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We study the exotic JPC ¼ 0−− four-quark states in Laplace sum rules and finite energy sum rules. We
use the vector tetraquarklike currents as interpolating currents in the correlator, from which the 1þ− states
are also studied. In the mass extraction, we use the standard stability criterion with respect to the Borel
parameters and the QCD continuum thresholds and consider the effect of the violation of factorization in
estimating the high dimensional condensates as a source of uncertainties. The obtained mass prediction
1.76� 0.15 GeV is much lower than the previous sum rule predictions obtained using the pseudoscalar
currents. Our result favors the four-quark interpretation of the possible ρπ dominance in the D0 decay. We
also discuss the possible decay patterns of these exotic four-quark states.
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I. INTRODUCTION

The Dalitz-plot distribution of theD0 → πþπ−π0 process
was analyzed by the BABAR Collaboration [1,2]. The
resonant dominance substructure of this Cabibbo sup-
pressed decay was then studied, and it indicated that
an isospin-zero final state may exist [3–5]. The analysis
of the Dalitz-plot behavior showed the typical structure of a
πþπ−π0 final state with IGJPC ¼ 0−0−− [6], which is exotic
and cannot be composed of a quark-antiquark pair in the
conventional quark model [7,8]. If such a resonance exists
near MðD0Þ≃ 1865 MeV, it might be a hybrid or four-
quark state [5].
A hybrid meson is composed of a quark-antiquark

pair and an excited gluonic field. It provides a good
platform to search for exotic quantum numbers that cannot
be realized for a qq̄ state. The mass of a 0−− hybrid was
predicted to be about 1.8–2.2 GeV in the constituent gluon
model [9], around 2.3 GeV in the QCD Coulomb gauge
approach [10], and 2.8–3.3 GeV in QCD sum rules [11,12].
These values and ranges are all higher than or marginally
consistent with the mass of the D0 meson. In the
Massachusetts Institute of Technology (MIT) bag model
[13,14], the hybrid states in the lightest supermultiplet with
quantum numbers JPC ¼ ð0; 1; 2Þ−þ; 1−− consist of a
S-wave color-octet quark-antiquark pair coupled to an

excited gluonic field with J
PgCg
g ¼ 1þ−. A higher super-

multiplet contains hybrids with JPC ¼ 0þ−, ð1þ−Þ3,
ð2þ−Þ2, 3þ−, ð0; 1; 2Þþþ, which were composed of a

P-wave qq̄ pair and the same gluonic excitation [15,16].
The hybrid state with JPC ¼ 0−− may lie higher than other
channels and couple to a different gluonic excitation. Such
supermultiplet structures were confirmed in lattice QCD
[15], QCD sum rules [17,18], and the P-wave quasigluon
approach [19].
In quantum field theory, a hybrid q̄gq operator and a

four-quark operator can transform into each other with the
same quantum numbers via quark annihilation interactions
(qq̄ → g → qq̄) in the Iqq̄ ¼ 0 channel. They tend to mix
and couple to the same physical state. In general, there are
two types of four-quark operators: tetraquarklike operators
ðqqÞðq̄ q̄Þ and moleculelike operators ðqq̄Þðqq̄Þ. They are
related to each other by the Fierz transformation and color
rearrangement [20]. The tetraquark formalism was first
suggested in the bag model by Jaffe [21,22], then it was
extensively investigated and used to study the nature of
exotic hadron states [23–28]. In the QCD Coulomb gauge
approach, the masses of the 0−− molecules and tetraquarks
were predicted to be around 1.36 GeV and 2.15 GeV,
respectively, in Refs. [29,30].
The four-quark states with JPC ¼ 0−− were also sys-

tematically studied in the approach of QCD sum rules using
the pseudoscalar interpolating currents in Ref. [31], which
seem not to support a mass below 2 GeV. However, because
the coefficient of the four-quark condensate is zero [31],1 it
is difficult to assess the uncertainties associated with the
truncation of the Operator Product Expansion (OPE).
Therefore it is worth considering different interpolating
currents in the sum rule analysis, which provides a chance
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to obtain OPE series that have better behaviors. In this
work, we shall use the vector currents which can couple to
JPC ¼ 0−− and 1þ− four-quark states. We shall perform
the numerical analyses of the mass for both the pseudo-
scalar and the vector channels. In order to make robust
estimates, we shall use Laplace sum rules (LSR) and
finite energy sum rules (FESR), and use the standard
stability criterion with respect to the Borel parameter τ
and the continuum threshold s0 to extract the masses. We
shall conclude the paper by discussing the possible
explanation of the ρπ dominance in D0 decay and the
decay patterns of the 0−− four-quark states.

