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Worldline holography states that within the framework of the worldline approach to quantum field
theory sources of a quantum field theory over Mink4 naturally form a field theory over AdS5 to all orders in
the elementary fields and in the sources of arbitrary spin. (Such correspondences are also available for other
pairs of spacetimes, not only Mink4 ↔ AdS5.) Schwinger’s proper time of the worldline formalism is
automatically grouped with the physical four spacetime dimensions into an AdS5 geometry. We show that
the worldline holographic effective action in general and the proper-time profiles of the sources in particular
solve a renormalization group equation and, reversely, can be defined as solution to the latter. This fact also
ensures regulator independence.
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I. INTRODUCTION

Strong interactions are behind a wealth of phenomena
but oftentimes beyond our computational abilities.
Holographic approaches promise analytic insight and have
been applied, for example, to QCD [1–3], extensions of the
Standard Model [4,5], condensed-matter physics [6], and
the Schwinger effect [7–9]. Holography takes off from the
conjectured AdS=CFT correspondence [10–12]. All exam-
ples of this correspondence found since, however, hold for
theories with a set of symmetries that are not found in
nature and that posses a particle content different from
QCD. As a result, in practice, one considers deformed
bottom-up AdS/QCD descriptions, which describe the
QCD hadron spectrum rather well [1,13]. Still, they lack
a derivation from first principles. As a consequence, it is
very important to comprehend under which circumstances
and for which reasons these models represent an acceptable
approximation and which features are robust. For some
approaches to these questions, see Refs. [14–16].
In this context, Refs. [9,17–19] demonstrated how a

quantum field theory over Mink4 readily turns into a field
theory for its sources over AdS5 in the framework of the
worldline formalism [20,21] for quantum field theory.
Schwinger’s proper time naturally becomes the fifth dimen-
sion of an AdS5 geometry. This result also extends to
different pairs of spacetimes including the nonrelativistic
case. Reference [18] showed that such an AdS5 formulation
arises to all orders in the elementary fields—matter and
gauge. Schwinger’s proper time represents a length scale
(inverse energy scale), which is also the interpretation of the
extra dimension in holography [1–3,11,12]. Handling UV
divergences of a theory necessitates regularization, which in
the worldline formalism is customarily taken care of by
proper-time regularization, the introduction of a positive
lower bound on the proper time. The proper-time regulari-
zation corresponds to the UV-brane regularization in holog-
raphy [1–3,11,12]. The worldline holographic framework

ensures the independence of physical predictions of the
unphysical value of this cutoff parameter, which identifies
worldline holography as a renormalization group flow.
This central statement of the present paper is treated in

Sec. III. Before that, in Sec. II, building on Ref. [18], we
reiterate how exactly a quantum field theory over Mink4
reorganizes into a field theory for its sources over AdS5 to all
orders in the elementary fields as well as the sources and
with Schwinger’s proper time of the worldline formalism as
the fifth dimension. After that, in Sec. III B, we analyze
some examples in the free case. First, in Sec. III B 1,we study
the holographic renormalization of QED. Subsequently, in
Sec. III B 2, we turn to general higher-spin sources.
Particularly, we show that the AdS5 geometry is self-
consistent. The penultimate section provides a short sum-
mary. We conclude with a discussion and outlook in Sec. V.

II. WORLDLINE HOLOGRAPHY

In order to display the essence of the program, we begin
with one massless scalar.1 flavor and a vector source V
combined with the gauge field G in the “covariant
derivative” D ¼ ∂ − iV , where V ¼ Gþ V. Thus, to all
orders, the generating functional for vector correlators
reads

Z ¼hewi ¼
Z

½dG�ew− i
4e2

R
d4xG2

μν ; ð1Þ

where

w ¼ −
1

2
Tr lnD2: ð2Þ

1Nothing obstructs the treatment of elementary matter with
spin, but, for the sake of simplicity and clarity, here we limit
ourselves to spinless elementary matter. Results for fermionic
matter are presented elsewhere [22,23].
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In the worldline formalism2 [20,21] after a Wick rotation, w
is given by [9,17,19]

w ¼
Z

d4x0

Z
∞

ε>0

dT
2T3

L≡
ZZ

∞

ε
d5x

ffiffiffi
g

p
L; ð3Þ

L ¼ 2N
ð4πÞ2

Z
P
½dy�e−

R
T

0
dτ½_y2

4
þi_y·Vðx0þyÞ�; ð4Þ

with the five-dimensional metric g,

ds2 ¼ gMNdxMdxN ¼ þ dT2

4T2
þ dx0 · dx0

T
; ð5Þ

and the square root of the absolute of its determinant
ffiffiffi
g

p
.3

The symbol · represents the contraction with the flat four-
dimensional metric ημν, Wick rotated from mostly plus to
all plus, which, simultaneously, turns Eq. (5) from an
AdS4;1 (frequently simply referred to as AdS5; the indices
indicate the metric signature) to an AdS5;0 (also referred to
as H5 or EAdS5) line element. The isometries of the five-
dimensional AdS space are the symmetries of the con-
formal group of the corresponding four-dimensional flat
space. T stands for Schwinger’s proper time. A factor of
T−1 in the volume element arises from exponentiating the
logarithm in Eq. (2), another factor of T−2 from taking the
trace. The Lagrangian density L is made up of a the path
integral over all closed paths over the proper-time interval
½0;T�, i.e., with yð0Þ ¼ yðTÞ. The d4x0 integral translates
these paths to every position in space, x≡ yþ x0. (The
translations are the zero modes of the kinetic operator ∂2

τ.
_y≡ ∂τy. Splitting them off from the rest of the path integral
also makes momentum conservation manifest.)4 Inspection

of the free part of the worldline action
R
T
0 dτ ð∂τyÞ2

4
¼R

1
0 dτ̂ ð∂ τ̂yÞ2

4T , where τ̂ ¼ τ=T, shows that small values of T
correspond to short relative distances, i.e., to the UV
regime. Thus, the proper-time regularization T ≥ ε > 0
(introduced when exponentiating the logarithm 4) is a UV
regularization and corresponds to the UV-brane regulari-
zation in holography [1–3].

