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In this paper we address the derivation of causal relativistic hydrodynamics, formulated within the
framework of divergence type theories (DTTs), from kinetic theory for spinless particles obeying Fermi-
Dirac statistics. The approach leads to expressions for the particle current and energy momentum tensor
that are formally divergent, but may be given meaning through a process of regularization and
renormalization. We demonstrate the procedure through an analysis of the stability of an homogeneous
anisotropic configuration. In the DTT framework, as in kinetic theory, these configurations are stable.
By contrast, hydrodynamics as derived from the Grad approximation would predict that highly anisotropic
configurations are unstable.
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I. INTRODUCTION

The successful application of relativistic hydrodynamics
[1–7] to the description of high energy heavy ion collisions
[8–11] has led not only to a revival of this theory, but also to
the demand of enlarging its domain of applicability to
regimes where the system of interest is still away from local
thermal equilibrium [12–14], and so the usual strategy of
deriving hydrodynamics as an expansion in deviations from
ideal behavior is not available. Moreover, the best known
implementations of this strategy, namely the Chapman-
Enskog [15,16] and Grad [17,18] approximations, face
severe problems, such as spurious instabilities, as it will be
shown below.
The so-called divergence type theories (DTTs)[19–22] are

an appealing alternative for the derivation of relativistic
causal hydrodynamics because in this framework both the
conservation laws for particle number and the energy-
momentum tensor as well as the second law of thermody-
namics are rigorous properties of the theory, no matter how
far from ideal behavior. For this reason the solutions of the
theorymaybe trusted to be at least qualitatively faithful to the
underlying kinetic theory. By contrast, a formalism that only
enforces the second law in an approximate way could lead to
unphysical results if the systemmakes a large excursionaway
from local thermal equilibrium, even if it is a transient one,
and then thewhole further evolutionwould be compromised.
Furthermore, in more complete theories including gauge
fields [23–25], these spurious instabilities could mask or get
entangled with legitimate plasma instabilities [26–30].
In this paper we shall analyze the derivation of DTT

relativistic hydrodynamics from kinetic theory taking as

test case a gas of spinless and massless particles obeying
Fermi-Dirac statistics [31]. In the Grad approach, this
derivation consists of formulating an ansatz for the one
particle distribution function (1pdf), parametrized by the
hydrodynamic variables. Later on the hydrodynamic
currents such as the particle number current and the
energy-momentum tensor are derived as moments of the
parameterized 1pdf, and the corresponding equations as
moments of the Boltzmann equation [32–35]. This pro-
cedure may be replicated in the DTT framework, but it
leads to formally divergent expressions. Therefore it is
necessary to interpolate a process of regularization and
renormalization by which these expressions become mean-
ingful. The conclusion is that a DTT can be derived from
kinetic theory, but not uniquely.
As a demonstration of the formalism we shall carry on the

procedure, adopting a regularization and renormalization
scheme that does not introduce new dimensionful param-
eters in the theory, preserves positive expressions, and gives
the right results in equilibrium, where all relevant expres-
sions are finite to begin with. We shall use the resulting DTT
to investigate the stability of an anisotropic (though axi-
symmetric) homogeneous configuration (a precise charac-
terization will be given below). These are always stable in
kinetic theory, but we will show that the Grad approxima-
tion predicts an instability if the anisotropy exceeds a certain
threshold. DTT agrees with kinetic theory predicting again
stability. As it ought to be expected, the quantitative
agreement worsens for larger deviations from equilibrium.
Let us bemore specific about the contents of this paper.We

consider a gas of massless, spinless particles obeying Fermi-
Dirac statistics. In relativistic kinetic theory [36–40], the state
of the gas is described by a 1pdf f ¼ fðxμ; pνÞ, where the
momentum variable is restricted to the positive mass
shell p2 ¼ 0 ¼ ~p2 − p02, p0 ≥ 0 (we adopt the ð−þþþÞ
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signature for Minkowsky metric ημν). From f we derive the
energy-momentum tensor

Tμν ¼
Z

Dppμpνf ð1Þ

where Dp is the invariant measure

Dp ¼ 2dp0d3p
ð2πÞ3 δðp2Þθðp0Þ: ð2Þ

Observe that Tμν is traceless. Tμν admits one (and only one)
timelike eigenvector

Tμνuν ¼ −ρuμ ð3Þ

u2 ¼ −1. We say uμ is the (Landau-Lifshitz) fluid velocity
[2], and ρ the energy density. The other relevant current is the
entropy flux

Sμ ¼ −
Z

Dppμfð1 − fÞ ln ð1 − fÞ þ f ln fg ð4Þ

and s ¼ −uμSμ is the entropy density. In equilibrium, the
1pdf must maximize the entropy density for a given energy
density. This obtains when f is the Fermi-Dirac distribution

feq ¼
1

e−βμp
μ þ 1

ð5Þ

where βμ ¼ uμ=T, T being the temperature. Thus in
equilibrium

Tμν
eq ¼ σSBT4

�
uμuν þ 1

3
Δμν

�

Sμeq ¼ 4

3
σSBT3uμ ð6Þ

where Δμν ¼ ημν þ uμuν and σSB ¼ 7π2=240 is Stefan-
Boltzmann’s constant.
Out of equilibrium f evolves according to the Boltzmann

equation [36–40]

pν ∂
∂xν f ¼ Icol½f�: ð7Þ

The collision integral Icol vanishes in equilibrium, and
obeys Z

DppμIcol½f� ¼ 0 ð8Þ

which enforces energy-momentum conservation

Tμν
;ν ¼ 0 ð9Þ

and the H theorem

Z
Dp ln

�
1

f
− 1

�
Icol½f� ≥ 0 ð10Þ

which enforces the second law

Sμ;μ ≡ σ ≥ 0: ð11Þ

For concreteness we shall adopt the Anderson-Witting
collision term [41–43]

Icol½f� ¼
1

τ
uμpμðf − feqÞ; ð12Þ

where feq is the equilibrium distribution with the same
velocity and energy density as the nonequilibrium 1pdf f.
Another frequently used prescription is the Marle or BGK
one [44,45], where −uμpμ in the right-hand side is replaced
by a power of temperature.
For a general 1pdf, Tμν acquires a new term, the viscous

energy-momentum tensor Πμν,

Tμν ¼ σSBT4

�
uμuν þ 1

3
Δμν

�
þ Πμν: ð13Þ

SinceΠμν is traceless and transverseΠμ
μ ¼ uνΠμν ¼ 0 it has

5 independent components, elevating the total number of
degrees of freedom in Tμν to 9. The four conservation
equations Eq. (9) are therefore not enough to predict the
evolution of the energy-momentum tensor. The problem of
relativistic hydrodynamics is to provide the missing
equations.
The Chapman-Enskog approach [15,16] assumes that at

every point f is close to an equilibrium distribution,
although with position dependent temperature and velocity.
Then a solution of Eq. (7) is sought as a formal expansion
in powers of the relaxation time τ introduced in Eq. (12)

fCh−E ¼ feq½1þ τð1 − feqÞδfCh−E�: ð14Þ

Inserting this into Eq. (7) with collision term (12), and
using the conservation equations Eq. (9) to order τ0 to
simplify the result, we obtain to lowest order

δfCh−E ¼ −1
2Tjuρpρj σμνp

μpν ð15Þ

where we introduced the shear tensor

σμν ¼ Δρ
μΔλ

ν

�
uρ;λ þ uλ;ρ −

2

3
Δρλuτ;τ

�
: ð16Þ

A straightforward computation yields

Πμν ¼ −ησμν ð17Þ
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where η ¼ ð7π2=900ÞτT4 is the shear viscosity. Thus in this
approach the viscous energy-momentum tensor is slaved to
the degrees of freedom that describe the ideal fluid at τ ¼ 0.
This eventually leads to a parabolic system of equations of
motion, incompatible with relativistic causality [46–48].
To overcome this difficulty, the Grad approach [17,18]

proposes instead a 1pdf

f ¼ feq½1þ Z� ð18Þ

Z ¼ 1

2Tð−uμpμÞ ð1 − feqÞξμνpμpν ð19Þ

ξμν is traceless and transverse, and it is regarded as an
independent tensorial degree of freedom. It is directly
related to Πμν, since

