterize the sought signals, and seeking
the supremum of the conditional likelihood ratio in the
related parameter space. The supremum is accordingly used
as a detection statistic, and its coordinates yield an estimate
of the signal possibly hidden in the data. This idea can be
traced back to Flanagan and Hughes [27] in connection
with the detection of unmodeled binary black hole mergers,
and it is known as the standard likelihood approach in the
GW data analysis literature [28,41].
In Gaussian noise, the standard likelihood approach is

equivalent to solving the Gürsel-Tinto problem via a
Moore-Penrose pseudo-inverse [44].
The waveform-reconstruction problem can be unfortu-

nately ill posed, due to source-position dependent rank-
deficiency of the network responsematrix, as first emphasized
by Rakhmanov [29]. Ill conditioning entails several pathol-
ogies: the variance of the estimated waveforms may blow up
for some source locations in the sky, and produce widely
different responses in nearly (but not exactly) aligneddetectors
(two-detector paradox [30]). Such effects can be mitigated,
using classical (e.g., Tikhonov, [29]) regularization, or
maximum-entropy approaches [31].
Summing up, a well developed general framework for

detecting unmodeled GWBs using a network of interferom-
eters is available, except for the underlying ubiquitous
simplifying assumption that the noise corrupting the data
is stationary and Gaussian. Various ad hoc ideas have been
proposed to deal with nonideal (glitchy) noise for the
important (but special) case of strong glitches, i.e., glitches
that can be individually detected against the (fiducially
stationary and Gaussian) noise floor. At the simplest level,
certain data stretches can be tagged as low quality, and
discarded whenever the presence of transient disturbances of
instrumental/environmental origin is detected [45]. The cut
threshold can be properly tuned for each detector so as to
minimize the estimated background rate of transient noise
glitches [46–48].
In addition, the detection statistics appropriate to sta-

tionary Gaussian noise can be redefined taking ad hoc into
account the amount of local transient noise, so as to reduce
the false alarm probability (see e.g. [41]).

More recently, Cornish and coworkers formulated the
detection problem as a ternary hypothesis test (the three
alternative hypotheses being the observation of Gaussian
noise only, of a noise transient in Gaussian noise, and of a
GW signal in Gaussian noise), in a Bayesian framework
[43,49,50].
This bears some similarity to the abstract approach

pioneered byKadota for dealingwith signals in the presence
of transient noise, according to which sporadic glitches
can be detected, then estimated, using, e.g., a maximum
a posteriori likelihood approach, and then subtracted from
the data before forming the likelihood ratio [51].
Available evidence suggests that in initial, as well as in

advanced, interferometers glitches occur with all ampli-
tudes, their rate of occurrence being higher the smaller their
amplitude (see e.g. [11,45,52]).
The effect of weak glitches is more subtle. Weak glitches

are not individually detectable against the noise floor, and
cannot be removed by vetoing. They occur with time-
varying rates (Cox processes [53]) and are responsible of
making the residual noise distribution non-Gaussian (heavy
tailed) and non stationary. Although the rate of strong
glitches has been reduced in advanced interferometers, the
rate of weak glitches is the same as in the initial LIGO [45].
It is therefore important to study the problem of network

detection of unmodeled transients under the assumption
where the noise in each detector is essentially heavy tailed.
This was long since recognized, as witnessed by the pioneer-
ing papers by Creighton [54], and Allen et al. [55,56], and is
the focus of the present paper. This is no nonsense, given
that, e.g. as shown in particular in [57–59], heavy-tailedness
spoils in a significant measure the performance of (network)
detection algorithms that would be optimal in the Neyman-
Pearson sense for stationary Gaussian noise.
This paper is accordingly focused on the detection (and

reconstruction) of unmodeled GWB using several non co-
located detectors, affected by an essentially non-Gaussian,
wide-sense stationary, glitchy noise. It completes the study
program initiated in [57–59]. The analysis in Sec. IV is
completely new, and the discussions in Sec. II and at the
beginning of Sec. VI add substantially to our previous
results. Hopefully, our results will providing non-obvious
insights, paving the way to deeper understanding of the
subject, useful for next generation data analysis pipelines.
We introduce a non-Gaussian noise model, including the

glitching component, capitalizing on Middleton’s seminal
results on generalized impulsive noise; we derive its
statistical properties, and show how it can be tailored to
model real detector noise, being dependent only on a few
gross glitch parameters, that can be easily estimated from
real data.
Next, we derive appropriate forms of the likelihood ratio

in the so called threshold or locally optimum approximation
[60], following a rigorous approach which makes no ad hoc
assumptions, nor does it rely on heuristic data flagging and
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post-processing checks, and formulate the related detection
and waveform reconstruction problems in general terms.
Finally, we present the results of numerical simulations

aimed at assessing the performance of the proposed locally
optimum detectors in realistic simulated glitchy noise,
whose parameters were fitted on purpose to the LIGO
5th Science Run (S5) data.
The paper is accordingly organized as follows. In Sec. II

we discuss in some detail the various non-Gaussian noise
components, and outline a simple but general, physically
motivated model of the non-Gaussian glitchy component,
whose statistics can be easily computed in principle.
In Sec. III we derive the likelihood ratio for a network of

interferometers, under the reasonable assumption of inde-
pendent noises in the instruments, and introduce the concept
of locally optimum detector in (generic) non-Gaussian noise.
In Sec. IV we extend the formalism to the detection

of unmodeled waveforms, for the simplest case of trig-
gered search (known direction of arrival). Two possible
approaches are worked out in detail, where the sought
unmodeled signal is either estimated from the data them-
selves, or treated as the realization of a random process.
In Sec. V we introduce robust implementations of the

proposed detectors, aimed at handling our incomplete
knowledge of the glitch noise distribution, due, in particu-
lar, to its nonstationary features.
In Sec. VI we present the results of extensive numerical

Monte Carlo simulations, to illustrate the performance of
the proposed detectors, and discuss the simplifying assum-
ptions made.
Conclusions follow under Sec. VII. A few formal devel-

opments ancillary to Sec. IVare collected in the Appendix.

II. INTERFEROMETER NOISE—TOWARD A
PHYSICALLY DRIVEN MODEL

The noise corrupting the data of large baseline inter-
ferometric detectors of gravitational waves exhibits a
number of typical features, which are common to all
instruments presently or planned to be in operation.
These features make the statistical properties of noise
markedly different from those of an ideal Gaussian sta-
tionary process.
The key properties of observed instrumental noise can be

characterized operationally as follows.
As a first nonideal feature, the power spectrum of raw

data contains many narrow band features (see e.g [61]).
Among these, it is expedient to distinguish those due to
coupling to power supply conduits, which occur at integer
multiples of the electric power-line frequency, from those
originating from the high-Q mechanical resonances of the
wire slings hanging the interferometer terminal mirrors.
The former cause substantial deviations of the noise
distribution from the Gaussian assumption. The latter,
known as violin modes, are linear responses to stochastic
excitations of the suspending wires/strips, and hence

depending on whether such excitations are Gaussian
(Brownian noise) or not (e.g., creep noise due to material
dislocation [62]), they contribute a (narrow band) Gaussian
noise component, or a non-Gaussian one [63]. Efficient
algorithms have been developed for estimating and sub-
tracting from the data all narrow band features of known
origin [64–70].
After removing these features, a look at the data in the

time domain reveals the presence of further nonideal
features, represented by transient disturbances (glitches)
of environmental and/or instrumental origin. As already
mentioned, these are a key issue when it comes to detecting
unmodeled GWBs.
Most of the effort has gone so far into classifying

glitches, and tracing out their origin in the machines,
exploiting correlations of the main strain channel with
the numerous auxiliary channels. Little effort has gone so
far into modeling the impulsive (glitchy) noise component,
understanding the impact of the glitchy component on the
performance of Gaussian-noise tailored detectors, and
designing detectors appropriate to such noise. This paper
is aimed at moving steps in this direction.

A. A Statistical/Physical Model of Glitch Noise

Glitches have been carefully studied, as a major cause of
poor detection efficiency (see e.g. [71,72]). Much work has
been done on identifying generic glitch features, classifying
glitch waveforms [52,73–77], and tracing out their origin
[78–81].
Accumulating evidence suggests that glitches arise from

random transient environmental excitations hitting some
noise-susceptible detector subsystems, and reaching the
data channel through pathways characterized by specific
canonical (impulse) linear responses [82]. This picture is
corroborated by the experimental finding that most glitches
fall into a limited set of typical waveforms [79,83,84]. Its
conceptual foundations may be traced back to [85].
Denote the mentioned canonical responses (aka elemen-

tary glitches) as wiðtÞ, i ¼ 1; 2;…; L. In general, any
environmental disturbance (assumed for simplicity as
impulsive in time and localized in space) will enter the
instrument through several entry points, with different
strengths and different delays. Correspondingly, in the data
channel we shall observe a superposition of canonical
responses (i.e., a cluster of elementary glitches), viz.

ψðt − tk; ~akÞ ¼
XL
i¼1

AðkÞ
i wiðt − θðkÞi Þ;

where θðkÞi ¼ tk þ τðkÞi ; ð1Þ
where tk is the random firing time of the primary disturb-

ance, and AðkÞ
i and τðkÞi are the strength and the delay,

whereby this latter couples to the i—th instrument’s entry
point. In (1) ~ak represents the array of (random) parameters
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fAðkÞ
i ; τðkÞi ji ¼ 1; 2;…; Lg, which determine the shape of

the glitch cluster.

Note that the AðkÞ
i in (1) are not independent, being due to

the same environmental disturbance identified by the index

k; the same is true for the τðkÞi , i ¼ 1; 2;…; L.

