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Magnetic monopoles are suggested to play an important role in strongly coupled quark-gluon plasma
(sQGP) near the deconfinement temperature. Until now, their many-body treatment has been studied
classically; only their binary scattering has been solved in quantum mechanics. In this paper we start
quantum many-body studies of the monopole ensembles. Specifically, we carry out numerical simulations
of the path integral for one- and two-component Coulomb Bose systems. We determine the relation
between the critical temperature for the Bose-Einstein condensation phase transition Tc and the Coulomb
coupling strength using two methods, the classic finite-size scaling of the condensate and a lattice-
tested method based on permutation cycles. For a one-component Coulomb Bose gas, we observe the
same behavior of the critical temperature—initially rising slightly, then falling as interaction strength is
increased—as seen in the case of hard spheres; we also observe the same behavior for a two-component
Coulomb Bose gas. We then calculate sets of radial correlation functions between the like and unlike
charged particles. By matching these with the correlation functions previously calculated on the lattice, we
derive an effective quantum model of color magnetic monopoles in QCD. From this matched model, we are
able to extract the monopole contribution to the QCD equation of state near Tc.
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I. INTRODUCTION

Dirac [1] showed that magnetic monopoles can exist,
provided the product of the electric and magnetic couplings
is an integer multiple of 4π, which makes the Dirac strings
invisible. A specific solution for the monopole has been
found by ’t Hooft [2] and Polyakov [3] for a gauge theory
with an adjoint colored scalar, known as the Georgi-
Glashow model.
In the 1970s, Nambu [4], ’t Hooft [5], and Mandelstam

[6] proposed the dual superconductivity model of the QCD
vacuum, suggesting that confinement is due to the Bose-
Einstein condensation (BEC) of magnetic monopoles.
With the advent of numerical simulations on the lattice,

this scenario has been tested in multiple ways and essen-
tially confirmed. For example, it was found that, at T < Tc,
magnetic monopoles rotate around the electric flux tubes,
producing a supercurrent. These monopoles have the same
properties as electric charges rotating around magnetic flux
tubes in an ordinary superconductor, hence the name
“dual.” Specific properties of the monopoles—the corre-
lations, densities, and condensates—have also been evalu-
ated on the lattice, cf. Refs. [7–10].
The “magnetic scenario” for finite-temperature QCD

[11] suggested that interactions of the “electric” objects—
quarks and gluons—with magnetic monopoles give rise to
the unusual transport properties of the quark-gluon plasma
(QGP). This idea was first developed via classical

molecular dynamics simulations of a “dual plasma,” con-
taining electrically and magnetically charged particles.
These simulations, along with the lattice studies mentioned
above, showed that the magnetic coupling runs as Dirac
predicted: as temperature is increased, the magnetic cou-
pling grows inversely to the electric coupling [12].
Monopoles have subsequently been included in calcula-

tions of transport properties via quantum-mechanical binary
scattering amplitudes—see, for example, Ref. [13] for gluon-
monopole scattering. Another application of scattering of
charges on monopoles is in models of jet quenching [14,15].
The purpose of this work is to elevate the classical dual

Coulomb plasma picture to an effective quantum many-
body theory of monopole ensembles. The need for a
quantum model is clear: without one, it would not be
possible to study the Bose-Einstein condensation transition.
Lattice simulations of gauge theories include magnetic

monopoles as certain solitons made of glue. These simu-
lations are based on first principles, namely the QCD
Lagrangian. However, they also include many more
degrees of freedom—such as quark and gluon quasipar-
ticles at T > Tc—and are therefore very expensive. Our
aim is to create an effective model of the monopoles and
quantify their contributions to various observables. In doing
so, we realize that one can only separate the monopoles
from other degrees of freedom to a certain degree.
To simulate these quantum Coulomb Bose systems, we

will use path-integral Monte Carlo (PIMC). This method
has been widely used since the 1980s; for extensive detail
and an overview of its early successes, see Ref. [16].
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The analysis methods we use for our simulations will be
briefly discussed in Sec. II.
We will first investigate how the Coulomb interaction

between the magnetic quasiparticles affects the critical
temperature Tc of their BEC phase transition, through
numerical simulations of one- and two-component (plus-
and minus-charged) Bose gases at different coupling
strengths. The results of our simulations are in Sec. III.
In Sec. IV, we will map the results of our simulations for
the two-component Bose gas to those found on the lattice
in order to find the parameters for our model that yield the
same effective behavior of the magnetic monopoles, and
make estimates of the monopole contribution to QCD
thermodynamics.

II. NUMERICAL SIMULATION METHODOLOGY

A. Path-integral Monte Carlo

The path-integral formulation of quantum mechanics
was developed by Feynman [17], who also extended this
formalism to describe statistical mechanics, using periodic
path integrals in Euclidean time. For many years this
formalism has been used for perturbation theory, the
derivation of Feynman diagrams at zero and finite temper-
ature, and analytic semiclassical methods.
One of Feynman’s early applications of the path-

integral formalism was to the BEC phenomenon, which
he connected to the appearance of Bose clusters of
particles; as the temperature drops from above Tc to
below, the suppression of these clusters disappears. He
qualitatively explained why an interacting quantum
system may have a lower Bose-Einstein condensation
critical temperature than in the case of free particles,
famously applying this method to study liquid 4He at
near-zero temperatures [18,19].
Numerical evaluation of path integrals became feasible

in the late 1970s. Particularly, after pioneering work by
Creutz on confinement in lattice gauge theory [20], Creutz
and Freedman numerically computed path integrals for
quantum-mechanical motion in quartic potential [21].
Some further examples of simulations with a few particles,
such as the two electrons in the He atom and the four
nucleons in a 4He nucleus, were done by one of us [22].
The basis for all of these simulations is the Metropolis
algorithm [23]. Starting in the early 1980s, supercomputers
allowed us to numerically simulate quantum many-body
systems, such as liquid 4He.
For self-consistency of the paper, we present a brief

summary of the relevant general formulas and methods
used in Appendix A. Here, we will briefly describe two
methods of finding the critical condensation temperature to
be used below. These are more feasible than the brute force
approach, based on a calculation of the free energy of the
ensemble with subsequent determination of specific heat
and its peak.

The first is the method outlined by Pollock and Ceperley
[24], and Pollock and Runge [25], based on supercurrent
and its finite-size scaling. The second method, developed
by Cristoforetti and Shuryak [26], uses the permutation-
cycle statistics of the system to find Tc. The latter method
has not been used in analysis of PIMC simulations, so this
work also seeks to test the accuracy of this method. It has so
far been used in Refs. [8,9] for lattice monopoles, con-
firming that deconfinement Tc is indeed the BEC transition
of the monopoles.

1. Tc from finite-size scaling of the superfluid fraction

Following the discussion in Refs. [24,25], we can
identify the winding number of the system with the
superfluid fraction, and then using finite-size scaling,
determine Tc. In experimental settings, the normal and
superfluid components of a system are determined from
boundary behavior. If we introduce a velocity v to the
boundaries of our system, we have a new density matrix

ρv ¼ expfβHvg; ð1Þ

with

Hv ¼
X
j

ðpj −mvÞ2
2m

þ V: ð2Þ

The normal component of the fluid is the portion that
responds to this boundary motion, so we can write for the
total momentum

ρN
ρ
Nmv ¼ hPiv: ð3Þ

We have for the free energy of this system

expf−βFvg ¼ Trρv; ð4Þ

so we can write

ρN
ρ
Nmv ¼ −

∂Fv

∂v þ Nmv; ð5Þ

or, equivalently,

ρs
ρ
¼ ∂ðFv=NÞ

∂ð1
2
mv2Þ →

ΔFv

N
¼ 1

2
mv2

ρs
ρ
þ � � � : ð6Þ

In the path-integral formalism, the density matrix with a
velocity obeys the Bloch equation with moving walls, with
periodic boundary conditions such that it is identical with a
translation by a lattice vector. We can define a transformed
density matrix, ρ0, by
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ρvðR;R0; βÞ ¼ exp