Πμν ¼
�
7π2

900

�
T4ξμν: ð20Þ

Since ξμν is not positive definite, the Grad approximation
will lead to negative pressures if ξμν is large enough, which
underscores the unapplicability of the theory far from
equilibrium. Moreover, we shall show below the theory
has spurious instabilities even before that limit is reached.
To obtain a dynamics for these new 5 degrees of freedom

in the viscous energy-momentum tensor, one further
moment of the Boltzmann equation is computed. The first
moments yield energy-momentum conservation Eq. (9).
Instead of the ten second moments, we only consider the
traceless, transverse ones�

Δρ
μΔλ

ν −
1

3
ΔρλΔμν

�
fAσμν

;σ − Iμνg ¼ 0 ð21Þ

where

Aσμν ¼
Z

Dppμpνpσf

Iμν ¼
Z

DppμpνIcol: ð22Þ

The nonequilibrium current Aσμν is totally symmetric and
traceless on any two indexes. This approach leads to a
Maxwell-Cattaneo [49] equation for ξμν and enforces
causality. However, it cannot be applied arbitrarily far
from equilibrium, because, as we shall show below, it
predicts instabilities that do not exist in the kinetic theory.
For further discussion of the Chapman-Enskog and Grad
approaches see [50]
The DTT framework keeps Eqs. (9) and (21) as the

fundamental equations, but now seeks a 1pdf which max-
imizes entropy density for given energy density and A0ij

components in the rest frame. This leads to the introduction
of a new tensor Lagrange multiplier ζμν besides T and uμ.

Assuming ζμν is symmetric, traceless and transverse, it is
equivalent to 5 new degrees of freedom. Thus the theory
has the same number of degrees of freedom as the energy-
momentum tensor, with the nonequilibrium current slaved
to it (we will return to this point below). This means that in
the DTT, two evolutions starting with the same energy-
momentum tensor will remain identical, though it is known
that they may diverge in kinetic theory [51]. Even so, we
will show that the DTT outperforms the Grad approxima-
tion, in the sense that it is free from the spurious instabilities
that appear in the latter.
The problem is that, though the variational problem

leading to the DTT 1pdf is easily solved, the formal
expressions one obtains for the energy-momentum tensor
and the nonequilibrium current diverge [52]. Thus it is
necessary to regularize and renormalize them to make sense
of the theory. This adds a new, nonunique stage in the
derivation of hydrodynamics from kinetic theory. Our goal
is to show a concrete procedure to obtain finite quantities
for the relevant currents, and then to use this procedure to
demonstrate the stability of anisotropic, axisymmetric
configurations, in agreement with kinetic theory.
The rest of the paper is organized as follows. In the next

section we provide some further background on the DTT
framework, starting from the purely macroscopic point of
view whereby it was first introduced, and then linking it to
kinetic theory. Then we proceed to regularize and renorm-
alize the formal expressions for the energy-momentum
tensor and nonequilibrium current. Section III provides a
first comparison of DTT and Grad hydrodynamics through
the analysis of the pressure anisotropy; we show that while
in Grad hydrodynamics the pressure anisotropy becomes
negative when far from equilibrium, in DTT it is bounded
below. Section IV is the main part of this paper; here we
discuss the stability of anisotropic homogeneous configu-
rations, comparing the analysis made within DTT and Grad
hydrodynamics to the one in kinetic theory. We conclude
that while both kinetic theory and DTT predict anisotropic
axisymmetric configurations are always stable, Grad
hydrodynamics shows an instability if the anisotropy is
large enough. We conclude with some brief final remarks.
The two appendices discuss important conceptual issues.

Appendix A presents a general framework to analyze
stability of conformal hydrodynamic theories of the type
discussed in this paper. We show that the instability of the
Grad approximation is a consequence of the linearization of
the one-particle distribution function with respect to ξμν. In
Appendix B we show how the regularization and renorm-
alization scheme presented here may be applied to fluids
obeying Maxwell-Jüttner or Bose-Einstein statistics.

II. DIVERGENCE TYPE THEORIES

DTTs are theories in which all the dynamical equations
can be written as divergences of tensor fields. They were
originally developed by Liu, Müller and Ruggeri [19,20] as
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a response to the perceived flaws of the so-called “first
order” relativistic hydrodynamics of Eckart [1] and
Landau-Lifshitz [2]. They were later extended by the works
of Geroch and Lindblom [21,22] and Reula and Nagy [52].
They were applied to study relativistic hydrodynamic
fluctuations in [53], and free streaming flows in [54].
They were applied to the study of relativistic heavy ion
collisions in [55–57].
The main fields on a DTTare the particle-number current

Nμ and the energy-momentum tensor Tμν and their dynam-
ics are governed by the conservation equations

� ∂μNμ ¼ 0

∂μTμν ¼ 0.
ð23Þ

Closure of the system is achieved by the addition of the
balance law of fluxes

∂μAμνρ ¼ Iνρ; ð24Þ

where Aμνρ and Iνρ are algebraic functions of Nμ and Tμν.
This means we are not adding extra degrees of freedom.
To relate these currents among themselves, it is assumed

not only that there is an entropy flux vector Sμ [cf. Eq. (4)]
whose divergence σ [cf. Eq. (11)] is positive, but moreover
that both Sμ and σ are algebraic functions of Nμ and Tμν,
such that the positivity of σ follows from Eqs. (23) and (24)
alone. It can be shown [19] that this implies the existence
of a vector χμ ¼ χμðα; βμ; ζμνÞ and a source Iμν ¼
Iμνðα; βμ; ζμνÞ in such a way that the fields Nμ, Tμν and
Aμνρ can be computed as the following partial derivatives

Nμ ¼ ∂χμ
∂α ; Tμν ¼ ∂χμ

∂βν and Aμνρ ¼ ∂χμ
∂ζνρ : ð25Þ

The variables α and βμ are related to the chemical potential,
the hydrodynamic velocity and the temperature and the
symmetric tensor ζμν provides the necessary degrees of
freedom to match any given energy-momentum tensor.

A. Dissipative type theories from kinetic theory

Since a DTT is totally defined by the generating function
χμ, to establish a link with kinetic theory it is necessary to
relate the generating function to the 1pdf. Let us consider
the massless case from now on, so we shall drop α and the
particle number current from the discussion.
In equilibrium, the energy-momentum tensor Eq. (6)

may be recovered from the generating function

χμeq ¼ −
Z

Dppμ ln ð1 − feqÞ; ð26Þ

where feq is the Fermi-Dirac 1pdf Eq. (5). This suggests to
generalize this to the dissipative case by writing

χμ ¼ −
Z

Dppμ ln ð1 − fÞ ð27Þ

and a source chosen to match the Anderson-Witting
collision term, as in Eq. (22). In order that we may recover
the nonequilibrium current as a derivative of χμ we must
write f as a deformation of the Fermi-Dirac distribution
[52]

f½pμ; uμ; ζμν; T� ¼ 1

e−
1
Tuμp

μ−ζμνpμpν þ 1
: ð28Þ

This distribution function maximizes the entropy density
for given values of T00 and A0ij − ð1=3ÞδijA0k

k , as measured
in the fluid rest frame. feq in the collision term Eq. (12)
reads

feq½pμ; uμ; Teq� ¼
1

e−
1

Teq
uμpμ þ 1

ð29Þ

with T, ζμν and Teq related by

ρðT; ζμνÞ ¼ σSBT4
eq: ð30Þ

Although the theory can be formally defined as is and the
energy-momentum tensor Tμν and nonequilibrium current
Aμνρ can be expressed as partial derivatives of the generat-
ing function χμ, there is an obvious problem in Eq. (27).
Since the quadratic form ζμνpμpν is not negative definite,
there are values of ζμν such that

f ⟶
pμ→∞

1; ð31Þ

making the generating function divergent. Since these are
all states with occupation number one, this singularity
can be interpreted as the Dirac Sea. There is also a not-
so-obvious singularity because of the behavior of the
integrals near the manifold where the quadratic part of
the argument of the exponential becomes zero. That is, the
manifold defined by the equation

ζμνpμpν ¼ 0: ð32Þ

This will be further clarified below.