II. LAPLACE SUM RULES AND FINITE
ENERGY SUM RULES

Introduced by Shifman, Vainshtein, and Zakharov (SVZ)
in 1979 [32], QCD sum rules have become a powerful
method to study the hadronic properties. The basic idea
of this approach is to relate the QCD expression of the
correlation function (obtained using the well-known oper-
ator product expansion) with the phenomenological para-
metrization by using the standard dispersion relation. The
two-point correlation function of the vector current has the
following Lorentz structure:

Πμνðq2Þ ¼ i
Z

d4xeiqxh0jT½jμðxÞjþν ð0Þ�j0i

¼ ðqμqν − q2gμνÞΠvðq2Þ þ qμqνΠsðq2Þ; ð1Þ

where jμðxÞ in this work can be the four-quark currents that
couple to both the 1þ− and the 0−− states, and the invariants
Πvðq2Þ and Πsðq2Þ correspond, respectively, to contribu-
tions from the 1þ− and 0−− states.
The correlation function obeys the dispersion relation,

which relates the Πðq2Þ with its imaginary part ImΠðq2Þ.
For hadrons with light flavor quarks, the dispersion relation
reads

Πv=sðq2Þ ¼
1

π

Z
∞

0

ds
ImΠv=sðsÞ
s − q2 − iϵ

: ð2Þ

The dispersion relation provides an important connection
between QCD and phenomenology as on the theoretical
side the correlator can be expanded in terms of QCD
vacuum condensates for large Euclidean momentum (i.e.,
Q2 ¼ −q2 is much greater than the QCD scale ΛQCD) while
on the phenomenological side the spectral function at low
energy can be measured and parametrized experimentally.
In this work, we adopt the widely used “one single narrow
resonance minimal duality ansatz” (which has been tested
in eþe− → hadrons and charmonium data [33–35]) to
parametrize the spectral function as

1

π
ImΠv=sðsÞ≃

X
n

δðs −m2
nÞh0jηjnihnjηþj0i

≃ f2Hδðs −m2
HÞ þ “QCDcontinuum”

× θðs − s0Þ; ð3Þ

where fH and s0, respectively, denote the coupling of the
current to the hadron and the QCD continuum threshold.
On the QCD side, the correlation function can be cal-

culated perturbatively using the operator product expansion,

Πv=sðq2Þ≃
X

d¼0;2;4;…

1

ðq2Þd=2
X

dimO¼d

Cðq2Þh0jOj0i; ð4Þ

where h0jOj0i are the QCD vacuum condensates of dimen-
sion d, Cðq2Þ are the corresponding Wilson coefficients
calculated in the perturbation theory. For the large Euclidian
q2, the OPE reaches good convergence; thus the first few
terms (up to condensate dimension eight in this work) are
expected to be a good approximation of the correlation
function. To further improve the convergence of OPE and
also to suppress the continuum contribution in the spectral
integral, one can apply the inverse Laplace operator to both
sides of the dispersion relation, and then themoment and the
ratio of Laplace/Borel sum rules can be derived,

Mv=sðτ; s0Þ ¼
Z

s0

0

ds expð−sτÞ 1
π
ImΠv=sðsÞ; ð5Þ

Rv=sðτ; s0Þ ¼ −
d
dτ

logMv=s ≃M2
H: ð6Þ

Because of the uncertainties induced by the truncation
of the OPE series and the simple parametrization of the
spectral function, the output results depend on the two
external parameters ðτ; s0Þ. SVZ originally suggested the
sum rule should be analyzed within a certain range of
the Borel parameter τ, which ensures both the validity of the
OPE truncation and the suppression of the continuum
contribution to the spectral integral. Furthermore, some
attempts to determine ðτ; s0Þ objectively from the sum
rules have also been made following either the standard
stability criterion with respect to ðτ; s0Þ [33,36–38]2 or the
original concept of the sum rule window [32] (e.g., the
Monte Carlo–based weighted-least-squared matching pro-
cedure [41–43]3). One would expect to optimize the output
results by demanding that they are insensitive to the
variation of ðτ; s0Þ. However, as is well known, LSR for
multiquark currents (of high dimension) is more likely than

2For recent examples using the stability criterion see [39] for
traditional QCD sum rules and [40] for light-cone QCD sum
rules.