�
i
m
ℏ
v ·

X
j

ðrj − r0jÞ
�
ρ0ðR;R0; βÞ: ð7Þ

This new density matrix obeys the Bloch equation in
the case of stationary walls, but it obtains a factor of
exp fi mℏ v ·Lg in periodic translations. Keeping track of the
number of times the periodic boundary conditions are
applied can be done with the definition of a winding
number, which counts the number of times a particle winds
around the spatial directions of periodic box before
returning to its “original” location.
The free energy change induced from a velocity v can be

written as

exp fβΔFvg ¼ exp

�
i
m
ℏ
v ·WL

�
; ð8Þ

βΔFv ¼
m2v2

2ℏ2

hW2iL2

3
þ � � � : ð9Þ

We can thus identify, with the use of Eq. (6),

ρs
ρ
¼ m

ℏ
hW2iL2

3βN
: ð10Þ

From assumptions of finite-size scaling, we have that,
near Tc,

ρs
ρ
ðT; LÞ ¼ L−1QðL−1=νtÞ; ð11Þ

with t ¼ ðT − TcÞ=Tc. As a result, the functions
Lρs=ρðT; LÞ, for different values of L, should all cross
at Tc, barring some minor corrections, expanded upon
in Ref. [25].

2. Tc from permutation-cycle statistics

Following the example of Ref. [8], the partition function
of a noninteracting ideal gas of bosons can be broken up
into a product of contributions of k-cycles—where, for
example, the permutation ð1; 2; 3Þ → ð2; 3; 1Þ is considered
a 3-cycle—as

Z ¼ 1

N!

X
P

Y
k

znkk ; ð12Þ

where nk is the number of k-cycles present in the system.
Feynman’s idea was that the sum over Bose cluster size k of
the density of k-cycles should diverge at Tc, which in turn
implies that some critical action S� required to permute two
particles should be reached. He justified this idea for an
ideal gas, and in Ref. [26], it was extended to interacting
systems such as liquid 4He.

Expanding these contributions,

zkðTÞ ¼
Z

dy1…dykhy2; y3;…; yk; y1je−βĤjy1; y2;…; yki

¼
Z

dy1hy1je−kβĤjy1i≡ z1ðT=kÞ: ð13Þ

The partition function for a nonrelativistic free particle in a
box is well known, so we can get the full contribution

zkðTÞ ¼
V

λ3Bk
3=2 ; ð14Þ

where λB is the thermal de Broglie wavelength and V is the
volume of the box. Then the partition function is

Z ¼ 1

N!

X
P

X
k

�
V

λ3Bk
3=2

�
nk
: ð15Þ

This quantity is not easily computed for fixed particle
number, but this problem is avoided if we go to the Grand
Canonical ensemble, for which the partition function is

Z ¼
Y
k

�
Veμk=T

λ3Bk
5=2

�
: ð16Þ

From this partition function, we can extract the density of
k-cycles

ρkðTÞ≡ hnki
V

¼ eμk=T

λ3Bk
5=2 : ð17Þ

The total particle density is

N
V

¼
X
k

kρkðTÞ ¼
X
k

eμk=T

λ3Bk
5=2 ; ð18Þ

which has an upper limit of μ ¼ 0. This approach is fully
valid for any noninteracting gas above Tc (i.e. with k-cycles
on the microscopic scale). Therefore, by measuring numeri-
cally the densities ρk at various temperatures of a given
system, we can fit a curve of the function above to find
a temperature at which the quantity μ=T vanishes; this
value will be the critical temperature, Tc, for Bose-Einstein
condensation (BEC).
In this paper, as was studied in Refs. [8,9], we are not

dealing with a noninteracting gas of particles, for which
the approach above is exact. Nevertheless, we expect the
densities of cycles to decrease exponentially with k,

ρkðTÞ ¼ e−μ̂kfðkÞ; ð19Þ

where μ̂ ¼ −μ=T and fðkÞ is some decreasing function of k
of the form fðkÞ ∼ 1=kα. To find the critical temperature,
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we look for the temperature at which the k-cycles are no
longer suppressed exponentially in k, i.e. μ̂ → 0.

III. NUMERICAL SIMULATION RESULTS

A. Test case: BEC critical temperature for 4He

The first task was to reproduce well-quantified results
using the permutation-cycle critical temperature analysis, in
order to ensure the validity and applicability of this method.
To do so, we simulated a box of 128 4He particles
interacting via the empirical Aziz potential [27], and
compared our results to the experimental results as well
as previous computational results [16]. The experimental
result for the BEC critical temperature was found to be
2.17 K, while the calculations with the binary Aziz
potential predict a critical temperature of 2.19 K.
In order to compute the critical temperature using the

permutation-cycle method, we first determine the temper-
ature dependence of the probability of finding a particle in a
k-cycle PkðTÞ. From these probabilities, we compute the
permutation-cycle densities, ρkðTÞ,

ρkðTÞ ¼
NPkðTÞ

kV
; ð20Þ

where N is the number of particles in the system, and V is
the volume.
The permutation-cycle densities for various temperatures

are shown in Fig. 1. We can then fit these densities via
Eq. (19) to extract the suppression factor, μ̂. A few of these
fitted curves are shown in Fig. 1(a). At T ¼ 2 K—below
Tc—the exponential suppression is not present, and thus
we observe permutation cycles with k > 30. This is a sign
that at this temperature in an infinite system, there will be
a cluster of infinitely many particles; the Bose condensate
is present. In Fig. 1(b), one can see explicitly how the
exponential suppression appears at T > 2.2 K, visually
portrayed by the gap between the 2.2 K and 2.3 K lines.
Above Tc, the suppression factor grows larger with
temperature.
Finally, after fitting all of the temperatures and finding

μ̂ðTÞ, we fit the μ̂ data with the functional form

μ̂ðTÞ ¼ AðT − TcÞν; ð21Þ

from which we find Tc. The results of our simulations are
seen in Fig. 2. Using the permutation-cycle method, we
find a critical temperature of 2.21� 0.04 K. This result is
within 2% of reproducing the experimental critical temper-
ature of the 4He system and within 1% of the critical
temperature determined for the Aziz potential used in other
numerical calculations. We conclude that this method can
indeed be used in path-integral Monte Carlo to accurately
find the critical temperature of interacting Bose systems.

B. BEC critical temperature for Coulomb Bose gases

According to Einstein, the BEC of an ideal Bose gas
happens at the critical temperature,

Tc ¼
�
2πℏ2

mkB

��
n

ζð3
2
Þ
�2

3

; ð22Þ

where n is the density and m is the particle mass.
Extension of this relation to interacting Bose gases has

an interesting history. There was much debate in the
literature—using Hartree-Fock, loop diagram, and renorm-
alization group calculations, for example—about even the
sign of corrections to Tc; see Ref. [28] for discussion and
references.
Numerically, the dependence of BEC critical temper-

ature on the strength of a hard sphere potential was studied

(a)

(b)

FIG. 1. The permutation-cycle densities ρk at various temper-
atures for a system of 128 4He particles. Plot (a) shows a wider
range of temperatures. The lines are rough fits to guide the eye.
Plot (b) focuses on temperatures near the critical value (neglect-
ing error bars for clarity). Note the gap between the 2.2 K and
2.3 K points.
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by Grüter et al. [28]. It was found that at low densities the
critical temperature is increased by a repulsive interaction,
while at high densities the critical temperature is decreased,
eventually recovering the well-known 4He result. This
behavior at low densities can be explained with the
calculation by Holzmann et al. [29].
As a first step in making an effective model for a

quantum two-component Coulomb Bose gas, we seek to
find the dependence of Tc on the Coulomb interaction
strength; i.e. by varying α in

V intðrijÞ ¼ α
qiqj
rij

: ð23Þ

In our numerical study, the magnitude of charges, q; the
masses, m; ℏ; Boltzmann’s constant, kb; and the density, n,
are all scaled to 1. This leaves as variables only the
temperature, T, entering via the period of the Euclidean
time τ ∈ ½0; 1=T�, the magnitude of the Coulomb coupling,
α, and the signs of the charges. In these units, the critical
temperature for the ideal Bose gas is

T0 ¼ 2π

�
1

ζð3
2
Þ
�2

3 ¼ 3.3125; ð24Þ

and this value will be indicated by a horizontal dashed line
in the plots to follow. More details of the numerical
simulations explained hereafter, including system sizes
and parameters, are given in Appendix B.

