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The transition between a Minkowski space region and a parity breaking medium domain is thoroughly
discussed. The requirement of continuity of the field operator content across the separating boundary of the
two domains leads to Bogolyubov transformations, squeezed pairs states and squeeze operators that turn
out to generate a functional SU(2) algebra. According to this algebraic approach, the reflection and
transmission probability amplitude across the separating boundary are computed. The probability rate of
the emission or absorption of squeezed pairs out of the vacuum (generalization of the Sauter-Schwinger-

Nikishov formula) is obtained.
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I. INTRODUCTION: POSSIBLE PHYSICS
OF TIME- OR SPACE-DEPENDENT
PSEUDOSCALAR CONDENSATE

During the last decades the available bounds for validity
of fundamental laws in physics have been attracting more
and more attention following succeeding experimental
improvements, both in the laboratory research and in
astrophysics [1-6]. More specifically, in quantum electro-
dynamics the interest towards possible Lorentz and CPT
invariance violations (LIV for short) was raised up after the
seminal paper [1], where the very possibility to deal with a
parity odd vector background in the large scale universe
was conjectured. The latter was employed to modify QED
by supplementing it with the Chern-Simons (CS for short)
term in the action. Later on the various aspects of its
signatures were discussed [7—17] although it has not yet
been detected [18-20].

In particular, spontaneous Lorentz symmetry breaking
may cause LIV after condensation of massless axionlike
fields [7,18-23]. Cold relic axions resulting from vacuum
misalignment [24,25] in the early universe is a popular and
so far viable candidate to dark matter. If we assume that
cold axions are the only contributors to the matter density
of the Universe apart from ordinary baryonic matter its
density must be [26] of the order

p =107 gem™ = 1074 GeV*. (1)

Of course dark matter is not uniformly distributed, its
distribution traces that of visible matter (or rather the other
way round). As well, on stellar scales, the emergence of
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spontaneous Lorentz symmetry breaking in bubbles of
pseudoscalar condensates (of pions or axions) may be
detected in neutron stars making influence on their cooling
rate [27].

Last decade several experiments in heavy ion collisions
have indicated an abnormal yield of lepton pairs of invariant
mass < 1 GeV in the region of small rapidity and moderate
transverse momenta [28-30] (reviewed in [31]). This effect
is visible only for collisions that are central or nearly central.
Most studies refer to e e~ pairs but dimuon pairs have also
been found to be produced in excess above the dimuon
threshold. The explanation of this enhancement is outlined
in [32] complementing the more conventional thermal
effects. We conjecture that the effect may be a manifestation
of local parity breaking in colliding nuclei due to generation
of pseudoscalar, isosinglet or neutral isotriplet, classical
background whose magnitude and profile depends on the
dynamics of the collision. Recently a possibility to generate
an isotriplet pseudoscalar condensate at large baryon
densities has been argued for in [33]. In [34] it has been
suggested that for peripheral interactions a complementary
effect should occur, namely, an isosinglet pseudoscalar
background could appear as the result of large-scale
fluctuation of topological charge leading to the so-called
chiral magnetic effect (CME) studied also by lattice QCD
simulations [35] and seemingly detected in the STAR
experiments on Relativistic Heavy Ion Collider [36].

The phenomena of generating pseudoscalar, isosinglet or
neutral isotriplet, classical background can be related to the
so-called disoriented chiral condensate conjectured some
decades ago by A. Anselm, J. Bjorken and collaborators
[37]. It is based on the assumption of formation of the thin,
rather hot shell separating a colder interior from the vacuum.
If baryon density is not high the quark condensation in the
fireball is similar to the outer vacuum with associated quark
condensate. However the quark condensate in the interior
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might be misaligned with the cold vacuum orientation.
When the hot shell freezes out the disoriented interior aligns
with the outer space [38].

All above mentioned phenomena are situated in bounded
volumes and a specific parity violating effect, namely, the
gradient of isosinglet pseudoscalar condensate can be
formed near the volume boundary separating from a
parity-even Maxwell QED vacuum. In the static situation
this gradient is orthogonal to the boundary and it may
generate spatial parity breaking in QED interacting to
photons or more generally to vector mesons via the
Chern-Simons interaction presumably induced by fermion
polarization effects [16].

In this paper we present a thorough analysis of the
quantum theory of massive vector fields on a flat space-
time in the presence of a boundary. Specifically, the boundary
corresponds to a three-dimensional hyperplane which sep-
arates two half-spaces of the Minkowski space, on one side of
which a Chern-Simons interaction is active. We restrict
ourselves with the CS dynamics generated by a CS vector
orthogonal to the flat boundary which perfectly guaranties
the gauge invariance while it provides the Lorentz symmetry
violation in the Maxwell-Chern-Simons (MCS) part coher-
ent with boundary implementation. On the other half-space
we have a massive quantum vector field in vacuum. Section I1
is devoted to definitions, namely, real massive Abelian vector
fields are put within a pseudoscalar background with a
constant gradient on a half-space, while in the complemen-
tary half-space they propagate in an empty Minkowski space.
Then the quantum theory for such a kind of configuration
for the vector fields is briefly outlined. In Sec. III the
Bogolyubov transformations connecting the operator alge-
bras of creation and destruction operators are derived (in a
full analogy with their usage for quantization of matter in
curved spaces or accelerated frames, see [39]), which are
related to the presence of a boundary between a parity
breaking Chern-Simons background medium and an empty
Minkowski space. In Sect. 4 the functional squeeze operator
algebra is obtained and discussed, which allows for a
description and implementation of the transmission and
reflection through a boundary in terms of a purely algebraic
approach. A short description of this algebra was presented in
[40]. In Sec. V the rate of squeezed pairs emission and
absorption in the presence of a parity breaking Chern-Simons
background medium is evaluated, i.e. the calculation of the
probability to find any number of squeezed pairs of vector
particles of the Proca-Stiickelberg or Chern-Simons kind in
crossing the boundary between the empty space-time and the
parity breaking medium is performed. It is an extension of the
Sauter-Schwinger-Nikishov formula [41-43]. The Appendix
contains some further technical details concerning the above
mentioned computation of the emission-absorption rate.
Throughout this paper we shall use a Minkowski metric
tensor g,, = ¢* = diag(+1,—1, -1, —1) and a natural sys-
tem of units 7 = ¢ = 1, unless explicitly stated.
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I1I. MASSIVE VECTOR FIELDS IN A
PSEUDOSCALAR BACKGROUND

We start from the Stiickelberg-type Lagrangian [44,45]
which describes the propagation of an Abelian massive real
vector field in the presence of a pseudoscalar, or axionlike,
background field [1], viz.,

£ =~ FPQ)F () = 3 M ()P () ()M
+ %mzA,,(x)A”(x) + A*(x)9,B(x) + %XBZ (x) (2

where A* and 7., stand for the vector and background
pseudoscalar fields respectively, F* = %e’“’”"F ) 18 the dual
field strength, while B is the auxiliary Stiickelberg scalar
field [44] with » € R. The positive dimensionless coupling
g > 0 and the (large) mass parameter M > m do specify the
intensity and the scale of the pseudoscalar-vector interac-
tion. For example, axions or axionlike particles arise
generically from stringlike models or Standard Model
extensions, with a natural size of the decay constant M,
often also denoted by f,, typically varying between 10° and
10'7 GeV [46], a pretty large scale that will be suitably used
and recognized in the sequel as an effective UV cutoff
regulator which characterizes the adiabatic approximation
of a constant LIV background vector {# as we shall see
hereafter. Notice that we have included the Proca mass term
for the vector field because, as it is discussed in [32], the
latter is required to account for the strong interaction effects
in heavy ion collisions supported by massive vector mesons
(p, w, ...) in addition to photons. Moreover, as thoroughly
debated in [16,17], the mass term for the vector field appears
to be generally necessary to render the dynamics self-
consistent in the presence of a Chern-Simons Lagrangian
and is actually induced by the radiative corrections from the
LIV fermionic matter. The auxiliary part of the Stiickelberg
Lagrangian, which further violates gauge invariance beyond
the mass term for the vector field, has been introduced to
provide—just owing to the renowned Stiickelberg trick—
the simultaneous occurrences of power counting renorma-
lizability and perturbative unitarity for a general interacting
theory. Its presence allows for a smooth massless limit of the
quantum vector field. Here we shall consider the adiabatic
limit of a slowly varying classical pseudoscalar background
of the kind

e %mﬂe(—m) 3)

where 6(-) is the Heaviside step distribution, in which a fixed
constant four-vector {# with the dimensions of an inverse
length has been introduced, in a way to violate Lorentz and
CPT invariances in the Minkowski half-space ¢ - x < 0. In
what follows we shall suppose that ¢? # 0. If we now insert
the specific form (3) of the pseudoscalar background in the
pseudoscalar-vector coupling Lagrangian we can write
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1 .
— L P (0 0(=¢ - 2)
1 ~
= S GAF(3)0(=¢ - 2)