A. Volume elements

Thus, in the worldline formalism, w falls readily into the
form of an action (3) over AdS5. ew, however, contains all
powers of w. Building on the discussion in Ref. [18], for the
nth power,

wn ¼
Yn
j¼1

Z
d4xj

Z
∞

ε

dTj

2T3
j
Lðxj; TjÞ: ð6Þ

The free part again only depends on the relative positions,
and we split off a common absolute coordinate
x0 ¼ x0ðfxjgÞ, which can be any linear combination of
the xj, e.g., the center of mass 1

n

P
n
j¼1 xj. There remain

integrations over n − 1 four-dimensional relative coordi-
nates, d4ðn−1ÞΔ,

Z Yn
j¼1

d4xj¼
Z Yn

j¼1

d4xj

Z
d4x0δð4Þ½x0−x0ðfxkgÞ� ð7Þ

¼
Z

d4x0

Z �Yn
j¼1

d4xj

�
δð4Þ½x0−x0ðfxkgÞ� ð8Þ

¼
Z

d4x0

Z
d4ðn−1ÞΔ: ð9Þ

Analogously, we introduce an overall proper time T ¼
TðfTjgÞ and proper-time fractions tj ¼ Tj=T using

1 ¼
Z

dTδ½T −TðfTjgÞ�
Yn
j¼1

�Z
dtjδ

�
tj −

Tj

T

��
: ð10Þ

Also here, there exists a continuum of choices for the
overall proper time T, all of which allow us to come to the
same conclusion below. Introducing additional dimension-
ful scales would be artificial. In their absence, on dimen-
sional grounds, always TðfTjgÞ ¼ T ×TðftjgÞ. A
definition invariant under the pairwise exchange of the
Tj makes the corresponding symmetry of wn manifest from
the start. The arguably simplest choice with these character-
istics would be T ¼ P

n
j¼1 Tj. In any case, physics is

invariant under any invertible change of variables.
Equation (10) implies

Yn
j¼1

Z
∞

ε

dTj

2T3
j
¼
Z

dT
Yn
j¼1

�Z
∞

ε

dTj

2T3
j

Z
dtjδ

�
tj−

Tj

T

��

×δ½T−TðfTlgÞ� ð11Þ

¼
Z

dT
2T3

T−2ðn−1Þ
Z

∞

ε
T

�Yn
j¼1

dtj
2t3j

�

× 2δ½1 −TðftlgÞ�: ð12Þ

Putting everything together,

2Particle-wave duality. The worldline representation (3) of the
functional determinant (2) can actually be seen as the particle
dual of the determinant’s wave(-function or field) representation
as Feynman functional integral

w ¼ ln
Z

½dϕ�½dϕ†�ei
R

d4xϕ†D2ϕ.

3This emergent metric is linked to the metric

ds2 ¼ ðdz2 þ dx0 · dx0Þ=z2
oftentimes used in holography and found, for example, in
Refs. [1,2] by T ¼ z2.

4For details and more intermediate steps, please see
Refs. [17,18,21].
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wn ¼
Z

d4x0

Z
dT
2T3

Z
d4ðn−1ÞΔ
T2ðn−1Þ

Z
∞

ε
T

�Yn
j¼1

dtj
2t3j

× Lðx0 þ xj − x0; TtjÞ
�
2δ½1 −TðftlgÞ� ð13Þ

¼
Z

d4x0

Z
dT
2T3

Z
d4ðn−1ÞΔ̂

Z
∞

ε
T

�Yn
j¼1

dtj
2t3j

× Lðx0 þ dxj − x0
ffiffiffiffi
T

p
; TtjÞ�2δ½1 −TðftlgÞ�; ð14Þ

where xj − x0 in the argument of Lj depends only on the
relative coordinatesΔ and not the absolute coordinate x0. In
the last step, we introduced dimensionless relative coor-
dinates Δ̂ ¼ Δ=

ffiffiffiffi
T

p
. This demonstrates that every power wn

takes the form of a Lagrangian density integrated
over AdS5.

B. Contractions

It remains to be shown that all spacetime indices are
contracted with AdS metrics. Expressing the vector V in
Lðxj; TjÞ in terms of dimensionless variables, dxj − x0 as
well as ŷj ¼ yj=

ffiffiffiffiffi
Tj

p ¼ yj=
ffiffiffiffiffiffiffi
Ttj

p
, and with the help of a

translation operator,

Vðyj þ xjÞ ¼ Vðyj þ xj − x0 þ x0Þ ð15Þ

¼ V
h ffiffiffiffi

T
p �

ŷj
ffiffiffiffi
tj

p þ dxj − x0
�
þ x0

i
ð16Þ

¼ e
ffiffiffi
T

p ðŷj
ffiffiffi
tj

p þ ˆxj−x0Þ·∂x0Vðx0Þ; ð17Þ

we obtain from Eq. (4)

Lðxj; TjÞ ¼
2N
ð4πÞ2

Z
P
½dyj�e−

R
T

0
dτ½_y24þi_y·VðyjþxjÞ� ð18Þ

¼ 2N̂
ð4πÞ2

Z
P
½dŷj�exp

	
−
Z

1

0

dτ̂j

�ð∂ τ̂j ŷjÞ2
4

þ i
ffiffiffiffiffiffiffi
tjT

p ð∂ τ̂j ŷjÞ · e
ffiffiffi
T

p � ffiffiffi
tj

p
ŷjþdxj−x0�·∂x0Vðx0Þ

�

;

ð19Þ
where we also use the dimensionless integration variable
τ̂j ¼ τj=Tj ¼ τj=ðTtjÞ. This expression shows that every
gradient ∂x0 and every field V , i.e., every four-dimensional
spacetime index, is accompanied by one power of

ffiffiffiffi
T

p
.

The same holds still after integrating out the gauge field
G. To see this, we split theWilson line for V into one for the
sources V and one for the gauge fields G,

ei
H

dx·V ¼ ei
H

dx·Vei
H

dx·G: ð20Þ

This is possible because the sources V are gauge singlets
and the gauge fields G are flavor singlets and commute as a
consequence. Then, with the definition of the gauge-field
average from Eq. (1),�Yn

j¼1

Lj

�
¼

�
2N̂
ð4πÞ2

�
nYn
j¼1

Z
P
½dŷj� exp

	
−
Z

1

0

dτ̂j

�ð∂ τ̂j ŷjÞ2
4

þ i
ffiffiffiffiffiffiffi
tjT

p ð∂ τ̂j ŷjÞ · e
ffiffiffi
T

p ð ffiffiffi
tj

p
ŷjþ ˆxj−x0Þ·∂x0Vðx0Þ

�


×

�Yn
l¼1

ei
H

dyl·GðxlþylÞ
�
: ð21Þ

In the factor on the last line, G is integrated out. Said factor
is invariant under reparametrizations of the Wilson line as
well as of four-dimensional translations. As a consequence,
it is independent of the value of T as well as from x0.
Hence, it only depends on the four-dimensional relative
coordinates. Additionally, the factor is a scalar and as such
can only depend on the combinations (∀l; j)