1. One-component Bose gas with varied Coulomb
coupling parameter

For the one-component Coulomb Bose gas, with com-
pensating distributed charge commonly known as jellium,

we seek to investigate the dependence of Tc on the strength
of the Coulomb coupling parameter, and to compare it
qualitatively to the relation in the hard-sphere case.
The results of our simulations are shown in Fig. 3. The

first thing to note is that the two methods used produce
results consistent within the statistical errors. Note further
that we find the same behavior at small values of the
coupling as in the case of low-density hard spheres [28]; the
critical temperature for the BEC phase transition grows. Yet
if the coupling becomes large enough, Tc rapidly drops
below the critical temperature for an ideal Bose gas.
Eventually, as the particles are “too repulsive,” the BEC
phenomenon becomes impossible, since it becomes essen-
tially “too costly” (in terms of the action, as compared to
Feynman value) to permute them.
Let us also note that, while the permutation-cycle

method agrees well with the older finite-size scaling
method, the requirements for the system size to yield
comparable results are different. The finite-size scaling
method can give decent results even using two systems,
of only 8 and 16 particles, while the permutation cycle
method requires many runs of at least 32 particles.
Therefore, at least in the case of long-range forces, which
take a large amount of CPU time to compute, the finite-
size scaling method may be more practical. If one,
however, is looking at other quantities that require larger
system sizes to begin with—such as the superfluid
fraction itself (and not just how it scales with system
size)—the permutation cycles method is an easy way of
determining Tc with data already gathered from those
larger system simulations.

FIG. 2. The exponential suppression of k-cycles as a function of
temperature for the 4He system. The vanishing of the effective
chemical potential μ̂ indicates the BEC critical temperature Tc.

FIG. 3. The critical temperature for the BEC phase transition as
a function of the coupling, α. The red circles are the results of the
finite-size scaling superfluid fraction calculation for systems of 8,
16, and 32 particles, and the blue triangles are the results of the
permutation-cycle calculation for a system with 32 particles. The
black dashed line denotes the Einstein ideal Bose gas critical
temperature, T0.
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Examples of the analysis methods are shown in Figs. 4
and 5. In Fig. 4, we see the μ̂ data for the 32-particle system
at α ¼ 1, which were obtained by fitting the permutation
cycles as explained above. The μ̂ data is then fitted to find
Tc, which is where the solid fitted curve intersects the
x-axis. In Fig. 5, we see the superfluid fraction data for
three system sizes at α ¼ 5. The data are linearly fit around
the intersection point, as described above.

2. Two-component Bose gas with varied
Coulomb coupling

Following the one-component Coulomb Bose gas, we
carried out the PIMC simulations and analysis for a neutral

system of particles with two different charges, þ1 and −1,
with and without a repulsive core; the results are shown
in Fig. 6.
At very small couplings with and without core repulsion,

the behavior of the critical temperature is very similar to
that of the one-component case; the particles are only
slightly interacting and therefore have a critical temperature
very close to that of an ideal gas. When the coupling
increases, however, the pointlike (without core) two-
component gas has a split in critical temperature, which

FIG. 4. The results of the permutation-cycle calculation for a
system with 32 particles at α ¼ 1 along with a fitted curve. The
vanishing of the effective chemical potential μ̂ indicates the
critical temperature Tc.

FIG. 5. The results of the finite-size scaling of the superfluid
fraction calculation for 8 (red circles), 16 (blue triangles), and 32
(green squares) particles at α ¼ 5. The point where the data sets
intersect is the critical temperature Tc.

(a)

(b)

FIG. 6. The critical temperature for the BEC phase transition
for the two-component Bose gas as a function of the coupling,
α. (a) The red circles and the blue triangles are the results of
the finite-size scaling superfluid fraction calculation and the
permutation-cycle calculation, respectively, for systems without
core repulsion. The purple diamonds and green squares are the
results of the finite-size scaling superfluid fraction calculation
and the permutation cycle calculation, respectively, for systems
with core repulsion. The black dashed lines denote the Einstein
ideal Bose gas critical temperature for a particle of mass m ¼ 1,
T0, and for a particle of mass m ¼ 2, T0=2. (b) A zoom-in of the
results in (a) for systems with core repulsion.
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acts like the one-component case for some particles, and
drops much more quickly than that of the one-component
case for others to approximately T0=2, which is the ideal
gas condensation temperature for particles with mass
m ¼ 2—i.e. a neutral molecule comprised of particles with
two opposite charges.
The finite-size (with core) two-component gas, seen more

clearly in Fig. 6(b), does not form these molecules and thus
has the behavior of the one-component gas. It is important to
note that even with a second component added, the finite-
size particles have the same critical temperature behavior as
a one-component gas: a 5%–10% deviation upward before
dropping at very strong couplings.
At extremely high couplings, the critical temperature

drops for both cases. We do not have the accuracy in our
data to confidently state whether the molecular phase has
the same rising Tc at lower couplings that is seen in the one-
component case.
The data seen in Fig. 6 for the case of pointlike particles

are from both the permutation-cycle method and the finite-
size scaling method for small couplings, but only the finite-
size scaling method for larger couplings, as there was too
much statistical noise in the permutation statistics to obtain
a good fit for a critical temperature. This may be remedied
by a larger sample size or a larger system size, as the
particles at higher couplings tend to become “stuck” if they
enter the molecule phase. We do not have this problem
when the particles are given a repulsive core.

C. Spatial correlations

One of the key observables we can use when comparing
our results to the lattice monopole results is the spatial
correlation of particles. In our simulations, we keep track of
the Euclidean-time paths of individual particles, allowing
us to observe their distributions in relative distance r as a
function of coupling strength and temperature. We define
the pair correlation, gðrÞ, to satisfy

nðrÞ ¼ 4πρ

Z
r

0

gðr0Þr02dr0; ð25Þ

where nðrÞ is the number of particles found between 0
and r, and ρ ¼ N=V is the overall density of particles in
the volume; gðrÞ is, by definition, normalized to distri-
bution of an ideal gas. In this work, for cases in which we
have two components, we denote the same-charge corre-
lation with gþþðrÞ and the opposite-charge correlation
with gþ−ðrÞ.
Figure 7 shows a sampling of the radial correlations of

the one-component Bose gas at different temperatures at the
couplings α ¼ 1, 5, 10, 20, 50, and 100.
We find that at weak couplings, α < 2, the correlation

functions flatten out as the temperature increases; this is
caused by the fact that the thermal energy is greater than
the potential repulsion in these cases. The slight increase in

the correlation function near r ¼ 0 is caused mostly by
statistical fluctuations, but also in part by the fact that we
are observing a jellium system with a neutralizing smeared
background charge. At couplings α ≥ 10, the variations of
temperature—in the range we probed (0.5Tc to 1.8Tc)—are
not reflected in the correlation functions. As the coupling is
increased, the correlation functions show signs of structure,
particularly at α ≥ 20.
Figure 8 shows the radial correlations for the two-

component gas with no core at different temperatures at
the couplings α ¼ 0.5, 1, 2, and 5. Without any core
repulsions, at couplings α ≥ 5, the particles form small
bound states; the particles essentially make pointlike
dipoles, especially at T > Tc. This is seen from the
same-charge correlator being equal to the opposite-charge
correlator at distances r ≥ 0.1. An interesting feature seen
in Fig. 8 is that both the anti-charge and the same-charge
correlations increase—both in overall range as well as in
magnitude at short range—as T approaches Tc from below,
and then subsequently fall as temperature is increased
further. The maximum short-range correlations occur
slightly under Tc for small couplings α ∼ 1 and move
further above Tc for larger couplings.
Figures 9 and 10 show the radial correlations of the

two-component gas with a repulsive core at different
temperatures at the couplings α ¼ 0.5, 1, 5, and 10. At low
temperatures, T < Tc=3, the probability for there to be
two oppositely charged particles in a bound state is large
even at small couplings α < 1; at larger couplings, we find
bound states at higher temperatures. At α ∼Oð10Þ and
larger, at low temperatures, we see the same screening
phenomenon we saw when there was no repulsive core;
the molecule acts as a neutral dipole, which causes the
same-charge correlator (Fig. 10, bottom-right panel) to be
greater than unity.