-9, EAy(x)Fﬂ”(x)gxﬂa(—g : x)} . (4)

The very last term in the rhs of the above equality is evidently

aboundary term, its contribution to the action being reduced
for the Gauf} theorem to

A d*xd, BAD(x)FW(x)Qxﬁe(—c - x)}

1 ~
3 [ doa P zae-¢

where Q is an arbitrary domain of the Minkowski space that
is bounded by the initial and final three-dimensional space-
like oriented surfaces 0Q = X,UX,. Hence the boundary

term will not contribute to the Euler-Lagrange field equa-
tions if and only if

AP ()5 0(=C - x)lg,
= A, (x) " (x),x0(=C - x)]g, =0
which entails a particular fall down of the vector potential

and field strength for large spacelike separations in the
|
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half-space ¢ - x < 0. In such a circumstance we can derive
the field equations from the equivalent Lagrangian

L=~ FPQF () + 56,40 P ()0 )

+ 1mzA,J(x)A”()c) + A*(x)9,B(x) + %XBZ (x)

. 5)

in which the gauge invariance is explicitly broken by all the
terms but the first one, i.e. the Maxwell’s Lagrangian for the
radiation fields. Then the Euler-Lagrange field equations
read

O FY + m2AY + L F” + "B =0 for{-x<0
O,F* + m*A¥ + OB =0 for {-x>0. (6)
0,A" = xB

After contraction of the first pair of the above set of field
equations with 9, we find

(O +xm?)B(x) =0 (7)
where it follows that the auxiliary Stiickelberg field is always
a decoupled nonphysical real scalar field, which is never
affected by the pseudoscalar classical background Vx € R.
From now on we shall select the simplest choice » = 1 that
leads to the Klein-Gordon equation for the auxiliary field,
together with

CAY(x) + m*A¥(x) = %°(,0,A,(x) for {-x <0

OAY(x) + m?A¥(x) =0
0,A%(x) = B(x)

In order to find the general solution of the above linear equations (6) we turn to the momentum space

d*k

AV(X) = /Wa”(k)e_ik'xB(x) = /Wh(k)é_ik'x

so that

[ (K2 — m2) — KPR + ie™BE ke ylay (k) + ik*b(k) = O for {-x <0

[g/lu(kZ _ m2) _ klk”]aﬂ(k) + ik”b(k) -0
(k> — m?)b(k) =0

ka, (k) = ib(k)

The general solution for the auxiliary field operator is well known, viz.,

B = [ dklogn () + bl ()]

i (x) = [(27) 2ko) /% exp{~ik,x*}

for{-x>0 (8)
(O+m?)B(x) =0
d*k
for{-x>0. )
(10)
ko = VK* + m? (11)
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with ghostlike canonical commutation relations

b} by) = 5(k — p)
The general solutions on the two half-spaces separated by
the hyperplane ¢ - x = 0 have to be set in a more convenient
form to the purpose of our discussion. It turns out that the
Proca-Stiickelberg and the Maxwell-Chern-Simons mas-
sive vector fields face one each other at the boundary
¢ -x =0. Hence, continuity of the quantum fields does
require equality on the surface separating the parity break-
ing medium from the Minkowski space, namely,

8(¢ - x)[Aps (x) — Ags(x)] = 0 (13)

while the auxiliary nonphysical field B(x) is by no means
affected by the presence of the hyperplane {-x =0, as
already noticed.

by, b,] = 0. (12)

A. The Proca-Stiickelberg quantum field
in the presence of a boundary

On the half-space ¢ - x > 0, the general solutions of the
field equations are the well-known Proca-Stiickelberg
vector and auxiliary ghost scalar free quantum fields. In
order to write the general solutions in the presence of the
infinite hyperplane separation boundary ¢ -x = 0, from
now on it is convenient to use a slightly different notation,
namely, we set x = (xq, x',x%,x3) = (¢,x,y,z) in natural
units. Consider the case of the spatial Chern-Simons
constant vector {* = (0,¢,0,0) with { > 0 and the corre-
sponding spacelike hyperplane x!' =x =0, in such a
manner that 5(¢ - x) = {~18(x). Let us define the following
quantities:

k= (ko ky k); k= (t,y,2);
k-R=thky—yk,—zk;; ko= = VK +m?.

Then we can write the Proca-Stiickelberg solution in form

Al (x,R) = /deak,ukr(x %)+ al ul (x,%)]

r=1
wh (x.%) = 0(—x)[(27)* 2wy ] /%% (k) exp{iKx — ik -}
(r=1,2.3) (14)

with x <0, K=k! = k., where the creation destruction
operators fulfill the canonical commutation relations

a2, ] = 5(k — K')3,, (15)
all the remaining commutators being equal to zero.
The three linear polarization real vectors do satisfy the
orthogonality and closure relations on the mass shell
K? = k* — m2, namely,
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kﬂe/;(k) =0; _g/we/;(k)e?(k) = 5”;
3
k”k”
2_er(k)er(k) = ~¢* +
m

It is physically motivated to split the Proca-Stiickelberg
vector field into the so-called progressive (or incident)
and regressive (or reflected) parts, that corresponds to
positive and negative longitudinal momenta K = k! =
k, = 0 respectively, namely,

A’L(x,ﬁ)z/oodl(/mdkv/mdkz
0 -0 T J—
’;

3 o . 5) 5

A’j_(x,ﬁ)s[)de/oodky/mdkz

3
3 it 5

r=1

(%, 2)]

)+a—kr Y (x.%)]

where we understand —k = (=K, k,.k,). Of course we
have
uy (x.R) = 0(=x)[(27)*2Ko] 2 (k)
<exp{ =K+ ivk, + izk, itk

=i, (x.%)

[a—k.w aLs} = [a—kﬁr’ ak,s] =0 (16)

in such a manner that if we set

V k= (K ky k) with K >0,

ky, k. € R (17)

a—krEékr

we can eventually write the normal modes expansions for
x<0

AL (x,R) = /dK/dk/dk

x Z[ak RIERS) +ak (e, (x.R)] - (18)

r=I1

R E/oodK/mdky/mdkz
0 —o0 —o0

3
) [ak ity (x.%) + g, (x.R)] (19)

r=1

where
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[ﬁk.r’az‘(/’s] = [ﬁk,rvak’,s} =0 (20)

so that

A (x,R), A% (¥, &')] = 0. (21)

Now it is expedient to change the integration variable into
the normal modes expansions (18), (19) from K > 0 to the

:\/Kz—f—k%—f—k%—i—mzZm.

.k, k) we get
(w, ky g

/wdw// dk,dk, kz_’”)

X Z ay ,uy (x,X) + H.c.
r=1

- / " do // " dk,dk,0(R2 — m?)

3
3 g

r=1

positive frequency @(K)

After setting k=

g,r('x’ i) + alz,rulf:.*r(x’ )2)]

where
u ( A) 9(—)6)6’;(1%)
. (x,X) =——F>—
o VI(27) 2K (k)]
X exp{—ia)t + iyk, + izk. + ix VK - m2}
(22)
with

AR =K@ kk)  0=123) afo=a,

(23)

in such a manner that we come to the canonical commu-
tation relations

T a’[/

[ag . ap ] =0 [al . v

=0

=V 5(K — K')3(k, — K,)5(k, — K.)

. i
[ag. af(gs] %
= 6(w — o' )d(k, — k})6(k, — k%)

with @, @’ > 0. Notice that the incident or progressive wave

functions ugr(x, X) are tempered distributions satisfying

the nonhomogeneous Klein-Gordon equation
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—{5’(x) + i5(x) VK - mZ}

et E)
VI@2r)2K (k)]
By repeating the very same manipulations to the regressive

part A’_(x,X) of the Proca-Stiickelberg vector field, we
eventually come to the normal modes expansion for x < 0

= / dw // dk,dk.0(k* — m?)

3
x Z[ﬁf(s’ﬁﬁ,r(x) + élz,ruﬁfr(x)]

r=1

(O + mz)ugyr(x, ) =

X exp{—ik - X}.

where the reflected or regressive wave functions have the
form

i (x) = 0(=x)[(2x)%2K (k)]~"/2€! (k)
x exp{—ixK (k) — ik - 8} (24)
e (k) = i (-K(k), ky k) (r=1,2,3) (25)

and do fulfill the nonhomogeneous Klein-Gordon equation
(O + m?)i ’z (x,%)
—{5’()6) —i5(x)VK* - mz}
L& (k)
VI(27)*2K (k)]

while the corresponding creation and annihilation operators
satisfy canonical commutation relations

exp{—ik - 8}

Bap) = [l A ) =0 [a,.8] ] = 5(k-R)a.