3The Holder inequalities can provide constraints on the sum
rule window as discussed in [44–46].
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those for ordinary qq̄ measons to suffer from the simple
parametrization of the spectral function, which could lead
to the absence of the s0 stability. Such cases have occurred
in tetraquark and pentaquark sum rules, as has been
discussed in [36–38,47–49].
In the cases where the s0 stability is not reached, FESR

has been shown in some other sum rule analyses for
multiquark states [36–38,47] to be a useful complement.
The moment and ratio of FESR read

Rv=sðs0Þ ¼
R s0
0 dss 1

π ImΠv=sðsÞR s0
0 ds 1

π ImΠv=sðsÞ
≃M2

H; ð7Þ

which provides a connection between the lowest state mass
and the continuum threshold. FESR can be obtained by
letting the Borel parameter τ be zero in LSR prior to
renormalization-group improvement; thus it is quite natural
to expect such an approach can help reduce the effects of
high dimensional condensates in the sum rules and provide
the possibility to restore the s0 stability.

III. INTERPOLATING CURRENTS FOR 0−− =1+−
LIGHT FOUR-QUARK STATES

The 0−− light four-quark states have been studied
in [31] using the pseudoscalar diquark-antidiquark cur-
rents, which does not support a mass below 2 GeV.
However, as noted earlier, the coefficients of four-quark
condensates have been found to be zero in the OPE [31],
which raises some doubts on the resulting accuracy of the
sum rules. Furthermore, the s0 stability is not reached in
[31], suggesting that the currents used in [31] may not
provide sufficiently reliable sum rules. Therefore, here we
use diquark-antidiquark vector currents which can couple
to both the 1þ− and 0−− four-quark states.
The Lorentz structures of the 1þ−=0−− diquark–anti-

diquark vector currents have been systematically studied in
[24] for the charmoniumlike states. Here we use the udū d̄
currents of the same Lorentz structures (under isospin
symmetry, uuū ū and ddd̄ d̄ share the same sum rules with
udū d̄ at leading order),

J1μ ¼ uTaCdbðūaγμγ5Cd̄Tb þ ūbγμγ5Cd̄TaÞ − uTaCγμγ5dbðūaCd̄Tb þ ūbCd̄TaÞ;
J2μ ¼ uTaCdbðūaγμγ5Cd̄Tb − ūbγμγ5Cd̄TaÞ − uTaCγμγ5dbðūaCd̄Tb − ūbCd̄TaÞ;
J3μ ¼ uTaCγ5dbðūaγμCd̄Tb þ ūbγμCd̄TaÞ − uTaCγμdbðūaγ5Cd̄Tb þ ūbγ5Cd̄TaÞ;
J4μ ¼ uTaCγ5dbðūaγμCd̄Tb − ūbγμCd̄TaÞ − uTaCγμdbðūaγ5Cd̄Tb − ūbγ5Cd̄TaÞ;
J5μ ¼ uTaCγνdbðūaσμνγ5Cd̄Tb þ ūbσμνγ5Cd̄TaÞ − uTaCσμνγ5dbðūaγνCd̄Tb þ ūbγνCd̄TaÞ;
J6μ ¼ uTaCγνdbðūaσμνγ5Cd̄Tb − ūbσμνγ5Cd̄TaÞ − uTaCσμνγ5dbðūaγνCd̄Tb − ūbγνCd̄TaÞ;
J7μ ¼ uTaCγνγ5dbðūaσμνCd̄Tb þ ūbσμνCd̄TaÞ − uTaCσμνdbðūaγνγ5Cd̄Tb þ ūbγνγ5Cd̄TaÞ;
J8μ ¼ uTaCγνγ5dbðūaσμνCd̄Tb − ūbσμνCd̄TaÞ − uTaCσμνdbðūaγνγ5Cd̄Tb − ūbγνγ5Cd̄TaÞ; ð8Þ

where J1μ, J3μ, J5μ, J7μ have the color structure 6 ⊗ 6̄ and J2μ, J4μ, J6μ, J8μ have the color structure 3̄ ⊗ 3. Since the
states of different isospin are degenerate in masses at leading order (LO), we do not differentiate the isospin in our
calculation.