Whenever the θðkÞi in (1) fall in an interval shorter
than the typical time-width θw of the individual canonical
responses wi, the individual terms in (1) can not be
resolved by visual inspection. However Prony’s algorithm
]86 ] (or robust variants thereof [87]), and/or Independent

Component Analysis [88], may be used to single them out.
Glitch noise can be accordingly modeled, following

Middleton [89], as a generalized shot-noise, viz.:

νgðtÞ ¼
XK½T�
k¼1

ψðt − tk; ~akÞ; ð2Þ

where K½T� is a random variable representing the total
number of primary disturbances occurring in the analysis
window Θ, whose duration is denoted by T, and the tk form
a set of random firing times. Equation (2) was introduced
in [57].
Different terms in Eq. (2) are due to independent

disturbances, so that it is reasonable to assume the tk in
(2) as being independent and identically distributed (hence-
forth i.i.d.). We shall denote by λ their expected number per
unit time. Experimental evidence indicates that λ fluctuates
in time. We shall assume such fluctuations to occur on time
scales ≫ T. Then, according to a theorem by Hurwitz and
Kač [90], the total number of terms in (2) will be ruled by a
nonhomogeneous Poisson process [53], with

prob½KðTÞ ¼ Q� ¼ ðλ̄TTÞQ expð−λ̄TTÞ
Q!

; ð3Þ

with λ̄T being the (local) average of λ in the analysis
window.
The statistical properties of the glitch noise in (2) depend

notably on the product between λ̄T and the typical time-
width θψ (assumed < T) of the ψ functions in (1).
Available data from the LIGO data suggest that glitches

occur typically at rates which depend on their amplitudes,
smaller glitches occurring more frequently than larger ones.
Strong glitches, which are detectable against the noise floor
(using, e.g., a change-detection algorithm [91,92]), occur at
typical rates up to λ̄T ∼ 1 s−1, with λ̄Tθψ < 1.
Pruning the data from narrow band components and

strong glitches, leaves a residual noise floor which
has been pictorially described as an (adiabatically) breath-
ing Gaussian noise [93]. This noise is locally Gaussian
(in the operational sense of passing successfully some
statistical test of Gaussianity [94]) on sufficiently short
timescales (typically ∼1 sec); its local variance fluctuates

adiabatically on longer timescales; and its global 1st-order
distribution is markedly heavy tailed (non-Gaussian).
This may likely be an effect of weak (undetectable)

glitches occurring at relatively high(er) rates. Note that, in
the limit where λ̄Tθψ ≫ 1, it can be shown that the
distribution of (2) becomes Gaussian, by virtue of the
Central Limit Theorem, irrespective of the individual glitch
shapes [89]. Hence, the higher-rate weaker glitches will
likely produce a globally non-Gaussian, but wide-sense
(nonstationary) locally-Gaussian noise component, whose
standard deviation fluctuates on the same time scales as the
underlying glitch rate.

B. Glitch Noise Statistics

The characteristic functions of the glitch noise model (2)
can be computed exactly up to any order [57,89]. For
subsequent developments we will need only the first order
one, which can be written

Fgðξ; tÞ ¼
X∞
K¼0

probfK½T� ¼ KgFgðξ; tjKÞ; ð4Þ

where Fgðξ; tjKÞ is the conditional characteristic function

Fgðξ; tjKÞ ¼ Efexp ½{ξ
XK
k¼1

ψðt − tk; ~akÞ�g: ð5Þ

The expectation Eð·Þ in (5) is taken with respect to both
the firing times, tk, and the shape parameters, ~ak. Assuming
the pertinent distributions as time invariant in Θ, and
k-independent, Eqs. (5) and (4) become, respectively

Fgðξ; tjKÞ ¼ Bðξ; tÞK; ð6Þ

and

Fgðξ; tÞ ¼ exp ½N̄ðBðξ; tÞ − 1Þ�; ð7Þ

where

Bðξ; tÞ ¼ Efexp½{ξψðt − t0; ~aÞ�g ð8Þ

and N̄ ¼ λ̄TT the expected number of spurious transients in
Θ. From the characteristic function Fgðξ; tÞ it is straightfor-
ward to compute the (central) moments of the process νgðtÞ,

μðQÞ
g ¼ ð−{ÞQ∂

QFgðξ; tÞ
∂ξQ

����
ξ¼0

; ð9Þ

which can be used, e.g., to approximate the PDF of νgðtÞ
using Edgeworth expansion [95]. The first four central
moments are explicitly given by
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μð1Þg ¼ E½gðtÞ� ¼ N̄E½ψðt − t0; ~aÞ�;
μð2Þg ¼ E½gðtÞ2� ¼ N̄2E2½ψðt − t0; ~aÞ� þ N̄E½ψ2ðt − t0; ~aÞ�;
μð3Þg ¼ E½gðtÞ3� ¼ N̄3E3½ψðt − t0; ~aÞ�

þ 3N̄2E½ψ2ðt − t0; ~aÞ�E½ψðt − t0; ~aÞ�
þ N̄E½ψ3ðt − t0; ~aÞ�;

μð4Þg ¼ E½gðtÞ4� ¼ N̄4E4½ψðt − t0; ~aÞ�
þ 6N̄3E2½ψðt − t0; ~aÞ�E½ψ2ðt − t0; ~aÞ�
þ 3N̄2E2½ψ2ðt − t0; ~aÞ�
þ 4N̄2E½ψðt − t0; ~aÞ�E½ψ3ðt − t0; ~aÞ�
þ N̄E½ψ4ðt − t0; ~aÞ�; ð10Þ

where, again, the expectations are taken with respect to
both t0 and ~a.
The first order probability density function (henceforth

PDF) of the process νgðtÞ can be obtained in principle from
(7) by inverse Fourier transformation. The latter, however,
can be exceedingly difficult to evaluate in analytic form.
In practice, it is expedient to adopt a Gaussian-mixture
approximant [96] to the sought noise PDF, viz.,

fðxÞ ¼
X
i

ηiνGðμi; σi; xÞ; ð11Þ

where νG is a Nðμi; σiÞ density, and
P

iηi ¼ 1. Gaussian
mixtures are effective in representing a wide class of non-
Gaussian noises [97]. Efficient (ML) algorithms are avail-
able for estimating the mixture parameters from given noise
samples [98,99] based both on frequentistic and Bayesian
[100] arguments. Typically, only a few terms in (11)
are required to reproduce generalized shot noises with
high accuracy (in terms, e.g., of distributional distance)
[101]. In all cases considered hereinafter, three terms were
enough [58].

C. A Realistic Noise Model

Summing up, on the basis of available results, the noise
corrupting the data streams of large baseline interferometric
detectors of gravitational waves presently in operation can
be regarded as consisting of three additive terms:

nðtÞ ¼ nNBðtÞ þ ngðtÞ þ nfloorðtÞ; ð12Þ

representing, respectively, a narrow band component (nNB),
a strong (detectable) glitchy component (ng), and a residual
component (nfloor) which is still globally non-Gaussian,
while being locally Gaussian (with long-term fluctuating
variance) on short time scales.
Remarkably, none of these terms is described by a

Gaussian stationary distribution, although the first and
last term may include such a component, accounting

respectively, for the Brownian excitation of the violin
modes, and the pure thermal (Johnson) stationary noise
in the instrument.
While the first term in (12) can be effectively disposed

prior to data analysis, the non-Gaussianity of the remaining
two terms should be properly gauged, and duly taken into
account when designing and evaluating GW detection
algorithms.
On the other hand, most data analysis pipelines currently

in use merely adopt ad hoc data laundering and quality-
based vetoing procedures aimed at identifying and dis-
carding glitchy data, before applying detection/estimation
tools which are designed to work (and are guaranteed to be
optimal) only in Gaussian stationary noise.

D. A Working Toy Model for Glitches

Building a glitch noise simulator based on (1), (2)
requires identifying the elementary glitches (canonical
responses) wi, and estimating the joint probability distri-
butions of the Ai and τi in (1), from real glitchy data. This is
a nontrivial task, but all needed tools are available.
Luckily, such an accurate knowledge and modeling of

glitch noise is not needed for setting up and testing the
locally optimum detectors discussed in Secs. III–V. Indeed,
as we shall see, in order to implement the locally optimum
detectors, discussed in Secs. III–V, only the 1st order noise
PDF is needed, and only a few gross features of this latter
are relevant. These features, as already noted in [57] are
almost independent from the details of the glitch wave-
forms in (2), being basically affected only by the expected
distribution of the glitch amplitudes, and the rate λ̄ at which
glitches occur.
Hence, we shall make here a simplest modeling

assumption, which is still adequate for our present purposes.
In [57–59] we accordingly used Gabor time-frequency

atoms [102], better known as Sine-Gaussian (SG) wave-
forms in the GWB Literature, to represent the ψ functions
in (2),

ψðt − t0; ~aÞ ¼ A0 sin ½2πf0ðt − t0Þ þ ϕ0� exp
�
−
ðt − t0Þ2
2σ2t

�
:

ð13Þ

Time-frequency atoms [103] are over-complete function
sets, which can be conveniently used to represent generic
transient waveforms [104]. They capture the most relevant
feature of generic glitches, namely their almost compact
time-frequency support. The shape parameters of Gabor
atoms include the glitch amplitude A0, center frequency f0
and time spread σt [105]. The distribution of these
parameters was estimated in [57] from a bunch of observed
glitches (the LIGO Q-pipeline triggers) of the 5th LIGO
Science Run.

LOCALLY OPTIMUM NETWORK DETECTORS OF … PHYSICAL REVIEW D 95, 082006 (2017)

082006-5



Figure 1 shows the (1st order) PDF of the random
process obtained by adding whiteNð0; 1ÞGaussian noise to
the random process in Eq. (2) generated using (13), for
different values of the glitching rate λ and of the maximum
SNR of the glitches against the Gaussian floor, henceforth

denoted as SNRðgÞ
max.