It is worth noticing that all the wave functions are
normalized in order to reproduce the constant vector
current: for example, for incident or progressive wave
functions we find

() =5,

K2 —m? k. k).

vz

(277) g/w ( )lalu

kK= (0w, K = (27)
The normalization of the incident or progressive vector

plane waves is such that

A * A .H v A N A k
oo / AR, (e R)id g (69)] g =0(R=p)3E (28)
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I / aRues, (x,R)i0 " (x.%) ] = (K = ), (_%>
(29)

g;w/diug,r(x,ﬁ)i&{uﬁ.s(x, X)],—0=0 (30)

in which » = w/K is the (phase) velocity of the vector
plane wave u{ r(x). Now, concerning the reflected or

regressive plane waves, it is convenient to set

x exp{—ixK (k) + ik - 8} (31)
e(—k) = ¢(-K(Kk), —k, (r=1,2,3) (32)
in such a manner that we can recast the normal modes

expansion of the Proca-Stiickelberg vector field in the
simple form

Abg(x,R) = AL (x,R) + AL (x,R)

/deakruA (x,X) +Hec.  (33)

/dk /dwe(w —m? // dk,dk.0(K> = m?)

with the canonical commutation relations

(34)

lag,.ap,]=0 [al .al, ]=0 keR?

k,r’ k'
[a - af, | = 8(0 — )5(k, — K,)6(k, — K.

w*>m? Vv k. k, €R.

On the other hand, the general solutions for {-x <0,
concerning the Maxwell-Chern-Simons free quantum field,
have been extensively discussed and applied in [16,47,48]
for the massive case and in [49] for the massless case.
However, in the light of the present applications, it is better
to shortly overview this important topic.

B. Maxwell-Chern-Simons quantum field

In the following we shall review and extend the main
tools developed in [50], which are necessary to understand
the squeezed pairs emission and absorption in the presence
of a parity breaking background medium. Let us first recall
the construction of the so-called chiral or birefringent
polarization vectors for the MCS vector field. Here we
aim to develop a rather general frame which could allow for
an understanding of the kinematics of massive vector

PHYSICAL REVIEW D 95, 076020 (2017)

particles in the presence of a spacelike Chern-Simons
LIV vector. The starting point is the rank-two symmetric
matrix [16]

§¥; = & kge,00 K

= 8D+ Kk + 0K = k(GR + k) (35)

where

D= (k) =k =28y
It is convenient to introduce the two orthogonal, one-
dimensional, Hermitian projectors

Sl/

7 =2 e lyprd = (2 = (#)"(D > 0)

(36)

A couple of chiral polarization vectors for the Maxwell-
Chern-Simons free vector field can be constructed out of
some tetrad of constant quantities €,, taking into account
that we have

7lee; = De? + (e - k)?
=[(¢-k)? =R + (e k). (37)

For example, for the spatial Chern-Simons vector {# =
(0,¢,,0,0) we can always build up a pair of spacelike,
complex, chiral polarization vectors

k) = ale;[(K = k3)/ (k2 + K = Kg)I =2 (38)
By the very construction, for D > 0 this couple of chiral

polarization vectors satisfy the conjugation and orthogon-
ality relations

1 *
= 8&(]{)’ _Egpwgli (k)
1 *
Eg,l,,e’i (ke (k) +c.c.=0

e (k) +cec.=1;

as well as the closure relations

& (k)el (k) + e (k)e (k)
= ¢t (k)e" (k) + &, (k)ev.(k) =D7's.  (39)
In order to obtain the normal modes expansion of the MCS

quantum field, let us introduce the kinetic 4 x 4 Hermitian
matrix K with complex entries

K/h/ = glu(k2 - mZ) + ig/luaﬁé’akﬁ (40)

which satisfy
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Kiy - Kﬁi

Now we are ready to find the general solution of the free
field equations (9) for ¢ - x < 0. From the relationships (40)
and (38) we readily obtain

K¥ e (k) = [0, (k* — m*) + VD(a, — 2, )]l (k)
= (K2 = m? £ VD)L (k) (41)
which shows that the polarization vectors of positive and

negative chirality are solutions of the vector field equations
for {-x < 0 if and only if

k/i = (wx +.K) ﬁ(k) = gi(ki) (kgt = wy 1) (42)

1 1
Wy 1 = \/k2+m2+§c§icx\/ki+m2+zc§

for ¢* = (0,£,,0,0). (43)

To complete our construction of a basis we introduce
the further pair of orthogonal and suitably normalized
|

Kk /i
(k) = < (K2¢r — k¢ - k)/VDK?
e (k)

In order to fully implement the canonical quantum theory
of the MCS massive vector field for the simple choice
x =1, it is convenient to introduce the polarized plane
waves according to

Vi (x) = [(2) 2]y (k) exp{—iaar + ik X} (50)

where the dispersion relation for the scalar and longitudinal
frequencies is the covariant one, viz.,

Wgs = Wk, — \/k2+m25a)k

so that we can write

k,e4(k) =m 10,05 (%) = uy (x). (51)

It follows therefrom that the general solution of the Euler-
Lagrange field equations (8) for the quantum massive
vector field when » = 1 and ¢ - x < O takes the form

A¥(x) = Al (x) = *B(x)/m? (52)

Atg(x) = / a3 [eeatin ) + et ()] (53)

A==£L

PHYSICAL REVIEW D 95, 076020 (2017)

polarization vectors, respectively the so-called scalar and
longitudinal polarization real vectors

k*

NG (k* > 0) (44)

(k) =

(k) = (DK} 2 (K2H —k*¢ - k) (2> 0V D>0) (45)

which fulfill by construction

kel =0 k() =VE  (8>0) (46)

gues(k)es(k) =1 guep(k)ep (k) = =1 (47)

Gues(k)er (k) = g es(k)e (k) = guep (k) (k) = 0.
(48)

Hence we have at our disposal Vk* with k> >0V D> 0a
complete and orthogonal chiral set of four polarization
vectors, namely,

for A=S
for A=1L —(k*>0vD>0). (49)
for A =+

B(x) = m/dk[bkuk(x) + b]‘(uﬁ(x)] (54)

where the canonical commutation relations holds true, viz.,
t
[ck.as Ck’,A’] = —gand(k — k') cks = b (55)

all the other commutators being equal to zero. According to
Egs. (8) and (9) we obtain

B(x) = —i / dk, [ewsts () — el (Dl (56)

=m / dk by (x) + bty (X))~ (57)

in such a manner that the physical Hilbert space £y, with
a positive semidefinite metric for all the MCS massive
quantum states, is selected out from the Fock space §& by
means of the customary subsidiary condition

BU)(x)|phys) =0V [phys) € Hpnys € F.  (58)

On the other side, the physical MCS massive quanta are
created out of the Fock vacuum by the creation part of the
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quantum physical massive MCS vector field A%¢(x), with

the standard nonvanishing commutation relations
[k CL 2] = Oaxd(k — k')A, A=L+
all the other commutators being equal to zero. Notice that
the MCS massive I-particle states of definite spatial
momentum k do exhibit three polarization states, i.e.
one linear longitudinal polarization of real vector &/ (k)
with dispersion relation k> = m? and two chiral transverse
states with complex vectors € (k..) and dispersion relations

(43), the negative chirality states € (k_) being well defined
only for |£, - k| < m/{ & k2 > 0.