D. Thermodynamics

Figure 11 shows the internal energy per particle of the
two-component gas with a core, in units of the temperature,
across various temperatures and couplings. Let us remind
the reader that in the two-body Coulomb problem, the virial
theorem tells us that the mean potential energy is −1=2
times the mean kinetic energy, so the total energy is
positive. Many-body strong coupling problems, on the
other hand, can create crystal-like correlations between
many particles, producing larger potential energy, and thus
negative total energy.
The temperature dependence of the energy is similar

for all couplings, and at fixed temperature, the energy
scales roughly linearly with temperature. At high temper-
atures, the kinetic energy begins to scale at 3=2T, as
predicted by classical statistical mechanics. One can see
that at high coupling, the energy falls rapidly as temper-
ature is decreased to near zero, which reflects the increasing
binding of the oppositely charged particles.
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IV. EFFECTIVE MODEL OF COLOR
MAGNETIC MONOPOLES

Classical studies of the magnetic scenario in QGP
proposed that the magnetic component of the plasma acts
as a liquid with Coulomb-like fields [11,12], and contem-
porary studies on the lattice, e.g. Refs. [7,8], furthered the

study of monopoles in QCD-like theories. These studies
on the lattice [7] found that the monopole density at T > Tc
can be well approximated by

ρmðTÞ ∼
T3

logT2
: ð26Þ

FIG. 7. Spatial correlations of the one-component Bose gas, at different temperatures and coupling strengths.
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Unlike the “electric” particles, quarks and gluons, the
density of monopoles is not vanishing at Tc due to
confinement, but instead has a peak there. It also follows
from the correlation function analysis that the magnetic
coupling becomes stronger as temperature increases [12].
Based on these findings, we would like to make an

effective model of quantum monopoles that reproduces the
behavior of those on the lattice, without the many degrees
of freedom of a full QCD-like theory.

A. Correlation function matching

Before we dig into the details of the matching procedure,
let us outline its general meaning. The simulated Coulomb
Bose gas model has several parameters, such as the density
n, the temperature T, the Coulomb coupling α, and the
particle mass m. The monopole ensemble corresponding to

the finite-temperature QCD has only one input variable, T,
and thus only simulations on a particular parametric line
nðTÞ, αðTÞ, mðTÞ in the general parameter space are
directly relevant for our physics application.
Now that we have quantified the behavior and thermo-

dynamics of an isolated two-component Coulomb Bose
system, our first goal is to find the parameters for our model
that are necessary to effectively model magnetic monopoles
in QCD-like theories at various temperatures above the
critical temperature. To fit our findings to physical results,
we first compare our correlation functions with those of
Ref. [7], found on the lattice. We note that this lattice
calculation was done in pure-gauge SUð2Þ, which yields
one Uð1Þ monopole species.
The lattice correlations and the matching correlation

functions from our simulations are seen in Fig. 12. We
match these two sets of correlation functions by scaling our

(a) (b)

(c) (d)

FIG. 8. Spatial correlations of the two-component Coulomb Bose gas (without a repulsive core), at different temperatures and
coupling strengths. Note that most plots have two correlation functions for each temperature, one “attractive,” for opposite-sign charges
gþ−ðrÞ (solid lines) and one “repulsive,” for same-sign charges gþþðrÞ (dashed lines). Note that at strong coupling, α ∼ 5, these two
correlators overlap significantly.
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interparticle distance to that given by the monopole density
in Ref. [7], and then by finding the simulation coupling
strength that produces the same magnitude and long-range
correlation behavior seen on the lattice.
First and foremost, we see that a two-component

Coulomb Bose system reproduces the same types of
correlations seen on the lattice, as was found in
Ref. [12], giving further credence that our model can
effectively describe the behavior of magnetic monopoles
in QCD-like theories. The mapping of our results to those
on the lattice is given by

αðTÞ ≈ 3.4ρ1=3m ðTÞ; ð27Þ

where αðTÞ is the coupling used in our simulation, ρmðTÞ is
the monopole density (in fm−3) found in Ref. [7], and T is
given in units of the critical temperature. One unit of length
in our simulations is equivalent to ρ−1=3m ðTÞ, the interpar-
ticle spacing (in fm) found on the lattice. This result was
checked in, and holds throughout, the range 1.1–4Tc; it
may be applicable at higher temperatures as well. The

constant 3.4 comes from the factor of ðTcÞ3, which sets the
scale of the density in dimensionless units.
If this relation holds to Tc, we can map the physical

value of the critical temperature to our units: 296 MeV
(Tc in the SUð2Þ lattice simulation [7]) is the critical
temperature of the two-component gas with coupling
α ≈ 4.2—approximately 3.45 in our units. We find that a
two-component Coulomb Bose gas with α ≈ 4.2 has a
5%–10% higher critical temperature than the free gas; the
critical temperature of a free gas of monopoles would
then roughly correspond to 280 MeV. Extrapolating the
monopole density from Ref. [7] to Tc, setting Tc to
280 MeV, and solving for mass in Einstein’s equation, we
find that

280 MeV ¼
�
2π

m

��ð240 MeVÞ3
ζð3

2
Þ

�2
3

→ m ≈ 680 MeV;

ð28Þ
which is approximately the estimate of the monopole
mass from Ref. [8], though it is larger than that
from Ref. [26].

FIG. 9. Spatial correlations of the two-component Bose gas with core repulsion for particles of opposite charge, at different
temperatures and coupling strengths.
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B. Monopole contribution to SUð2Þ thermodynamics

After the parameters of our model are matched to those
in the pure-gauge SUð2Þ lattice simulations, we can directly
evaluate the contribution of the monopoles to the thermo-
dynamics of that theory.
The thermodynamics on the physical line, i.e. the

trajectory in parameter space as defined above in
Sec. IVA, is shown in Figs. 13 and 14. In Fig. 13, we
see the energy per particle along the physical line. At Tc,
the internal energy of a monopole goes to approximately
zero, and then grows as temperature rises. This growth is
less than 3=2T, because the coupling is increased with T,
causing monopoles at large T to have a larger negative
potential energy. This lower energy is, however, compen-
sated by the ∼T3=ðlogTÞ2 growth of the density of
monopoles.
In Fig. 14, on the lower solid line, we see that the

internal energy density of the monopoles ϵ=T4 is maximal
at approximately 1.3–1.4Tc. The contribution from the
monopoles is relatively small, Oð0.2Þ.

FIG. 11. Internal energy per particle of the two-component
Coulomb Bose gas with a repulsive core, for various couplings
and temperatures. Error bars are smaller than the points
themselves.

FIG. 10. Spatial correlations of the two-component Bose gas with core repulsion for particles of the same charge, at different
temperatures and coupling strengths.
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FIG. 12. Spatial correlations from our simulations (red circles) matched via scaling to lattice correlations (blue triangles) from Ref. [7]
at various temperatures.

FIG. 13. The energy per particle along the physical line defined
by the parameters which match simulation correlation functions
to the lattice, shown alongside previously shown two-component
Coulomb simulations (Fig. 11) at fixed couplings. The dashed
line is to guide the eye.

