
Efficient evaluation of massive Mellin-Barnes integrals

Janusz Gluza and Tomasz Jeliński
Department of Field Theory and Particle Physics, Institute of Physics, University of Silesia,

Uniwersytecka 4, PL–40-007 Katowice, Poland

David A. Kosower
School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540,

USA and Institut de Physique Théorique, CEA, CNRS,
Université Paris–Saclay, F–91191 Gif-sur-Yvette cedex, France

(Received 28 November 2016; published 24 April 2017)

We show how to evaluate one-dimensional Minkowski-region Mellin-Barnes representations arising
from massive loop integrals, by modifying the contours of integration. We implement an exact solution to
the differential equation determining the contours of stationary phase. We also present several simple
approximations to these contours. Our approach points the way to more efficient computations of massless
and massive Mellin-Barnes integrals in both Euclidean and Minkowski regions.
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I. INTRODUCTION

The Mellin-Barnes approach has proven to be a versatile
and successful approach to evaluating higher-loop inte-
grals, both analytically and numerically [1,2]. Its early
successes included the analytic computation of the planar
[3] and nonplanar [4] two-loop double-box integrals. In this
approach, one first introduces a Feynman parametrization
into loop integrals, performs the loop integrals, and then
uses Mellin-Barnes representations for the integrands to
allow the Feynman parameter integrals to be computed.
The integrals are typically infrared divergent and may have
ultraviolet divergences as well. These divergences are
usually regulated dimensionally; the resulting singularities
are hidden inside the integrands of the Mellin-Barnes
integrals. One can move the contours to make these
singularities manifest, yielding a representation in which
the poles in the regulator ϵ are manifest and in which the
coefficients are finite Mellin-Barnes integrals which can be
computed analytically or numerically. Czakon’s MB pack-
age [5] automated the process of moving contours to resolve
singularities; a related algorithm was later implemented in
MBresolve by Smirnov and Smirnov [6]. Other publicly
available packages connected with theMellin-Barnes evalu-
ation of Feynman integrals are available on theMBtoolsweb
page [7]: AMBRE [8,9], which assists in creating Mellin-
Barnes representations; MBasymptotics [10], which per-
forms parametric expansions of Mellin-Barnes integrals;
and barnesroutines [11], which automates the application of
Barnes lemmas. The use of Mellin-Barnes representations
goes back much further than these developments; in
Refs. [12–14], Mellin-Barnes representations were used
for massive propagators.
The Mellin-Barnes approach has been used extensively

for numerical cross-checks of analytic results in the
Euclidean region, including in two-loop massive Bhabha

scattering in QED [15]; in three-loop massless form factors
[16] and static potentials [17]; in massive two-loop QCD
form factors [18]; in B-physics studies [19]; in hadronic
top-quark physics [20]; and for angular integrations in
phase-space integrals [21]. It has also been used to obtain
direct numerical results in computations in supersymmetric
Yang-Mills theories: for the four-loop cusp anomalous
dimension [22] and two-loop five-point amplitudes [23];
as well as in N ¼ 6 Chern-Simons theory at six loops and
beyond [24]. Very recently, it has been applied to integrals
in chiral perturbation theory [25].
The MB and MBresolve packages yield numerically

convergent integrals in the Euclidean region for integrals
arising from a mixture of massless and massive propaga-
tors. The same integrals are typically only conditionally
convergent in the Minkowski region and, hence, fail to
converge numerically. For Feynman integrals that arise at
one loop, one can ultimately perform the integrations
analytically and assemble these results into numerical
software libraries [26–30]. The convergence failure is then
an annoyance and prevents use of numerical approaches as
cross-checks, but it is not a critical problem.
At two loops and beyond, not all desired integrals are

available analytically, and the obstruction is of greater
importance. A variety of other techniques can be applied to
the numerical calculation of Feynman integrals in the
Minkowski region. These include sector decomposition
[31] (as implemented, for example, in SecDec 3 [32–34]
and Fiesta 4 [35]); numerical subtraction of singularities in
loop-momentum space [36–41], along with appropriate
complex contour deformations of the Feynman-parameter
integrations. (See Refs. [37,42–45] for earlier one-loop
results.)
The Mellin-Barnes integrals produced by the MB and