III. THE BOGOLYUBOV TRANSFORMATIONS

An equivalent rearrangement can be pursued in the right
region R, where the parity breaking medium is present. As
a result we shall obtain the following normal modes
expansion of the Chern-Simons vector field for x > 0,
namely,

Aes) = [k 3 fegart () + Lo, ] (59)

A=+£L

in which, in full analogy with the Proca-Stiickelberg plane
wave solution (22), the incident or progressive plane wave
solution for the Chern-Simons classical field equations is
provided by

%, (x) = 0(x)[(27)32K 4] 2¢4 (k) exp{ixK (k) — ik - R}
(60)
K, — \/EZ_mzi 2k forA=+ (61)

K = VK> — m? for A=1L

while the canonical commutation relations still hold true,
Viz.,

[CﬁA’CE’ = [C}ZA’CE/ ]=0
[egas ¢l ) = 8k = K)3ap. (62)

Coming back to the boundary conditions, it turns out that
the matching condition for the vector fields at the hyper-
plane x = 0 does take the form

[ (St 0+ L0 o)

=3l (R) Fal S ©N =0 (64)

r=1
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which can be implemented if we perform a Bogolyubov
transformation

3
Z l”/ ﬁ?A( )

s=1

R (65)

where the complex numerical coefficients a,(k), f4 (k)
will be determined below. On one hand we find

(ot ) = / aRu (x, ) (=)Dt (4,%)],o
- 5(ﬁ—ﬁ)e¢(ﬁ)%8ﬂf<) (66)

and on the other hand we evidently obtain

(k= p)et (R)ed (k) =~ |t ):
)0 *

(07 ) = (k= p)er (k) Y au(k)es(k) (68)

(uy v ) = 6(k = p)er (k) Y paa(R)er(k).  (69)

A comparison yields—by omitting the argument k

Ki+K : i} K, : }
2\/KA Z QA€ 2\/KK A Z:: sA€s
(70)
the solution of which is provided by
1 Ky +K b, = 1 Ky,—K
Osp = 2 €5 €a \/<KAK) SA — D) €5 €a \/(KAK)
(71)

as it can be readily checked by direct inspection, where the

wave vectors K, K, are positive functions of k as given by
Eq. (61). Let us evaluate the quantity

3
D laal —Boapg(R)] for AB=L,+.

s=1

First we find
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where use has been made of the transverse-like condition,
as well as the orthogonality relations, together with the fact
that the covariant linear polarization vectors have been
chosen to be real. Hence we eventually obtain

3 R . K, +K)?
3

A (Ky— K)?

;[;m(k 5(K) = 84 T4K,K

Subtraction of the above expressions yields the customary
relation

3
> — Baa(K)Bi5(K)] = 845

s=1

ag(k)a [A,B =L,
(72)

and by making quite analogous manipulations one can
readily check that the further Bogolyubov relations

]

la (k)81 (K) = pra(R)aip ()] =0 [A.B=L. %]
s=1
(73)
Z sA(k ﬁsB ﬁsB(lz)asA(lzﬂ =0 [A’ B = L’ :I:}
(74)

Turning back to the boundary condition (64) and taking
the Bogolyubov transformation (65) into account, we can
write the operator equality

a, = Y a0, —pu®c,] (79
A=+.L
3 A A
cia = 2 Lo, (Rag, + 43,0 ] (76)

r=1

From the canonical commutation relations (62) we obtain

PHYSICAL REVIEW D 95, 076020 (2017)
[aﬁ.r’ ag,s] = 5(k - 13)5”

= Z (o (E)CE,A _ﬂjA(E)C;{’A? O’;B(IA’)CE,B
AB—%L
_ﬁ\B< ) ]
(s (K)a (B) = Bra (k)1 (9)]5(k — )
A=£.L
and consequently
Z [arA (E)G;A <12) - ﬂrA (f()ﬂﬁA (l%)] = 5rs- (77)
A=%L
Finally, the null commutators [ag ., a,,] = [a};’r,ag’s] =0
lead to the further relations
D @B () = Ba®)az, (k)] =0 (78)
A=TL
D (@B (K) = Ba(Qau @) =0. (79
A=L.L
There are two different Fock vacuum states, namely,
4,000 =0 cp4lQ) =0
where from (76)
3 A
cial0) = _Ba (k)]
r=1
and consequently
o+ 3 3 A
(Oleh pez.al0) = > (Olag caf [0} (D), (K)
r.s=1
A 3 A A
—P) D Puc(0)B;, (K)
r=1
c o (Ka—K)?
=06k—-p)osp———7—
(k= DP)dan 4K,
In turn we evidently obtain
o Ym0 6o
AL+
that yields
(Qlaf jag,|Q) = <Qlcp AL ,12)B5:(D)B3, (K)

12 ﬁ Z ﬂAS :BAr

A=L.+
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Moreover we get

3

(Olag,s Y lars, (K)ag,, + B3, (k)af ][0)

r=1

3
ZﬁAr
3

Olaps > lan (R)a | + o, (R)ag,110)

<0|af>,SCf<,A 0) =

p)Bi, (k)

sl 10) =a8(k -

(Olag.sc.,10)

> 5<12 - ﬁ)aAs (12)

The latter quantity a, (k) can thereof be interpreted as the
relative probability amplitude that a particle of mass m,
frequency w, wave vector (K, >0,k k;) and chiral
polarization vector eﬁ(f() is transmitted from the left face
to the right face through the hyperplane x =0 by an
incident Proca-Stiickelberg particle with equal mass m and

frequency w, wave vector (K > 0, k,, k;) but polarization

vector ¢ (k). As an effect of this transmission, the first
component of wave vector of a birefringent massive particle
changes from K to K., while the longitudinal massive
quanta do not change their wave vectors.

IV. THE FUNCTIONAL SQUEEZE
OPERATOR ALGEBRA

In this section we aim to apply the general method
developed in [41] to the present context, in order to
calculate the squeezed pairs production in the presence
of a parity breaking medium. To start with, consider e.g. the
pair annihilation and production squeeze operators for the
Chern-Simons vector quanta arising in the presence of a
parity breaking background medium, namely,

M(z) = Z 3¢} = Zzzj j (81)

JEQ JERQ

=Y sad =Yz (82)
1€Q 2 1EQ 2
where we use the short notation

IENEDY

1IEQ A=+,L

(k € R?)

whereas z, = z,(k) are complex valued dimensionless
functions such that

VS 2z, = v/cuz S lea®)P = v,

1EQ A=+L

PHYSICAL REVIEW D 95, 076020 (2017)

is a pure number that will be named the characteristic
number of the given squeezed pairs distribution function
za(k), while V is the volume of a symmetric and cubic box
in the 1 + 2-dimensional Minkowski space M3, since we
set as it is customary

lim | diexp{=ik- &}
k—0

= (27)%6(k = 0) = lim

V-0 %

dx < 6(0) = on)

It is worthwhile to remark that the whole algebraic
construction we are going to set up in the present section
does actually live on the boundary hyperplane { - x = 0, as
it is apparent from the above introduced notations in the
related Fourier space.

The creation and destruction operators for Chern-Simons

vector particles (cl,cT) and Proca-Stueckelberg vector
particles (a,, a ]) do satisfy e.g. the canonical commutation
relations (62)

J=6;=l.a] (j€eQ) (83)

e, € J

all the remaining commutators being equal to zero. The
Fock vacuum states are defined in accordance with the
Bogolyubov transformations (75) and (76), that means

a;,0) =0 & D au(k > Bialk

A=%£,L A==£L
(Vr=1,2, 3vf<eR3)

K)cg 410) =

CalQ) =0 ZaAr Jag., + B, (K)a T’,]|Q> =0

(VA=4,LVvkeR?). (84)

If we denote by Q,(a = 1,2, ..., n) any of the n conserved
charges of the system, which are allowed by the parity
breaking background field configuration, i.e.

= anjcjcj

JEQ

where e.g. q,j(a=1,2,....,n) are the charges of the
squeezed state with definite quantum numbers j € Q, then

for any squeezed state I1] |0) of definite quantum numbers
we evidently find

0J1|Q) =2¢,JI/|Q) (VieQVa=12,...n).

(85)

The creation and annihilation squeeze operators satisfy the
commutation relations
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NG @) =3 323 fencd) =2NGE) - (66)
in which
N(zz) = N'(zz :—y0+§; zzclc (87)
Finally for 1, € R (V1 € Q) we get
NG = =3 5wl = N@) (89
NG @) = Y 0l =162, (89

1€RQ

It follows therefrom that the above three operators do
satisfy the well-known commutation relations

IN(). IT7(2)] = IT" (%)
[M(z), N(v)] = I(vz) (90)
[IT7(2). T1(z)] = 2N(zz) (91)
in which
M(z) = J_(2) = Ji(z) - i/a(2) (92)
(2) = J,(2) = J1(2) +i/2(2) (93)
N(v) = J;(z2) (94)
where the threesome of operators
J1(2.2) = 5 () + T (2))
Da(e,2) = 52 (T (2) = T1(2)
J3(22) = N(v) (95)

are a basis of Hermitian generators obeying the well-known
SU(2) Lie algebra

[V Ip] = ieaped . (a,b,c =1,2,3). (96)
Now it turns out that the quantum state |Z), which
represents a generic squeezed pair of Chern-Simons par-
ticles with a momentum distribution function z,(1 € Q),

does satisfy
B ='Q3)IQ) (=

and exhibits the infrared regularized normalization

(Q[(z) (97)

PHYSICAL REVIEW D 95, 076020 (2017)
(QI[I(2), T (2)]|Q) = —2(QN(22)|Q) = v,
(98)

(z]2) =

A. Transmission and reflection from the
algebraic approach

The general feature that characterizes the squeezed pairs
production and annihilation processes of massive vector
particles in the presence of a parity breaking medium is the
existence of a nonsingular Bogolyubov similarity trans-
formation S, the generator of which is acting on the Fock
space according to

a —S ICS Z 1] ] ﬂzj j) (99)
jeQ
of =5"alS=D (aa +pa;) (100)

JjERQ

in agreement with the previous relationships (75) and (76),
where

ﬂlj EﬂrA(lz715) :ﬁrA(l,aé(lz_f))(Zﬂ)% (101)
N N ~ Ky+K
an®) = 5o 0)- e AT (102)
N N ~ Ky,—K
ﬂrA (k) - _er(k) €A (k) \/?KAK) (103)
together with
afjam - ﬁfjﬂw - 5j}{ .
;{al‘jﬁ;{_afjﬁl}{ = (Vl’L}{ < Q)

in such a manner that the canonical commutation relations
(62)

et cetera

keep unchanged thanks to the similarity nature of the
nonsingular transformation S. Notice that in the present
framework the Bogolyubov coefficients a,; and f,; can
always be chosen to be real—see Eq. (71) for linear
polarization.