In Fig. 1, the glitch SNR is assumed as uniformly

distributed in ½0; SNRðgÞ
max�, the initial phase ϕ0 as uniformly

distributed in [0, 2π], and the distributions of f0 and σt are
the same as in [57].
We checked that the relevant gross features of the 1st

order PDF of the random process (2) are basically the same
when using either Gabor atoms (13), or the typical glitches
from the database in [79], selected randomly according to
their frequency of occurrence, whenever the glitch rate and
SNR distribution are the same.
In Sec. VI we shall accordingly use the above toy model

of glitch noise to test our proposed network detectors of
unmodeled signals in a glitchy background.

III. DETECTION OF KNOWN SIGNALS WITH
MULTIPLE SENSORS

Detection of known signals using multiple sensors is a
well established topic in Engineering Signal Processing,
originally developed in connection with radar surveillance.
Two main data analysis strategies can be envisaged in this
context, known as distributed and centralized. Several
(e.g., tree or serial) topologies of distributed analysis exist
(see [106] for a broad review), differing basically by the
extent to which local decisions are taken based on the data
collected at each sensor, and the way the data/decisions are

eventually combined in order to construct a final decision
rule. Conversely, in the centralized approach, the data
gathered from all sensors are sent to a central unit which
merges them to form a single statistic, which is used to
reach a global decision.
Coincidence-based (or noncoherent) network data analy-

sis methods can be regarded as a special case of distributed
detection. Coherent methods on the other hand follow a
centralized philosophy.
We consider the general case of D advanced detectors.

The possibility of operating them as a single multisensor
GW observatory is of paramount importance in the per-
spective of GW astronomy, and it is almost mandatory for
detecting unmodeled GW bursts in an impulsive (glitchy)
noise background.
The coherent strategy for detecting a GW signal, using a

network ofD interferometers, can be formulated as a binary
decision problem between the alternative hypotheses H0

and H1 as follows,

�
H0∶ Vd ¼ nd

H1∶ Vd ¼ Sd þ nd
; d ¼ 1;…; D; ð14Þ

where boldface denotes vectors ofNs time-samples e.g.Vd ¼
fVd1; Vd2;…; VdNs

g, with Vdk ¼ VdðtkÞ; k ¼ 1;…; Ns; nd

is the additive noise corrupting the data gathered by detector-
d, and Sd is the GW signal received by the same detector.
For a plane gravitational wave with transverse traceless

(TT) components hþð~r; tÞ and h×ð~r; tÞ,

Sd ¼ Fþ
d ðΩsÞhþ

d þ F×
d ðΩsÞh×

d ; d ¼ 1;…; D; ð15Þ
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FIG. 1. First order PDF of non-Gaussian glitchy noise model, Eq. (2), superimposed to Nð0; 1Þ white Gaussian noise. Glitches are

modeled as in Eq. (13)—see Sec. II D for details. Top: different values of λ; SNRðgÞ
max ¼ 102. Bottom: different values of SNRðgÞ

max;
λ ¼ 0.5 s−1. Close-ups in the insets. The shown PDFs are even, and only the x ≤ 0 range is shown.
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where Fþ
d ðΩsÞ and F×

d ðΩsÞ are the pattern functions
describing the directional response of detector-d, Ωs ¼
ðϑs;φsÞ is the location of the emitting source on the
celestial sphere, and hþ;×

d are the linearly polarized TT
wave components at detector-d, whose position is denoted
by ~rd.
In the following we restrict to the case of triggered

detection, where the DOA is fiducially known from differ-
ent (e.g. optical, radio, or neutrino) observations [107]. It is
expedient to introduce the quantity

hrss ¼
�Z

Θ
½h2þðtÞ þ h2×ðtÞ�dt

�
1=2

ð16Þ

and define a GW strength parameter θ ≥ 0, such that
hþ;×
d ¼ θh̄þ;×

d , and h̄rss ¼ 1. Also, before the subsequent
processing steps, we assume that the output of detector-d is
time-shifted by the (DOA dependent) delay between the
wavefront arrival times at ~r ¼ ~rd and ~r ¼ 0 (taken coinci-
dent with the Earth center), viz.,

τdðΩsÞ ¼ c−1n̂ · ~rd; ð17Þ

where n̂ is the unit wave-vector and c the speed of light in
vacuum.
The noise process nd affecting the output of detector d, is

described by a generic multivariate distribution fnd
ð·Þ,

representing the joint PDF of Ns noise time samples. It
is reasonable to assume the noise processes in the data from
different detectors as independent, in view of the large
separation among the instruments. We further assume
throughout this section that the noise process in any
interferometer is stationary on timescales exceeding the
width of the typical analysis window.
The optimum decision rule for the problem in (14) (in

the Neyman-Pearson sense of yielding the minimal
false-dismissal probability at a prescribed false-alarm
probability) is based on computing the Likelihood Ratio
(henceforth LR) test statistic [23], viz.

Λ ¼
Q

D
d¼1 f

ðdÞ
n ðVd − θS̄dÞQ

D
d¼1 f

ðdÞ
n ðVdÞ

; ð18Þ

where S̄d is the response (15) of detector d to h̄þd ; h̄
×
d , and

comparing it to a false-alarm dependent threshold.
We shall henceforth assume that the noise in all

interferometers has been properly whitened so that the
noise time samples at the output of any detector d are i.i.d.,
so that [108]

fðdÞn ðVdÞ ¼
YNs

k¼1

fðdÞn ðVdkÞ; ð19Þ

where fðdÞn ð·Þ denotes the PDF of a single noise sample at
the output of detector d. Taking the logarithm of the LR
(18), we accordingly get the equivalent (sufficient [23])
statistic

λ0 ¼ lgΛ ¼
XD
d¼1

XNs

k¼1

flg fðdÞn ½Vdk − θ0S̄dk� − lg fðdÞn ½Vdk�g:

ð20Þ

Note that (20) is the sum of the detection statistics of the
individual detectors. For the very special case of Gaussian
noise, a uniformly most powerful hypothesis test exists,
yielding the highest detection probability at a fixed false
alarm probability irrespective of the actual (unknown)
value of θ > 0, based on the well known (network)
matched filter or linear correlator statistic [23],

Λ0
G ¼

XD
d¼1

Vd · S̄T
d

σ2d
; ð21Þ

where σd is the (Gaussian) noise standard deviation in
detector-d.
It is worth noting here that the data analysis tools used in

the first detections are essentially based on the following:
(i) the removal of strong (detectable) glitches using data
quality flags and vetoes [11,45]; (ii) an estimate of the false
trigger rate using the time-slide method [109]. These are
followed for unmodeled signal searches [110], by (iii) the
selection of time-consistent triggers featuring excess power
in the time-frequency plane (cWB [41] and oLIB [40]
pipelines), followed by (iv) a waveform estimation based
on the template-free constrained likelihood (cWB) or
Bayesian inspired sine-Gaussian wavelet reconstruction
(oLIB), and (v) the follow-up analysis (BayesWave
[43,49,50]) of cWB triggers, comparing the marginalized
likelihoods of three alternative hypotheses where the
identified trigger data consist either of Gaussian noise,
or glitch(es) in Gaussian noise, or GW in Gaussian noise.
For modeled signal searches [111], triggers originate
instead from (vi) template-based maximum likelihood
detection and estimation (PyCBC and Gst-LAL pipelines)
[111,112]. While the above framework proved to be
effective in the detection of the (relatively bold) first
event(s), it is not exempt from conceptual limitations,
namely: (i) data vetoing trims a small yet possibly inter-
esting fraction of the data; (ii) the time-slide method, while
being free from strong modeling assumptions about the
noise statistics, is poorly resilient against noise nonstatio-
narities [113]; (iii) all pipelines use detection statistics
appropriate for Gaussian and stationary noise, which is not
realistic, modified ad hoc to discriminate spurious (glitch)
transients. For example, PyCBC and Gst-LAL use suitable
versions of the χ2 veto introduced in [114], while the cWB
uses a suitably weighted network SNR, emphasizing the
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ratio between the coherent and incoherent (noise) energy in
the data stream [110]; and last, (iv) the ternary hypothesis
test in the BayesWave pipeline leaves out the possibility that
a true GW signal might coexist with glitches, and hence be
effectively embedded in non-Gaussian (heavy-tailed) noise.
This paper discusses network detection/estimation sta-

tistics appropriate to an essentially non-Gaussian back-
ground, and tests them using simulated, yet physically
inspired, glitchy noise.
Several studies focused on the effect of essential (i.e.,

nonremovable) non-Gaussianity of the noise floor, which
spoils, in a significant measure [57–59], the performance of
(network) detection algorithms that would be optimal (in
the Neyman-Pearson sense) for stationary Gaussian noise.
In [115] different consistency tests augmenting matched
filter data analysis, aimed at discriminating non-Gaussian
noise artifacts, were tested. In [116] it was shown that
performance degradation due to noise non-Gaussianity is
worse in networks comprising nonaligned detectors, as,
e.g., the LIGO-Virgo. In [117] it was shown that multi-
variate analysis (implemented via a boosted decision tree)
may improve the performance of a network detector
(X-pipeline) in the presence of nonideal noise features.
The importance of proper assessment and modeling of non-
Gaussianity of GW detector noise in the perspective of
detecting low-SNR events has been recently re-emphasized
in [118], where a simple (t-Student distribution based)
measure of heavy tailedness was used to reveal the sta-
tionary and transient deterioration of Gaussianity in the
LIGO data. Numerical simulations in [119] suggest that
for suitably strong signals, parameter estimation may not
be hindered by nonideal (nonstationary, non-Gaussian)
noise features. However, this is certainly not the case for
relatively weak (threshold) signals.
For an arbitrary non-Gaussian noise, a uniformly most

powerful test does not exist in general. One possibility to
overcome this difficulty, in the spirit of the least favorable
case philosophy (see [23]), consistent with our expectations
of dealing with weak GW signals, is to seek weak signal
optimality, by maximizing the slope of the test power at
θ ¼ 0, for a given false alarm rate. The resulting statistic
and detector are called locally most powerful or locally
optimum (henceforth LO) [120].