MBresolve packages use standard contours, parallel to the
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imaginary axis. The representation was re-examined by
Freitas and Huang [46], who pointed out that using tilted
contours of integration different from the textbook contours
chosen by MB can make Minkowski-region massive
integrals convergent. These authors did not specify exactly
how these tilted linear contours should be chosen. A recent
Mellin-Barnes-based numerical package, MBnumerics
[47], takes a different approach, shifting and rotating
contours, remapping integrands, and dropping small
contributions to compute multidimensional integrals
with multiple scales in the Minkowski region [9]. It has
been applied to the two-loop bosonic contributions to
Z → bb̄ [48].
In this article, we re-examine the choice of contours, and

show how to determine contours that are in a certain sense
close approximations to optimal contours of integration.
We study one-dimensional Mellin-Barnes integrals both in
the Euclidean and Minkowski regions. Our contours
improve the numerical efficiency of computation in the
former region, and provide an efficient and convergent
representation in the latter. We also present a connection
to the tilted contours suggested by Freitas and Huang [46].
While these contours are not computationally optimal, they
do have thevirtue of simplicity.We believe that the approach
described herewill generalize to higher-dimensionalMellin-
Barnes integrals; but the generalization is not trivial nor
completely straightforward, and accordingly we postpone
any discussion of it to future work.
This article is organized as follows. In the next section,

we study an example of a one-dimensional massive integral
in the Euclidean region. We also discuss the differential
equation drawn from the mathematics literature which
determines an exact contour of stationary phase. In
Sec. III, we present several approximations to the exact
contour, for parameter values in the Euclidean region. In
Sec. IV, we show how to match contours to their asymptotic
forms, and in Sec. V, we give examples of various use cases
exemplifying the utility of using approximate contours and
matching to their asymptotic forms. We use as examples
integrals that may arise in Feynman diagrams. In Sec. VI,
we study approximations to contours of stationary phase
for parameters in the Minkowski region. In Sec. VII, we
examine one important special case, of integrals with no
stationary point along the real axis even for parameters in
the Euclidean region. In Sec. VIII, we examine briefly the
evaluation of integrals using the various contour approx-
imations discussed in earlier sections. We give some
concluding remarks in Sec. IX.

II. A EUCLIDEAN INTEGRAL

Let us begin by studying Mellin-Barnes integrals in the
Euclidean region. In this region, the standard contours used
in the definition of the integrals—as well as by the MB
package—are usually suitable for numerical integration as
well. But we can improve upon them, and the improvements

offer a stepping stone to the modifications required to obtain
a numerically convergent form in the Minkowski region.
We begin with a one-dimensional integral,

I1ðsÞ ¼
1

2πi

Z
c0þi∞

c0−i∞
dzF1ðz; sÞ; ð2:1Þ

where

F1ðz; sÞ ¼ ð−sÞ−z Γ
3ð−zÞΓð1þ zÞ

Γð−2zÞ : ð2:2Þ

This integral was considered in Refs. [5,9]. As mentioned
there, it can be evaluated analytically, with result,

4ffiffiffiffiffiffiffiffiffiffiffiffi
4
−s þ 1

q asinh

ffiffiffiffiffiffiffi
−
s
4

r
; ð2:3Þ

in the Euclidean region s < 0;

−
4ffiffiffiffiffiffiffiffiffi
4
s−1

q asin

ffiffiffi
s
4

r
; ð2:4Þ

below threshold (s ∈ ½0; 4�) in the Minkowski region; and,

4ffiffiffiffiffiffiffiffiffi
1− 4

s

q �
−
iπ
2
sign Im sþ ln

� ffiffiffi
s
4

r
þ

ffiffiffiffiffiffiffiffiffi
s
4
−1

r ��
; ð2:5Þ

above threshold. (The forms in Eqs. (2.4) and (2.5)
correspond to Eq. (2.3) when s is given a small imaginary
part.)
In the Euclidean region, s < 0, and hence the integrand

is real for real z. The reflection symmetry z ↔ z̄ then
ensures the integral is real as well. The MB package, left to
its own devices, will choose c0 ¼ − 1

2
. Let us consider the

integral for s ¼ − 1
20
. The real and imaginary parts of the

integrand along the contour are shown in Fig. 1. Both
oscillate around zero, though the oscillations are damped as
one moves away from the real axis, and the resulting
numerical integral converges nicely. (Obtaining the vanish-
ing result for the imaginary part does require nontrivial
cancellations in a numerical integration, of course.)
Nonetheless, let us ask: why choose this particular

contour? Or, more pointedly: can we do any better? Is
there a more efficient contour?
Complex-analysis textbooks would tell us that the

answer is yes: we should choose the contour of steepest
descent. This will yield the most-rapidly convergent inte-
gral, because it is also a contour of stationary phase and
hence minimizes oscillations in the integrand. Figure 2
shows a variety of contours of stationary phase for the
integrand F1ðz; s ¼ − 1