It follows that we come to the two Fock spaces gpg and
Bcs which are generated by the cyclic vacuum states
normalized to one and defined by

2,|0) = 0 = (0|a/

(VieQ) (104)

Q) =0=(Qlc] (¥V,jeQ). (105)
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Now we have, for example,

Claj;|0> = Z( lj /a}{|0> U Jal|0>)
JEQ
= al,|0) + ) _prajai0) (106)
JjeQ
so that
(Olc,all0) =a (Y 1.jER). (107)
In a quite analogous way we get
ale(|Q> = Z( l] ]CK|Q> z] ]Cj{|9>)
JEQ
= al;{|Q> - Z leJCK|Q> (108)
JEQ
and thereby
(@aclQ) =a; (YijeR)  (109)

where it follows that, as expected, the real and dimension-
less Bogolyubov coefficients

K, +K
V(K4K)

may be understood as the probability amplitudes that a
Proca-Stiickelberg pair of wave vector k is not created out
of the Fock vacuum |0) or, in other words, the relative
persistence probability amplitude for the Proca-Stiickelberg
vacuum. In the very same manner the Bogolyubov coef-

aa®) = 3e(8) - ea(R)

ficient a, 4 (E) may be seen in turn as the relative persist-
ence probability amplitude for the Chern-Simons vacuum
|Q). In a similar way, by taking the in vacuum expectation
value

(0MLakc;[0) = > 4,(0] > a2afa1|0> i
reQ
(V1,j,x €EQ) (110)

it is also clear that we can understand the real Bogolyubov
coefficient

K,—K

V(KAK)

as the relative probability amplitude that a squeezed pair of
Proca-Stiickelberg quanta is created out or absorbed into
the Proca-Stiickelberg vacuum.

To proceed further on, consider e.g. the Chern-Simons
quantum vector field and let us define

Pra(k) =5 e,(k) - ea(k)

PHYSICAL REVIEW D 95, 076020 (2017)
S§(0,0) = exp{—-i0-T(z,Z,v)} (111)

0-T(z,z,v) =11"(07) + I1(z0) + 2N(Ov) (112)
where 0, (V£ € Q) is a real functional parameter, while
the functional unit vector f, is related to the functional
parameters z,, Z,, v, through the relationship

2 =12-z7,=1 (Vi€Q).
For example, a suitable functional parametric form is
provided by a set of hyperbolic and trigonometric variables

(v,,¢,), in such a manner that

z, = sinhv, exp{—i¢,}
(0,eR,0< P, <27, VIER).

v, = coshv,

From the basic commutation relation

T(z,z,v),¢,] = —z¢l — e, [T(z, Z,y),cﬂ =zc, + v
(113)

we readily find
[T,[T.c]] =c¢, [T, [T, C,TH =d. (114)

As a consequence, we actually obtain the general
Bogolyubov transformations in the form

C, — iCzTZ, sin 91 = q,C —ﬂjCj
(115)

a, = (cos O, — iy, sin,)

T . . + . . - +
a; = (cos@; + iv;sin Q,-)cj +icjz;sin0; = ajc; — fjc;

(116)
with
a; =cosf; —iv;sind; p; =iz;sinb;
ﬁf:uj—z,-zjzl ;| + B> = 1. (117)

It follows thereby that the functional unitary operator

S(0,z,v) = 8(0,1) = S(a, ) S1=8" (118)
does generate the Bogolyubov similarity transformations
which connect the Proca-Stiickelberg and Chern-Simons
vector fields on the boundary hyperplane ¢ - x = 0 accord-
ing to the suitable definitions

=S TAL(R)S |CS) = S|PS).

Aps(X) (119)

Moreover we obtain
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Abs(R) ZS lc,v,(R) + ¢ v (R)]S
1€RQ
= lau;(]) + aju;(R)] (120)
JjEQ
A¢g(X) = ZSau R) +ajuf(X)]S™!
1€EQ
= ejv;(]) + w3 (R)] (121)
JEQ

where, in the case of the parity breaking medium and
Minkowski space in four dimensions, we have e.g.

u,(X) =ut (x =0,%)

vj(X) = vg 4(x = 0,%).

Hence, the general Bogolyubov transformation is nothing
but a functional rotation in the Fock space with parameter
functions (0,z,v) = (0,1) = (a,f), the generators of
which are the squeezed pairs emission IT7(6Z7), the
squeezed pairs absorption I1(0z) and the squeezed pairs
number N(Ov) operators, which actually fulfill the func-
tional commutation relations arising from the SU(2) Lie
algebra.

V. THE EXTENDED SAUTER-SCHWINGER-
NIKISHOV FORMULA

Suppose that at some initial time t, our system is in a
definite state, e.g. the vacuum |0in) as defined in Eq. (85),
so that it does not contain any Proca-Stiickelberg vector
particles, and that particle detectors are homogeneously
distributed and placed within a small but finite spatial
volume Awv. Then the final state at some later although close
time t, with 7, — 7, = At, has some calculable probability
to contain zero, one, two, etc. emitted squeezed pairs of
vector particles of the Proca-Stiickelberg or Chern-Simons
particles. For example the LIV vacuum persistence prob-
ability amplitude, i.e. the probability amplitude of no
emission of squeezed Chern-Simons pairs at the time tg,
will be given by

(Qout|0in) = (0out|ST|0in). (122)

For this interpretation to make sense, one has to actually
verify that the vacuum to vacuum transition probability

Wo re, = [(Qout|0in) |2

is not greater than 1. To this concern consider the Hermitian
operators which correspond to the number of CS and PS
quanta with quantum numbers : € L, namely,

PHYSICAL REVIEW D 95, 076020 (2017)

1
NS = 3 (cfe, +c,cl)
= SNPSS™! = NS + a1 + a; AT,
where
I, = a 4|0‘jﬂ}f|2 + (lo]* = 1B;17)* = 1.
It follows that if we set
& =2a,p, = |ay|> = [ (123)

we can write the following squeeze pair operator golden
rule [41] that actually occurs Vi, j,7, ... € Q:

ONSS = &T0, + ETT/ + 2w, NPS &g 4w =1, (124)
It is important to remark that the above equality (124) holds
true thanks to the similarity property satisfied by the
Bogolyubov coefficients «a,, ;. Then, for any complex

distribution function ¢(12;A, r) = @,, we can write

INS(p) = 2NSp, = {cl.c}g,
1€Q 1€Q
=" (Ep) + T1(Ep) + 2NPS(we) = ¢ - T(E,E,w).
(125)

In the application of the above general setting to the present
circumstance, it should be kept in mind that, owing to the
presence of the boundary ¢ - x = 0, then translation invari-
ance holds true only in the time evolution and in the
transverse foliation ¢ - x = constant. It follows thereby that
we can write

2NSS|0in) = [a,.a/]|0in) = &,|0in)

3)(0)|0in) = AcAr(27)3|0in)  (126)

where Ao denotes the small unit area in the Oyz-plane—
e.g. a section of a region in the 3-dimensional space where
the particle detectors are placed. Thus we eventually obtain

(Qout|0in) = (0out|S,'|0in)
= (0O out| exp {2iNS(¢)}|0in)
= H exp {ip,AcAt(27) 3}

1ERQ

= exp {iAO'AI(Z?T)_3Z(pl}.