ημνðyj þ xj − x0Þμðyl þ xl − x0Þν
¼ Tημνð ffiffiffiffi

tj
p

ŷj þ dxj − x0Þμð
ffiffiffi
tl

p
ŷl þ dxl − x0Þν: ð22Þ

Taking stock, the powers of
ffiffiffiffi
T

p
stay (only) with every

∂x0 and V. Thus, after the ½dŷ� integrations, the result can
only contain the combinations TημνVμVν, TημνVμ∂ν, and
Tημν∂μ∂ν, which combine into gμνVμVν, gμνVμ∂ν, and
gμν∂μ∂ν, respectively5 Consequently, Eq. (1) can be
expressed as an action over AdS5 for its sources to all
orders and to all orders in the elementary fields.

III. THE FIFTH DIMENSION

Previously, Refs. [9,17,18] identified the fifth compo-
nents of gradients and fields as arising from an induced
Wilson (gradient) flow and determined by a variational
principle. Here, we show that the identical result is obtained
by imposing the independence of the effective action of the
ultraviolet proper-time regulator ε. Ultimately, this amounts
to a Wilson-Polchinski renormalization condition.
Taking into account the above findings, organized in an

expansion with respect to gradients and sources, Eq. (1) can
be expressed as

Zε ¼
Z

d4x0

Z
∞

ε
dT

ffiffiffi
g

p

×
X
n∂ ;nV

#n∂ ;nV ðg∘∘Þ
n∂þnV

2 ð∂∘Þn∂ ½V∘ðx0Þ�nV : ð23Þ

There are only contributions from n∂ þ nV even. The #n∂ ;nV
are dimensionless numerical coefficients obtained after
integrating out all proper-time fractions tj and τ̂j as well
as dimensionless relative coordinates Δ̂. The indices ∘

5The derivatives always act on some source V.
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indicate that the contractions with the five-dimensional
(inverse) metric g are only executed in four dimensions.
(The addends in the previous expression symbolize the
occurring combinations of contractions. Also, not all the
derivatives act on all the sources.)
This expression contains the proper-time regulator ε > 0,

the value of which possesses a priori no physical meaning.
As a consequence, Zε must not depend on the value of ε,

i.e., Zεold ¼
! Zεnew for εold ≠ εnew. To study the consequences

of this requirement, let us try to undo the change εold →
εnew in

Zεnew ¼
Z

d4x0

Z
∞

εnew

dT
2T3

×
X
n∂ ;nV

#n∂ ;nV ðTη∘∘Þ
n∂þnV

2 ð∂∘Þn∂ ½V∘ðx0Þ�nV : ð24Þ

(This is to be accomplished for all configurations V.
Therefore, the independence must be enforced order by
order, i.e., ∀n∂ ; nV separately.) To this end, we need to
change the integrationboundwithout changing the integrand.
A global rescaling of the integration variables,

T → cTT as well as x0 → cxx0 ð25Þ
and consequently

∂x0 → c−1x ∂x0 ; ð26Þ
leads to

Zεnew ¼
Z

d4x0

Z
∞

cTεnew

dT
2T3

×
X
n∂ ;nV

#n∂ ;nV c
4−n∂
x c

n∂þnV
2

−2
T ðTη∘∘Þn∂þnV

2 ð∂∘Þn∂½V∘ðx0Þ�nV :

ð27Þ

Restoring the original integration bound requires cT ¼
εold=εnew. Independence from n∂ necessitates cx ¼ c1=2T ,
which also takes care of the n∂-independent factors from
the integration measure. Independence from nV can only
be obtained by also rescaling V → c−1x V, i.e., like the
partial derivative.6 Thus, regulator independence of Zε can
be achieved,

Zεnew ¼
Z

d4x0

Z
∞

εold

dT
2T3

×
X
n∂ ;nV

#n∂ ;nV ðTη∘∘Þ
n∂þnV

2 ð∂∘Þn∂ ½V∘ðx0; εoldÞ�nV ; ð28Þ

but the source V must rescale as well and thus depend on
the value of the regulator, which is a fifth-dimensional
quantity;

εoldVðx0; εoldÞ ¼ εnewVðx0; εnewÞ: ð29Þ

A. Using AdS isometries

Given that we had already recognized that Z takes the
form of an action over AdS5 [9,17–19] and that the
isometries of AdS5 coincide with the conformal group
over Mink4, which includes the invariance under scale
transformations, the above approach is rather pedestrian.
Introducing the aforementioned missing ingredients of
fifth-dimensional gradients and components into Eq. (23)
completes the field theory over AdS5, which then features
all the isometries of that spacetime.
In the four-dimensional theory, however, there were no

fifth-dimensional polarizations. To be allowed to omit
them, VT ¼ 0 must be an admissible gauge condition.
That means the extension to five dimensions must
feature five-dimensional local invariance under the flavor
group. Because of the previously present four-dimensional
invariance, this is achieved by7,8

Z ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p X
n∂ ;nV

#n∂ ;nV ðg••Þ
n∂þnV

2 ð∇•Þn∂ ½V•ðx0; TÞ�nV ;

ð30Þ

where the indices • indicate the full five-dimensional
contraction, and ∇ represents the AdS covariant derivative.
Equation (30) does not depend on the value of ε if Vðx0; TÞ
transforms like a five-dimensional vector. (We would like
to point out that we did not include an explicit dependence
on ε in V.) If we impose the VT ¼ 0 gauge already at the
level of the action, the desired scale invariance is still
manifest, as scale transformations do not mix tensor
components, while the special conformal transformations
do. The full invariance, however, is still present modulo a
subsequent local flavor transformation.
In this section, we discuss the example of a theory with

classical scale invariance, where the five-dimensional
completion of Z yields a scale-invariant Z. For theories

6The interaction part in Eq. (4), e−i
H

dy·V , being a Wilson loop,
is manifestly locally invariant under the transformation Vμ →
Ω½Vμ þ iΩ†ð∂μΩÞ�Ω†, which entails hidden local symmetry [24].
Therefore, an alternative expression only using covariant deriv-
atives is also available [25,26],

Z ¼
ZZ

∞

ε

d5x
ffiffiffi
g

p X
n

#nðg∘∘ÞnðD∘Þ2n;

where D ¼ ∂ − iV. This corroborates why V must scale like
the partial derivative. Moreover, the proper-time regularization
keeps this symmetry manifest, at variance with a momentum
cutoff.