20
Þ; in the case at hand, we should

pick the contour of phase 0. As in the case of parton-
distribution evolution [49], we must face the questions of
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whether we can find a good approximation to this
contour without undue computational effort; and whether
we can easily adapt the contour to different values of the
parameter s. As we shall see, we can provide affirmative
answers to both questions.
Our first task in finding the contour of stationary phase in

this case is to find a local minimum along the real axis. The
minimum closest to z ¼ − 1

2
is given by the solution to,

− lnð−sÞ þ 2ψð−2zÞ−3ψð−zÞ þ ψðzþ 1Þ ¼ 0; ð2:6Þ

which is at zs ≃ −0.825618 for s ¼ − 1
20
. Because we have

the analytic form of the integrand, we can easily obtain this
equation analytically, and then use an efficient algorithm
(e.g. Newton-Raphson) to find a numerical solution.
Before looking at a sequence of approximations to the

desired contour, let us examine the exact contour zðtÞ,
anchored at the above minimum. In the present case,
ImF1ðz; sÞ will vanish exactly along the contour. We seek
contours described by a meromorphic function; and F1

itself is meromorphic as well. The contour then satisfies a
differential equation [50],

dz
dt

¼ −
∂ lnF1ðz; sÞ

∂z : ð2:7Þ

The phase of F1 is given by Im lnF1; along a contour
satisfying Eq. (2.7), the phase does not vary,

d phase
dt

¼ d Im lnF1
dt

¼ 1

2i

�
d lnF1
dt

−
d lnF1
dt

�

¼ 1

2i

�∂ lnF1
∂z

dz
dt

−
∂ lnF1
∂z

dz̄
dt

�

¼ −
1

2i

�∂ lnF1
∂z

∂ lnF1
∂z −

∂ lnF1
∂z

∂ lnF1
∂z

�
¼ 0: ð2:8Þ

Furthermore,

djF1j2
dt

¼ jF1j2
�
d lnF1
dt

þ d lnF1
dt

�

¼ jF1j2
�∂ lnF1

∂z
dz
dt

þ ∂ lnF1
∂z

dz̄
dt

�

¼ −jF1j2
�∂ lnF1

∂z
∂ lnF1
∂z þ ∂ lnF1

∂z
∂ lnF1
∂z

�

¼ −2jF1j2
���� ∂ lnF1∂z

����2 < 0; ð2:9Þ

so that as expected it is a contour of steepest descent.
The stationary point zs is also a stationary point of this

equation; a solution which starts at zs will stay there for all t.
As boundary data for the differential equation, we must
therefore choose a different point. A suitable choice is
given by perturbing away from zs along one of the two
directions of steepest descent. In general, one can find
these by finding the eigenvectors of the Hessian of the
integrand; in this case, the required directions are parallel
to the imaginary axis, in either the positive and negative
direction. One can then solve the equation numerically;
one must do so separately in the upper- and lower-half
planes. (Alternatively, in the Euclidean region the lower
half-plane contour will be the complex conjugate of the
upper half-plane contour.) The pair of contours together

3

2

1

1

0

0

–1

–1

–2

–2

–3

–3 2 3

FIG. 2. A contour plot of phases for the integrand F1ðz; sÞ of
Eq. (2.2) with s ¼ − 1

20
, with contours for phases −π=2, 0, π=2,

and π also shown. The contour with phase 0 is the boundary
between the darkest and lightest shade.

FIG. 1. The real (red) and imaginary (dashed blue) parts of the
integrand F1ðz; sÞ of Eq. (2.2) for s ¼ − 1

20
along the “textbook”

(and MB) contour, Re z ¼ c0 ¼ − 1
2
.
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is called the Lefschetz thimble J ðzsÞ associated to the
stationary point zs.
In the case at hand, one starts with zs as given by the

solution to Eq. (2.6) and looks for the tangent to it. For
Euclidean values of s, the line Re z ¼ zs will be that
tangent, because a minimum along the real axis is a saddle
point of the integrand in the complex plane. We can perturb
away from the stationary point along the tangent,

zsðδÞ ¼ zs þ iδ; ð2:10Þ

in order to obtain a suitable starting point for the differential
equation. (The smaller δ, the more accurate the solution will
be.) We make use of the MATHEMATICA routine NDSolve to
solve the differential equation Eq. (2.7) with starting points
zsð�δÞ. This yields a numerical representation of the exact
contour of stationary phase. We show examples of exact
contours in the following sections.
In general, however, solving the differential equa-

tion (2.7), and then using the solution repeatedly in a
numerical integration, may be computationally expensive.
Furthermore, we may encounter integrals for which the
exact contour of stationary phase is not optimal for
numerical integration, and where the MB integral would
require special treatment with an exact contour. This
motivates us to seek approximations to the exact contour
of stationary phase, which we consider in the next section.