IV. QCD EXPRESSIONS FOR THE TWO-POINT CORRELATION FUNCTIONS

After performing the SVZ expansion in the chiral limit (mu ¼ md ¼ 0) to LO of the perturbation series, we arrive at the
following expression for the correlation function (up to dimension-eight condensate contributions) resulting from Ji
(i ¼ 1–8):

1

π
ImΠi;s=vðsÞ ¼ ai;s=v

s3

π6
þ bi;s=v

hαsG2is
π5

þ ci;s=v
hq̄qi2
π2

þ di;s=v
hq̄Gqihq̄qi

π2s
; ð9Þ

where the coefficients ai;v=s − di;v=s are listed in Table I.4

However, a vacuum-factorization violation factor has been noticed for a long time in the process eþe− → hadrons
[50–54] and τ decay [55]. Therefore it is necessary to consider the errors induced by the violation of factorization in our

4Here we omit the dimension-six and dimension-eight gluon condensate contributions which are suppressed by a loop factor.
The complete evaluation of the dimension-eight quark and gluon condensate contributions considering operator mixing under
renormalization was done in [43] for the 1−þ light hybrid meson, where the contributions from the gluon condensates are comparable to
those from the quark condensates.
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numerical analysis. For the condensates d ≤ 6 and the
QCD scale which are under good control from the experi-
ments, we shall use the values given in Table II.

V. THE LSR AND FESR NUMERICAL ANALYSES

In this section, we will present the numerical analysis
using Laplace sum rules and finite energy sum rules. We
shall optimize the phenomenological predictions following
the standard sum rule stability criteria, which provide
rigorous constraints on the free parameters (τ and s0 in
LSR and s0 in FESR). These criteria have been successfully
used to study light [11,36,37,40] and heavy [38,39,61]
meson spectrum and decay properties and explicitly clari-
fied in [33,62,63]. Here we briefly review these criteria by
elaborating on the numerical procedure in this work:
(1) An LSR ratio (at certain s0) is considered to reach

the τ stability if the mass (versus τ) curve presents a
platform or an extremum. In the range of s0 where
the τ stability is reached, the mass becomes a single-
valued function of s0. If the mass-s0 curve presents
an extremum, the s0 stability is considered to be
reached.

(2) An FESR ratio is considered to reach stability if the
mass curve presents an extremum, which can de-
termine the mass and s0. For the cases where the s0
stability is absent in LSR, the s0 can be determined
from the FESR ratios.

(3) The LSR/FESR results are considered reliable if the
validity of OPE truncation is ensured at the stability

points [either (if any) the rigorous LSR/FESR
stability points or the LSR τ-stability points obtained
at the s0 deduced from FESR]. The final sum rule
predictions are obtained from both the optimized
LSR and FESR results.

A. Masses of the 0−− four-quark states

As mentioned previously, the sum rules for currents of
different color structures at LO are only slightly different
(we will see this more obviously in this and the next
subsections). What affects the behavior of the sum rules
considerably are the Lorentz structures of the currents, by
which we will categorize the currents in our analyses. For
each category, if stability is reached (with converging OPE
for LSR), we will extract the mass considering the effects
of violation of factorization as a source of theoretical
uncertainty in our analysis.
We first consider the LSR for J1μ and J2μ. As shown in

Fig. 1, the LSR for both J1 and J2 reach the τ stability
(which is lost after considering the violation of factoriza-
tion). However, the masses obtained from the τ-stability
points increase gradually with s0, which means the s0
stability is not reached and thus s0 cannot be determined
from the LSR for J1 and J2. We consider the following
values (without considering the violation of factorization)
obtained at s0 ¼ 5.0 GeV2 (which can be deduced from
the subsequent FESR analyses corresponding to other
currents):

TABLE II. QCD parameters used in our analysis. The quantity ρ indicates the violation of factorization hypothesis in estimating the
four-quark condensates.

Reference

hαsG2i≃ ð7� 2Þ × 10−2 GeV4 Sum rules of eþe− → hadrons [52,54,56] and J=Ψ [57,58]
ghψ̄Gψi≡ ghψ̄ λa

2
σμνGa

μνψi≃ ð0.8� 0.1Þ GeV2hψ̄ψi Light baryon systems [59,60]

ραshψ̄ψi2 ≃ ð4.5� 0.3Þ × 10−4 GeV6 eþe− → hadrons [53,54] and τ decay [55]
ΛQCD ¼ ð353� 15Þ MeV τ decay [55]

TABLE I. The coefficients for Eq. (9).

i

1 2 3 4 5 6 7 8

ai;s 1=30720 1=61440 1=30720 1=61440 1=10240 1=20480 1=10240 1=20480
bi;s −1=1536 1=1536 −1=1536 1=1536 11=1536 1=1536 11=1536 1=1536
ci;s 1=6 1=12 −1=6 −1=12 −5=6 −5=12 1=6 1=12
di;s 1=8 1=16 −1=8 −1=16 −5=8 −5=16 1=8 1=16
ai;v 1=18432 1=36864 1=18432 1=36864 1=6144 1=12288 1=6144 1=12288
bi;v −1=4608 1=4608 −1=4608 1=4608 11=4608 1=4608 11=4608 1=4608
ci;v −5=18 −5=36 5=18 5=36 25=18 25=36 −5=18 −5=36
di;v −1=8 −1=16 1=8 1=16 5=8 5=16 −1=8 −1=16
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Ms1;L ¼ 1.78 GeV at s0 ¼ 5.0 GeV2;