A. Locally Optimum Network Detector

The locally optimum network statistic for the problem
(14) is given by [120]

ΛðLOÞ ¼
XNs

k¼1

XD
d¼1

d
dθ

lg fðdÞn ðVdk − θS̄dkÞj
θ¼0

¼
XNs

k¼1

XD
d¼1

Sdkg
ðdÞ
LOðVdkÞ; ð22Þ

where

gðdÞLOðxÞ ¼ −
∂
∂θ lg f

ðdÞ
n ðθÞj

θ¼x
¼ −

_fðdÞn ðxÞ
fðdÞn ðxÞ

ð23Þ

is a nonlinear function obtained from the (first order) noise
PDF. The statistic (22) can be recognized as the first
coefficient in the Taylor-MacLaurin expansion of (20) in
powers of θ, i.e.,

lgΛ ¼
XD
d¼1

X∞
q¼1

ð−1Þqθq
q!

�XNs

k¼1

S̄qdk
dq

dxq
log fðdÞn ðxÞj

x¼Vdk

�
;

ð24Þ
which yields a simple interpretation of lgΛ as a linear
superposition of an infinite number of linear correlators
acting on suitable memoryless nonlinear transformations of
the data. This is known as a threshold expansion [60],
where threshold refers to the limit of detectability. The
locally optimum statistic is defined in general [120] as the
lowest-order nonvanishing term in (24). The LO statistic
can be cast in the following simple form

ΛðLOÞ ¼
XD
d¼1

gd½Vd� · S̄T
d ; ð25Þ

where a superscript T denotes the transpose, and we used
the shorthand

gd½Vd� ¼ fgðdÞLOðVd1Þ; gðdÞLOðVd2Þ;…; gðdÞLOðVdNs
Þg: ð26Þ

Equation (25) is clearly reminiscent of the linear correlator
in Eq. (21), except that in (25) the data are preliminarily
filtered by the static nonlinearity (23). Loosely speaking,
the latter acts by trimming off large data samples likely due
to strong glitches, which make the noise PDF heavy tailed.

For Nð0; σdÞ stationary white Gaussian noise, gðdÞLOðxÞ ¼
x=σ2d and Eq. (25) gives back (21).
The locally optimum detector (henceforth LOD) is

obtained by comparing the LO statistic (25) to a threshold
which depends only on the prescribed false alarm proba-
bility. The LOD can be proved to be asymptotically optimal
in the limit where θ → 0 and Ns → ∞ [120].
To the best of our knowledge, the LOD concept was

introduced in the GW data analysis literature by Creighton
[54], and discussed in considerable depth by Allen et al. in
[55], and [56], where it was notably stressed that the LOD
structure emerges naturally both in a frequentist and a
Bayesian framework. We applied the LOD concept, per-
haps for the first time, to the problem of detecting
unmodeled GWBs in a network of interferometers affected
by non-Gaussian noise [58,59].
In Fig. 2, the functions gLOðxÞ obtained via (23) from

the PDFs shown in Fig. 1 are displayed. It is seen that
gLOðxÞ is linear in an interval around x ¼ 0 where the 1st
order noise PDF does not depart significantly from a
Gaussian distribution.
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IV. NETWORK DETECTION OF
UNMODELED GWBS

In principle, we could capitalize on a priori available
information about the sought GWB waveforms coming
from general-relativistic numerical simulations [125], to
construct templates of the sought signals to be used in (25).
However, the available numerically computed waveforms,

besides being difficult to parametrize in a physically
meaningful way, apply only to a few specific classes of
sources, so that their use as templates would likely yield
poor detection efficiency. Therefore, it makes more sense to
assume that no information at all concerning the sought
waveforms is available, and to seek detection schemes
which may work well, irrespective of the actual shapes of
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FIG. 2. (a) The function gLO in Eq. (23) computed for the PDFs in Fig. 1. The displayed gLO functions have odd parity, and only the
x ≥ 0 range is shown. (b) Piecewise linear approximations of the function gLO in Eq. (23). Top-left: hard limiter [121]; top-right: noise
blanker [122]; bottom-left: composite [123]; bottom-right: signum [124].
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the sought signal. In this perspective, two basic approaches
are possible: (a) estimating a suitable set of parameters
uniquely describing the signal, possibly hidden in the data,
from the data themselves; (b) looking at the sought signals
as realizations of a random process. In the next two
subsections both approaches will be discussed.

A. GWBs as Unknown Deterministic
Signals—Waveform Estimation

Under the assumption of no available a priori informa-
tion, a possible set of parameters uniquely describing the
GWB signal are the very time samples of its polarization
components, i.e., fhþk ; h×k g; ∀ k ¼ 1;…; Ns. This choice
leads to the standard likelihood approach discussed in [28].
For an observational window including Ns time samples
from D detectors, there are, accordingly, 2 · Ns unknowns
to be estimated from D · Ns time samples. Under the
assumptions made in Sec. IV, it is readily seen that the
estimation problem breaks up into Ns (formally identical)
uncoupled problems, each yielding 2 unknowns (hþk and
h×k ) from D data (Vdk; d ¼ 1; 2;…; D).
The following remark is in order here. The maximum

likelihood estimator is asymptotically optimal (in the
Cramer-Rao sense [23]) when the number of data goes
to infinity. In our case the number of data is D, which is
only a few units. We may thus expect a poor performance of
the standard likelihood estimator, irrespective of whether
the noise is Gaussian or not.
On the other hand, if we had a model (even a phenom-

enological one) for the sought GWBs using only a finite
number P of parameters (e.g., the principal components, as
suggested in [125]), we would face the problem of
retrieving P unknowns from D · Ns time samples [126].
The estimate would be accordingly accurate for Ns large
enough, being asymptotically optimal for Ns → ∞, at the
expense of being most likely workable only numerically.
Letting H ¼ fhþ;h×g the vector of unknown GW time

samples (at ~r ¼ 0), the ML estimator maximizes the
conditional PDF of the data fðxjHÞ over the space where
H is supposed to lie, x being the actual realization of the
noisy data. The coordinates, ĤML, of the supremum of the
likelihood ratio in the parameter space provide our estimate
of the signal parameters, and the supremum itself is used as
a detection statistic. In the signal processing literature this is
known as the Generalized Likelihood Ratio (GLR) [23].
The ML estimator of H, under the made assumption of

i.i.d. noise samples, is accordingly given by

ĤML ¼ H
argmaxYD

d¼1

YNs

k¼1

fðdÞn ðVdk − SdkÞ

¼ − H
argminXD

d¼1

XNs

k¼1

lg fðdÞn ðVdk − SdkÞ; ð27Þ

where Sdk ¼ Fþ
d h

þ
k þ F×

d h
×
k . For Gaussian noise, ĤML is

obtained by minimizing the following quantity

R ¼
XNs

k¼1

XD
d¼1

ðVdk − SdkÞ2
σ2d

; ð28Þ

which is the sum of the σ2d-weighted squared residuals of
the linear systems

VðkÞ ¼ FhðkÞ; ∀ k ¼ 1;…; Ns; ð29Þ

where

VðkÞ ¼ ðV1k; V2k…VDkÞT; ð30Þ

hðkÞ ¼ ðhþk ; h×k ÞT; ð31Þ

and F is the D × 2 network response matrix, defined as
follows

F ¼

0
BBB@

Fþ
1 F×

1

Fþ
2 F×

2

…

Fþ
D F×

D

1
CCCA: ð32Þ

In this case, the ML estimator is the weighted least squares
solution of (29), viz.

ĥðkÞ ¼ ðFTΣFÞ−1FTΣVðkÞ; ∀ k ¼ 1;…; Ns; ð33Þ

where Σ is the D ×D diagonal matrix with Σii ¼ σ−2i ,
i ¼ 1; 2;…; D.
If the noise is non-Gaussian, the rhs of Eq. (27) yields a

different (nonquadratic) measure of the residual error of
(29), whose minimization can be quite complicated.
In this case the accuracy of the LS solution (33) is much

too sensitive to the tail behavior in the noise PDF to even be
useful as an approximate solution. Several error metrics
have been proposed for inverting over-determined linear
systems like (29), for the case where the noise in the data is
non-Gaussian, including absolute, truncated quadratic, and
bisquared error metrics [127]. A general framework for
constructing such error metrics, while taking into account
possible ill-conditioning of the problem, has been dis-
cussed in [128], based on the minimization of the Kullback-
Leibler distance (mutual information) between the actual
and estimated noise distribution. In practical cases the
actual non-Gaussian noise distribution will be only loosely
specified, due, e.g., to nonstationarity in time, suggesting
the use of robust estimators [129], which are not too much
sensitive to uncertainty and/or fluctuations of the noise
PDF in a given class.