FIG. 14. The dimensionless energy density for SUð2Þ monop-
oles along the physical line defined by the parameters which
match simulation correlation functions to the lattice. The lower
line is the internal energy density (kineticþ potential), and the
upper line includes the mass contribution.
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In light of the fact that this contribution is close to zero,
in addition to the internal energy (kinetic and potential), we
must also take into account the mass of the particles, which
has been extracted from the lattice in Ref. [8]. In Fig. 14,
the upper dashed line shows the total energy density of the
monopoles. The contribution from the monopoles, includ-
ing the mass, is Oð1.5Þ.

C. Generalization to the thermodynamics of QCD

QCD thermodynamical quantities are among the most
basic properties of hadronic matter and have been the
focus of numerous lattice simulations for the last three
decades. Due to the growth of computational power and
algorithm development, the results of these calculations
have become rather accurate, and, over the last few years,
have approached QCD with physical quark masses. We
now know the pressure (free energy), energy, and entropy
density as functions of the temperature: pðTÞ, ϵðTÞ, and
sðTÞ, respectively.
At first glance, decomposing those functions into parts

associated with certain quasiparticles—gluons, quarks, and
perhaps monopoles—looks to be an impossible task, since
all of them interact strongly. However, more recent studies
have provided valuable insight, indicating that this task can
perhaps be carried out.
The first step toward an understanding of the role of

monopoles in QCD is to move from the SUð2Þ to the SUð3Þ
color group. This is far from trivial, since the latter has two
diagonal color generators, and thus two “massless electro-
dynamics” surviving the breaking of the color group.
Therefore, there are two distinct species of the monopoles.
Including the anti-monopoles, one would need to study a
four-component Coulomb Bose gas. This system can be
studied in the same way as for the one- and two-component
gases above, but this was not done for this work. Note that
the two species of monopoles are not independent, as there
should be attractive Coulomb forces between the monop-
oles of each Uð1Þ electrodynamics, as well as repulsive
forces between monopoles and anti-monopoles of different
Uð1Þ electrodynamics.
A comprehensive study of the condensation and density

of lattice monopoles for the SUð3Þ color group has been
done by Bonati and D’Elia [9]. As shown in Fig. 3 of their
work, both monopole species happen to have nearly
identical densities. Moreover, Fig. 2 and the corresponding
text from [9] indicate that, for each of them, the density
ρðTÞ is very close to that of the SUð2Þ monopoles; these
densities are effectively identical when taking into account
the difference in Tc for the different SUð2Þ and SUð3Þ
simulations. However, they have a slightly different fit from
the SUð2Þ data at high T > 2Tc, namely

ρmðTÞ ¼
3.66T3

logðT=ð0.163TcÞÞ3
: ð29Þ

This power of the logarithm matches predictions from the
1970s for finite-T QCD: the magnetic scale cubed ðg2TÞ3.
The next step toward QCD would be to include quarks.

The corresponding lattice simulations are unfortunately
very expensive, especially for quarks as light as those in
the real world. Only relatively recently have such lattice
ensembles became available, and the analysis of their
monopole content has not yet been done. Lacking simu-
lation input, we will provide some speculation on “theo-
retical expectations.”
Let us start from the high-T end, simply counting states.

Gluons have two polarizations andN2
c − 1 colors, giving 16

bosonic states. Quarks contribute 2 · 2 · NcNf · ð7=8Þ [for
Nc ¼ Nf ¼ 3, 36 · ð7=8Þ ¼ 31.5] times the thermal energy
of one bosonic state. Monopoles are charged spin-zero
scalars, of 2ðNc − 1Þ types (the number of diagonal
generators multiplied by 2 to take into account the two
charges), or four species for Nc ¼ 3. At high T, they
only exist at the so-called magnetic scale, and thus their
density is additionally suppressed by a power of logðTÞ, as
discussed above. As a result, at high T, the monopole
contribution is quite small as compared to that of quarks
and gluons.
This is not the end of the story, however, because the

light quarks can be bound to the monopoles. The corre-
sponding Dirac equation has no coupling, and the fer-
mionic 3D zero modes are of topological nature; thus they
should be present at any T. While these bound states are
scalars—the spin 1=2 and the color spin 1=2 add up to the
grand spin 0—the quark zero mode can be either occupied
or empty, interpreted as two separate states, a doublet of the
baryon number B ¼ �1=2 [30]. So, in the theory with a
single light quark, Nf ¼ 1, the number of magnetic states
doubles.
In a theory with Nf ¼ 2, one can get the B ¼ 1 triplet

of states. Its flavor-asymmetric wave function can be,
for example, viewed as the isospin-0 ud diquark, the
antidiquark, and also the η isoscalar meson added to a
monopole. The number of magnetically charged states is, in
this case, 2 · 2 · 3 ¼ 12. While this is still smaller than the
number of quark and gluon degrees of freedom, it is not a
negligible contribution.
A qualitative observation made by Liao and Shuryak

[31] was that, with the number of monopole-quark
species growing with Nf, it becomes more and more
difficult to produce Bose-Einstein condensation, since
the objects become distinguishable. This tendency can
only be counterbalanced by a corresponding increase of
the monopole density. And indeed, lattice simulations for
QCD-like theories with an increasing Nf have found that
deconfinement transition corresponds to stronger coupling
g2ðTcÞ, smaller monopole mass, and therefore higher
monopole density.
All dimensional quantities are defined following stan-

dard lattice convention for units: the vacuum string tension

EFFECTIVE MODEL OF QCD MAGNETIC MONOPOLES … PHYSICAL REVIEW D 95, 076019 (2017)

076019-13



for all theories is declared to be the same in MeV.With such
units, the critical temperature for SUð2Þ and SUð3Þ is
different, ∼300 MeV for SUð2Þ and ∼260 MeV for SUð3Þ,
but the densities of each of the SUð2Þ and SUð3Þ
monopoles are about the same [9]. If Tc is lower, the
overall density of monopoles grows, so the density of each
separate species of monopole becomes large enough to
form a Bose-Einstein condensate. Recall that, as was found
in Ref. [9], we observed that the inclusion of an additional
interacting component to a Bose Coulomb system did not
alter the critical temperature behavior, provided the density
of each component was not altered.
The spectroscopy of quark-monopole states in QCD at

zero temperature would be very hard to study, because the
hybrid (meson-glueball) states would be heavy and wide,
mixing with many other mesonic states. But at T ≈ Tc,
where the monopoles are relatively light, these states can
perhaps be identified. Theoretically, it is also hard to predict
their masses; while the Dirac equation for quark fields are
indeed written exactly without any coupling present, the
Yang-Mills equations for the monopole gauge field itself
have only been solved in the classical approximation, in
which it is assumed that the monopole action is much larger
than the (one-loop) quark correction to it. As discussed
above, this is no longer so near Tc.
Going back to the thermodynamics of QCD, a histor-

ically important argument has been related with the mean
value of the Polyakov line, hPðTÞi. According to lattice
data, hPðTÞi approaches 1 at high T very slowly: it reaches
0.8 at T ≈ 350 MeV according to Fig. 3 of Ref. [32], or
T ≈ 500 MeV according to Fig. 1 of Ref. [33]. This is quite
far from Tc ≈ 155 MeV.
Although the mean value of the Polyakov line is directly

related to the thermodynamical contributions of static
quarks, one can conjecture that the thermodynamical
contributions of light quarks should also be proportional
to it:

nqðTÞ ∼ hPðTÞi: ð30Þ

This led to the development of the Polyakov-Nambu-Jona-
Lasinio (PNJL) model [34,35] and similar models. Direct
lattice studies, e.g. Ref. [36], were able to identify the
density of strange quarks, nsðTÞ, using a certain combi-
nation of susceptibilities vanishing for mesons and baryons,
but not for quarks. Their results confirm this conjecture
rather well. One may further argue that the density of (color
nondiagonal) gluons should then be proportional to the
square of the Polyakov line, hPðTÞi2. If so, ngðTÞ must be
even more suppressed near Tc than nqðTÞ.
At the same time, the energy and entropy densities, ϵ=T4

and s=T3, respectively, rise to their approximate scale-
invariant values much more rapidly, by T − Tc ∼ 50 MeV
or so, unlike 200–300 MeV for hPðTÞi. See, for example,
Fig. 6 of Ref. [37]. The inevitable conclusion from these