Ms2;L ¼ 1.78 GeV at s0 ¼ 5.0 GeV2: ð10Þ

We have checked that these results are associated with
converging OPE (see Table III in Appendix A); therefore
they are considered as valid results when making the final
estimate.
The FESR for J1 and J2 also do not reach stability, which

can be seen in Fig. 2. Therefore no results can be obtained
from the FESR.
J3–J6 belong to two different Lorentz structures, but

these four currents have similar sum rule behavior; thus we
present their results together. Contrary to J1 and J2, J3–J6
have worse LSR but better FESR behavior. The LSR ratios

for J3μ–J6μ monotonically increase with the Borel param-
eter τ; thus no (τ; s0) stability is reached in LSR, while the
FESR ratios reach stability in s0 as shown in Fig. 3, which
allow the following mass predictions:

Ms3;F ¼ 1.67ð1.81Þ GeV at s0 ¼ 5.4ð5.7Þ GeV2;

Ms4;F ¼ 1.61ð1.73Þ GeV at s0 ¼ 4.6ð5.0Þ GeV2;

Ms5;F ¼ 1.65ð1.82Þ GeV at s0 ¼ 5.2ð5.6Þ GeV2;

Ms6;F ¼ 1.71ð1.85Þ GeV at s0 ¼ 5.9ð6.2Þ GeV2; ð11Þ

where we have also presented the mass predictions (in the
brackets) obtained considering the deviation of the
dimension-eight condensates from their factorized values.
From Figs. 10(a)–10(d) in Appendix B, we can observe
the FESR curves for different truncations of the OPE. All
these FESR ratios start to reach stability after the inclusion
of power corrections from the dim-4–6 condensates. In
Figs. 10(a) and 10(d), the FESR ratios with the inclusion
of the d ≦ 8 condensate terms tend to approach those
with d ≦ 6 condensate terms around the stability points
(or the extreme points), justifying the validity of the OPE
truncation for the FESR ratios corresponding to J3 and J6,
while in Figs. 10(b) and 10(c), the inclusion of the d ¼ 8
condensate contributions in the OPE still affect the FESR
mass at the stability points to a (relatively) large extent,
suggesting the OPE truncations for these ratios are still
associated with (relatively) large uncertainties. Therefore,
we only consider Ms3;F and Ms6;F in our final mass
determination.
For J7 and J8, the LSR moment ratios begin to reach the

τ stability at s0 ¼ 3.8 and s0 ¼ 4.2, respectively. But again
the s0 stability is absent. If we use s0 ¼ 5 GeV2 (as we did
for J1 and J2, which are deduced from the FESR ratios
corresponding to J3–J6), we obtain (from Fig. 4)
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FIG. 1. (a) The 0−− four-quark masses versus τ obtained from the LSR for J1μ (green continuous line), from the LSR for J1μ with
violation of factorization by a factor ρ ¼ 2 in estimating the dimension-eight condensates (red continuous line), from the LSR for J2μ
(blue dotted line), and from the LSR for J2μ with violation of factorization by a factor ρ ¼ 2 in estimating the dimension-eight
condensates (black dot-dashed line); (b) the same as (a) but for the masses versus s0.
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FIG. 2. The 0−− four-quark masses versus s0 obtained from the
FESR for J1μ (green continuous line), from the FESR for J1μ with
violation of factorization by a factor ρ ¼ 2 in estimating the
dimension-eight condensates (red continuous line), from the
FESR for J2μ (blue dotted line), and from the FESR for J2μ
with violation of factorization by a factor of ρ ¼ 2 in estimating
the dimension-eight condensates (black dot-dashed line).
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Ms7;L ¼ 1.80ð1.95Þ GeV at s0 ¼ 5.0ð5.5Þ GeV2;

Ms8;L ¼ 1.83ð1.97Þ GeV at s0 ¼ 5.0ð5.5Þ GeV2: ð12Þ

We have also check that at the stability points corre-
sponding to the above results, the OPE series are converg-
ing (see Table III in Appendix A); therefore these results are
considered reliable.
Unfortunately, the FESR ratios for both J7 and J8 do not

reach stability (plots are not shown here for simplicity). On
the contrary, they increase with s0, which means no results
can be obtained from these sum rules.
In our analysis of the pseudoscalar channel, the LSR

ratios corresponding to J1;2 and J7;8 reach the τ stability
but do not reach the s0 stability. We fix the s0 in the
LSR analysis with the help of the FESR ratios corres-
ponding to J3–J6. From both LSR and FESR results,

our final mass prediction for the 0−− four-quark state
is 1.76� 0.15 GeV.5

B. Masses of the 1+− four-quark states

Similarly, we use the stability criterion for extracting the
mass of the 1þ− four-quark states. For J1μ and J2μ, LSR
reach both the τ and s0 stabilities as shown in Fig. 5, from
which we obtain the following predictions:

Mv1;L ¼ 1.23ð1.33Þ GeV at s0 ¼ 4.8ð5.0Þ GeV2;

Mv2;L ¼ 1.22ð1.32Þ GeV at s0 ¼ 4.8ð5.0Þ GeV2; ð13Þ

where we have presented the results (in the brackets) with
the violation of factorization, and we have also checked
that the OPE starts to converge at d ¼ 6 condensate terms
and the d ¼ 8 condensate contributions are less than 18%
(respectively, 15.6% and 17.1%) of the total QCD expres-
sion (see Table IV). Although the proportions of the highest
dimensional condensate (HDC) terms nearly fulfill the
usual imposed condition of a sum rule window for multi-
quark states [48,49], the OPE suffer from small contribu-
tions of perturbative terms, making it uncertain to make
predictions explicitly based on these results. Instead, we
shall consider them as a rough check of the FESR results.
We also use the FESR to study the mass of the 1þ− four-

quark states. For J1μ and J2μ, the following results can be
obtained from the stability points of the FESR ratios (see
Fig. 6):

Mv1;F ¼ 1.42ð1.44Þ GeV at s0 ¼ 5.1ð5.3Þ GeV2;

Mv2;F ¼ 1.40ð1.42Þ GeV at s0 ¼ 4.9ð5.1Þ GeV2: ð14Þ
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FIG. 4. The 0−− four-quark masses versus τ obtained from the
LSR for J7μ (green continuous line), from the LSR for J7μ with
violation of factorization by a factor ρ ¼ 2 in estimating the
dimension-eight condensates (red continuous line), from the LSR
for J8μ (blue dotted line), and from the LSR for J8μ with violation
of factorization by a factor ρ ¼ 2 in estimating the dimension-
eight condensates (black dot-dashed line).
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FIG. 3. (a) The 0−− four-quark masses versus s0 obtained from the FESR for J3μ (green continuous line), from the FESR for J4μ (red
continuous line), from the FESR for J5μ (blue dotted line), and from the FESR for J6μ (black dot-dashed line). (b) The same as (a) but for
masses versus s0 from the FESR with violation of factorization by a factor ρ ¼ 2 in estimating the dimension-eight condensates.

5Here we take the arithmetic average of the masses when
estimating the central value. We consider the violation of
factorization, the use of different currents, and the uncertainties
of the input parameters when estimating the errors.
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The behavior of these FESR ratios under different trunca-
tions of the OPE are shown in Figs. 9(a) and 9(b), which
clearly show a trend of the mass to converge at the stability
points when including higher dimensional condensate
terms.
As in the pseudoscalar channel, J3μ–J6μ (belonging to

two different Lorentz structures) also have quite similar
sum rules. The LSR ratios show τ stability but no s0
stability. Using the s0 fixed from the LSR and FESR for
J1μ and J2μ, all these moments give a mass around
1.27 GeV, but the corresponding OPE series do not
converge. Therefore we shall not consider this value in
our final determination of the mass. The FESR for J3μ–J6μ
do not reach stability in s0 either, which means no reliable
predictions can be obtained from the sum rules for
J3μ–J6μ.

For J7μ and J8μ, using the stability criterion for (τ,s0), we
obtain from the LSR ratios (see Fig. 7) the following
optimal values:

Mv7;L ¼ 1.15ð1.22Þ GeV at s0 ¼ 3.2ð3.4Þ GeV2;

Mv8;L ¼ 1.17ð1.24Þ GeV at s0 ¼ 3.5ð3.6Þ GeV2: ð15Þ

Although the LSR ratios reach the (τ,s0) stability and
also the OPE show obvious trends of convergence, the
dimension-eight condensate terms contribute more than
half of the total OPE expressions (due to the cancellation
between the lower dimensional condensate terms and the
perturbative terms; see Table IV), raising some doubts on
the validity of the OPE truncation here. Therefore we
only consider them as a double-check of other LSR/FESR
results.
The FESR for J7μ and J8μ also reach stability, which

occurs at lower s0 compared with the sum rules for J1μ and
J2μ. However, the predicted masses are comparable to those
obtained using other currents, which read (from Fig. 8):