B. Regularization

In order to take care of the singularities Eq. (31) and
Eq. (32), let us fix the dissipative tensor ζμν. Motivated by
the family of solutions first introduced by Romatschke and
Strickland [58] (see also [59,60]), we choose the transverse,
traceless and axisymmetric case

T2ζμν ¼ diagð0; ζ0; ζ0;−2ζ0Þ ð33Þ
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(ζ0 > 0) so the type of integrals to regularize are

I1½g� ¼
Z

∞

0

dp
Z

π=2

0

dθgðp; θÞfðp; θÞ ð34Þ

and

I2½g� ¼
Z

∞

0

dp
Z

π=2

0

dθgðp; θÞfðp; θÞ½1 − fðp; θÞ�; ð35Þ

where g is a polynomial function in the variables p, cos θ
and sin θ and f is the dissipative Fermi-Dirac distribution
Eq. (28),

fðp; θÞ ¼ 1

ep−ζ0p
2ð1−3 cos2 θÞ þ 1

: ð36Þ

Note that the first singularity, Eq. (31), happens when
cos2 θ < 1=3 and the second one, Eq. (32), when cos2 θ →
1=3− so the ppz-plane gets divided into two sections
delimited by cos2 θ0 ¼ 1=3. On one of those sections,
when cos2 θ > 1=3, the integral is regular and on the
other one is where the singularities are located. Figure 1
shows this.
The Dirac Sea singularity, namely Eq. (31), can be

eliminated by a simple integration by parts. The surface
term, which is infinite, is discarded and the fðp; θÞ that
used to be in the integrand gets replaced by
fðp; θÞ½1 − fðp; θÞ� in the remaining term, which goes
to zero as f goes to one. The other singularity, Eq. (32),
requires further analysis. The goal of this section is to
introduce a regularization procedure which eliminates both
singularities but without introducing new parameters to the
theory, as to preserve the conformal invariance.

1. The I1 case

Let us start by dividing the I1 integral in
θ0 ¼ cos−1 ð1= ffiffiffi

3
p Þ,

I1½g� ¼ I<1 ½g� þ I>1 ½g�

≐
Z

∞

0

dp
Z

θ0

0

dθgðp; θÞfðp; θÞ

þ
Z

∞

0

dp
Z

π=2

θ0

dθgðp; θÞfðp; θÞ: ð37Þ

I<1 is finite and is left as is. To study the I>1 term, define a
function G by

Gðp; θÞ ≐
Z

π=2

θ
dϕgðp;ϕÞ; ð38Þ

so that Gðp; π=2Þ ¼ 0 and

∂G
∂θ ¼ −gðp; θÞ: ð39Þ

Now integrate by parts to obtain

I>1 ¼
Z

∞

0

dp
Gðp; θ0Þ
ep þ 1

þ 3

2
ζ0

Z
∞

0

dp
Z

π=2

θ0

× dθp2Gðp; θÞ cos θ sin θ
cosh2½p=2 − ζ0p2ð1 − 3cos2θÞ=2� :

ð40Þ

It is evident that the first term is finite. Let us call the second
term KZ. By using the sum of arguments relation of the
hyperbolic cosine and realizing it could be written as a
partial derivative, it is possible to rewrite KZ as

FIG. 1. A graphic of the ppz-plane showing the singularities at θ0 in dashed lines as well as a transverse cut of the surface defined by
the equation p − p2ð1 − 3 cos2 θÞ ¼ 0 as an example.
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KZ ¼
Z

∞

0

dp
Z

π=2

θ0

dθ
Gðp; θÞ
sinhðpÞ

×
∂
∂θ

�
1

1 − tanh ðp=2Þ tanh ½ζ0p2ð1 − 3cos2θÞ=2�
�
:

ð41Þ

Performing another integration by parts and defining the
auxiliary function

Kðζ0Þ

≐
Z

∞

0

dp
Z

π=2

θ0

× dθ
gðp; θÞ
sinhðpÞ

1

1 − tanh ðp=2Þ tanh ½ζ0p2ð1 − 3cos2θÞ=2� ;

ð42Þ

we arrive at the final expression for KZ,

KZ ¼ Kð0Þ
�
Kðζ0Þ
Kð0Þ − 1

�
: ð43Þ

The key here is to identify the ratio in Eq. (43) as the mean
value

Uðζ0Þ ≐ Kðζ0Þ
Kð0Þ ¼

	
1

1 − u



¼

Z
1

0

du
F1ðuÞ
1 − u

; ð44Þ

where F1 is a probability density function defined as

F1ðuÞ ≐ 1

Kð0Þ
Z

∞

0

dp
Z

π=2

θ0

dθ
gðp; θÞ
sinhðpÞ

× δ½tanh ðp=2Þ tanh ½ζ0p2ð1 − 3cos2θÞ=2� − u�
ð45Þ

if u ∈ ½0; 1Þ and F1ðuÞ ¼ 0 otherwise. Although
F1ð1þÞ ¼ 0, F1ð1−Þ goes to infinity logarithmically and,
therefore, U is divergent. The first step to improve this
behavior is to replace U by its Cauchy principal value,

Uðζ0Þ → UPVðζ0Þ ¼ Re

�
PV

Z
1

0

du
F1ðuÞ
1 − u

�
; ð46Þ

which, as a consequence of the Sokhotski-Plemelj-Fox
theorem [61], equals

UPVðζ0Þ ¼ Re

�
lim
ε→0þ

Z
1

0

du
F1ðuÞ

1 − u − iε

�
: ð47Þ

Now let eWðtÞ be the characteristic function of F1,

eWðtÞ ≐
Z

1

0

duF1ðuÞeitu: ð48Þ

Then UPV can be written as

UPVðζ0Þ ¼ Re

�
lim
ε→0þ

i
Z

∞

0

dte½WðtÞ−it�e−εt
�
; ð49Þ

Since eWðtÞ is the characteristic function of F1, thenW is the
cumulant-generating function. This means that W has the
formal power series expansion

WðtÞ ¼
X∞
n¼1

κn
n!

ðitÞn; ð50Þ

where κn is the nth cumulant. That is, κ1 ¼ hui, κ2 ¼ σ2 ¼
hu2i − hui2 and so on.

2. The I2 case

This case is fairly similar to the first one the only
difference being, due to possible divergent terms intro-
duced by G, one less integration by parts is performed. We
start by dividing the integral the same way as before,

I2½g� ¼ I<2 ½g� þ I>2 ½g�

≐
Z

∞

0

dp
Z

θ0

0

dθgðp; θÞfðp; θÞ½1 − fðp; θÞ�

þ
Z

∞

0

dp
Z

π=2

θ0

dθgðp; θÞfðp; θÞ½1 − fðp; θÞ�:

ð51Þ

I<2 is finite so we focus our attention on I>2 . Using the sum
of arguments relation of the hyperbolic cosine we write

I>2 ½g� ¼
1

4

Z
∞

0

dp
Z

π=2

θ0

dθgðp; θÞ

×
1

cosh2ðp=2Þcosh2½ζ0p2ð1 − 3cos2θÞ=2�
×

1

f1 − tanh ðp=2Þ tanh ½ζ0p2ð1 − 3cos2θÞ=2�g2 :

ð52Þ

Just as before we define the auxiliary function

Kðζ0Þ ≐ 1

4

Z
∞

0

dp
Z

π=2

θ0

dθgðp; θÞ

×
1

cosh2ðp=2Þcosh2½ζ0p2ð1 − 3 cos2 θÞ=2� ð53Þ

and the probability density function
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F2ðuÞ ≐ 1

4Kðζ0Þ
Z

∞

0

dp
Z

π=2

θ0

dθgðp; θÞ

×
1

cosh2ðp=2Þcosh2½ζ0p2ð1 − 3cos2θÞ=2�
× δ½tanh ðp=2Þ tanh ½ζ0p2ð1 − 3cos2θÞ=2� − u�

ð54Þ

if u ∈ ½0; 1Þ and F2ðuÞ ¼ 0 otherwise. Now I>2 can be
written as the following mean value

I>2 ½g� ¼Kðζ0Þ
	

1

ð1− uÞ2


¼Kðζ0Þ

Z
1

0

du
F2ðuÞ
ð1− uÞ2 : ð55Þ

K is obviously finite but

Uðζ0Þ ≐
Z

1

0

du
F2ðuÞ
ð1 − uÞ2 ð56Þ

is not. In order to improve this behavior we replaceU by its
Cauchy principal value,

Uðζ0Þ → UPVðζ0Þ ¼ Re

�
PV

Z
1

0

du
F2ðuÞ
ð1 − uÞ2

�
; ð57Þ

which could be written as

UPVðζ0Þ ¼ −Re
�
lim
ε→0þ

Z
∞

0

dtte½WðtÞ−it�e−εt
�
; ð58Þ

where W is the cumulant-generating function of F2.