arguments is that there must be some extra contribution, in
addition to the quarks and gluons, in this interval of
temperature.
It was suggested, e.g. in Ref. [38], that there should be

bound states of quarks—mesons and baryons—at T > Tc.
The presence of these are indeed well documented now on
the lattice, e.g. in Ref. [36] for strange quarks and later for
charmed ones.
We now turn to the following question: what is the

contribution of the monopoles to the global thermodynam-
ics? Since the monopoles are identified on the lattice
individually, with their Euclidean-time paths and correla-
tion functions determined from simulation, it should be
possible to calculate their energy. Lamentably, this has not
been done yet.
A comparison of the energy-density contribution of

monopoles to the overall energy density found on the
lattice is seen in Fig. 15. The SUð2Þ comparison is direct
from our study, as this is the same system from which we
found our parameter fits. For SUð3Þ, on the other hand, we
have estimated the monopole contribution to the energy
density by simply multiplying the contribution by 2, as
discussed above. This, of course, does not take into account
the energy coming from the interaction between the two
species, which will have to be studied further in the future.
Finally, for QCD, from standard counting of degrees of
freedom, one finds that quarks have about twice more of
those than gluons, so the QGP energy density in QCD is
about 3 times larger than in the pure gauge SUð3Þ. The
number of quark-monopole states, as we argued above, for
two light flavors also increases the number of species by a
factor of 3.
The monopole mass, as found in Ref. [8], contributes

significantly more to the overall thermodynamics than the

FIG. 15. The energy density of the monopoles compared to
lattice data for pure-gauge SUð2Þ and SUð3Þ. The estimates for
the monopole contribution to SUð3Þ and QCD are from a scaling
argument (see text). Lattice SUð2Þ results are from Refs. [39,40],
SUð3Þ from Ref. [41], and QCD from Ref. [37].
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internal energy of the monopoles (cf. Fig. 14). In Fig. 15,
we see the total energy-density contribution from the
monopoles to the system. When the mass is included,
the monopole contribution constitutes the entire energy
density of the system between 1Tc and 1.3Tc.

V. CONCLUSIONS AND OUTLOOK

In this work, we have studied the effects of Coulombic
interaction on the Bose-Einstein condensation. We numeri-
cally calculated the critical temperature Tc, of one- and
two-component Coulomb systems, by two different meth-
ods, as a function of the interaction strength. Qualitatively,
the dependence is similar to what has been previously
observed for hard spheres: Tc moderately grows at weak
coupling but strongly decreases at strong coupling.
We also studied the spatial correlations in these systems

at various temperatures and coupling strengths. We then
mapped the results of the two-component case to the results
of lattice simulations of color magnetic monopoles in
pure-gauge SUð2Þ, and found a very good agreement.
This comparison allowed us to fix the “physical line” in the
parameter space of our effective model in SUð2Þ gauge
theory, at and above Tc. As a result of simulations, we
believe that a two-component Coulomb quantum Bose gas
model accurately replicates monopole behavior seen on
the lattice.
We have also determined the monopole contribution to

the overall thermodynamics (energy density) of the thermal
matter, at and above Tc in pure-gauge SUð2Þ, and made
estimates for SUð3Þ and QCD theories. We concluded that
the monopoles possibly dominate the thermodynamics just
above Tc in the case of SUð2Þ and SUð3Þ. We speculate that
the same is true in QCD with light quarks, although the
questions related with properties of monopole-quark com-
posites have not yet been addressed.
Now, having an effective quantum model for the mag-

netic sector of the gauge theories, one may think of its
applications beyond quantities calculable in the Euclidean-
time framework—in particular, to the transport properties
of hot hadronic matter. Studies of the impact of monopoles
on QGP viscosity η have been carried out in Ref. [13],
but those only consider a transport cross section of binary
collisions, not a full many-body theory. The role of jet
monopoles scattering in another transport parameter—q̂—
has been studied phenomenologically in Refs. [14,15].
Both studies suggested that monopoles are the main degree
of freedom contributing to η and q̂ near and above Tc.
Clearly, more quantitative studies of these issues can now
be carried out in the framework of our Coulomb Bose
gas model.
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APPENDIX A: PATH INTEGRALS, DENSITY
MATRICES, AND THE PARTITION FUNCTION

In quantum mechanics, the density matrix is related to
the path integral by

ρðxi; xf; tÞ ¼
Z

DxðtÞ exp
�
i
ℏ
S½x�

�
; ðA1Þ

where S½x� is the functional action of the particular path x.
For the purposes of this paper, we will use natural units,
where ℏ is set to unity. This path through time corresponds
to the usual quantum mechanical evolution operator,
expfiĤtg, where Ĥ is the Hamiltonian of the system.
To find the density matrix in finite-temperature statistical

mechanics, we transform to Euclidean time, τ ¼ it, with
periodicity β ¼ T−1, setting the Boltzmann constant kB to
unity. Then, the thermal density matrix is given by

ρðxi; xj; βÞ ¼
Z

DxðtÞ exp f−SE½x�g; ðA2Þ

where SE is the Euclidean action. The density matrix can
also be decomposed in terms of its energy eigenstates

ρðxi; xj; βÞ ¼
X
n

ψ�
nðxiÞψnðxjÞ exp f−Enβg

¼ hψnjρ̂jψni; ðA3Þ

where ρ̂ ¼ expf−βĤg. The density matrix has the property
of squaring,

ρðxi; xj; βÞ ¼
Z

dxnρðxi; xn; β=2Þρðxn; xj; β=2Þ; ðA4Þ

which then allows the decomposition of the density matrix,

ρðx0;xM;βÞ¼
Z

dx1…dxM−1×ρðx0;x1;τÞ…ρðxM−1;xM;τÞ;

ðA5Þ

where τ ¼ β=M.
If we consider periodic paths, such that xi ¼ xj, we have

that the partition function is

Z ¼
X
n

e−βEn ¼ Tr½e−βĤ� ¼ Tr½ρ̂�; ðA6Þ
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and that the expectation value of the operator O is

hOi ¼ Tr½Oρ̂�
Tr½ρ̂� ¼ Tr½Oρ̂�

Z
: ðA7Þ

For a many-body system of N particles, we generalize
the density matrix as ρðRi; Rj; βÞ, where Ri ¼ fx1;…; xNg
and Rj ¼ fx01;…; x0Ng.
In general, the Hamiltonian operator of a system is the

sum of the kinetic and potential energy operators,
Ĥ ¼ T̂ þ Û, and therefore we have that

e−τĤ ¼ e−τðT̂þV̂Þ ¼ e−τT̂e−τV̂e−
τ2

2
½T̂;V̂�: ðA8Þ

If τ is small, then we have the primitive approximation,

e−τðT̂þV̂Þ ≈ e−τT̂e−τV̂ : ðA9Þ

The Trotter formula tells us that this approximation
becomes exact in the limit τ → 0. Using the fact that
β ¼ Mτ, we have that

e−βðT̂þV̂Þ ¼ lim
M→∞

½e−τT̂e−τV̂ �M; ðA10Þ

such that the kinetic and potential actions can be separated
and treated individually. Provided M, the number of time
steps per period of the Matsubara circle, is large enough, we
can use this approximation in our numerical simulation to
good accuracy. Therefore, in the primitive approximation,
the density matrix is given by

ρðRi; Riþ1; τÞ ¼ hRije−τT̂e−τV̂ jRiþ1i
¼ hRije−τT̂ jRiþ1ie−τV: ðA11Þ

This quantity describes the degrees of freedom between
time slice i and iþ 1. The kinetic matrix element for N
particles can be computed using the eigenfunction expan-
sion of the kinetic operator,

hRije−τT̂ jRiþ1i ¼
1

ð4πλτÞ3N=2 exp

�
−
ðRi − Riþ1Þ2

4λτ

�
;

ðA12Þ

where λ ¼ ð2mÞ−1.
In the case of N identical bosons, we must also account

for permutations of the particles,

ρðRi; Rj; βÞ ¼
1

N!