1IEQ

(127)

However, according to the natural interpretation which
arises from Eq. (107), it is mandatory for consistency to
identify
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1
p;=ilna; = Arga; +§iln > (VjeQ) (128)
As a matter of fact, according to Nikishov [42], the
logarithm of vacuum to vacuum transition amplitude is
provided by

In(Qout/0in) = —AcA#(27)> Ina;.  (129)
1EQ

As a consequence it is possible to express the out vacuum in
terms of the in operators in the explicit form

(Qout| = (Oout|S,!
= (O out| exp {2iNS(¢p)}
= (O out| exp {—2NS(Ina*)}

> cleIna; } (130)

(Oout| exp {
1€Q

where it immediately follows that, by the very construction,

¢ |Oout) =0 (VxeQ). (131)
Notice that the nonsingular operator S, is not unitary,
owing to the presence of an imaginary part in the
distribution function ¢ = ilna*. Furthermore, from the
golden operator identity (124) it follows that we can write

2N (o) = II' (&) + [(Ep) + 2N(opw)

(132)

in such a manner that the out vacuum state can be expressed
a la Dirac as an infinite sea of squeezed pairs, i.e. a
coherent-like state involving any number of squeezed pairs
of any quantum numbers, namely,
(Qout| = (Oout|S;' = (0out| exp{—2N(Ina*)}

= (0 out| exp{—IT" (¢Ina*)

—M(Ina*) —2N(wlna*)} (133)

in which

& =2a,piw; =B oy (Y jEQ).
Finally, one can readily generalize to the present circum-
stance the case of spinor QED in the presence of a uniform

electric field on the four-dimensional Minkowski space:
actually we have

(Qout|0in) = exp {—iAo-At(Zn)*;/dlAcq)(a)}

(134)
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with

1 K,+K

k= (a),ky,kz) 2 \/(KKA)

a(k, A) = (A==+.L)

where K and K, are provided by Eq. (61), in such a manner
that we can eventually write

|<Qin|00ut>|2—exp{—AaAt(2ﬂ)‘3; / df<1n|a(f<,A)|2}
:exp{—2A0At(2ﬂ)‘3; / dﬁlna(ﬁ,A)}

(135)

which is nothing but the suitable generalization of cel-
ebrated Sauter-Schwinger formula [43] to the present
context of a transition across a parity breaking medium
from the Minkowski space and vice versa. For example, to
the leading order in the LIV relevant scales { < m < M,
which properly characterize the present framework, explicit
evaluation shows—see Appendix—that the logarithm of
the vacuum persistence probability trough the boundary per
unit time and unit transverse area is actually approximately
given by

ATAs In [(Qin|0 out)|

3
zCLMC {1 —|—£ <21n%—ln£>

167272 2mce m 2mce

+0(e)

Notice that, as expected, we recover the null result in the
Lorentz invariant limit £ — 0 when a unique cyclic vacuum
state is left in the Fock space, while the vacuum persistence
probability becomes not completely negligible for
CAtAemMc? = 87°h?.

(136)

VI. CONCLUSION

The problem of propagation of vector particles through a
boundary between a parity breaking medium and an empty
vacuum is quite interesting as it may arise in heavy ion and
astrophysics. In this paper we restricted ourselves with the
Chern-Simons dynamics generated by a CS vector orthogo-
nal to the flat boundary which perfectly guaranties the
gauge invariance while it provides the Lorentz symmetry
violation in the Maxwell-Chern-Simons part coherent with
boundary implementation. On the other half-space we have
a massive quantum vector field in vacuum. We investigated
the different quantum field aspects of the model described
before at quasiclassical level. In particular, the transmis-
sion/reflection coefficients for different cases were found in
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[50,51] and the possible influence on the cooling rate of
neutron star was shown in [27].

It is remarkable that in spite of a visible reflection on the
boundary no gaps exist in the system presented in this
paper: full reflection or no transmission would correspond
to a null beta coefficient. If looking at Eq. (71) it
corresponds to K = K, which means, in turn, that the
momentum is parallel to the boundary, or orthogonal
polarization. However it is easy to check that if a quantum
has a nonvanishing component of momentum orthogonal to
the boundary plane, then it undergoes both reflection and
transmission necessarily. Thus the system presented in this
paper is sensibly different from a potential barrier for a one-
dimensional quantum particle, e.g. physical effects are of a
quite different nature.

However, the results of the present work allow us to
describe the particle transition through the boundary
between areas with different field equations at quantum
level in a more general form. The fact that Bogolyubov
transformations may be rewritten as a functional rotation in
the Fock space is useful in problems not only connected
with MCS electrodynamics in a finite volume, but in other
investigations concerned with different Fock spaces for
geometrically and physically different space-time regions
and propagation between them.

We draw attention of a reader also to the probability of
inducing finite volume bubbles of distinct matter/radiation
background undertaken in the Sec. V and in the Appendix.
It looks useful for description of phase transition to and
from the parity breaking media in heavy ion collisions.
However we stress that for infinite volume subspaces the
total transition probability vanishes and the two media
coexist. This is justified by calculation of the probability to
find any number of squeezed pairs of vector particles of the
Proca-Stiickelberg or Chern-Simons kind in crossing the
boundary between the empty space-time and the parity
breaking medium.
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APPENDIX: PROBABILITY FLUX

In this appendix we will calculate, to the leading
approximation in the relevant physical parameters of the
present model, the probability flux from the Proca-
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Stiickelberg vacuum state |0) to the Chern-Simons vacuum
state |Q) and vice versa, due to transmission and reflection
of squeezed pairs quanta through the boundary that
separates the parity breaking medium from the
Minkowski empty space. To start with, we have to invert

the Chern-Simons frequency formula for k* > m? and
¢ =(0,£,0,0)(¢ > 0): we find

1 / 1
a)kyi—\/kz—l-mz—l-ié‘z:tc k%—l—mz—l-ZCZ

~ 1
kz_Kz_mz_Eé’z

=/ K? +m? +%rc:2 & (K2 - (K -m?)}?

_EZCZ =0

K2 — (K2 —m?)

= +\/k*? & K (k) = VK2 —m2 £ Vi

As we have already emphasized the general requirements

k2 >0V K_(k) > 0 entail the conservative lower and
upper approximate bounds for angular frequency

_R

m(l—f—E)SwSM €
mc

2
where, as already mentioned, the UV cutoff M is the natural
albeit model-dependent axionlike decay constant size,
typically ranging within 10° x 10'7 GeV, according to
the recent estimates—see e.g. the review paper [46]. If
we suppose here that e.g. { < m, then we have for
e=(¢/m) <1

V2 =m?>0 fork>>m?

Ja
=
I

Notice that this particular function y(k) is a monotonically
decreasing function for k* > m?(1 + €) which is bounded
by O(1) because

A Q2 2
Vix(k) = - . o

Vig (@ —m?)?
AR my/Tre =T ey

me 2

< 0;

Then the Bogolyubov transmission coefficient can be recast
under the suitable form
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@, oL Ktk L4 /1 £ x(K)
a =— =
T2 VKK gefi )
1 1 -
— - +§{‘/1i;((k)
24/1 4 y(k)

while the integration volume in Fourier space is corre-
spondingly bounded by

/dﬁ — /_Zdwe(w2 _n2(1 +€))

x //oo dk,dk.0(w? — m>(1 + €) — k2 = k2).

[Se]

Then we can approximate by keeping the leading term

within the phase space volume. Thus, we approximately
obtain

/dﬁlna(ﬁ) z%/M dw 0(w? —m?(1 +€))
0
x // " dk,dk,0(R? — m2(1 + €))

Q2
X —————
(k2 — m?)?

and if we set g = k? + k2 after turning to planar polar
coordinates we obtain

~ ~ 71'{_:2 M
/dklna(k)zl—6/ dw 0(w? —m?(1 +¢))
0

X/wdqe(a)z—mz(lJre)—q)
0

2 _
x4

(@?

—m’ = q)*

To evaluate the above integral it is convenient to set

b=—

v=aw*-m*(1+e¢) a=
m

1+e€
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in such a manner that we can write
/ dR In a(R)

(M o [v o’ —q
~Te ) ooz | d‘f—u—q+em2—:Lo

2 M o
= %A dw O(v) o (m* + &)[In(v + em? — )

~ In(em® — Elte=o

_ T a0 [” >
—16meldx{ln(l+}f)+€ 1+}{]

where we have set

v @ -m*(l4e) 1

XN =——== :—x2—1 - 1.
€m2 €m2 6'( )

Then we find
N ~ T b
/dklna(k) zﬁm%z/ dx{ln(x—l— 1) +In(x—1)

I +1+1 1 1
_n — — —
¢ e 2\x+1 x-1

so that, taking the assumption 0 < ¢ <« 1 < b properly into
account,

A 1
/dklna(k)z’;w&{+21nb—1ne+0(1)}
€

zb b?
N1g™ e{l +eln?—|— 0(6‘)}

where we have neglected also by terms of order In(e)/b <
O(1). Thereby, under the assumption M > m > {, we
eventually find that, to the leading order in the relevant LIV
numbers ¢ < 1 and b > 1, the dominant contribution to
the vacuum to vacuum persistence probability is provided
by the flux density

In |(Qi
AtAo-n|< in|0 out)|

3
~r—=( e {14—;14’ <2lnE—ln£>

1672hH2 mc m 2mc

~oe)}

where we have taken into account a factor two, because
both LIV polarization contribute the same amount to the
leading order in this approximation.