C. Renormalization

So far we have been able to rewrite our integrals in a way
that singles out the divergent factors. We must now renorm-
alize them in such a way as to obtain finite expressions.
The idea is to generate a series of expressions forUPV by

replacing F1 by another distribution function, better
behaved than F1 as u → 1, but whose irreducible moments
agree with those of F1 up to a certain order. It is important
that we replace F1 by another positive function, since this
preserves positivity, and it is important that the replacement
pdf includes no dimensionful parameters not present in F1,
since otherwise conformal invariance would be spoiled.
The simplest such replacement would be a δ function with
support at hui. In this paper, we shall restrict ourselves to
the next approximation, where both hui and σ2 are retained,
and F1 is replaced by a Gaussian pdf. This is equivalent to
considering only the leading term in a Gram—Charlier
approximation to F1 [62]; it must be recalled that Gram—
Charlier series, when truncated at higher orders, may not be
a true distribution function because it may not be non-
negative definite. We shall discuss the accuracy of this
lowest order approximation below.

Therefore, we keep up to the quadratic term in the
expansion of W,

WðtÞ ≈ ihuit − 1

2
σ2t2 ⇒ eWðtÞ ≈ eihuit−1

2
σ2t2 : ð59Þ

This approximation leads to

Uð2Þ
PVðζ0Þ ¼

2

1 − hui
�
1 − huiffiffiffi

2
p

σ

�
D
�
1 − huiffiffiffi

2
p

σ

�
; ð60Þ

where D is the Dawson function, defined as

DðxÞ ≐ e−x
2

Z
x

0

dses
2

: ð61Þ

The mean values hui and hu2i are

hui ¼ 1

2Kð0Þ
Z

∞

0

dp
Z

π=2

θ0

dθ
gðp; θÞ

cosh2ðp=2Þ
× tanh ½ζ0p2ð1 − 3 cos2 θÞ=2� ð62Þ

and

hu2i ¼ 1

2Kð0Þ
Z

∞

0

dp
Z

π=2

θ0

dθ
gðp; θÞ

cosh2ðp=2Þ
× tanh ðp=2Þtanh2½ζ0p2ð1 − 3cos2θÞ=2�: ð63Þ

We finally arrive at the final result for the I1-type integrals,

I1½g� ≐
Z

∞

0

dp
Z

θ0

0

dθgðp; θÞfðp; θÞ

þ
Z

∞

0

dp
Gðp; θ0Þ
ep þ 1

þKð0Þ½Uð2Þ
PVðζ0Þ − 1�: ð64Þ

We now turn to I2-type integrals. The same way as before,
we keep up to the quadratic term in the expansion of W,

Uð2Þ
PVðζ0Þ ¼

4

ð1 − huiÞ2
�
1 − huiffiffiffi

2
p

σ

�
3

D
�
1 − huiffiffiffi

2
p

σ

�
−

1

σ2
;

ð65Þ

whereD is the Dawson function defined in Eq. (61) and the
relevant mean values are

hui ¼ 1

4Kðζ0Þ
Z

∞

0

dp
Z

π=2

θ0

dθgðp; θÞ

×
tanh ðp=2Þ tanh ½ζ0p2ð1 − 3cos2θÞ=2�
cosh2ðp=2Þcosh2½ζ0p2ð1 − 3cos2θÞ=2� ð66Þ

and
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hu2i ¼ 1

4Kðζ0Þ
Z

∞

0

dp
Z

π=2

θ0

dθgðp; θÞ

×
tanh2ðp=2Þtanh2½ζ0p2ð1 − 3cos2θÞ=2�
cosh2ðp=2Þcosh2½ζ0p2ð1 − 3cos2θÞ=2� : ð67Þ

We finally arrive at the final result for the I2-type integrals,

I2½g� ≐
Z

∞

0

dp
Z

θ0

0

dθgðp; θÞfðp; θÞ½1 − fðp; θÞ�

þKðζ0ÞUð2Þ
PVðζ0Þ: ð68Þ

To conclude, let us discuss whether approximating F1 and
F2 by a Gaussian distribution is quantitatively correct.
Let us call F i, i ¼ 1, 2 the Gaussian approximation of

Fi, given by

F iðuÞ ¼
1ffiffiffiffiffiffi
2π

p
σi
e
−ðu−huiiÞ2

2σ2
i u ∈ R; ð69Þ

where huii and σ2i ¼ hu2ii − hui2i are computed with Fi.
In the limit ζ0 → 0, both F1 and F2 converge to the Dirac

Delta distribution,

FIG. 2. Comparison between F1 (full line) and its Gaussian approximation F 1 (dashed line) for different ζ0 values.

FIG. 3. Integral of F 1 over [0, 1]. ζ0 axis in logarithmic scale.
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FiðuÞ⟶
ζ0→0

δ½u� ð70Þ

and, since huii → 0 and σ2i → 0, the Gaussian approxima-
tions converge to the same limit,

lim
ζ0→0

F iðuÞ ¼ lim
σi→0

1ffiffiffiffiffiffi
2π

p
σi
e
− u2

2σ2
i ¼ δ½u�: ð71Þ

Therefore, the limit ζ0 → 0 is exact.

Arbitrary values of ζ0 require numerical methods to
analyze. Figure 2 shows a comparison between F1 and its
Gaussian approximation F 1 as functions of ζ0, using a
function g

gðp; θÞ ¼ p3 sin3 θ: ð72Þ
It shows that for small ζ0 values both F1 and F 1 tend to a
Dirac Delta distribution centered at u ¼ 0 but for large ζ0
values F1 diverges logarithmically at u ¼ 1 while F 1 tends

FIG. 4. Comparison between F2 (full line) and its Gaussian approximation F 2 (dashed line) for different ζ0 values.

FIG. 5. Integral of F 2 over [0, 1]. ζ0 axis in logarithmic scale.
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to a Gaussian distribution with constant mean and variance.
Although approximating F1 by a Gaussian allows the
support of the new distribution to be different than the
original interval [0, 1], Fig. 3, which is the integral of F 1

over [0, 1], shows the area under the curve is mostly (at
least 75% of it) located in that interval. Similarly, Fig. 4
shows a comparison between F2 and its Gaussian approxi-
mation F 2 as functions of ζ0, using a function g

gðp; θÞ ¼ p4 sin θ cos θ: ð73Þ

For small ζ0 values both F2 and F 2 tend to a Dirac Delta
distribution centered at u ¼ 0 but, unlike F1, F2 is finite for
large ζ0 values. Figure 5 shows the area under the curve of
F 2 in [0, 1] is 80% for small ζ0 values and reaches a
constant value of 93% for large ζ0 values.
We can conclude that the replacement of F1 and F2 by

their corresponding Gaussian approximation effectively
cuts off the integrals in a neighborhood of u ¼ 1 without
the need to include an explicit cutoff, which would add a
new dimensionful parameter to the theory. Moreover, the
procedure yields a quantitatively accurate approximation
for small ζ0 (it is exact at ζ0 ¼ 0). While there is a loss of
accuracy for large values of ζ0, it must be observed that
also the energy-momentum tensor is less sensitive to the
exact value of ζ0 in that range, as we will show in next
section.