MARIA PRINCIPE and INNOCENZO M. PINTO PHYSICAL REVIEW D 95, 082006 (2017)

082006-10



Hereafter, in order to have a manageable expression for
the ML estimator, we shall exploit again the weak signal
assumption. Expanding the Likelihood Function to be
maximized in Eq. (27) up to the second order we obtain:

lgΛ ≈
XNs

k¼1

XD
d¼1

gðdÞLOðVdkÞðFþ
d h

þ
k þ F×

d h
×
k Þ

þ
XNs

k¼1

XD
d¼1

1

2
ΓðdÞ
LOðVdkÞ½ðFþ

d h
þ
k Þ2

þ ðF×
d h

×
k Þ2 þ 2Fþ

d F
×
d h

×
k h

þ
k �; ð34Þ

where

ΓðdÞ
LOðxÞ ¼

f̈ðdÞn ðxÞ
fðdÞn ðxÞ

−
�
_fðdÞn ðxÞ
fðdÞn ðxÞ

�2

: ð35Þ

Setting the partial derivatives of the LR with respect to the
unknown hþk and h×k equal to zero, we obtain a linear
system whose solutions are

8<
:

ĥþk ¼
P

D
d¼1

gðdÞLOðVdkÞðIþ×
k F×

d−I
××
k Fþ

d Þ
Iþþ
k I××k −ðIþ×

k Þ2

ĥ×k ¼
P

D
d¼1

gðdÞLOðVdkÞðIþ×
k Fþ

d −I
þþ
k F×

d Þ
Iþþ
k I××k −ðIþ×

k Þ2

; k ¼ 1; 2;…; Ns;

ð36Þ
where

Iþþ
k ¼

XD
d¼1

ΓðdÞ
LOðVdkÞðFþ

d Þ2

I××k ¼
XD
d¼1

ΓðdÞ
LOðVdkÞðF×

d Þ2

Iþ×
k ¼

XD
d¼1

ΓðdÞ
LOðVdkÞFþ

d F
×
d ð37Þ

The Eqs. (36) are Locally Optimum Estimators (hence-
forth LOE) of hþk , h

×
k . It can be shown that if the number

of data D in (36) is sufficiently large, and the GW
amplitudes hþ; h× are sufficiently small (OðD−1=2Þ), the
LOE is asymptotically normal and efficient, in the Cramer-
Rao sense [130–132].
The Eqs. (36) can be written as follows

ĥðkÞ ¼ ðFTΣðkÞFÞ−1FTgðkÞk ¼ 1;…; Ns; ð38Þ

where

gðkÞ ¼ ðgð1ÞLOðV1kÞ; gð2ÞLOðV2kÞ;…; gðDÞ
LO ðVDkÞÞT; ð39Þ

and ΣðkÞ is a diagonal D ×D matrix, whose nonzero

elements are Σdd
ðkÞ ¼ −ΓðdÞ

LOðVdkÞ. Equation (38) shares the

same structure as Eq. (33), derived in the Gaussian noise
case, except that here the matrix ΣðkÞ depends on the time
sample k, and the data are preliminary filtered through the

gðdÞLOð·Þ functions. Whenever the matrices ΣðkÞ are negative
semi-definite, the estimator in Eq. (38) minimizes a
generalized weighted squared residual.

For Gaussian noise gðdÞLOðxÞ ¼ x=σ2d, and ΓðdÞðxÞ ¼ −σ−2d ,
and Eq. (38) gives back Eq. (33). Also, Eq. (33) reduces to
the Moore-Penrose pseudo-inverse based solution [44], viz.

ĥðkÞ ¼ ðF̄TF̄Þ−1F̄TV̄ðkÞ; ∀ k ¼ 1;…; Ns; ð40Þ

where

V̄ðkÞ ¼ ðV1k=σ1; V2k=σ2…VDk=σDÞT; ð41Þ
and

F̄ ¼

0
BBB@

Fþ
1 =σ1 F×

1 =σ1
Fþ
2 =σ2 F×

2 =σ2
…

Fþ
D=σD F×

D=σD

1
CCCA ð42Þ

are the noise-weighted counterparts of Eqs. (30) and (32).

1. Regularization

The network response matrix can be ill conditioned in
some regions of the celestial sphere [29], and the variance
of the corresponding estimator of h can accordingly blow
up dramatically. Given a general linear system

b ¼ Ξh; ð43Þ
it is well known that the error δĥ in the solution ĥ can be
fairly larger than the error δb in the data b. The following
upper bound exists

kδĥk
kĥð0Þk ≤ cond½Ξ� kδbkkbð0Þk ; ð44Þ

where bð0Þ and ĥð0Þ are the noise-free data and solution, and
cond½Ξ� ¼ kΞkkΞ−1k is the condition number of matrix Ξ,
given by the ratio between its largest and smallest (absolute)
eigenvalues [133,134]. Thus, even for mild ill conditioning
(condition number ∼10), waveform reconstruction via (33)
can be badly inaccurate [135].
Several approaches have been proposed to mitigate this

problem [28,31]. In the simple regularization scheme, á la
Tikhonov, one minimizes the following quantity

Rþ γhΩhT; ð45Þ

whereR is the (generalized) residual of the linear system in
Eq. (43), and Ω and γ are the so called regulator matrix and
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intensity, respectively. This approach results in adopting a
regularized pseudo-inverse, such that

ðΞÞ−1reg ¼ ðΞTΣΞþ γΩÞ−1; ð46Þ

where Σ is the diagonal matrix of the nonunitary weights of
the squared residuals. In its eigenvector space ΞTΣΞ reads

�
μ1 0

0 μ2

�
; ð47Þ

where μ1;2 are the eigenvalues [136], with μ1 > μ2. Ill
conditioning occurs when jμ2j ∼ 0. Rakhmanov in [29]
proposed using a regulator matrix, which, in the same
vector space, can be written as

�
0 0

0 ðμ2μ1Þ1=2 − μ1

�
ð48Þ

and showed that a judicious choice of γ ∈ ½0; 1� can make
the condition number of the rhs of (46) as close to unity as
desired. Obviously, some price is paid, represented by a
bias in the waveform estimate (see [29] for a discussion).
Using the regulator (46) in (38), and the resulting

estimate to compute the detection statistic (25), we obtain
the locally optimum (LO) form of the generalized like-
lihood ratio, GLR, viz.

GLRðLOÞ ¼
XNs

k¼1

X1…D

d;d0
pdd0
k gðdÞLOðVdkÞgðd

0Þ
LO ðVd0kÞ; ð49Þ

where pdd0
k is the ðd; d0Þ-element of the D ×D

matrix Pk ¼ FðΞÞ−1regFT .
The generalized likelihood ratio for Gaussian noise,

denoted as GLRG, is obtained by using the regulator
(46) in Eq. (33), and substituting the resulting estimate
in the detection statistic (21).

B. GWBs as Random Signals

The complications affecting the estimation process dis-
cussed in Subsection IVA, can be avoided if the sought
signals are regarded as realizations of a random process.
Adopting a maximum uncertainty attitude, we may con-
sider hþ0 ðtÞ and h×0 ðtÞ as independent and identically
distributed random processes, with zero mean and impul-
sive autocorrelation, so that

E½S̄dk�¼0; ∀ d¼1;…;D∀ k¼1;…;Ns

E½S̄dkS̄pm�¼Rdpδk−m; ∀ d;p¼1;…;D ∀ k;m¼1;…;Ns;

ð50Þ

where

Rdp ∝ ðFþ
d F

þ
p þ F×

dF
×
pÞ; ð51Þ

up to an irrelevant multiplying factor. Under these assump-
tions, the LO form of the LR statistic first derived by
Kassam [137] becomes (see Appendix for details)

ΛðLOÞ ¼
XD
d¼1

XNs

k¼1

f̈ðdÞn ðVdkÞ
fðdÞn ðVdkÞ

þ 2
XD
d¼1

XD
p¼dþ1

Rdpgd½Vd� · gp½Vp�T: ð52Þ

The first term in (52) can be large even if the data consist
only of spurious transients in the output of individual
interferometers. The second term, known as Generalized
Cross-Correlation (henceforth GCC), on the other hand, is
a measure of the correlations between the outputs of
different detectors in the network, and is nonzero only if
the data contain signals of the same astrophysical origin.
Thus, following Kassam, we shall drop the first term in (52)
and keep only the second to form the detection statistic,

GCC ¼
XD
d¼1

XD
p¼dþ1

Rdpgd½Vd� · gp½Vp�T: ð53Þ

The structure of (53) is similar to that of (49), differing from
this latter due to the absence of the diagonal terms.
Interestingly, the Rdp coefficients in (53) display a very
similar dependence on the source position (DOA), as the
off-diagonal coefficients in (49), as shown in Fig. 3.
For Gaussian noise, Eq. (53) becomes a sum of linear

correlators, henceforth denoted as LCC,

LCC ¼
XD
d¼1

XD
p¼dþ1

Rdp
Vd

σ2d
·
Vp

σ2p
: ð54Þ

Remarkably, computing the GCC statistic requires no
matrix inversion, and accordingly no ill-conditioning path-
ology may occur. On the other hand, the GCC provides no
information about the shape of the detected signal, and as
such it qualifies for pure detection purposes.

V. ROBUST IMPLEMENTATIONS

In Sections IVA and IV B we derived the locally
optimum GLR and GCC detectors assuming the first order
PDF of the noise processes affecting the output of all
antennas as perfectly known. Unfortunately, this is not a
realistic assumption. In practical cases the noise will be
nonstationary in time, and its PDF will be loosely known.
Whenever the noise distributions are not precisely

known, or are varying in time, a workable approach
consists in identifying a functional class where the noise
distributions can be assumed to lie or fluctuate, and
adopting a detector which performs well (in a sense to
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be specified below) over the whole class. Clearly, the
coarser the knowledge about the noise, the wider the class
to which the noise supposedly belongs. We speak of robust
detectors whenever the noise distribution is known to lie in
a neighborhood of some nominal function.