X
P

hRije−βĤjPRji; ðA13Þ

where P is the permutation operator. The partition function
in the primitive approximation is then

Z ¼ 1

N!ð4πλτÞ3N=2

YM−1

i¼1

YN
n¼1

X
P

Z
dxi;n

× exp
�
−
ðxi;n − xP;iþ1;nÞ2

4λτ
− τVðxi;nÞ

�
: ðA14Þ

APPENDIX B: DETAILS OF THE
NUMERICAL SIMULATIONS

The numerical simulations were carried out using a
PIMC code written in C++, and the analysis of the
output data was done in Python and Mathematica. The
algorithm for the PIMC code was the traditional
algorithm, with structures and Monte Carlo moves as
outlined in Ref. [16]. Initially, we implemented the
worm algorithm [42], but for large values of the Coulomb
coupling, we ran into problems with the acceptances
of either the removal or insertion of particles into the
system, so we were forced to revert to the traditional
algorithm.

A. Metropolis method

The path-integral Monte Carlo algorithm is based on
Metropolis Monte Carlo (MMC) [23]. In MMC, the
state of a system is sampled by proposing a random
change of state and accepting or rejecting this change
based on a probability distribution that is a function of
the state. In the case of PIMC, the probability distri-
bution is given in terms of the Euclidean action
associated with the state

πðRÞ ¼ e−SEðRÞ: ðB1Þ

If we propose to move to a new state R0, we can
compute the acceptance probability of the move

AðR → R0Þ ¼ min

�
1;
πðR0ÞTðR0 → RÞ
πðRÞTðR0 → RÞ

�
; ðB2Þ

where Tðx → x0Þ is the transition probability from state
x to state x0.
Each particle is represented by a Markov chain, with a

bead, i.e. physical location, in each of the M time slices in
Matsubara time; the kinetic action is in the “links” between
the beads of the same particle, and the potential action is
between the beads in the same time slice. One then samples
changes in the locations of these beads, accepting moves
using the above probabilities based on the action, and
records configurations from which one can sample the
partition function and other related thermodynamical
quantities.
Further details on the PIMCmethod, including details on

the update moves of the paths, can be found in the all-
encompassing review by Ceperley [16].

ADITH RAMAMURTI and EDWARD SHURYAK PHYSICAL REVIEW D 95, 076019 (2017)

076019-16



B. Ewald summation

Numerical simulations of Coulomb systems are noto-
riously difficult to carry out, due to the long-range nature
of the forces. In computing the potential action for this
study, we use the primitive approximation described
above and compute the pair potential for each pair of
particles in the simulation. Computing this quantity in
position space for periodic boundary conditions is fea-
sible and accurate for short-range potentials, such as that
for 4He.
The electrostatic potential for a Coulomb interaction

is

ΦCoulombðxi;nÞ ¼
X
l

X
m

qm
jxi;n − xi;m þ lj ; ðB3Þ

where qm and xi;m are the charge and the location of themth
particle in the ith time-slice, respectively, and l is the vector
that corresponds to the periodic image of each particle in
space; the m ¼ n case is excluded only for l ¼ 0. Coulomb
interactions, however, such as those of magnetic monop-
oles, are long range, and therefore need, in the case of
periodic boundary conditions, many images to be accurate.
These sums therefore converge slowly and are not good for
computational purposes.
Instead of summing solely in position space, we break up

the sum into two rapidly converging pieces, one in position
space and the other in reciprocal space, via a technique
called Ewald summation [43,44]. Written in this form, and
making the conventional choice of the complementary error
function for the real sum, the Coulomb potential is

ΦCoulombðxi;nÞ ¼
X
l

X
m

qmerfcðαcutjxi;n − xi;m þ ljÞ
jxi − xj þ lj þ 4π

V

X
k≠0

X
j

qm exp½−k2

4αcut
�

k2
exp ½ikðxi;n − xi;mÞ� þ

2αcutffiffiffi
π

p qn; ðB4Þ

where k is the wave vector in reciprocal space and V
is the volume of the box. The parameter αcut is known as
the splitting parameter; it determines the cutoffs for
the position and reciprocal space sums. For the simu-
lations with a core, we include a repulsive potential of the
form

VcoreðrÞ ¼
1

ð5rÞ10 : ðB5Þ

C. Simulations and analysis

Internal energy—kinetic and potential—was found using
the primitive and virial estimators, both summarized in
Ref. [16], and worked out in detail in Ref. [45].

The Coulomb simulations were carried out for 8, 16, 32,
and 64 particles, for both the one- and two-component cases.
For each simulation, there were 32 imaginary time slices.
For the one-component simulations, we tested temperatures
(in our units) from 1.6 to 5.1 in intervals of 0.1, while for the
two-component cases, we looked at temperatures in the
range of 0.4 to 5.1 in intervals of 0.1, and in the range of 6
through 9 in intervals of 1. For each simulation case—
particle number, temperature, and coupling—we ran three
trials collecting 10000 Monte Carlo configurations post-
equilibration, the data from which was then binned and
analyzed by a Python script. Error on the raw data was
computed using the Jackknife sampling method [46]. The
fits for the data and errors on the fits were computed using
Mathematica’s |NonlinearModelFit|.

[1] P. A. M. Dirac, Quantised singularities in the electromag-
netic field, Proc. R. Soc. A 133, 60 (1931).

[2] G. ’t Hooft, Magnetic monopoles in unified gauge theories,
Nucl. Phys. B79, 276 (1974).

[3] A. M. Polyakov, Particle spectrum in the quantum field
theory, Pis’ma Zh. Eksp. Teor. Fiz. 20, 430 (1974) [JETP
Lett. 20, 194 (1974)].

[4] Y. Nambu, Strings, monopoles and gauge fields, Phys. Rev.
D 10, 4262 (1974).

[5] G. ’t Hooft, Topology of the gauge condition and new
confinement phases in non-Abelian gauge theories,
Nucl. Phys. B190, 455 (1981).

[6] S. Mandelstam, Vortices and quark confinement in non-
Abelian gauge theories, Phys. Rep. 23, 245 (1976).

[7] A. D’Alessandro and M. D’Elia, Magnetic monopoles in the
high temperature phase of Yang-Mills theories, Nucl. Phys.
B799, 241 (2008).

[8] A. D’Alessandro, M. D’Elia, and E. V. Shuryak,
Thermal monopole condensation and confinement in finite
temperature Yang-Mills theories, Phys. Rev. D 81, 094501
(2010).

[9] C. Bonati and M. D’Elia, The maximal Abelian gauge in
SUðNÞ gauge theories and thermal monopoles for N ¼ 3,
Nucl. Phys. B877, 233 (2013).

EFFECTIVE MODEL OF QCD MAGNETIC MONOPOLES … PHYSICAL REVIEW D 95, 076019 (2017)

076019-17

https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1103/PhysRevD.10.4262
https://doi.org/10.1103/PhysRevD.10.4262
https://doi.org/10.1016/0550-3213(81)90442-9
https://doi.org/10.1016/0370-1573(76)90043-0
https://doi.org/10.1016/j.nuclphysb.2008.03.002
https://doi.org/10.1016/j.nuclphysb.2008.03.002
https://doi.org/10.1103/PhysRevD.81.094501
https://doi.org/10.1103/PhysRevD.81.094501
https://doi.org/10.1016/j.nuclphysb.2013.10.004


[10] M. N. Chernodub, A. D’Alessandro, M. D’Elia, and V. I.
Zakharov, Thermal monopoles and selfdual dyons in the
quark-gluon plasma, arXiv:0909.5441.

[11] J. Liao andE. Shuryak, Strongly coupled plasmawith electric
and magnetic charges, Phys. Rev. C 75, 054907 (2007).

[12] J. Liao and E. Shuryak, Magnetic Component of Quark-
Gluon Plasma is also a Liquid! Phys. Rev. Lett. 101, 162302
(2008).