III. PRESSURE ANISOTROPY IN DTTS AND IN
THE GRAD APPROXIMATION

One interesting way to visualize the relationship of ζμν to
the energy-momentum tensor in the fully nonlinear DTT is
by considering the pressure anisotropy.
We consider an axisymmetric configuration where, in the

rest frame, T2ζij0 ¼ diagðζ0; ζ0;−2ζ0Þ with ζ0 ≥ 0. We
define the pressure anisotropy as

δp ¼ Tzz
1
2
ðTxx þ TyyÞ

¼ 1þ 3Πzz=ρ
1 − 3Πzz=2ρ

: ð74Þ

For comparison, under Grad approximation Πμν is given
by Eq. (20). Assuming for ξμν the same form as ζμν,
we get

δp ≈
1 − 8

5
ξ0

1þ 4
5
ξ0

: ð75Þ

It becomes negative for ξ0 > 5=8 and remains negative
thereafter, approaching δp → −2 as ξ0 → ∞.
By contrast, DTTs have a built-in lower limit for the

pressure anisotropy, because the deformed Fermi-Dirac
distribution Eq. (28) always has a finite dispersion in
pz. For example, and leaving out renormalization issues
for the moment, when ζ0 → ∞ Eq. (28) becomes
f ¼ Θð1 − 3 cos2 θÞ, where Θ denotes the step function.
Factoring out and canceling a divergent radial integral this
leads to δp ¼ 1=4.
Of course, a correct evaluation of δp requires that Tμν is

computed by carrying out a proper renormalization pro-
cedure. When the integrals are regularized by the Gaussian
approximation we have presented above, it is seen that 1=4
is indeed the asymptotic value of δp as ζ0 → ∞, but that
higher anisotropy is possible at finite values. A numerical
evaluation shows that δp ≥ 0.1466 ≈ 1=7, which in the
Grad approximation corresponds to ξ0 ¼ 1=2, as can be
seen in Fig. 6.
Now let us study the changes in the slope of the DTT

anisotropy shown in Fig. 6 left. If δp ¼ pz=px then the
derivative with respect to ζ0 (denoted by primes from now
on) is

δ0p ¼ p0
z

px

�
1 − δp

p0
x

p0
z

�
; ð76Þ

where pz and px are given by

pz ¼
2

ð2πÞ2
Z

∞

0

dp
Z

1

0

dxp3x2f ð77Þ

FIG. 6. Left: pressure anisotropy asymptotic behavior. ζ0 axis in logarithmic scale. Right: zoom at the region of interest. Vertical line at
ζ0 ¼ 1=2 and horizontal line at δp ¼ 1=7. DTT as a dashed line and Grad’s approximation as a dot-dash-dotted line.
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px ¼
1

ð2πÞ2
Z

∞

0

dp
Z

1

0

dxp3ð1 − x2Þf; ð78Þ

its derivatives p0
z and p0

x by

p0
z ¼

2

ð2πÞ2
Z

∞

0

dp
Z

1

0

dxp3x2ð1 − 3x2Þfð1 − fÞ ð79Þ

p0
x ¼

1

ð2πÞ2
Z

∞

0

dp
Z

1

0

dxp3ð1 − x2Þð1 − 3x2Þfð1 − fÞ

ð80Þ

and the distribution function is as in Eq. (28), with T ¼ 1
for simplicity,

fðp; xÞ ¼ 1

ep−ζ0p
2ð1−3x2Þ þ 1

: ð81Þ

In the limit ζ0 → 0, δp → 1 and

p0
x

p0
z
→

1

2

Z
1

0

dxð1 − x2Þð1 − 3x2Þ=
Z

1

0

dxx2ð1 − 3x2Þ ¼ −
1

2
:

ð82Þ

Since p0
z < 0 it follows that for sufficiently small ζ0,

δ0p < 0. Conversely, in the limit ζ0 → ∞, δp → 1=4 and
fð1 − fÞ goes to zero except when x2 ≈ 1=3. Therefore, for
big enough ζ0 values, the integrand in Eqs. (79) and (80) is
concentrated in a neighborhood of x2 ¼ 1=3. On the one
hand we have

p0
x

p0
z
≈
1 − x2

2x2

����
x2¼1=3

¼ 1 ð83Þ

and on the other p0
z > 0 because f → Θð1 − 3x2Þ, so

δ0p > 0. We have proved that δp approaches its asymptotic
value from below, in accordance with Fig. 6 left, which thus
captures the general behavior of δp. In particular, the
anisotropy parameter reaches a minimum at some value
of ζ0, regardless of the regularization and renormalization
procedure.
This result also shows that the theory cannot describe a

configuration with anisotropy parameter less than 1=7;
since such configurations would be very extreme, we do not
believe this is a significant drawback. At the same time,
these are the cases where one would not expect the
distribution could be accurately described by a few of its
moments.
For this reason, it seems more important to us that, while

an approximation such as Grad’s is prone to unphysical
behavior in extreme ranges of parameters, the DTT has
built in safety measures against such behavior; in this case,
no matter how large ζ0 could become along the evolution,
pressures will never become negative. Moreover, the

pressure anisotropy is mostly insensitive to the value of
ζ0 when it becomes large, underlying that inaccuracies in
the approximations made not necessarily propagate to the
physical predictions of the theory.

IV. PERTURBATIVE STABILITY OF
HOMOGENEOUS CONFIGURATIONS

After outlining the procedure to obtain a well-defined
DTTout of kinetic theory, we are going to test the resulting
theory by considering a problem we can solve both in
kinetic theory and in the DTT, and also in a hydrodynamic
formalism derived from Grad’s approximation. Concretely,
we shall discuss whether nonequilibrium, homogeneous,
anisotropic (but axisymmetric) configurations are pertur-
batively stable. We shall show this is the case in kinetic
theory, meaning that a nonhomogeneous perturbation of
such a background always decays in time (observe that the
background itself is not a solution of the Boltzmann
equation). Then we shall obtain a similar result in the
DTT by considering the dynamics of linear perturbations to
the uμ and ζμν degrees of freedom. Finally, we shall show
that the dynamics of the variables uμ and ξμν from Grad’s
approximation is unstable if the background is anisotropic
enough, even before the lowest pressure actually becomes
negative.
We are going to assume an homogeneous temperature T

and energy density ρ. Following Romatschke and
Strickland [58] (see also [59,60]), ζμν and ξμν will be
chosen symmetric, transverse and traceless and we will use
a coordinate system such that in the unperturbed rest frame,
in which uμ0 ¼ δμ0, the background part of ζμν can be
written as T2ζμν0 ¼ diagð0; ζ0; ζ0;−2ζ0Þ, with ζ0 ≥ 0, and
similarly for ξμν. Since we are perturbing a homogeneous
background the normal modes shall be plane waves estþikz.
Our goal will be to find the dispersion relation s ¼ sðkÞ by
the three formalisms and compare them. An instability
appears if for any k, ReðsÞ > 0.

A. Kinetic theory

Wewant to solve the kinetic equation for the 1pdf f with
an Anderson-Witting collision term Eq. (12) [26,43]. We
shall investigate linearized fluctuations around an homo-
geneous background. To do so, we shall look for the
solution of the Boltzmann equation with an initial condition
given by a 1pdf of the DTT type Eq. (28), where moreover
the parameters may be decomposed into an homogeneous
plus a small, position dependence perturbation. We shall
assume this dependence is of the form eikz, in the
unperturbed fluid rest frame. At late times, when all
transients have decayed, the solution will correspond to
a normal mode of the Boltzmann equation.
We are going to assume a solution of the form

f ¼ f0½1þ ð1 − f0Þδfeikz�; ð84Þ
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where f0 is the background,

f0½pμ; uμ0; ζ
μν
0 ; T� ¼ 1

e−
1
Tu0μp

μ− 1

T2
ζ0μνpμpν þ 1

; ð85Þ

and δf the perturbation. Likewise, feq is given by

feq ¼ feq0½1þ ð1 − feq0Þδfeqeikz�; ð86Þ

where feq0 is

feq0½pμ; uμ0; Teq� ¼
1

e−
1

Teq
u0μpμ þ 1

: ð87Þ

If we write the perturbations in the parameters at t ¼ 0 as

uμ ¼ uμ0 þ vμeikz ð88Þ

and

T2ζμν ¼ ζμν0 þ zμνeikz; ð89Þ

then the perturbation in the initial condition is

δfð0Þ ¼ 1

T
vμð0Þpμ þ 1

T2
zμνð0Þpμpν: ð90Þ

For the perturbation in feq we may write

δfeq ¼
1

Teq
vμðtÞpμ ð91Þ

where T and Teq are related by Eq. (30). Replacing
Eqs. (84) and (86) in Eq. (12) we arrive at the solution

δfðtÞ ¼
�
1

T
vμpμ þ 1

T2
zμνpμpν

�
e−σðpÞt

þ 1

τTeq
FðpÞpμ

Z
t

0

dt0vμðt0Þe−σðt−t0Þ; ð92Þ

where σ and F are given by

σðpÞ ¼ 1

τ
þ ik

p3

p
ð93Þ

and

FðpÞ ¼ feq0ð1 − feq0Þ
f0ð1 − f0Þ

þ Teq

p

�
f0 − feq0
f0ð1 − f0Þ

�
: ð94Þ

We will assume the only nonzero perturbations are v1
and z13. In order to preserve the transversality condition
vμζμν ¼ 0, z01 should be nonzero as well and equal to
z01 ¼ −v1ζ0. Under this assumptions the solution is