We shall focus here on the class of noise distributions
(henceforth denoted as C) whose first order PDF can be
written:

fnðxÞ ¼ ð1 − ϵÞfNðxÞ þ ϵhðxÞ; ð55Þ

FIG. 3. Left column panels: sky maps of the coefficients pdd0 in Eq. (49); right column panels: sky maps of the coefficients Rdp in
Eq. (53). The top, middle, and bottom row panels correspond to the H1-L1, H1-Virgo, and L1-Virgo indexes, respectively.
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where fNðxÞ is N(0, σG), hð·Þ is a generic zero-median non-
Gaussian probability density, and ϵ ∈ ½0; 1� is a mixture
parameter. The noise PDF discussed in Sec. II can be
recognized as a special case of (55), where

ϵ ¼ 1 − expð−λTÞ ð56Þ

and [see Eq. (7)]

ϵhðxÞ ¼ F−1
ξ→xfexpð−λTÞ½expðλTBðξÞÞ − 1�g � fNðxÞ;

ð57Þ

F being the Fourier transform operator, and � denoting
convolution.
In order to implement a robust detector in C, we follow

theMin-Max strategy, i.e., we use for all noises with PDF in
C the best (LOD) detector corresponding to the worst noise
distribution [129]. The least favorable ~fnðxÞ ∈ C is the one
which minimizes the Fisher information [129]

I ½fn� ¼
Z

∞

−∞
dxfnðxÞ

�
f0nðxÞ
fnðxÞ

�
2

: ð58Þ

Correspondingly, the detector performance (namely, its
power, at fixed false alarm level) for any other fn ∈ C
will never be worse than that for ~fn. It can be shown that the
least favorable distribution in C has the following explicit
form [138]

~fn ¼
exp ½−qðxÞ�
σG

ffiffiffiffiffiffi
2π

p ; ð59Þ

where

qðxÞ ¼
8<
:

x2

2σ2G
; jxj < K

Kjxj
σ2G

− K2

2σ2G
; jxj ≥ K

; ð60Þ

and thus consists of a central Gaussian bulge merging, for
jxj > K, into exponential tails. The locally optimum non-
linearity computed from (23) using Eqs. (59), (60) is the
hard limiter (henceforth HL) function [121],

gHLðxÞ ¼ −
_~fn
~fn
¼

�
x; jxj ≤ K

KsgnðxÞ; jxj > K
; ð61Þ

The corresponding locally optimum coefficient (35)
obtained using (59) and (60) is [139]

ΓHLðxÞ ¼
̈~fnðxÞ
~fnðxÞ

−
� _~fnðxÞ

~fnðxÞ

�2

¼
�
−σ−2G ; jxj ≤ K

0; jxj > K
: ð62Þ

In (61), sgnð·Þ is the Dirichlet signum function, and the
parameter K is related to ϵ by [138]:

Z
K

−K
fNðxÞdxþ

2σ2G
K

fNðKÞ ¼
1

1 − ϵ
; ð63Þ

which follows from the obvious unit-area property of ~fn.
Equations (63) and (56) can be combined to relate the

parameter K in (60) to the glitch-rate λ,

Z
K

−K
fNðxÞdxþ

2σ2G
K

fNðKÞ ¼ expðλTÞ: ð64Þ

If the glitch rate fluctuates in ½0; λmax�, and all other relevant
noise parameters are assumed known, the least favorable
distribution is obtained by using the largest admissible λ
in (64).
The Min-Max robust implementation of the locally

optimum GLR and GCC network detectors (Eqs. (49)
and (53), respectively, over the broad class C of noises with
PDF given by (55), is thus obtained using (61) in place of
(23) and (62) in place of (35), with K given by (64).
We mention in passing that other piecewise-linear

approximants of the LO nonlinearity have been proposed
besides the HL, including the so called noise blanker [122],
and composite nonlinearity [123], sketched in Fig. 2(b). All
of these piecewise-linear functions are clearly reminiscent
of the optimal gLOðxÞ nonlinearities shown in Fig. 2(a).
Heuristic prescriptions for setting the breakpoints, levels,
and slopes in these approximate nonlinearities are dis-
cussed, e.g., in [123].
A rather special role is played by the signum non-

linearity, also sketched in Fig. 2(b). The signum non-
linearity is the locally-optimum one, Eq. (23), for the rather
extreme case of Laplace (double exponential) distributed
noise [140]. The Laplace is the least favorable distribution
in the extremely wide class of PDFs having zero median,
and the signum nonlinearity LOD is accordingly a para-
digm of nonparametric detector [124,141].
The GCC statistic (53) using the signum nonlinearity is a

generalized polarity-coincidence statistic [120].
The GLR statistic, on the other hand, can not be

implemented straightforwardly for Laplace distributed
noise, because the corresponding ΓLOðxÞ, Eq. (35), is
identically zero [142]. Remarkably, even the simplest non-
parametric signum-detector, which can be regarded as a
fiducially minimum-performance detector, may outperform
the linear correlator in simulated non-Gaussian noise.

VI. NUMERICAL SIMULATIONS

Before illustrating the results of numerical simulations
aimed at evaluating the performance of the network
detection statistics discussed in the previous section, some
remarks are in order to justify the simplifying assump-
tions made.
The comparative performance of threshold detectors can

be conveniently gauged in terms of their asymptotic
relative efficiency (henceforth ARE), viz. [143,144]
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AREðα; βÞ ¼ lim
θ0→0

N1 ;N2→∞

N2ðα; β; θ0Þ
N1ðα; βÞ

; ð65Þ

where N1 is the number of data samples used by some
reference algorithm (e.g., the linear correlator) to achieve a
false-dismissal probability β, at a prescribed false-alarm
probability α, N2 is the number of data samples used by the

detector under test, and θ0 is the signal strength defined in
Sec. III.
TheAREwas introduced in [145],where itwas also proved

that the LOD (25) and the strictly optimal NP detector (20)
have equal AREs, and its use as a synthetic detector
performance index was validated by extensive simulations
[146].Under the i.i.d. assumption, theAREwith respect to the
linear correlator can be computed in closed form, yielding:

FIG. 4. Mollweide maps of detection thresholds for a false alarm probability of 10−2. Non Gaussian glitchy noise with λ ¼ 0.5 s−1,

SNRðgÞ
max ¼ 102. Top: GLRðLOÞ detector, Eq. (49); bottom: GCC detector, Eq. (53).

FIG. 5. (a) Mollweide maps of detection probability at a false alarm level of 10−2; linearly (þ)-polarized GWB with δh ¼ 20. Data
corrupted by pure Gaussian noise. Top: Gaussian-noise version (GLRG) of generalized likelihood ratio detector, Eq. (49); bottom:
Gaussian-noise version (LCC) of generalized cross-correlation detector, Eq. (53). (b) Mollweide maps of detection probability at a false
alarm level of 10−2; linearly (×)-polarized GWB with δh ¼ 20. Data corrupted by pure Gaussian noise. Top: Gaussian-noise version
(GLRG) of generalized likelihood ratio detector, Eq. (49); bottom: Gaussian-noise version (LCC) of generalized cross-correlation
detector, Eq. (53).
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ARE ¼ σ2G½
R
∞
−∞ dx_gðxÞfnðxÞ�2R

∞
−∞ dxg2ðxÞfnðxÞ − ½R∞

−∞ dxgðxÞfnðxÞ�2
; ð66Þ

wherefn andσG are the first order noise PDFand the standard
deviation of the Gaussian noise component in (55), respec-
tively, and gðxÞ is the (not necessarily LO) nonlinearity used
to implement the threshold detector. The optimal choice g ¼
gLO ¼ _f=f yields the following upper bound for the ARE:

AREmax ¼ σ2GI ½fn�; ð67Þ

where I ½fn� is the Fisher information, Eq. (58).
A considerable body of technical literature deals with the

way ARE depends on the features of the noise PDF, and
with the (related) problem of ARE degradation due to the
use of approximate (in particular, robust) implementations
of the nonlinearity g. The main conclusions of these
investigations can be summarized as follows (see, e.g.
[123,143]). In the ideal case where the LOD nonlinearity is
perfectly matched to the noise PDF, only the gross features
of this latter do affect the (asymptotic) detector perfor-
mance, as measured by (67). Loosely speaking, as sug-
gested by (66), what matters here is only the width of the

central (Gaussian) bulge of the 1st order distribution, and
the slope of its heavy tails.
Numerical experiments based on the generalized shot

noise model (2) show that these features depend essentially
on the glitch rate and glitch amplitude distribution, the
glitch shape being almost irrelevant.
Using approximate implementations of the LO non-

linearity also has little effect on the ARE. Miller and
Thomas [123] considered several of them, including the
HL, noise blanker and composite nonlinearities displayed
in Fig. 2(b), and showed that they all yield comparable
performances, provided their relevant parameters (slopes,
breakpoints, and levels) are chosen consistently. Based on
these findings, in our numerical simulations discussed
below, we adopt the toy model for glitchy noise described
in Sec. II D, to generate glitchy-noise instances, in order to
test our LODs [147].
In our numerical experiments, we restrict to the case of

three interferometers network, having in mind the present
generation of advanced detectors. The noise is generated
independently in each detector, and consists of the super-
position of an i.i.d. Nð0; 1Þ Gaussian floor, and a (pure)
glitchy component generated via Eq. (2), using the Gabor