076020-16



PARITY BREAKING MEDIUM AND SQUEEZE OPERATORS

[1] S.M. Carroll, G.B. Field, and R. Jackiw, Limits on a
Lorentz and parity violating modification of electrodynam-
ics, Phys. Rev. D 41, 1231 (1990).

[2] G. M. Shore, Strong equivalence, Lorentz and CPT viola-
tion, anti-hydrogen spectroscopy and gamma-ray burst
polarimetry, Nucl. Phys. B717, 86 (2005).

[3] T. Jacobson, S. Liberati, and D. Mattingly, Lorentz violation
at high energy: concepts, phenomena constraints, Ann.
Phys. (N.Y.) 321, 150 (2006).

[4] V. A. Kostelecky and N. Russell, Data tables for Lorentz and
CPT violation, Rev. Mod. Phys. 83, 11 (2011).

[5] W. Bietenholz, Cosmic rays and the search for a Lorentz
invariance violation, Phys. Rep. 505, 145 (2011).

[6] F. W. Stecker and S.T. Scully, Searching for new physics
with ultrahigh energy cosmic rays, New J. Phys. 11, 085003
(2009).

[7]1 A. A. Andrianov and R. Soldati, Lorentz symmetry breaking
in Abelian vector field models with Wess-Zumino inter-
action, Phys. Rev. D 51, 5961 (1995).

[8] D. Colladay and V. A. Kostelecky, CPT violation and the
standard model, Phys. Rev. D 55, 6760 (1997).

[9] D. Colladay and V. A. Kostelecky, Lorentz-violating ex-
tension of the standard model, Phys. Rev. D 58, 116002
(1998).

[10] A.A. Andrianov and R. Soldati, Patterns of Lorentz
symmetry breaking in QED by CPT-odd interaction, Phys.
Lett. B 435, 449 (1998).

[11] S.R. Coleman and S. L. Glashow, Cosmic ray and neutrino
tests of special relativity, Phys. Lett. B 405, 249 (1997).

[12] S.R. Coleman and S.L. Glashow, Evading the GZK
cosmic-ray cutoff, arXiv:hep-ph/9808446.

[13] S.R. Coleman and S.L. Glashow, High-energy tests of
Lorentz invariance, Phys. Rev. D 59, 116008 (1999).

[14] R.C. Myers and M. Pospelov, Experimental Challenges
for Quantum Gravity, Phys. Rev. Lett. 90, 211601
(2003).

[15] R. Montemayor and L. F. Urrutia, Synchrotron radiation in
Lorentz-violating electrodynamics: The Myers-Pospelov
model, Phys. Rev. D 72, 045018 (2005).

[16] J. Alfaro, A. A. Andrianov, M. Cambiaso, P. Giacconi, and
R. Soldati, Bare and induced Lorentz and CPT invariance
violations in QED, Int. J. Mod. Phys. A 25,3271 (2010); On
the consistency of Lorentz invariance violation in QED
induced by fermions in constant axial-vector background,
Phys. Lett. B 639, 586 (2006).

[17] M. Cambiaso, R. Lehnert, and R. Potting, Massive photons
and Lorentz violation, Phys. Rev. D 85, 085023 (2012).

[18] V. A. Kostelecky and M. Mewes, Signals for Lorentz
violation in electrodynamics, Phys. Rev. D 66, 056005
(2002).

[19] G. M. Shore, Quantum gravitational optics, Contemp. Phys.
44, 503 (2003).

[20] H. C. Cheng, M. A. Luty, S. Mukohyama, and J. Thaler,
Spontaneous Lorentz breaking at high energies, J. High
Energy Phys. 05 (2006) 076.

[21] A.A. Andrianov, R. Soldati, and L. Sorbo, Dynamical
Lorentz symmetry breaking from 3 + 1 axion-Wess-Zumino
model, Phys. Rev. D 59, 025002 (1998).

[22] N. Arkani-Hamed, H.C. Cheng, M.A. Luty, and S.
Mukohyama, Ghost condensation and a consistent infrared

PHYSICAL REVIEW D 95, 076020 (2017)

modification of gravity, J. High Energy Phys. 05 (2004)
074.

[23] N. Arkani-Hamed, H.C. Cheng, M. Luty, and J. Thaler,
Universal dynamics of spontaneous Lorentz violation and a
new spin-dependent inverse-square law force, J. High
Energy Phys. 07 (2005) 029.

[24] L. Abbott and P. Sikivie, A cosmological bound on the
invisible axion, Phys. Lett. B 120, 133 (1983).

[25] R.D. Peccei et al., Axions: Theory, Cosmology and
Experimental Searches, Lecture Notes in Physics, edited
by M. Kuster, G. Raffelt, and B. Beltran (Springer,
New York, 2008), Vol. 741.

[26] E. W. Kolb and M. S. Turner, The Early Universe (Westview

Press, Boulder, CO, 1990); Y. Sofue and V. Rubin, Rotation

curves of spiral falaxies, Annu. Rev. Astron. Astrophys. 39,

137 (2001); S. J. Asztalos et al., Experimental constraints on

the axion dark matter halo density, Astrophys. Jour. Lett.

571, L27 (2002).

A.A. Andrianov, V. A. Andrianov, D. Espriu, and S.S.

Kolevatov, Stellar matter with pseudoscalar condensates,

Eur. Phys. J. C 76, 169 (2016).

P. Wurm for the CERES Collaboration, New Resuts

from NA45/CERES, Nucl. Phys. B590, 103c (1995); G.

Agakichiev et al. (CERES Collaboration), Systematic study

of low-mass electron pair production in p-Be and p-Au

collisions at 450 GeV/c, Eur. Phys. J. C 4, 231 (1998);

R. Arnaldi et al. (NA60 Collaboration), First Measurement

of the p Spectral Function in High-Energy Nuclear

Collisions, Phys. Rev. Lett. 96, 162302 (2006).

[29] A. Adare et al. (PHENIX Collaboration), Detailed meas-
urement of the e™e™ pair continuum in p + p and Au + Au
collisions at /syy = 200 GeV and implications for direct
photon production, Phys. Rev. C 81, 034911 (2010).

[30] G. Agakichiev er al. (HADES Collaboration), Dielectron
Production in '>C + 2C Collisions at 2A GeV with the
HADES Phys. Rev. Lett. 98, 052302 (2007); Study of
dielectron production in C + C collisions at 1 A GeV, Phys.
Lett. B 663, 43 (2008).

[31] L. Tserruya, Electromagnetic probes, in Relativistic Heavy
Ion Physics, edited by R. Stock (Springer, New York, 2010),
Vol. 23, p. 176.

[32] A.A. Andrianov, V.A. Andrianov, D. Espriu, and X.
Plannels, Dilepton excess from local parity breaking in
baryon matter, Phys. Lett. B 710, 230 (2012).

[33] A.A. Andrianov and D. Espriu, On the possibility of

P-violation at finite baryon-number densities, Phys. Lett.

B 663, 450 (2008); A. A. Andrianov, D. Espriu, and V. A.

Andrianov, Spontaneous P-violation in QCD in extreme

conditions, Phys. Lett. B 678, 416 (2009).

D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Possibility

of Spontaneous Parity Violation in Hot QCD, Phys. Rev.

Lett. 81, 512 (1998); K. Buckley, T. Fugleberg, and A.

Zhitnitsky, Can Induced © Vacua be Created in Heavy-lon

Collisions?, Phys. Rev. Lett. 84, 4814 (2000); D. Kharzeeyv,

Parity violation in hot QCD: Why it can happen, and how to

look for it, Phys. Lett. B 633, 260 (2006); D. E. Kharzeev,

L.D. McLerran, and H.J. Warringa, The effects of topo-

logical charge change in heavy ion collisions: Event by

event P and CP violation, Nucl. Phys. A803, 227

(2008).