δfðtÞ ¼
�
1

T
v1 þ

2

T2
ðz13p3 − ζ0v1pÞ

�
p1e−σðpÞt

þ 1

τTeq
FðpÞp1

Z
t

0

dt0v1ðt0Þe−σðt−t0Þ: ð95Þ

In order to find the dispersion relation we are going to
study the long-time behavior of the velocity perturbation.
First, recall that the hydrodynamic velocity can be defined
as the timelike eigenvector of the energy-momentum
tensor, uμTμν ¼ −ρuν. For the perturbations we are con-
sidering, there are no first order corrections to the energy
density. Therefore, up to first order we have

ðu0μ þ vμeikzÞðTμν
0 þ δTμνÞ

¼ −ρ0ðuν0 þ vνeikzÞ ⇒ v1 ¼
δT10e−ikz

ρ0 þ p0

; ð96Þ

where p0 is the equilibrium pressure and δTμν the non-
equilibrium part of the energy-momentum tensor.
Replacing Eq. (95) in Eq. (96),

v1ðtÞ ¼
1

ρ0 þ p0

Z
d3p
ð2πÞ3 ðp1Þ2

×

��
1

T
v1 þ

2

T2
ðz13p3 − ζ0v1pÞ

�
e−σðpÞt

þ 1

τTeq
FðpÞ

Z
t

0

dt0v1ðt0Þe−σðt−t0Þ
�
f0½1 − f0�: ð97Þ

In the limit t → ∞ we obtain the asymptotic behavior
v1ðtÞ ∝ est, provided

ReðH½s; k; ζ0�Þ ¼ 1; ð98Þ

where

H½s; k; ζ0� ¼
1

ρ0 þ p0

Z
d3p
ð2πÞ3 ðp1Þ2

FðpÞ
τTeqðσ þ sÞ f0½1 − f0�:

ð99Þ

We introduce a new parameter γ defined by

γ ¼ τk
1þ τs

: ð100Þ

With the aid of γ, the implicit relation Eq. (98) can be
written in parametric form as

�
τs ¼ H½γ; ζ0� − 1

τk ¼ γH½γ; ζ0�
ð101Þ

where
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H½γ; ζ0� ¼
1

ρ0 þ p0

1

ð2πÞ2
Z

∞

0

dp

×
Z

π=2

0

dθ
p3sin3θ

1þ γ2cos2θ
½f0 þ 3feq0�: ð102Þ

If γ ¼ 0, then the first term of Eq. (102) is equal to
p0=ðρ0 þ p0Þ, while the second is just ρeq=ðρ0 þ p0Þ.
Due to the fact that ρ ¼ ρeq, H½γ ¼ 0; ζ0� ¼ 1. Therefore,
for γ ¼ 0, �

τs ¼ 0

τk ¼ 0
ð103Þ

SinceH is a decreasing function of γ, we have τs ≤ 0 and, as
a consequence, s is a decreasing function of k with

initial value sðk ¼ 0Þ ¼ 0. Finally, sðkÞ ≤ 0 for any γ
and we arrive at the conclusion that the linear theory is
stable.

B. DTT

According to the DTT, the dynamics of the gas are
governed by the set of equations (1), (9), (21) and (22),
where f and feq are defined as in Eqs. (28) and (29),
respectively, not just at t ¼ 0, but at all times. This means
that we have the decompositions Eqs. (88), (89), (90) and
(91) not just at t ¼ 0, but at all times. As before, we assume
the only nonzero perturbations are v1, z13 and z01 ¼ −v1ζ0.
Linearization leads to the system of equations

8<
:TðsCμν þ ikDμνÞvν þ ðsEμνρ þ ikFμνβÞzνρ ¼ 0

T½ðsþ 1
τÞEμνρ þ ikFμνρ�vρ þ ½ðsþ 1

τÞGμνρσ þ ikHμνρσ�zρσ ¼ 0
ð104Þ

where the coefficients C, D, E, F, G and H are defined by
the integrals

Cμν ¼
Z

Dppμpνp0f0ð1 − f0Þ

Dμν ¼
Z

Dppμpνp3f0ð1 − f0Þ

Eμνρ ¼
Z

Dppμpνpρp0f0ð1 − f0Þ

Fμνρ ¼
Z

Dppμpνpρp3f0ð1 − f0Þ

Gμνρσ ¼
Z

Dppμpνpρpσp0f0ð1 − f0Þ

Hμνρσ ¼
Z

Dppμpνpρpσp3f0ð1 − f0Þ:

By keeping the only relevant equations for the v1 and z13
perturbations (and z01 because of the transversality con-
dition), we arrive at the two-by-two linear system

(
sðTC11−2ζ0E011Þv1þ2ikF113z13¼ 0

ikðTF113−2ζ0H0113Þv1þ2ðsþ 1
τÞH0113z13¼ 0:

ð105Þ

Since T is the only dimensionful parameter, there is no loss
of generality in setting T ¼ 1. The dispersion relation is
given by the secular equation whose solutions are

τs ¼ −
1

2

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðτkÞ2ΩDTTðζ0Þ

q i
; ð106Þ

where ΩDTT is defined by

ΩDTTðζ0Þ ¼
F113

H0113

�
F113 − 2ζ0H0113

C11 − 2ζ0E011

�
: ð107Þ

It is evident that the only interesting case is

τs ¼ −
1

2

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðτkÞ2ΩDTTðζ0Þ

q i
; ð108Þ

If ΩDTTðζ0Þ < 0 for some ζ0, then an instability arise.
To see if such ζ0 exist, we use the following properties
of f0,

∂f0
∂p ¼ −½1 − 2ζ0pð1 − 3 cos2 θÞ�f0ð1 − f0Þ ð109Þ

and

∂f0
∂θ ¼ 6ζ0p2 cos θ sin θf0ð1 − f0Þ; ð110Þ

to write

ð1 − 2ζ0pÞf0ð1 − f0Þ ¼ −
∂f0
∂p −

1

p
cos θ
sin θ

∂f0
∂θ : ð111Þ

Using this identity we can integrate by parts to obtain

F113 − 2ζ0H0113

¼ 2

ð2πÞ2
Z

∞

0

dp
Z

π=2

0

dθp4 sin θcos2θf0 > 0 ð112Þ

and
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C11 − 2ζ0E011 ¼ 1

ð2πÞ2
Z

∞

0

dp

×
Z

π=2

0

dθp3 sin θð2þ sin2 θÞf0 > 0: ð113Þ

Since F113=H0113 > 0, we conclude that ΩDTT > 0 and,
just like kinetic theory, perturbations in DTT are stable.

C. Grad’s approximation

In order to use Grad’s approximation first we need to find
Grad’s probability density function. As discussed in the
Introduction, it takes the form of Eqs. (18) and (19). As
before, we assume that T is unperturbed, Eq. (88) for the
velocity, and

ξμν ¼ ξμν0 þ xμνeikz; ð114Þ
where ξμν0 ¼ diagð0; ξ0; ξ0;−2ξ0Þ, ξ0 ≥ 0. As before, the
only nonzero components of the perturbed variables are v1,
x13 ¼ x31 and x01 ¼ ξ0v1.
The system’s dynamics are governed by Eqs. (1), (9),

(21) and (22). Replacing Grad’s probability density func-
tion Eq. (18) in the previous equations and solving them for
v1 and x13 up to first order we obtain(

sð1þ 1
5
ξ0Þv1 þ 1

5
ikx13 ¼ 0

ikð1 − 2ξ0Þv1 þ ðsþ 1
τÞx13 ¼ 0:

ð115Þ

The dispersion relation is given by the secular equation
whose solutions are

τs ¼ −
1

2

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðτkÞ2ΩGradðξ0Þ

q i
ð116Þ

where ΩGrad is defined by

ΩGradðξ0Þ ¼
1 − 2ξ0
5þ ξ0

: ð117Þ

If we chose the negative sign in Eq. (116) and ξ0 > 1=2,
then perturbations show an exponential growth with coef-
ficient

τs ¼ 1

2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðτkÞ2jΩGradðξ0Þj

q
− 1

i
: ð118Þ

There is not a minimum (or maximum) k value for
instabilities. They occur at every value of k as long as
ξ0 > 1=2. As we have shown in the previous section, there
is a range 1=2 < ξ0 ≤ 5=8 where all three pressures are
positive, but nevertheless this spurious instability appears.
For larger ξ0 the lowest pressure becomes negative, bring-
ing the breakdown of the theory to the fore.