Mv7;F ¼ 1.18ð1.23Þ GeV at s0 ¼ 3.3ð3.5Þ GeV2;

Mv8;F ¼ 1.22ð1.26Þ GeV at s0 ¼ 3.5ð3.7Þ GeV2; ð16Þ

where the associated OPE truncations are shown to be
reliable in Fig. 11(a) and 11(b) because the d ≦ 6 masses
are already very close to the d ≦ 8 masses around the
stability points.
From the numerical analysis of the 1þ− channel, we can

see that the LSR and FESR for J1μ, J2μ, J7μ, and J8μ reach
stability. From these sum rules, we can obtain the optimal
result for the 1þ− four-quark mass.
Since the OPE truncation at the LSR stability points may

associate with relatively large errors, we make our pre-
dictions based on the FESR results and consider the LSR
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FIG. 6. The 1þ− four-quark masses versus s0 obtained from the
FESR for J1μ (green continuous line), from the FESR for J1μ with
violation of factorization by a factor ρ ¼ 2 in estimating the
dimension-eight condensates (red continuous line), from the
FESR for J2μ (blue dotted line), and from the FESR for J2μ
with ρ ¼ 2 violation of factorization by a factor of 2 in estimating
the dimension-eight condensates (black dot-dashed line).
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FIG. 5. (a) The 1þ− four-quark masses versus τ obtained from the LSR for J1μ (green continuous line), from the LSR for J1μ with
violation of factorization by a factor ρ ¼ 2 in estimating the dimension-eight condensates (red continuous line), from the LSR for J2μ
(blue dotted line), and from the LSR for J2μ with violation of factorization by a factor ρ ¼ 2 in estimating the dimension-eight
condensates (black dot-dashed line). (b) The same as (a) but for masses versus s0.
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results as double-checks. Because of the lack of valid
LSR results, we consider a conservative range instead of
extracting a central value from FESR. The obtained mass
range isMv ¼ 1.18–1.44 GeV, which is consistent with the
rough LSR results within the errors.

VI. DISCUSSION AND CONCLUSIONS

We have studied the 0−− and 1þ− light four-quark states
using Laplace and finite energy sum rules. In the pseudo-
scalar channel, we have obtained the optimal mass pre-
diction 1.76� 0.15 GeV from LSR and FESR following
the sum rule stability criteria, where the errors mainly come
from the violation of factorization in estimating the
dimension-eight condensates and the discrepancy among

the results obtained from different sum rule ratios. Our
prediction for the 0−− four-quark states is significantly
lower than the ones obtained in [31] using different
interpolating currents, where a mass below 2 GeV is not
supported but the results suffer from the absence of four-
quark condensates in the OPE. In contrast to the previous
work, the results in this work do not exclude the possibility
of the ρπ dominance in D0 decay to be a four-quark state.
Given that the D0 mass is much lower than the mass
prediction for a 0−− hybrid state in the QCD Coulomb
gauge approach [10] and QCD sum rules [11] and barely
covered by the range predicted in the constituent gluon
models [64,65], the four-quark explanation seems to be
more reasonable. Moreover, the mixing of the four-quark
state and hybrid state is another possible explanation that
needs to be considered, which we hope to discuss in the
future.
Following our prediction, we can discuss the decay

patterns of the 0−− four-quark states. Considering the
kinematical constraints and the conservation of I, G, J,
P, C we find the following two-body hadronic decay
modes:

X0−0−− → ρπ;ωη; f0h1;

X1þ0−− → a0π;ωπ; ρη;

X2−0−− → ρπ: ð17Þ

The ρπ decay mode of the isoscalar state can be the
observed channel (via ρ → πþπ−) in BABAR [1]. If this 3π
resonance exists, it may also be seen in the ωη final states.
The isospin partner states are expected to be observed in the
above final states, among which the charged a0π final states
are worth special attention, for they are the only possible
S-wave decay mode; the others are in P wave.
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FIG. 8. The 1þ− four-quark masses versus τ obtained from the
FESR for J7μ (green continuous line), from the FESR for J7μ with
violation of factorization by a factor ρ ¼ 2 in estimating the
dimension-eight condensates (red continuous line), from the
FESR for J8μ (blue dotted line), and from the FESR for J8μ
with violation of factorization by a factor ρ ¼ 2 in estimating the
dimension-eight condensates (black dot-dashed line).
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FIG. 7. (a) The 1þ− four-quark masses versus τ obtained from the LSR for J7μ (green continuous line), from the LSR for J7μ with
violation of factorization by a factor ρ ¼ 2 in estimating the dimension-eight condensates (red continuous line), from the LSR for J8μ
(blue dotted line), and from the LSR for J8μ with violation of factorization by a factor ρ ¼ 2 in estimating the dimension-eight
condensates (black dot-dashed line). (b) The same as (a) but for masses versus s0.
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For the vector channel, the LSR ratios which reach the (τ,s0) stability are not associated with good OPE convergence. We
have conservatively estimated the mass to be in the range 1.18–1.44 GeV from FESR, which suggest the 1þ− four-quark
states lie within the 270 MeV range above the conventional qq̄ state h1ð1170Þ.