7This is even more clear cut in the representation given in
footnote 6, in which one would replace all flavor covariant
derivatives by flavor and generally covariant derivatives.

8We have chosen the notation ∬∞
ε
d5x

ffiffiffi
g

p
to be able to collect

all pieces of the measure in one piece, while preserving the
information on the integration bounds of T.
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that depend on one or several intrinsic scales, Z will
depend on as many scales as before the introduction of the
regulator. We get back to this point at the end of Sec. III C.
As it stands, Z is merely a functional of arbitrary source

configurations V. The true meaning of an action for its field
theory is through the configuration (or configurations) it
distinguishes as saddle points, V̆. The boundary condition

V̆μðx0; T ¼ εÞ ¼ Vμðx0Þ ð31Þ
communicates the four-dimensional polarizations to the
five-dimensional field V and gives it the same normaliza-
tion like V, i.e., as the source for once the vector current. It
is also consistent with the previous findings in the context
of worldline holography [9,17,18] that the worldline
expressions satisfy a Wilson (gradient) flow equation with
this boundary condition.
Accordingly, we must evaluate Z on the saddle-point

configuration in the V̆T ¼ 0 gauge,

Z̆ ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p X
n∂ ;nV

#n∂ ;nV ðg••Þ
n∂þnV

2 ð∇•Þn∂ ½V̆∘ðx0; TÞ�nV :

ð32Þ
Equation (31) also puts the bare source configuration at

the ultraviolet end of the fifth dimension (in the previously
discussed sense that small values of T correspond to short
four-dimensional distances). This fact together with the
requirement that the effective action be independent from
the value of the unphysical UV regulator ε, which can also
be expressed in differential form,

ε∂ε lnZε ¼! 0; ð33Þ
makes this a Wilson-Polchinski renormalization condi-
tion [27].
Finally, this is also the boundary condition imposed in

holography [1–3,11,12]: the effective action for the four-
dimensional side of the holographic duality is described
by the five-dimensional action evaluated on its saddle
point. Worldline holography identifies Schwinger’s proper
time with the fifth dimension [9,17–19] and the fifth-
dimensional profile of the sources as solution to the
renormalization group equation (33).

B. Free case

To flesh out the formalism presented above, we analyze
the free case here. It is obtained from Eq. (1) by switching
off the coupling to the gauge bosonsG. Consequently, here,
it is sufficient to study w with V ¼ V.9

1. Holographic one-loop renormalization of scalar QED

When identifying the vector sourceV with a (background)
gauge field, w is the QED one-loop effective action. The
(logarithmically) UV-divergent piece is given by

Zε ¼ #2;2

ZZ
∞

ε
d5x

ffiffiffi
g

p
gμκgνλVμνVκλ; ð34Þ

whereVμν stands for the (here Abelian) field-strength tensor.
(The logarithmic divergence arises in the dT integration,
where there is a factor of T−3 from the volume element and
two factors of T, one from each metric gμν.) For the
contribution from Nf × Nc scalar quarks to QED,

#2;2 ¼
1

2!

1

6

2NfNc

ð4πÞ2 : ð35Þ

Here, the ð4πÞ−2 part of the normalization, already present in
Eq. (4), arises from taking the trace in (2), 1

2!
is due to the

Taylor expansion of theWilson line to the second order in the
source V, and 1

6
is the result of carrying out the ½dy� path

integral as well as the dτ̂j integrations after expanding the
sources to second order in four-gradients. For details, see
Eqs. (52)–(59) for L ¼ 1 in the following subsection. As
explained in the last section, the independence from the
unphysical value of the regulator ε can be achieved by
reconstructing the full five-dimensional expression

Z ¼ #2;2

ZZ
∞

ε
d5x

ffiffiffi
g

p
gMKgNLVMNVKL; ð36Þ

where capital indices are summed over all five dimensions.
The corresponding classical equations of motion read

gNL∇NV̆KLðx0; TÞ ¼ 0: ð37Þ

Imposing the axial gauge V̆T ¼ 0 automatically implies the
Lorenz gauge ∂ · V̆ ¼ 0. For the transverse components, this
means in four-dimensional (4D) momentum space

�
∂2
T −

p2

4T

�
~̆V
⊥ðp; TÞ ¼ 0: ð38Þ

The Fourier transformed boundary condition (31),

~̆Vμðp; T ¼ εÞ ¼ ~VμðpÞ; ð39Þ

identifies p with the 4-momentum of the source. The
normalizable solution involves Bessel’s K (see Eq. 9.6.1.
et seq. in Ref. [32]),

~̆V
⊥ ¼ ~V⊥ðpÞ

ffiffiffiffiffiffiffiffi
p2T

p
K1

� ffiffiffiffiffiffiffiffi
p2T

p �
ffiffiffiffiffiffiffiffi
p2ε

p
K1

� ffiffiffiffiffiffiffiffi
p2ε

p � ; ð40Þ
9Based on the observation that at low energies the contribu-

tions with the lowest number of exchanged gauge bosons
dominate [28–31], these are the kinematically dominant diagrams
in that regime.
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for which according to Eqs. 9.6.28 in Ref. [32]

∂T
~̆V
⊥ ¼ ~V⊥ðpÞ

p2K0

� ffiffiffiffiffiffiffiffi
p2T

p �
=2ffiffiffiffiffiffiffiffi

p2ε
p

K1

� ffiffiffiffiffiffiffiffi
p2ε

p � : ð41Þ

Next, we have to put this solution back into the action
(36) after Fourier transforming it (or, alternatively, we have
to transform the solution). Being purely quadratic, Z on the
saddle point amounts to a surface term,

Z̆ ¼ 4#2;2

Z
d4x0ηνλ½V̆⊥

ν ∂T V̆
⊥
λ �∞ε ð42Þ

¼ 4#2;2

Z
d4p
ð2πÞ4 η

νλ½ ~̆V⊥
ν ∂T

~̆V
⊥�
λ �∞ε ; ð43Þ

where ⊥ indicates that only 4D transverse components
contribute, and � stands for the complex conjugate.
Consequently, using Eq. 9.6.13. from Ref. [32],