D. Quantitative comparison

The main difference between the three methods utilized
before is the presence or absence of instabilities. While

kinetic theory and DTT show no signs of them, Grad’s
approximation has no stable solutions for ξ0 > 1=2. This is
a drawback for Grad since it shows its applicability is fairly
limited.
All three theories predict an smax < 0 with its corre-

sponding kmax (also in Grad’s approximation ξ0 must be
less than 1=2) such that if k > kmax then the dispersion
relation can be written as

sðkÞ ¼ smax þ ihðkÞ hðkÞ ∈ R: ð119Þ

This means we have propagation in the form of damped
waves. In kinetic theory this set of smax and kmax are
given by

τs⟶
γ→∞

τsmax ¼ −1 ð120Þ

and

τk⟶
½γ→∞�

τkmax ¼
1

8π

�
1

ρ0 þ p0

×
Z

∞

0

dpp3

�
1

e
1
Tp−

1

T2
ζ0p2 þ 1

−
3

e
1

Teq
p þ 1

��
:

ð121Þ

Both DTT and Grad have the same smax,

τsmax ¼ −
1

2
; ð122Þ

but they have a different kmax. In DTT it is given by

τkmax ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩDTTðζ0Þ

p ð123Þ

while in Grad its value is

τkmax ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩGradðξ0Þ

p ðξ0 < 1=2Þ: ð124Þ

Figure 7 shows a comparison between the three different
values of kmax as a function of the anisotropy ζ0, ξ0. It can
be seen that DTT shows a qualitatively similar behavior to
kinetic theory, better than Grad’s.
The isotropic case, that is ζ0 ¼ ξ0 ¼ 0, can be solved

analytically. Up to second order in k we have, in kinetic
theory

τs ≈ −0.5ðτkÞ2; ð125Þ

in DTT,

τs ≈ −0.71ðτkÞ2 ð126Þ
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and in Grad’s approximation,

τs ≈ −0.2ðτkÞ2: ð127Þ

Figure 8 shows the full dispersion relations for ζ0 ¼ ξ0 ¼ 0,
showing that even up to τk ≈ 0.9 DTT looks very similar to
kinetic theory.
Arbitrary values of ζ0 and ξ0 require numerical methods

to solve, always utilizing the regularization procedure
defined in previous sections. Figure 9 shows the dispersion
relations for all three theories as functions of ζ0 ¼ ξ0. For
both small and big values of ζ0, DTT is a good approxi-
mation to kinetic theory. Figure (10) shows the dispersion
relation for ζ0 ¼ ξ0 ¼ 0.45 and ζ0 ¼ ξ0 ¼ 0.55, that is,
before and after Grad’s instability.

V. FINAL REMARKS

Formulating a fully nonlinear hydrodynamics of dis-
sipative relativistic fluids is a daunting challenge that we
must nevertheless confront if we wish to make sense of the
very early stages of relativistic heavy ion collisions [12–14]
and also of the cosmic evolution in the period that goes,
roughly, from reheating after inflation to the electroweak
and QCD transitions [63–67]. We believe this paper
contributes to the ongoing effort to meet this challenge
in two main ways. On the one hand, it delineates the
boundary of applicability of a representative “second
order” theory. These theories were introduced to solve
the instability problems of the so-called “first order”
theories [46–48]; nevertheless, as we have shown, they
display spurious instabilities of their own. On the other

FIG. 8. Dispersion relation for ζ0 ¼ ξ0 ¼ 0. It shows kinetic theory as a full line, DTT as a dashed line and Grad’s approximation as a
dot-dash-dotted line.

FIG. 7. τkmax as a function of ζ0 ¼ ξ0. It shows kinetic theory as a full line, DTT as a dashed line and Grad’s approximation as a dot-
dash-dotted line. τkmax axis in logarithmic scale.
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hand, we show a definite way whereby a fully nonlinear
hydrodynamics may be derived from kinetic theory in a
systematic way.
Of course this is not the only strategy that is being tried

out [68]. The best known is simply to go to higher orders
within the Chapman-Enskog or Grad approaches, as in the
so-called Burnett’s equations [69]; the second order
approximation is discussed in [70–73]. These models
very soon become extremely complex, which may
become an issue if we consider that the kind of problems
we have discussed in this paper are already an over-
simplification of the problems we really want to study, and

which include gauge and possibly the gravitational field
as well.
A promising strategy is to duplicate the Grad approach

but taking as zeroth order an already nonequilibrium state,
as in the so-called anisotropic hydrodynamics [12,74,75].
To the best of our knowledge this approach has been tried
so far only in highly symmetric configurations [76–78], so
it is unclear what hurdles it could encounter in realistic
scenarios.
In our view, the DTT framework we are advocating has

two distinctive advantages. First, it enforces energy-
momentum conservation and the second law in a rigorous

FIG. 9. Dispersion relation for different ζ0 ¼ ξ0 values. It shows kinetic theory as a full line, DTT as a dashed line and Grad’s
approximation as a dot-dash-dotted line.

FIG. 10. Dispersion relation in a neighborhood of Grad’s instability. It shows kinetic theory as a full line, DTT as a dashed line and
Grad’s approximation (where ξ0 ¼ ζ0) as a dot-dash-dotted line.
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way, contrary to “second order” theories in which it is
enforced only to second order. In typical “second order”
theories (see however [79,80]), the entropy production, as
computed from the entropy flux and the hydrodynamic
equations, is nonnegative only if terms of order higher than
second are neglected [35]. In a DTT, the same procedure
yields an strictly nonnegative expression to all orders in
deviation from ideal behavior. Second, it can describe
situations far from equilibrium without the addition of other
degrees of freedom than those already present in Tμν; this
puts a limit on how complex the theory may become,
although of course it will never be as simple and compel-
ling as the hydrodynamics of ideal fluids. Moreover, having
a fully consistent theory to begin with gives one a solid
framework whereby one can discuss simplifications in a
systematic way (by contrast, observe that the Eckart
expansion is known not to be convergent [81,82]). It could
well be that the main value of the theory we have developed
in this paper is that it exists, rather than its actual
applications.
In last analysis, to be able to compare several alternative

formalisms will be a definite asset for the community as we
enter in this largely uncharted territory.

ACKNOWLEDGMENTS

Work supported in part by CONICET and University of
Buenos Aires. It is a pleasure to thank R. Ferraro, A.
Jaiswal, A. Kandus, F. Lombardo, P. Mininni, N. Mirón y
C. Vega for discussions.

APPENDIX A: STABILITY IN CONFORMAL
HYDRODYNAMICS

We wish to provide a general template for the dis-
cussion of stability against incompressible perturbations
in conformal hydrodynamical theories, where the funda-
mental equations are energy-momentum conservation
and a new conservation law of type Eq. (24) for some
totally symmetric (and traceless on any pair of indexes)
tensor Aμνρ. Following Israel and Stewart [38], we call a
hydrodynamical theory one where the fundamental
degrees of freedom are in one-to-one correspondence
with the components of the energy-momentum tensor,
at least in a neighborhood of the equilibrium states.
Therefore, since we are restricting ourselves to conformal
theories, the fundamental degrees of freedom can be
chosen as a single dimensionful scalar T (which becomes
the temperature in equilibrium states), the Landau-Lifshitz
velocity uμ and a dimensionless, symmetric, traceless and
transverse tensor Zμν. Since Zμν is transverse, we cannot
build new tensors by contracting it with uμ; the only other
linearly independent transverse traceless tensor in the
theory is Ẑμν ¼ Z2μν − ð1=3ÞtrZ2Δμν. It follows that we
have the decomposition

Tμν ¼ T4

�
AT

�
uμuν þ 1

3
Δμν

�
þ BZμν þ B0Ẑμν

�

Aμνρ ¼ T5

�
AA

�
uμuνuρ þ 1

3
ðΔμνuρ þ Δνρuμ þ ΔρμuνÞ

�
þ CðZμνuρ þ Zνρuμ þ ZρμuνÞ

þ C0ðẐμνuρ þ Ẑνρuμ þ ẐρμuνÞ
�

Iμν ¼ T6fDZμν þD0Ẑμνg: ðA1Þ

The scalars AT , AA, B, C, D, B0, C0 and D0 are functions of
Zμν through invariants such as trZ2 and trZ3.
We consider linear perturbations to an homogeneous

anisotropic background. This means quantity X becomes
X ¼ Xbackground þ δXestþikz. In the background uμ ¼ δ0μ

and Zμν ¼ diagð0; Z0; Z0;−2Z0Þ (trZ2 ¼ 6Z2
0). The only

perturbed component of the velocity is δu1 ¼ v. The
perturbed components of Zμν are δZ13 ¼ δZ31 ¼ z and
δZ01 ¼ δZ10 ¼ Z0v, as demanded by transversality. It fol-
lows that δẐ13 ¼ δẐ31 ¼ −Z0z and δẐ01 ¼ δẐ10 ¼ −Z2