ACKNOWLEDGMENTS

This work is supported by NSFC under Grants No. 11175153, No. 11205093, and No. 11347020, and supported by K. C.
Wong Magna Fund in Ningbo University. T. G. S. is supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC). Z. R. H. and Z. F. Z. are grateful to the University of Saskatchewan for its warm hospitality.

APPENDIX A: THE OPE TERMS AT THE LSR STABILITY POINTS

See Tables III and IV.

APPENDIX B: THE FESR MASS CURVES FOR DIFFERENT TRUNCATIONS OF THE OPE

See Figs. 9, 10, and 11.
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FIG. 9. (a) The 1þ− four-quark FESR masses corresponding to J1, obtained from truncating the OPE at the perturbative terms (green
dotted line), at the dim-4 condensate terms (red dashed line), at the dim-6 condensate terms (blue dot-dashed line), and at the dim-8
condensate terms (black continuous line). (b) The same as (a) but for the masses corresponding to J2.

TABLE III. OPE terms in the Borel transformed 0−− invariant correlators at the LSR τ-stability points with the s0 fixed from FESR.

i 1
τ B̂

aΠd¼0
i;v =GeV4 1

τ B̂Π
d¼4
i;s =GeV4 1

τ B̂Π
d¼6
i;s =GeV4 1

τ B̂Π
d¼8
i;s =GeV4 τ=GeV−2 s0=GeV2

1 1.07067 × 10−2 −3.41877 × 10−5 5.67043 × 10−5 6.68983 × 10−6 0.066 5.0
2 5.80777 × 10−4 1.12606 × 10−5 1.62717 × 10−5 2.09805 × 10−6 0.115 5.0
7 1.18144 × 10−4 2.28077 × 10−5 1.39645 × 10−5 3.96477 × 10−7 0.268 5.0
8 3.91793 × 10−4 5.33979 × 10−6 1.12050 × 10−5 1.26034 × 10−6 0.167 5.0

aThe Borel operator is defined as B̂≡ limQ2 ;n→∞
n=Q2¼τ

ðQ2Þn
ðn−1Þ! ð− d

dQ2Þn.

TABLE IV. OPE terms in the Borel transformed 1þ− invariant correlators at the LSR stability points.

i 1
τ B̂Π

d¼0
i;v =GeV4 1

τ B̂Π
d¼4
i;v =GeV4 1

τ B̂Π
d¼6
i;v =GeV4 1

τ B̂Π
d¼8
i;v =GeV4 τ=GeV−2 s0=GeV2

1 7.94391 × 10−7 −7.60350 × 10−8 −7.71964 × 10−6 −1.29002 × 10−6 0.808 4.8
2 7.48111 × 10−7 8.07614 × 10−8 −3.97798 × 10−6 −7.12718 × 10−7 0.784 4.8
7 2.13567 × 10−5 2.50377 × 10−6 −1.33565 × 10−5 −3.75212 × 10−6 0.467 3.2
8 6.73668 × 10−6 1.80790 × 10−7 −5.95178 × 10−6 −1.61746 × 10−6 0.524 3.5
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FIG. 10. (a) The 0−− four-quark FESR masses corresponding to J3, obtained from truncating the OPE at the perturbative terms (green
dotted line), at the dim-4 condensate terms (red dashed line), at the dim-6 condensate terms (blue dot-dashed line), and at the dim-8
condensate terms (black continuous line). (b) The same as (a) but for the masses corresponding to J4. (c) The same as (a) but for the
masses corresponding to J5. (d) The same as (a) but for the masses corresponding to J6.
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FIG. 11. (a) The 1þ− four-quark FESR masses corresponding to J7, obtained from truncating the OPE at the perturbative terms (green
dotted line), at the dim-4 condensate terms (red dashed line), at the dim-6 condensate terms (blue dot-dashed line), and at the dim-8
condensate terms (black continuous line). (b) the same as (a) but for the masses corresponding to J8.
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