Z̆ ¼ − 2#2;2

Z
d4p
ð2πÞ4 η

νλ ~V⊥
ν
~V⊥�
λ p2K0

� ffiffiffiffiffiffiffiffi
p2ε

p �
ð44Þ

¼ #2;2

Z
d4p
ð2πÞ4 η

νλ ~V⊥
ν
~V⊥�
λ p2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼̂j ~Vμνj2=2

flnðp2εÞ þO½ðp2εÞ0�g:

ð45Þ
Comparing the UV-divergent contributions to the prefactor
of the kinetic term −ð4e2Þ−1 (in our conventions, e is
contained in V),

1

4
β1 lnðp2εÞ¼! 1

2
#2;2 lnðp2εÞ ⇒ β1 ¼

NfNc

48π2
; ð46Þ

which is the known β-function coefficient for the normali-
zation adopted here,

β1 ¼
1

e3
de

d ln μ
¼ −

de−2

d ln μ2
: ð47Þ

The computation for fermionic elementary matter pro-
ceeds in strict analogy, yielding a value for #2;2 that differs
by a factor of 4, thus reproducing the corresponding
fermionic contribution to the β-function coefficient.10

We never required that ε be small. [In Eq. (45), we
merely presented the behavior of Z̆ for if it were small.]
Originally, ε was introduced to regularize the UV diver-
gence of Z. Hence, at that point, we had in mind to remove
the regulator at the end of the computation by sending it to

zero in a controlled manner. At finite ε, the renormalization
condition (33) ascribes the meaning of a scale to ε. If we
wanted to keep ε in its original role, we could introduce
counterterms for the divergent piece(s). For Eq. (45), for
example,

Z̆ ¼ #2;2

Z
d4p
ð2πÞ4 η

νλ ~V⊥
ν
~V⊥�
λ p2

× flnðμ2εÞ þ lnðp2=μ2Þ þO½ðp2εÞ0�g; ð48Þ

the first addend inside the braces, which diverges when
ε → 0, must be cancelled by the introduction of a counter-
term with opposite sign in which finite parts can be
included as well. The remaining ε independent part
depends on the scale μ2 instead, thereby separating the
concepts of regulator and scale.
Taking a step back, we see that for the example in hand,

which is classically scale invariant, the completion from Z
to Z restores full scale invariance and ensures the inde-
pendence of Z from the value of the regulator ε. Then,
when we evaluate Z on the saddle point, the boundary
condition brings in the momentum scale p2 against which
the regulator piles up. Thus, we are able to correctly
determine the anomalous breaking of scale invariance.

2. Higher-spin sources/fields

Above, we presented the special case of a rank-1 sourceV,
but sources of any rank contribute to Zε. Here, we demon-
strate that worldline holography also readily applies to them.
More generally, the worldline coupling of a rank-L source
Wμ1…μL symmetric in all indices (Wμ1…μL¼Wðμ1…μLÞ), trace-
less (ημ1μ2Wμ1…μL ¼ 0), and transverse (∂νη

νμ1Wμ1…μL ¼ 0)
is given by [18]

L ¼ 2N
ð4πÞ2

Z
P
½dy�e−

R
T

0
dτ½_y2

4
−ð−i_y·ÞLWðx0þyÞ=L!�; ð49Þ

where ð_y·ÞLW stands for the L-fold contraction ofW with _y.
After expanding in powers of the sources, gradient expand-
ing the sources, and carrying out the ½dy� as well as dτ
integrations, we have

Zε ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p

×
X
n∂ ;nW

#n∂ ;nW ðg∘∘Þ
n∂þLnW

2 ð∂∘Þn∂ ½Wf∘gðx0ÞT1−L
2 �nW ; ð50Þ

where f∘g (f•g) indicates that all indices that are not
mentioned take values in four (five) dimensions; there are
only contributions for n∂ þ LnW even. Accordingly, the
corresponding ε-independent five-dimensionally completed
formulation is given by

10For the treatment of (nonholographic) renormalization in the
framework of the worldline formalism, see Ref. [33].
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Z ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p

×
X
n∂ ;nW

#n∂ ;nW ðg••Þ
n∂þLnW

2 ð∇•Þn∂ ½Wf•gðx0; TÞ�nW ; ð51Þ

where T1−LWðx0Þ → Wðx0; TÞ.
For the sake of concreteness, let us determine the

coefficients for the terms up to the second order in fields
and gradients in Eq. (49).Up to the secondorder in the fields,

L ⊃
ð−iÞ2L
2ðL!Þ2

2N
ð4πÞ2

Z
T

0

dτ1dτ2Z
P
½dy�e−

R
T

0
dτ _y

2

4 ð_y1·ÞLW1ð_y2·ÞLW2; ð52Þ

where yj ¼ yðτjÞ. Expanding additionally up to the second
order in 4-gradients,

Wðx0þyÞ¼ ey·∂x0Wðx0Þ≈
�
1þy ·∂x0 þ

1

2
ðy ·∂x0Þ2

�
Wðx0Þ;

yields

L ⊃
ð−iÞ2L
2ðL!Þ2

2N
ð4πÞ2

Z
T

0

dτ1dτ2Z
P
½dy�e−

R
T

0
dτ _y

2

4 fW0ð·_y1ÞLW0ð·_y2ÞL

þ ½y1 · ∂x0W0ð·_y1ÞL�½y2 · ∂x0W0ð·_y2ÞL�g; ð53Þ
where W0 ¼ Wðx0Þ. The first order in the gradients and
terms where both gradients act on the same source integrate
to zero (also taking into account the tracelessness ofW) and
are omitted right away. Performing the ½dy� integration yields

L ⊃
ð−iÞ2L
2L!

2

ð4πÞ2
Z

T

0

dτ1dτ2½P̈L
12Wðη∘∘ÞLW

− P̈L
12P12η

μνð∂μWÞðη∘∘ÞLð∂νWÞ
− LP̈L−1

12
_P2
12η

μληνκð∂μWκÞðη∘∘ÞL−1ð∂νWλÞ�; ð54Þ
where, henceforth, we suppress the index 0 to counteract the
accumulation of indices. ðη∘∘ÞL represents the L-fold con-
traction of the 2L indices of the Ws that are not shown
explicitly with the inverse flat metric. The worldline propa-
gator Pðτ1; τ2Þ≡ P12, in the center-of-mass conventionR
T
0 dτy ¼ 0, where it is manifestly proper-time translation-
ally invariant, and its first two derivatives with respect to its
first argument read [21]

P12 ¼jτ1 − τ2j − ðτ1 − τ2Þ2=T; ð55Þ
_P12 ¼ signðτ1 − τ2Þ − 2ðτ1 − τ2Þ=T; ð56Þ

P̈12 ¼ 2δðτ1 − τ2Þ − 2=T: ð57Þ

(The countercharge −2=T on the right-hand side of the last
line is required to invert the (one-dimensional) Laplacian ∂2