(27]

(28]

(34]

076020-17


https://doi.org/10.1103/PhysRevD.41.1231
https://doi.org/10.1016/j.nuclphysb.2005.03.040
https://doi.org/10.1016/j.aop.2005.06.004
https://doi.org/10.1016/j.aop.2005.06.004
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1016/j.physrep.2011.04.002
https://doi.org/10.1088/1367-2630/11/8/085003
https://doi.org/10.1088/1367-2630/11/8/085003
https://doi.org/10.1103/PhysRevD.51.5961
https://doi.org/10.1103/PhysRevD.55.6760
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1103/PhysRevD.58.116002
https://doi.org/10.1016/S0370-2693(98)00823-5
https://doi.org/10.1016/S0370-2693(98)00823-5
https://doi.org/10.1016/S0370-2693(97)00638-2
http://arXiv.org/abs/hep-ph/9808446
https://doi.org/10.1103/PhysRevD.59.116008
https://doi.org/10.1103/PhysRevLett.90.211601
https://doi.org/10.1103/PhysRevLett.90.211601
https://doi.org/10.1103/PhysRevD.72.045018
https://doi.org/10.1142/S0217751X10049293
https://doi.org/10.1016/j.physletb.2006.06.075
https://doi.org/10.1103/PhysRevD.85.085023
https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1080/00107510310001617106
https://doi.org/10.1080/00107510310001617106
https://doi.org/10.1088/1126-6708/2006/05/076
https://doi.org/10.1088/1126-6708/2006/05/076
https://doi.org/10.1103/PhysRevD.59.025002
https://doi.org/10.1088/1126-6708/2004/05/074
https://doi.org/10.1088/1126-6708/2004/05/074
https://doi.org/10.1088/1126-6708/2005/07/029
https://doi.org/10.1088/1126-6708/2005/07/029
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1146/annurev.astro.39.1.137
https://doi.org/10.1146/annurev.astro.39.1.137
https://doi.org/10.1146/annurev.astro.39.1.137
https://doi.org/10.1146/annurev.astro.39.1.137
https://doi.org/10.1140/epjc/s10052-016-4012-1
https://doi.org/10.1016/0375-9474(95)00229-T
https://doi.org/10.1007/s100530050204
https://doi.org/10.1103/PhysRevLett.96.162302
https://doi.org/10.1103/PhysRevC.81.034911
https://doi.org/10.1103/PhysRevLett.98.052302
https://doi.org/10.1016/j.physletb.2008.03.062
https://doi.org/10.1016/j.physletb.2008.03.062
https://doi.org/10.1016/j.physletb.2012.02.072
https://doi.org/10.1016/j.physletb.2008.04.043
https://doi.org/10.1016/j.physletb.2008.04.043
https://doi.org/10.1016/j.physletb.2009.06.056
https://doi.org/10.1103/PhysRevLett.81.512
https://doi.org/10.1103/PhysRevLett.81.512
https://doi.org/10.1103/PhysRevLett.84.4814
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298

ANDRIANOV, KOLEVATOV, and SOLDATI

[35] P. V. Buividovich, M. N. Chernodub, E. V. Luschevskaya,
and M. L. Polikarpov, Quark electric dipole moment induced
by magnetic field, Phys. Rev. D 80, 054503 (2009).

[36] B.1. Abelev et al. (STAR Collaboration), Azimuthal
Charged-Particle Correlations and Possible Local Strong
Parity Violation, Phys. Rev. Lett. 103, 251601 (2009); S. A.
Voloshin, Local strong parity violation and new possibilities
in experimental study of nonperturbative QCD, J. Phys.
Conf. Ser. 230, 012021 (2010).

[37] A. A. Anselm, Classical states of the chiral field and nuclear
collisions at very high energy, Phys. Lett. B 217, 169
(1989); J. D. Bjorken, Report No. SLAC-PUB-5673, 1991;
A.A. Anselm and M. G. Ryskin, Production of classical
pion field in heavy ion high energy collisions, Phys. Lett. B
266, 482 (1991); J. P. Blaizot and A. Krzywicki, Soft-pion
emission in high-energy heavy-ion collisions, Phys. Rev. D
46, 246 (1992); J.D. Bjorken, K. L. Kowalski, and C.C.
Taylor, Report No. SLAC-PUB-6109.

[38] B. Mohanty and J. Serreau, Disoriented chiral condensate:
Theory and experiment, Phys. Rep. 414, 263 (2005).

[39] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved
Space (Cambridge University Press, Cambridge, 1982).

[40] A. A. Andrianov, S.S. Kolevatov, and R. Soldati, The
functional squeeze operator algebra in Maxwell-Chern—
Simons electrodynamics, Theor. Math. Phys. 184, 1213
(2015).

[41] R. Soldati, Pairs emission in a uniform background field: An
algebraic approach, J. Phys. A 44, 305401 (2011).

[42] A.1 Nikishov, Pair production by a constant external field,
Sov. Phys. JETP 30, 660 (1970) [Zh. Eksp. Teor. Fiz. 57,
1210 (1969)]; N.B. Narozhnyi and A.l. Nikishov, The

PHYSICAL REVIEW D 95, 076020 (2017)

simplest processes in a pair-producing field, Sov. J. Nucl.
Phys. 11, 596 (1970) [Yad. Fiz. 11, 1072 (1970)].

[43] F. Sauter, Uber das Verhalten eines Elektrons im homogenen
elektrischen Feld nach der relativistischen Theorie Diracs,
Z. Phys. 69, 742 (1931); W. Heisenberg and H. Euler,
Consequences of Dirac’s theory of positrons, Z. Phys. 98,
714 (1936); J. Schwinger, On Gauge Invariance and
Vacuum Polarization, Phys. Rev. 82, 664 (1951).

[44] E. C. G. Stueckelberg, Theory of the radiation of photons of
small arbitrary mass, Helv. Phys. Acta 30, 209 (1957).

[45] 1. A. Batalin and E. S. Fradkin, Operational quantization of
dynamical systems subject to second class constraints, Nucl.
Phys. B279, 514 (1987).

[46] R. Essig et al., Dark sectors and new, light, weakly coupled
particles, arXiv:1311.0029.

[47] A.A. Andrianov, D. Espriu, P. Giacconi, and R. Soldati,
Anomalous positron excess from Lorentz-violating QED, J.
High Energy Phys. 09 (2009) 057.

[48] A.A. Andrianov, D. Espriu, F. Mescia, and A. Renau, The
axion shield, Phys. Lett. B 684, 101 (2010).

[49] A. A. Andrianov, P. Giacconi, and R. Soldati, Lorentz and
CPT violations in Chern-Simons modifications of QED, J.
High Energy Phys. 02 (2002) 030.

[50] A.A. Andrianov, S.S. Kolevatov, and R. Soldati, Propaga-
tion of photons and massive vector mesons between a parity
breaking medium and vacuum, J. High Energy Phys. 11
(2011) 007.

[51] A. A. Andrianov and S.S. Kolevatov, Transmission of
vector particles through the interface of a spatial parity-
violating medium and the vacuum, Theor. Math. Phys. 175,
744 (2013) [Teor. Mat. Fiz. 175, 357 (2013)].

076020-18


https://doi.org/10.1103/PhysRevD.80.054503
https://doi.org/10.1103/PhysRevLett.103.251601
https://doi.org/10.1088/1742-6596/230/1/012021
https://doi.org/10.1088/1742-6596/230/1/012021
https://doi.org/10.1016/0370-2693(89)91537-2
https://doi.org/10.1016/0370-2693(89)91537-2
https://doi.org/10.1016/0370-2693(91)91073-5
https://doi.org/10.1016/0370-2693(91)91073-5
https://doi.org/10.1103/PhysRevD.46.246
https://doi.org/10.1103/PhysRevD.46.246
https://doi.org/10.1016/j.physrep.2005.04.004
https://doi.org/10.1007/s11232-015-0329-4
https://doi.org/10.1007/s11232-015-0329-4
https://doi.org/10.1088/1751-8113/44/30/305401
https://doi.org/10.1007/BF01339461
https://doi.org/10.1007/BF01343663
https://doi.org/10.1007/BF01343663
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1016/0550-3213(87)90007-1
https://doi.org/10.1016/0550-3213(87)90007-1
http://arXiv.org/abs/1311.0029
https://doi.org/10.1088/1126-6708/2009/09/057
https://doi.org/10.1088/1126-6708/2009/09/057
https://doi.org/10.1016/j.physletb.2010.01.005
https://doi.org/10.1088/1126-6708/2002/02/030
https://doi.org/10.1088/1126-6708/2002/02/030
https://doi.org/10.1007/JHEP11(2011)007
https://doi.org/10.1007/JHEP11(2011)007
https://doi.org/10.1007/s11232-013-0060-y
https://doi.org/10.1007/s11232-013-0060-y
https://doi.org/10.4213/tmf8473