0v,
all other zero. T and all the invariants constructed from Zμν

are unchanged. The relevant equations of motion

sδT01 þ ikδT31 ¼ 0

sδA031 þ ikδA331 ¼ δI31 ðA2Þ

become

s

�
4

3
AT þ ðB − B0Z0ÞZ0

�
vþ ikðB − B0Z0Þz ¼ 0

× sðC − C0Z0Þzþ ik

�
1

3
AA − 2ðC − C0Z0ÞZ0

�
v

¼ TðD −D0Z0Þz ðA3Þ

leading to the dispersion relation [compare to Eqs. (106)
and (116)]

τs ¼ −1
2

n
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Ωðτ2k2Þ

q o
ðA4Þ

where

τ ¼ −ðC − C0Z0Þ
TðD −D0Z0Þ

Ω ¼ ðB − B0Z0Þ½13AA − 2ðC − C0Z0ÞZ0�
ðC − C0Z0Þ½43AT þ ðB − B0Z0ÞZ0�

: ðA5Þ

If τ < 0 the theory is always unstable for long wavelengths,
which is clearly unphysical. If τ > 0, the theory becomes
unstable for short wavelengths ifΩ < 0. So stability requires
both τ > 0 and Ω > 0.
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However this condition cannot be met if we force Tμν

and Aμνρ to be linear functions of Zμν. This amounts to
defining B0 ¼ C0 ¼ D0 ¼ 0 and AT , AA, B, C and D to be
constants. Moreover stability at equilibrium implies that
ΩðZ0 ¼ 0Þ ¼ BAA=4CAT > 0, so C=AA and B=AT must
have the same sign. Therefore Ω becomes a rational
function which cannot be nonnegative everywhere. This
is what happens in the Grad theory, where, after identifying
Z0 ¼ ξ0, we obtain AT ¼ σSB, B=AT ¼ 4=15 and
C=AA ¼ 1=3. Ω ¼ ΩGrad is given by Eq. (117), which is
clearly negative for ξ0 > 1=2.
In the DTT, on the other hand, we have Z0 ¼ ζ0 and

Ω ¼ ΩDTT given by Eq. (107), which as we have seen is
indeed positive for ζ0 > 0.
We show both ΩDTT and ΩGrad as functions of ζ0 ¼ ξ0 in

Fig. 11. Both start from a positive value at ζ0 ¼ 0 with a
negative slope, but while ΩGrad is monotonous and even-
tually reaches the asymptotic value of −2,ΩDTT changes its
tendency and remains positive for all ζ0 > 0. This underlies
that the instability of the equations from the Grad approxi-
mation is an artifact of the linearization of Tμν and Aμνρ

with respect to ξμν.

APPENDIX B: EXTENSION TO
MAXWELL-JÜTTNER AND

BOSE-EINSTEIN STATISTICS

In this appendix wewill show that the same regularization
and renormalization procedure we have applied to Fermi-
Dirac (FD) particles may be used for particles obeying
Maxwell-Jüttner (MJ) or Bose-Einstein (BE) statistics.
Our starting point is the observation that all three statistics
may be obtained as particular cases of theories described by
the family of one-particle distribution functions

faðp; θÞ ¼
1

ep−ζ0p
2ð1−3 cos2 θÞ þ e−a

; ðB1Þ
where a ¼ 0 for FD, a → ∞ yields MJ and a ¼ �iπ gives
BE. The idea is to obtain the expectation value of some
function gðp; θÞ (as in the main text) as a function of a for a
real and positive, and then try and extend the result to theMJ
and BE cases. We only consider case I above [cf. Eq. (34)]

I1a½g� ¼
Z

∞

0

dp
Z

π=2

0

dθgðp; θÞfaðp; θÞ: ðB2Þ

As in the main text, we start by dividing the I1a integral
in θ0 ¼ cos−1 ð1= ffiffiffi

3
p Þ,

I1a½g� ¼ I<1a½g� þ I>1a½g�

≐
Z

∞

0

dp
Z

θ0

0

dθgðp; θÞfaðp; θÞ

þ
Z

∞

0

dp
Z

π=2

θ0

dθgðp; θÞfaðp; θÞ: ðB3Þ

I<1a is well defined in all three cases and will be left as is. To
study the I>1a term, define a function G as in the main text
[Eq. (38)] and integrate by parts to obtain

I>1a ¼
Z

∞

0

dp
Gðp; θ0Þ
ep þ e−a

þ 3

2
ζ0ea

Z
∞

0

dp
Z

π=2

θ0

dθp2Gðp; θÞ

×
cos θ sin θ

cosh2½ðpþ aÞ=2 − ζ0p2ð1 − 3cos2θÞ=2� : ðB4Þ

It is evident that the first term is finite in all three cases.
Let us call the second term KZa. By using the sum of
arguments relation of the hyperbolic cosine and realizing it
could be written as a partial derivative, it is possible to
rewrite KZa as

KZa

¼ ea
Z

∞

0

dp
Z

π=2

θ0

dθ
Gðp;θÞ

sinhðpþaÞ

×
∂
∂θ

�
1

1− tanhððpþaÞ=2Þ tanh ½ζ0p2ð1−3cos2θÞ=2�
�
:

ðB5Þ

FIG. 11. Ω for both Grad and DTT. Logarithmic ζ0 axis on the left and zoom on the sign change interval on the right.
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Performing another integration by parts and defining the
auxiliary function

Kaðζ0Þ

≐
Z

∞

0

dp
Z

π=2

θ0

dθ
gðp; θÞ

sinh ðpþ aÞ
×

1

1 − tanh ððpþ aÞ=2Þ tanh ½ζ0p2ð1 − 3cos2θÞ=2� ;

ðB6Þ

we arrive at the final expression for KZa,

KZa ¼ eaKað0Þ
�
Kaðζ0Þ
Kað0Þ

− 1

�
: ðB7Þ

The key here is to identify the ratio in Eq. (B7) as the mean
value

Uaðζ0Þ ≐ Kaðζ0Þ
Kað0Þ

¼
	

1

1 − u



¼

Z
du

F1aðuÞ
1 − u

; ðB8Þ

where F1a is a probability density function defined as

F1aðuÞ ≐ 1

Kað0Þ
Z

∞

0

dp
Z

π=2

θ0

dθ
gðp; θÞ

sinhðpþ aÞ
× δ½tanhððpþ aÞ=2Þ
× tanh½ζ0p2ð1 − 3cos2θÞ=2� − u�: ðB9Þ

We leave open the range of u. As in the main text we
replace Ua by its Cauchy principal value,

Uaðζ0Þ → UaPVðζ0Þ ¼ Re

�
PV

Z
du

F1aðuÞ
1 − u

�
: ðB10Þ

The idea is to approximate F1a by a Gaussian, for which we
need the mean values huia and hu2ia

huia ¼
1

2Kað0Þ
Z

∞

0

dp
Z

π=2

θ0

dθ
gðp; θÞ

cosh2ððpþ aÞ=2Þ
× tanh ½ζ0p2ð1 − 3cos2θÞ=2� ðB11Þ

and

hu2ia ¼
1

2Kað0Þ
Z

∞

0

dp
Z

π=2

θ0

dθ
gðp; θÞ

cosh2ððpþ aÞ=2Þ
× tanh ððpþ aÞ=2Þtanh2½ζ0p2ð1 − 3cos2θÞ=2�:

ðB12Þ

The limit a → ∞ is not problematic. If a ¼ �iπ we have
the identities

sinh ðp� iπÞ ¼ − sinhp

cosh ðp� iπÞ ¼ − coshp

sinh ððp� iπÞ=2Þ ¼ �i coshp=2

cosh ððp� iπÞ=2Þ ¼ �i sinhp=2

tanh ððp� iπÞ=2Þ ¼ ½tanhp=2�−1: ðB13Þ

Again, the relevant expectation values are well defined.
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