FIG. 6. (a) Mollweide maps of detection probability at a false alarm level of 10−2; linearly (þ)-polarized GWB with δh ¼ 20. Data

corrupted by non-Gaussian glitchy noise, with λ ¼ 0.5 s−1, SNRðgÞ
max ¼ 102. Top: Gaussian-noise version (GLRG) of generalized

likelihood ratio detector, Eq. (49); bottom: Gaussian-noise version (LCC) of generalized cross-correlation detector, Eq. (53).
(b) Mollweide maps of detection probability at a false alarm level of 10−2; linearly (×)-polarized GWB with δh ¼ 20. Data corrupted by

non-Gaussian glitchy noise, with λ ¼ 0.5 s−1, SNRðgÞ
max ¼ 102. Top: Gaussian-noise version (GLRG) of generalized likelihood ratio

detector, Eq. (49); bottom: Gaussian-noise version (LCC) of generalized cross-correlation detector, Eq. (53).
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FIG. 7. (a) Mollweide maps of detection probability at a false alarm level of 10−2; linearly (þ)-polarized GWB with δh ¼ 20. Data
corrupted by non-Gaussian glitchy noise, with λ ¼ 0.5 s−1, SNRðgÞ

max ¼ 102. Top: generalized likelihood ratio detector GLRðLOÞ,
Eq. (49); bottom: generalized cross-correlation detector GCC, Eq. (53). (b) Mollweide maps of detection probability at false alarm level
of 10−2; linearly (×)-polarized GWB with δh ¼ 20. Data corrupted by non-Gaussian glitchy noise, with λ ¼ 0.5 s−1, SNRðgÞ

max ¼ 102.
Top: generalized likelihood ratio detector GLRðLOÞ, Eq. (49); bottom: generalized cross-correlation detector GCC, Eq. (53).
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FIG. 8. (a) ROCs of the locally optimum generalized likelihood ratio detector, GLRðLOÞ, Eq. (49), and the generalized cross-correlation
detector, GCC, Eq. (53), in non-Gaussian glitchy noise with λ ¼ 0.5 s−1, SNRðgÞ

max ¼ 102 (red markers). The ROCs of the corresponding
Gaussian-noise versions, GLRG and LCC, are also shown for comparison, both in (the same) non-Gaussian glitchy noise (black
markers), and in Gaussian noise (blue markers). Linearly (þ)-polarized GWB with δh ¼ 20; source at ϑ ¼ 2.28 rad, φ ¼ 1.99 rad.
(b) ROCs of the locally optimum generalized likelihood ratio detector, GLRðLOÞ, Eq. (49), and the generalized cross-correlation detector,
GCC, Eq. (53), in non-Gaussian glitchy noise with λ ¼ 0.5 s−1, SNRðgÞ

max ¼ 102 (red markers). The ROCs of the corresponding
Gaussian-noise versions, GLRG and LCC, are also shown for comparison, both in (the same) non-Gaussian glitchy noise (black
markers), and in Gaussian noise (blue markers). Linearly (×)-polarized GWB with δh ¼ 20; source at ϑ ¼ 2.28 rad, φ ¼ 0.94 rad.
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(SG) atoms, Eq. (13), to mimic the glitches, whose

parameter distributions are chosen as explained in

Sec. II D. Obviously, the resulting random processes would

not be i.i.d., its correlation spanning a typical number m of

samples of the order of those contained in a single glitch. In

this case, one technically speaks of anm-dependent process

(meaning that data samples further thanm samples apart are

independent and dependent otherwise).
The resulting process would be similar to what would be

obtained in a real experiment, if raw glitchy data were
(fiducially) whitened using an estimate of the PSD of the
(plain, colored) Gaussian background, obtained from some
fiducially glitch-free data.
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FIG. 9. ROCs of locally optimum generalized likelihood ratio detector GLRðLOÞ, Eq. (49), in non-Gaussian glitchy noise. Top:

different values of λ, with SNRðgÞ
max ¼ 102; bottom: different values of SNRðgÞ

max, with λ ¼ 0.5 s−1. Linearly (þ)-polarized GWB with
δh ¼ 20; source at ϑ ¼ 2.28 rad, φ ¼ 1.99 rad.
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FIG. 10. ROCs of generalized cross-correlation detector GCC, Eq. (53), in non-Gaussian glitchy noise. Top: different values of λ, with

SNRðgÞ
max ¼ 102; bottom different values of SNRðgÞ

max, with λ ¼ 0.5 s−1. Linearly (þ)-polarized GWB with δh ¼ 20, emitted by a source at
ϑ ¼ 2.28 rad, φ ¼ 1.99 rad.
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The detectors discussed in Secs. III and IV are designed
for i.i.d. noises, and hence, strictly speaking, they are sub
optimal in ourm-dependent simulated noise. Our displayed
results will thus give rather conservative estimates of the
performance improvement obtainable using LO detectors
in place of linear correlator based ones.
Before presenting them, we shall briefly discuss here

some possible strategies to design nearly LO detectors inm-
dependent (ormoregenerally colored) non-Gaussian noises.
Locally optimum detection of deterministic signals in

non-Gaussian m-dependent noise was perhaps first dis-
cussed by Poor and coworkers. In [148] it was shown that,

in the usual threshold approximation, the structure of the
LO detector is the same as for the i.i.d. case, except that
now the optimal memoryless nonlinearity gLO must be
determined from the 2nd order distribution of the noise
process, using suitable approximations (see, e.g., [149]).
In [150] a lowest order study of the effects of m

dependence was exploited, using a moving-average model
of m-dependent noise, expanding the detector performance
measures in powers of the moving average coefficients, and
retaining only the lowest (first) order terms. Under such
approximation (weakm dependence), it was proved that the
LO memoryless nonlinearity differs from the i.i.d. one by a
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FIG. 11. (a) ROCs of locally optimum generalized likelihood ratio detector, GLRðLOÞ, Eq. (49), for different values of δh. Non

Gaussian glitchy noise with SNRðgÞ
max ¼ 102 and λ ¼ 0.5 s−1. Top: linearly (þ) polarized GWB, source at ϑ ¼ 2.28 rad, φ ¼ 1.99 rad;

bottom: linearly (×)-polarized GWB, source at ϑ ¼ 2.28 rad, φ ¼ 0.94 rad. (b) ROCs of generalized cross-correlation detector, GCC,

Eq. (53), for different values of δh. Non Gaussian glitchy noise with SNR
ðgÞ
max ¼ 102 and λ ¼ 0.5 s−1. Top: linearly (þ) polarized GWB,

source at ϑ ¼ 2.28 rad, φ ¼ 1.99 rad; bottom: linearly (×)-polarized GWB, source at ϑ ¼ 2.28 rad, φ ¼ 0.94 rad.
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linear term, whose slope depends from the moving-average
coefficients and the Fisher entropy of the generating i.i.d.
process. For the case when this latter is only loosely known,
robust criteria for determining the linear correction exist,
which basically amounts to using the distribution rated as
least-favorable in the i.i.d. case [150].
In a future paper, illustrating results based on real

data, we shall implement our LO detectors using the
spectral samples obtained from the data by discrete
Fourier transform. Indeed, as stressed in [55], in the limit
where the observational window is substantially longer
than the noise correlation time, the (complex) spectral
samples ~xk obtained by a discrete Fourier transformation of
a non-Gaussian stationary process become uncorrelated.
Neglecting higher order correlations, they can also be
assumed as being independent, so that their (joint) prob-
ability density can be conveniently factorized, allowing to
write the LO statistic in a simple form.
The coefficients in the detection statistics (49), (53)

are direction dependent. Thus, even in the null hypothesis
(no signal), the distribution of these statistics is DOA
dependent, and the detection threshold corresponding to a
fixed false alarm probability is DOA dependent, in turn.

This is illustrated in Fig. 4, where the detection thresh-
olds for the statistics (49) and (53) are displayed as
functions of the source position on the celestial sphere,
for a false-alarm probability PFA ¼ 10−2. The threshold
value for each DOA was obtained from a sample of 104

different noise realizations.
The maps in Figs. 4–7 are computed from a grid of

DOAs [151,152] in the celestial sphere, uniformly sampled
in φ and cosϑ.
Maps of the detection probability PD vs DOA for

linearly polarized GWBs at a false-alarm level PFA ¼
10−2 are shown in Figs. 5–7. Also in this case the PD

value for each DOA was obtained from a sample of 104

different noise realizations. In all cases the injected wave-
form was a Sine-Gaussian GWB, whose strength was
gauged by the intrinsic quantity

δh ¼
�
2h2rss
N1

�
1=2

; ð68Þ

where hrss is defined in Eq. (16) and N1 is the one-sided
noise power spectral density.