τ

on the compact interval ½0;T� and is consistent with the
center-of-mass convention. See also the derivation in
Ref. [9].) Performing the dτj integrations leads to

L ⊃ −
2L−1T3−L

6L!
2

ð4πÞ2
× ðημνηκλ − LημληνκÞð∂μWκÞðη∘∘ÞL−1ð∂νWλÞ: ð58Þ

Terms containing P12 or _P12 at coincident proper times
τ1 ¼ τ2 do not contribute, as P11 ¼ 0 ¼ _P11. We regularize
powers of δ distributions according to ½δðτ1 − τ2Þ�l → δðτ1 −
τ2Þ=Tl−1 or, equivalently, P̈L

12 → ð−2=TÞL−1P̈12. The thus-
obtained Lagrangian

L ⊃ −
2L−1

6L!
2

ð4πÞ2 ðg
μνgκλ − LgμλgνκÞ

× ð∂μWκT1−LÞðg∘∘ÞL−1ð∂νWλT1−LÞ ð59Þ

pertains to a field theory overAdS5with all fifth polarizations
and gradients zero. Next,we achieve independence from ε by
reconstructing the complete five-dimensional and locally
invariant theory according to the above rules,

Z ⊃ −
2L−1

6L!
2

ð4πÞ2
ZZ

∞

ε
d5x

ffiffiffi
g

p

× ðgMNgKJ − LgMJgNKÞ
× ð∇MWKÞðg••ÞL−1ð∇NWJÞ: ð60Þ

Expressed with partial instead of covariant derivatives, this
amounts to

Z ⊃
ZZ

∞

ε
d5x

ffiffiffi
g

p fðgMNgKJ − LgMJgNKÞ

× ð∂MWKÞðg••ÞL−1ð∂NWJÞ
þ 4ðL − 1ÞWðg••ÞLWg; ð61Þ

where the total contribution from the Christoffel symbols
amounts to the term without derivatives. This coincides with
the result obtained in Ref. [18]. Varying this effective action
with respect to the four-dimensional components, imposing
the axial gauge, transversality,11 and tracelessness, yields the
corresponding components of an AdS Frønsdal equation,�

−T1−L∂TTL−1∂T −
1

4

□

T
þ L − 1

T2

�
W⊥ ¼ 0: ð62Þ

Analyzing the small-T behavior by means of a power-law
ansatz W⊥ ∝ Tα yields the characteristic equation

11Imposing the axial gauge and transversality corresponds to
adopting the analog of the five-dimensional radiation gauge.

SCHWINGER’S PROPER TIME AND WORLDLINE … PHYSICAL REVIEW D 95, 076021 (2017)

076021-7



−αðα − 2þ LÞ þ L − 1 ¼ 0; ð63Þ

which is solved by

α ¼ 1 & α ¼ 1 − L: ð64Þ

For scalar elementary matter, this coincides with the result in
Refs. [1,14].
The equations obtained by varying with respect to fields

with at least one T component are given by

gMNð∇M∇NWM1…ML
− L∇M∇ðM1

WM2…MLÞNÞ ¼ 0;

where we have imposed the axial gauge only a posteriori
and have not insisted on transversality. Equations with
more than two T components vanish identically after
imposing the gauge condition. The equation with exactly
two T components amounts to ∂ ln trW

∂ lnT ¼ const:; the equa-
tion with exactly one T component states that a linear
combination of divW, ∂divW

∂ lnT , and gradtrW is zero.12

Consequently, if W is transverse as well as traceless on
the boundary, it will remain so everywhere in the bulk.13

Thus, the variation with respect to the fifth-dimensional
polarizations (together with the boundary conditions)
enforces transversality and tracelessness.14

For the scalar source WL¼0, Eq. (61) features a
tachyonic mass term, which saturates the Breitenlohner-
Freedman bound. For the boundary condition
limT→0ðWL¼0TL−1¼−1Þ¼m2, the equation of motion (62)
is solved by WL¼0 ¼ m2T. This is the tachyon (squared)
profile [37] for a free theory of elementary matter with the
explicit mass m.
Taking stock, the present framework links a free scalar

quantum field theory on Mink4 with sources of any spin to
a field theory for these sources on AdS5. Such a duality was
conjectured to exist [38].

3. Spin 2 revisited

For rank-2 sources, the explicit results above correspond
to the linearized Einstein equations. In this context, the
rank-2 source represented the deviation hμν from the

Minkowski metric ημν. A straightforward expansion to
finite powers of the deviation, however, does not posses
full diffeomorphism invariance, but, like for the vector case
in footnote, it is possible to devise a fully covariant
expansion scheme. In short, while the derivation in the
vector case makes use of the Fock-Schwinger gauge to
express the vector field in terms of covariant derivatives
(and their commutator, the field tensor), the spin-2 case
makes use of Riemann normal coordinates, where the full
metric gμν ¼ ημν þ hμν is expressed in terms of curvature
tensors constructed from the corresponding Levi-Civitá
connection ∇½g�. The expansion again takes the form

Zε ¼
Z

∞

ε

dT
2T3

Z
d4x0

ffiffiffi
g

p X
n

#nðTg∘∘Þnð∇∘½g�Þ2n

¼
ZZ

∞

ε
d5x

ffiffiffī
g

p X
n

♯nðḡ∘∘Þnð∇∘½g�Þ2n; ð65Þ

where ḡ stands for the five-dimensional Fefferman-Graham
[39] embedding of g,

ḡMNdxMdxN ¼♮
�
dT2

4T2
þ gμνdxμdxν

T

�
; ð66Þ

and ♯n ¼ #n♮n−5=2. Again, Eq. (65) is not a differential
operator. There are no partial derivatives acting to the right.
The expansion is to symbolize all occurring combinations;
the commutator of two covariant derivatives, for example,
yields the Riemann tensor.
The independence (33) from ε can once more be

achieved by the five-dimensional completion

Z ¼
ZZ

∞

ε
d5x

ffiffiffī
g

p X
n

♯nðḡ••Þnð∇•½ḡ�Þ2n ð67Þ

and subsequent evaluation of the action on the saddle point
with the boundary condition

˘̄gμνðx0; T ¼ εÞ ¼ ♮
ε
gμνðx0Þ ð68Þ

and the gauge condition

˘̄gTN ¼! ♮gTN ∀ N; ð69Þ

with g from Eq. (5), which corresponds to the absence of
deviations with fifth-dimensional polarizations,

hTN ¼! 0 ∀ N: ð70Þ

Let us study the leading terms. The #n are the DeWitt-
Gilkey-Seeley coefficients [40]. The first two correspond to
a negative cosmological constant and an Einstein-Hilbert
term,

12Technically, this is due to the fact that only the Christoffel
symbols with an odd number of components in the T direction are
nonzero for Eq. (5): ΓT

μν¼g 2ημν, Γμ
Tν¼g − 1

2Tδ
μ
ν¼Γμ

νT , ΓT
TT¼g − 1

T.13If we had enforced transversality from the very beginning of
the derivation of the effective action (we only used the trace-
lessness), the (L-dependent) cross-term would be absent. Then,
the fifth components of the saddle-point condition would force
the trace and the nontransverse components to vanish identically,
a fact that had been observed before in Ref. [15].