[13] C. Ratti and E. Shuryak, The role of monopoles in a gluon
plasma, Phys. Rev. D 80, 034004 (2009).

[14] J. Xu, J. Liao, and M. Gyulassy, Consistency of perfect
fluidity and jet quenching in semi-quark-gluon monopole
plasmas, Chin. Phys. Lett. 32, 092501 (2015).

[15] J. Xu, J. Liao, and M. Gyulassy, Bridging soft-hard transport
properties of quark-gluon plasmas with CUJET3.0, J. High
Energy Phys. 02 (2016) 169.

[16] D. M. Ceperley, Path integrals in the theory of condensed
helium, Rev. Mod. Phys. 67, 279 (1995).

[17] R. P. Feynman, Space-time approach to nonrelativistic
quantum mechanics, Rev. Mod. Phys. 20, 367 (1948).

[18] R. P. Feynman, Atomic theory of the lambda transition in
helium, Phys. Rev. 91, 1291 (1953).

[19] R. P. Feynman, Atomic theory of liquid helium near
absolute zero, Phys. Rev. 91, 1301 (1953).

[20] M. Creutz, Confinement and the Critical Dimensionality of
Space-Time, Phys. Rev. Lett. 43, 553 (1979); Erratum,
Phys. Rev. Lett. 43, 890(E) (1979).

[21] M. Creutz and B. Freedman, A statistical approach to
quantum mechanics, Ann. Phys. (N.Y.) 132, 427 (1981).

[22] E. V. Shuryak and O. V. Zhirov, Testing Monte Carlo
methods for path integrals in some quantum mechanical
problems, Nucl. Phys. B242, 393 (1984).

[23] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21, 1087 (1953).

[24] E. L. Pollock and D. M. Ceperley, Path-integral computation
of superfluid densities, Phys. Rev. B 36, 8343 (1987).

[25] E. L. Pollock and K. J. Runge, Finite-size-scaling analysis
of a simulation of the 4He superfluid transition, Phys. Rev. B
46, 3535 (1992).

[26] M. Cristoforetti and E. Shuryak, Bose-Einstein condensa-
tion of strongly interacting bosons: From liquid He-4 to
QCD monopoles, Phys. Rev. D 80, 054013 (2009).

[27] R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and
G. T. McConville, An accurate intermolecular potential for
helium, J. Chem. Phys. 70, 4330 (1979).

[28] P. Gruter, D. Ceperley, and F. Laloe, Critical Temperature
of Bose-Einstein Condensation of Hard-Sphere Gases,
Phys. Rev. Lett. 79, 3549 (1997).

[29] M. Holzmann, G. Baym, J. P. Blaizot, and F. Laloe,
Nonanalytic Dependence of the Transition Temperature

of the Homogeneous Dilute Bose Gas on Scattering Length,
Phys. Rev. Lett. 87, 120403 (2001).

[30] R. Jackiw and C. Rebbi, Solitons with fermion number 1=2,
Phys. Rev. D 13, 3398 (1976).

[31] J. Liao and E. Shuryak, Effect of Light Fermions on the
Confinement Transition in QCD-like Theories, Phys. Rev.
Lett. 109, 152001 (2012).

[32] S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, C.
Ratti, and K. K. Szabó (Wuppertal-Budapest Collaboration),
Is there still any Tc mystery in lattice QCD? Results with
physical masses in the continuum limit III, J. High Energy
Phys. 09 (2010) 073.

[33] P. Petreczky and H.-P. Schadler, Renormalization of the
Polyakov loop with gradient flow, Phys. Rev. D 92, 094517
(2015).

[34] P. N. Meisinger and M. C. Ogilvie, Chiral symmetry resto-
ration and ZðNÞ symmetry, Phys. Lett. B 379, 163 (1996).

[35] K. Fukushima, Chiral effective model with the Polyakov
loop, Phys. Lett. B 591, 277 (2004).

[36] A. Bazavov et al., Strangeness at High Temperatures:
From Hadrons to Quarks, Phys. Rev. Lett. 111, 082301
(2013).

[37] A. Bazavov et al. (HotQCD Collaboration), Equation
of state in (2þ 1)-flavor QCD, Phys. Rev. D 90, 094503
(2014).

[38] E. V. Shuryak and I. Zahed, Towards a theory of binary
bound states in the quark gluon plasma, Phys. Rev. D 70,
054507 (2004).

[39] J. Engels, F. Karsch, and K. Redlich, Scaling properties
of the energy density in SUð2Þ lattice gauge theory,
Nucl. Phys. B435, 295 (1995).

[40] J. Engels, J. Fingberg, F. Karsch, D. Miller, and M. Weber,
Nonperturbative thermodynamics of SUðNÞ gauge theories,
Phys. Lett. B 252, 625 (1990).

[41] S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, and K. K.
Szabo, Precision SUð3Þ lattice thermodynamics for a large
temperature range, J. High Energy Phys. 07 (2012) 056.

[42] M. Boninsegni, N. V. Prokof’ev, and B. V. Svistunov, Worm
algorithm and diagrammatic Monte Carlo: A new approach
to continuous-space path integral Monte Carlo simulations,
Phys. Rev. E 74, 036701 (2006).

[43] P. P. Ewald, Die Berechnung optischer und elektrostatischer
Gitterpotentiale, Ann. Phys. (Berlin) 369, 253 (1921).

[44] A. Y. Toukmaji and J. A. Board, Ewald summation tech-
niques in perspective: A survey, Comput. Phys. Commun.
95, 73 (1996).

[45] M. Graves, Master’s thesis, University of Vermont (2014).
[46] C. Gattringer and C. B. Lang, Quantum Chromodynamics

on the Lattice: An Introductory Presentation, Lecture Notes
in Physics Vol. 788 (Springer, Berlin, 2010).

ADITH RAMAMURTI and EDWARD SHURYAK PHYSICAL REVIEW D 95, 076019 (2017)

076019-18

http://arXiv.org/abs/0909.5441
https://doi.org/10.1103/PhysRevC.75.054907
https://doi.org/10.1103/PhysRevLett.101.162302
https://doi.org/10.1103/PhysRevLett.101.162302
https://doi.org/10.1103/PhysRevD.80.034004
https://doi.org/10.1088/0256-307X/32/9/092501
https://doi.org/10.1007/JHEP02(2016)169
https://doi.org/10.1007/JHEP02(2016)169
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/PhysRev.91.1291
https://doi.org/10.1103/PhysRev.91.1301
https://doi.org/10.1103/PhysRevLett.43.553
https://doi.org/10.1103/PhysRevLett.43.890.2
https://doi.org/10.1016/0003-4916(81)90074-9
https://doi.org/10.1016/0550-3213(84)90401-2
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevB.36.8343
https://doi.org/10.1103/PhysRevB.46.3535
https://doi.org/10.1103/PhysRevB.46.3535
https://doi.org/10.1103/PhysRevD.80.054013
https://doi.org/10.1063/1.438007
https://doi.org/10.1103/PhysRevLett.79.3549
https://doi.org/10.1103/PhysRevLett.87.120403
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1103/PhysRevLett.109.152001
https://doi.org/10.1103/PhysRevLett.109.152001
https://doi.org/10.1007/JHEP09(2010)073
https://doi.org/10.1007/JHEP09(2010)073
https://doi.org/10.1103/PhysRevD.92.094517
https://doi.org/10.1103/PhysRevD.92.094517
https://doi.org/10.1016/0370-2693(96)00447-9
https://doi.org/10.1016/j.physletb.2004.04.027
https://doi.org/10.1103/PhysRevLett.111.082301
https://doi.org/10.1103/PhysRevLett.111.082301
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevD.70.054507
https://doi.org/10.1103/PhysRevD.70.054507
https://doi.org/10.1016/0550-3213(94)00491-V
https://doi.org/10.1016/0370-2693(90)90496-S
https://doi.org/10.1007/JHEP07(2012)056
https://doi.org/10.1103/PhysRevE.74.036701
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1016/0010-4655(96)00016-1
https://doi.org/10.1016/0010-4655(96)00016-1