FIG. 12. (a) Mollweide maps of detection probability at a false alarm level of 10−2. Data corrupted by non-Gaussian glitchy noise with

SNRðgÞ
max ¼ 102 and λ ¼ 0.5 s−1. Linearly (þ)-polarized GWB with δh ¼ 20. Top: robust version of GCC detector using the hard-limiter

(HL) nonlinearity; bottom: nonparametric version of GCC detector using the signum nonlinearity. (b) Mollweide maps of detection

probability at a false alarm level of 10−2. Data corrupted by non-Gaussian glitchy noise with SNRðgÞ
max ¼ 102 and λ ¼ 0.5 s−1. Linearly

(×)-polarized GWB with δh ¼ 20. Top: robust version of GCC detector using the hard-limiter (HL) nonlinearity; bottom: nonparametric
version of GCC detector using the signum nonlinearity.
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Note that the choice of the GWB shape is irrelevant
(insofar as the waveform is entirely contained in the
analysis window), in view of the very structure of the
algorithms.
In Fig. 5, the data are corrupted by pure Gaussian noise,

and the Gaussian-noise limiting forms of the (49) and (53)
statistics are considered.
In Fig. 6, the sameGaussian-noise limiting form statistics

are confronted with a glitchy-noise contaminated Gaussian

background, with λ ¼ 0.5 s−1 and SNRðgÞ
max ¼ 100. A dra-

matic performance deterioration is observed, compared to
Fig. 5. This is not unexpected (see, e.g., [153]).
In Fig. 7, the detection statistics (49) and (53) using the

LO nonlinearity (23) are confronted with the same glitchy-
noise contaminated Gaussian background, showing good
performance recovery, by comparison with Fig. 6.
This is further illustrated in Fig. 8, in terms of receiver

operating characteristics (ROCs, aka PD vs PFA curves, for
fixed SNR). These curves refer to linearly polarized GWBs
with δh ¼ 20, whose DOA correspond to the positions of
maximum network sensitivity. The blue markers in
Fig. 8 refer to the Gaussian-noise limiting forms of the
detection statistics (49) and (53), and to data corrupted
by pure Gaussian noise. The black markers refer to the same
Gaussian-noise limiting forms of the detection statistics,
confronted with a glitchy-noise contaminated Gaussian

background, with λ ¼ 0.5 s−1 and SNRðgÞ
max¼100. Finally,

the red markers refer to the detection statistics (49) and (53)
using the LO nonlinearity (23), in the same glitchy-noise
contaminated Gaussian background.
The way ROCs are affected by varying the key factors

affecting the glitchy noise component (namely, the glitch

rate λ and the maximum signal to noise ratio SNRðgÞ
max of the

glitches against the Gaussian floor), and/or the (intrinsic)
signal to noise ratio δh is illustrated in Fig. 9, and in Figs. 10
and 11. In Figs. 10 and 11 only one GWB polarization is
shown, for brevity.
It is seen that both detection statistics (49) and (53) using

the locally optimum nonlinearity (23) outperform signifi-
cantly their Gaussian limiting forms, when confronted with
data corrupted by glitchy-noise contaminated Gaussian

noise. Note that in the case where λ ¼ 1 s−1 and SNRðgÞ
max ¼

100 and δh ¼ 20, the GW signal amplitude in LHO and
LLO, falls beyond the knee point of the gLO function,
implying a trimming of the signal. Yet, the performance is
still better than that of the linear correlator.
From the practical viewpoint, it is important to note that

robust implementations of the same detectors, based on the
HL nonlinearity discussed in Sec. V, does almost as well as
those based on the exact LO nonlinearity. The signum
nonlinearity, on the other hand, yields a poorer detector
performance compared the LO and robust HL nonlinear-
ities, but still outperforms the Gaussian-noise limiting form
of these detectors.
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nonlinearity); cross markers: nonparametric implementation GCCNP (signum nonlinearity). Non Gaussian noise with SNRðgÞ
max ¼ 102

and λ ¼ 0.5 s−1. Linearly (×)-polarized GWB with δh ¼ 20; source at ϑ ¼ 2.28 rad, φ ¼ 0.94 rad.
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This is illustrated in Figs. 12 and 13 (only the GCC is
shown, for brevity).

VII. CONCLUSIONS AND HINTS
FOR FUTURE WORK

Starting from the first principles, and resorting to the
concept of local (weak signal) optimality, we discussed
network detection of unmodeled GWB in non-Gaussian
noise and validated the proposed detection strategies in
simulated physically-inspired glitchy noise, whose param-
eters were obtained from the LIGO S5 data. Two possible
network detectors of unmodeled GWB in non-Gaussian
noise have been discussed, based respectively on the
generalized likelihood ratio (GLR) and the generalized
cross-correlation (GCC) statistics. Both detectors perform
reasonably well in glitchy noise, without requiring ad hoc
vetoing and/or data laundering preprocessing to remove
high-SNR spurious glitches. The GLR and GCC statistics
are straightforward generalizations of the correlators cur-
rently used in the LIGO-Virgo data analysis pipelines based
on the assumption of Gaussian noise, the only difference
being that each data sample should be filtered by a suitable
(static) nonlinearity before computing the detection statis-
tic. This latter retains the form of the usual linear correlator.
The mentioned nonlinear transformations become linear
when the noise is plain Gaussian, and the locally-optimum
detectors merge into the familiar linear correlators.
The implementation of the proposed detectors would

accordingly require minimal changes to the existing pipe-
lines, and negligible added computational burden.
It is worth emphasizing that our approach takes into

account, through the heavy tailedness of the noise distri-
bution, the existence of loud as well as weak (individually
undetectable) glitches, which can occur in conjunction with
a GW signal, without posing a direct challenge of dis-
criminating between instrumental and GW transients.
The GCC statistic, which treats the sought GWB as

random processes, offers a good detection performance and
easier implementation, requiring, at variance of the GLR,
no (generalized) matrix inversion, and thus being exempt
from ill-conditioning problems. On the other hand it
provides no estimate of the detected waveform.
On a broader perspective, we also discussed, in an

operational framework, the main non-Gaussian features
of noise in gravitational wave interferometers, and sug-
gested a physically driven statistical model for the impul-
sive (glitchy) component. Notably, only a few gross
features (namely, the glitch rate and the glitch SNR
distribution) of the glitchy component are relevant in
shaping the first order noise probability density, whose
knowledge is the only modeling information needed to
compute the locally-optimum detectors. When the above
noise features are incompletely specified, robust and/or
nonparametric versions of the proposed detectors can be
implemented, which use suitable approximate forms of the

required nonlinearities. We discussed in some detail the
Min-Max philosophy for designing locally-optimum detec-
tors which are robust against glitch-rate nonstationarities.
These detectors were compared in performance to those
corresponding to a known noise PDF, and to their limiting
form corresponding to Gaussian noise assumption.
Extensive simulation results have been presented.

Remarkably, not only the ideal, exact locally optimum
detectors, but also their robust (hard-limiter) and nonpara-
metric (signum) implementations, outperform the Gaussian
noise tailored linear correlator in the presence of glitches.
The analysis has been limited here to the triggered case

(fiducially known source location). The more general case
where the source location is unknown and should be
estimated will be the subject of a forthcoming paper.
Tests based on real LIGO/Virgo data are being devel-

oped. Partial preliminary results [154] confirmed the
performance improvement discussed here.
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APPENDIX: DERIVATION OF EQ. (52)

In this Appendix we include a derivation of the gener-
alized cross-correlation statistic (53). We make the follow-
ing working assumptions: (i) the noise samples,
ndðkÞ ¼ ndðtkÞ; ∀ k ¼ 1;…; Ns, are i.i.d., with proba-

bility density function fðdÞn ðxÞ having zero mean and
variance σ2n; (ii) the GWB linear polarization components,
hþ and h×, are random independent process; (iii) the GWB
and noise processes are independent. Accordingly, letting
V ¼ fV1;…;VDg the output data matrix, we may write

8<
:
H0∶ fVðVÞ¼

QNs
k¼1

Q
D
d¼1f

ðdÞ
n ðVdkÞ

H1∶ fVðVjθÞ¼E

�QNs
k¼1

Q
D
d¼1f

ðdÞ
n ðVdk−θSdkÞ

�
; θ≠0

;

ðA1Þ

where the expectation E½·� is taken with respect to the
random GWB samples. For these latter we assume
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E½Sdk�¼0; ∀ d¼1;…;D ∀ k¼1;…;Ns

E½SdkSpm�¼Rdpδk−m; ∀ d;p¼1;…;D ∀ k;m¼1;…;Ns:

ðA2Þ

Letting further

PðθÞ ¼
YNs

k¼1

YD
d¼1

fðdÞn ðVdk − θSdkÞ; ðA3Þ

we may write:

fVðVÞ ¼ Pð0Þ; fVðVjθÞ ¼ E½PðθÞ�: ðA4Þ

The LO detection statistic is obtained by differentiating
fVð·jθÞ with respect to θ, and evaluating it at θ ¼ 0. To first
order,

d
dθ

fVðVjθÞ ¼ E

�
dPðθÞ
dθ

�

¼ −E
�XNs

k¼1

XD
d¼1

PðθÞ
_fðdÞn ðVdk − θSdkÞ
fðdÞn ðVdk − θSdkÞ

Sdk

�
;

ðA5Þ

which for θ ¼ 0 becomes

d
dθ

fVðVjθÞj
θ¼0

¼ −Pð0Þ
XNs

k¼1

XD
d¼1

E½Sdk�
_fðdÞn ðVdkÞ
fðdÞn ðVdkÞ

; ðA6Þ

which is identically zero in view of Eqs. (A2). The LO
detection statistic is accordingly obtained from the second-
order derivative of (A4) evaluated at θ ¼ 0, viz.

d2

dθ2
fVðVjθÞj

θ¼0
¼ Pð0Þ

XNs

k¼1

XD
d¼1

E½S2dk�
f̈ðdÞn ðVdkÞ
fðdÞn ðVdkÞ

þ Pð0Þ
XNs

k¼1

XD
d¼1

XNs

m¼1

XD
p¼1

ðp;mÞ≠ðd;kÞ

E½SdkSpm�

×
_fðdÞn ðVdkÞ
fðdn ðVdkÞ

_fðpÞn ðVpmÞ
fðpÞn ðVpmÞ

: ðA7Þ

Hence in view of (A2),

d2

dθ2
fVðVjθÞj

θ¼0
¼ Pð0Þ

XNs

k¼1

XD
d¼1

E½S2dk�
f̈ðdÞn ðVdkÞ
fðdÞn ðVdkÞ

þ Pð0Þ
XNs

k¼1

XD
d¼1

XD
p≠d
p¼1

Rdp

×
_fðdÞn ðVdkÞ
fðdÞn ðVdkÞ

_fðpÞn ðVpkÞ
fðpÞn ðVpkÞ

; ðA8Þ

which, apart for the irrelevant factor Pð0Þ reproduces the
detection statistic (52).
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