14There are several approaches to obtaining the Frønsdal
equations for transverse and traceless fields from an uncon-
strained or less constrained variational principle, like auxiliary
compensator fields [34,35] and the related relaxation to double
tracelessness [36].
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Z ⊃
1

6ð4πÞ2
ZZ

∞

ε
d5x

ffiffiffī
g

p ðR½ḡ� þ 6Þ: ð71Þ

As a consequence, the corresponding Einstein equations
admit an AdS5 solution with the squared AdS curvature
radius

♯ ¼ R2
AdS ¼

ð5 − 1Þð5 − 2Þ
6

¼ 2: ð72Þ

Taking into account the boundary and gauge conditions, the
solution reads

˘̄gMNdxMdxN ¼ 2

�
dT2

4T2
þ dx0 · dx0

T

�
: ð73Þ

Consequently, at least to this order, an AdS background is
self-consistently maintained by the formalism. (To higher
orders, a space of constant curvature remains a saddle-point
solution, albeit with a different curvature radius.) The
isometries of any AdS5 space, i.e., with any value of the
curvature radius, coincide with the conformal group over
Mink4 (just like Mink4 is Poincaré invariant for any value
of the speed of light). Therefore, the value of the AdS radius
is of secondary importance insofar as it does not alter the
structure of the present result. For example, ˘̄g

Z ¼
ZZ

∞

ε
d5x ˘̄g1=2

X
n∂ ;nV

♯n∂ ;nV ð ˘̄g••Þ
n∂þnV

2 ð∇•½ ˘̄g�Þn∂ ½V•ðx0; TÞ�nV ;

ð74Þ

where ♯n∂ ;nV ¼ #n∂ ;nV ♮
ðn∂þnV−5Þ=2 is an identical reexpres-

sion for Eq. (30), which is independent of ♮. Also, the
covariant derivatives do not depend on the curvature radius.
[Consistently, neither does the (1, 3) Riemann tensor.]
Likewise,

Z¼
ZZ

∞

ε
d5x ˘̄g1=2

×
X
n∂ ;nW

♯n∂ ;nW ð ˘̄g••Þ
n∂þLnW

2 ð∇•½ ˘̄g�Þn∂ ½Wf•gðx0;TÞ�nW ; ð75Þ

where ♯n∂ ;nW ¼ #n∂ ;nW ♮
ðn∂þLnW−5Þ=2 is identical to Eq. (51)

and independent of ♮.

C. Infrared

The worldline holographic framework can also handle
variations of infrared scales. Consider

Zε;k2 ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p
ρðk2TÞ

×
X
n∂ ;nV

#n∂ ;nV ðg∘∘Þ
n∂þnV

2 ð∂∘Þn∂ ½V∘ðx0Þ�nV ; ð76Þ

where ρðk2TÞ !k2T→∞
0 and ρðk2TÞ !k

2T→0
1 [41]. This can, for

example, be realized by a sharp proper-time cutoff
ρðk2TÞ ¼ θðk2T − 1Þ or by a mass term [21] ρðk2TÞ ¼
expð−k2TÞ. We could now analyze the fate of the scale k2

by repeating the steps from the beginning of Sec. III. From
Sec. III A, however, we already know that worldline
holography ensures the independence from an overall scale
through the isometries of AdS5 acting on

Zε;k2 ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p
ρðk2TÞ

×
X
n∂ ;nV

#n∂ ;nV ðg••Þ
n∂þnV

2 ð∇•Þn∂ ½V•ðx0; TÞ�nV : ð77Þ

Since we are thus able to eliminate the dependence on such
an overall scale, the final result can only depend on the
combination k2ε. This corresponds to the renormalization
condition ε∂εZε;k2¼k2∂k2Zε;k2 . This is the requirement that
the effective action do not change under simultaneous
changes of ε and k2 such that εk2 remains the same. The
renormalization condition is solved by the saddle-point
expression

Z̆εk2 ¼
ZZ

∞

ε
d5x

ffiffiffi
g

p
ρðk2TÞ

×
X
n∂ ;nV

#n∂ ;nV ðg••Þ
n∂þnV

2 ð∇•Þn∂ ½V̆∘ðx0; TÞ�nV : ð78Þ

Accordingly, after an introduction of counterterms like in
Sec. III B 1 and taking the limit ε → 0 subsequently, the
resulting effective action will only depend on the combi-
nation k2=μ2. In a UV finite theory, and more generally
in all the UV finite terms, ε is not needed in its role
as UV regulator, and we can consider the case in which
it is zero. Then, the alternative renormalization condition

k2∂k2 lnZ0;k2 ¼! 0 is solved by Z̆0;k2. We continue the
discussion of infrared scales elsewhere.
One can also read these last few expressions slightly

differently. Say k2 is a physical scale, like, for instance, a
mass, possibly already present in the classical action. Then,
physical quantities can and should depend on its value.
Now, in the worldline formalism, there appears the a priori
spurious UV regulator ε. As a consequence, there are now
two scales in Eq. (77) and not one. The renormalization
procedure lifts the meaning of ε to that of a scale but, more
importantly for the present argument, restores the scaling
behavior to that of one physical scale. This is the standard
procedure of doubling a symmetry and breaking it back to
the original one, found throughout physics15 used in

15Take the standard model as a concrete example. The Higgs
potential is invariant under one copy of the electroweak
gauge group, and the gauge-fermion sector is invariant under
another copy. The covariant kinetic term for the Higgs breaks
this symmetry to the diagonal subgroup, i.e., to simultaneous
transformations.
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reverse; i.e., first reduce the symmetry even more, and then
restore it. This discussion extends directly to the presence
of several physical scales. The arguably simplest way to
think of it is to pick one scale and express all other scales as
multiples of the first.16

IV. SHORT SUMMARY

Worldline holography maps a d-dimensional quantum
field theory onto a dþ 1-dimensional field theory for the
sources of the former, to all orders in the elementary fields
and sources of any rank. Themetric of thedþ 1-dimensional
space is obtained by a Fefferman-Graham embedding [39] of
the d-dimensional one. For Minkd, this gives the known
AdS5. Above, we have shown that worldline holography is
the solution to a Wilson-Polchinski renormalization con-
dition (33), which ensures the independence of physical
quantities from the ultraviolet regulator. [Infrared scales can
be treated analogously (see Sec. III C).] Said renormalization
condition serves as (part of) the definition of the worldline
holographic framework in general and of the fifth-dimen-
sional profiles of the sources in particular. For the cases
studied here, the result is exactly the same as the one in
Refs. [17,18] obtained by optimizing a Wilson (gradient)
flow [42]. As cross-checks, we holographically recon-
structed the leading QED β-function coefficient in
Sec. III B 1. In Sec. III B 2, we derived the worldline holo-
graphic dual for a free scalar field theory on Mink4: a field
theory for sources turned fields of all integer spins overAdS5,
which was postulated in Ref. [38]. A manifestly diffeo-
morphism-invariant expansion of the rank-2 case leads to the
DeWitt-Gilkey-Seeley coefficients [40]. In Sec. III B 3, this
serves to show that AdS5 is a self-consistent solution of the
worldline holographic framework.

V. FURTHER DISCUSSION AND OUTLOOK

Barring anomalies, a quantized version of lnZ would
bear the necessary isometries to be a solution of the
renormalization condition (33) once the appropriate boun-
dary conditions (31) are imposed. The saddle point remains
the leading contribution. The first correction is given by the
fluctuation determinant.17 In some situations, like the case
discussed in Sec. III B 2, however, the distinction between a
“quantum” and a “classical” answer ultimately turns out to
be irrelevant, as the quantum contributions from the
individual fields of different ranks over AdS cancel when
summed over the complete tower of higher-spin states [45].
Furthermore, we are free to again carry out the quantum

computation in theworldline formalism. In the course of this
computation, g (or ˘̄g) is Fefferman-Graham embedded into

ds2 ¼ dΘ2

4Θ2
þ gMNdxMdxN

Θ
; ð79Þ

where Θ is the new proper time. The isometries of the five-
dimensional part are preserved, but, while still being con-
formally flat, this six-dimensional space does not have
constant curvature nor enhanced scaling symmetry.
Rather, Θ dials through the curvature radius of the five-
dimensional part. Additionally, the six-dimensional effective
action depends on functions of ♮Θ, which consistently
forestall a higher scaling symmetry.
The latter is only one more example for starting worldline

holography from a spacetime other than Mink4, but the
pattern already shines through: the lower-dimensionalmetric
will be embedded into a higher-dimensional Fefferman-
Graham metric, and additional terms arise in the effective
action that depend on the curvature of the original space.
Above, we were predominantly investigating worldline

holography linking a quantum field theory over four-
dimensional Minkowski space to a field theory for its
sources over five-dimensional anti-de Sitter space, more
precisely AdS4;1, where the subscripts mark the metric
signature. Then again, for the worldline approach, we
actually first Wick rotated to Euclidean space and from
there found a connection to five-dimensional hyperbolic
space H5, i.e., AdS5;0 (also known as EAdS5). Analytically
continuing the time direction afterward led to AdS4;1. This
amounted to changing ϵt from −1 to þ1 in

ds2 ¼ ϵT
dT2

4T2
þ ϵtðdtÞ2 þ jd~xj2

T
; ð80Þ

for ϵT ¼ þ1.
Another analytic continuation [46] taking ϵT from þ1 to

−1 links five-dimensional de Sitter space dS5 with H5 or
AdS2;3 with AdS4;1,

All these are holographic pictures of four-dimensional flat
spacetimes.
Moreover, in the imaginary-time formalism for thermal

field theory, the time t is compactified with the period of the
inverse temperature. The straightforward application of
worldline holography yields thermal AdS space, i.e.,
AdS space with a compactified temporal direction. There
is, however, a second space with the same boundary
topology and identical source configurations on the boun-
dary, the AdS black hole [47]. Both are stationary points of
the action (71). The preferred configuration is selected by
the relative value of the action. In the present setting, the
relative importance of bosonic and fermionic degrees is

16Here, an example from the standard model would be the
Yukawa couplings.

17The use of the worldline formalism allows us to make a link
[43] to the Gutzwiller trace formula [44], which describes
quantum systems through classical attributes as well.
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decisive for which of the two five-dimensional spacetimes
is preferred [48].
Furthermore, worldline holographic duals are also avail-

able in the nonrelativistic setting [17,18]. Representing the
conformal Galilean symmetry of the Schrödinger equation
by imposing a fixed light-cone momentum pþ ¼ m [49] on
4þ 1-dimensional Minkowski space, which selects xþ as
normal time, in the worldline approach, we find a six-
dimensional line element

gMNdxMdxN ¼ −
dT2

4T2
þ 2ðdxþÞ2

T2
þ 2dxþdx− − dx · dx

T
ð81Þ

with the correct volume element
ffiffiffi
g

p ∝ T−7=2, thus repro-
ducing Refs. [49,50].18

So far, we mostly studied two-point functions and kinetic
terms. Exceptions are, e.g., the non-Abelian part of the
vector kinetic term and covariant expressions for spin-2
backgrounds. Worldline holography also gives a general
prescription for determining interactions. Any number of

terms can be worked out this way. While this is expected to
be possible consistently over an AdS background [52],
there are known obstacles over others like Minkowski or de
Sitter. In view of the fact that our prescription can yield
various dþ 1-dimensional spacetimes (see below), a
thorough study of interactions in our framework—in
particular, of the higher-spin fields—is an important future
task.
In this paper, we have concentrated on scalar elementary

matter, in order to not shroud the structure of the worldline
holographic framework by carrying along additional
degrees of freedom. It is, however, fermionic elementary
matter, which is realized in nature. Fermions do not pose
any additional fundamental challenges to worldline holog-
raphy but have a richer phenomenology—especially also
from the vantage point of the present framework—due to
their spin degree of freedom. The corresponding results are
presented elsewhere [22,23].
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