III. CONTOUR APPROXIMATIONS

The simplest approximation to the exact contour of
stationary phase is given by a straight line tangent to it.
As noted in the previous section, the line Re z ¼ zs will be
that tangent. If we take our contour to be this line, we see
that while the integrand still oscillates (see Fig. 3), the
oscillations are damped more quickly than along the
original contour.

We can improve on the tangent approximation; to find a
better approximation, we follow the same procedure as in
Ref. [49]. Parametrize zðtÞ ¼ xðtÞ þ iyðtÞ, choosing

xðt0 ¼ 0Þ ¼ zs; yð0Þ ¼ 0; x; y real: ð3:1Þ
If we require the contour to be symmetric under reflection
in the real axis (as is desirable for numerical evaluation), x
will be an even function, and y an odd one. We can rescale t
to make y0ð0Þ ¼ 1. Taking the contour to be smooth, we
will also have x0ð0Þ ¼ 0. The expansion of the integrand
around z ¼ zs then takes the form,

F1ðzðtÞÞ ∼ F1ðzsÞ þ
F00
1ðzsÞ
2

× ðx0ð0Þ2−y0ð0Þ2 þ 2ix0ð0Þy0ð0ÞÞt2 þ � � �

¼ F1ðzsÞ−
F00
1ðzsÞ
2

t2 þ � � � ð3:2Þ

where we drop the s argument for brevity. As all derivatives
of F1ðxÞ are real, the equation ImF1ðzðtÞÞ ¼ 0 is satisfied
to this order; and as F00

1ðzsÞ is positive, the integrand
decreases with t. However, the contour will not continue
parallel to the imaginary axis; to see where it goes, we must
expand to higher order. Consider the expansion to Oðt3Þ,

F1ðzðtÞÞ ∼ F1ðzsÞ−
F00
1ðzsÞ
2

t2

þ 1

6

�
−iFð3Þ

1 ðzsÞ þ 3iF00
1ðzsÞx00ð0Þ

�
t3 þ � � �

ð3:3Þ
To this order, the stationary-phase condition (ImF1ðzðtÞÞ ¼
0) requires,

x00ð0Þ ¼ Fð3Þ
1 ðzsÞ

3F00
1ðzsÞ

: ð3:4Þ

In the neighborhood of zs, the approximate contour then
has the form,

zqðtÞ ¼ zs þ itþ c2t2; ð3:5Þ
where c2 is real, and given by,

c2 ¼
Fð3Þ
1 ðzsÞ

6F00
1ðzsÞ

: ð3:6Þ

Because xð3Þð0Þ vanishes, the terms of Oðt4Þ are automati-
cally real, and only atOðt5Þ do imaginary terms now appear
in the expansion of FðzðtÞÞ.
In the example at hand (s ¼ − 1

20
), the quadratic

contour is,

zqðtÞ ¼ −0.825618þ it−1.65358t2: ð3:7Þ
FIG. 3. The real (red) and imaginary (dashed blue) parts of the
integrand F1ðz; sÞ of Eq. (2.2) for s ¼ − 1

20
along the contour

Re z ¼ −0.825618, tangent to the contour of steepest descent.
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The value of the integrand along the contour is shown in
Fig. 4(a). The imaginary part is essentially zero, and the real
part is free of oscillations in the region which gives the bulk
of the contributions to the result. (The parametrized
integrand will still have an imaginary part, because of
the z0ðtÞ factor, but there is no need to compute it.) For
comparison, in Fig. 4(b), we show the integrand along the
exact contour of stationary phase, computed using the
differential equation as described in Sec. II. The imaginary
part of the contour is chosen to be t in both figures.
The two linear contours (original and tangent) and the

quadratic contour are shown along with the exact contours
of stationary phase in Fig. 5.
There is another improvement we can make to the

contour. Notice that the contours of constant phase, shown
in Fig. 2, are all asymptotically straight lines as z → ∞ (so
long as we stay away from the real axis). We can see this
analytically by using the asymptotic expansion of the
gamma function,

ΓðzÞez→∞
ffiffiffiffiffiffi
2π

z

r
zze−z; ð3:8Þ

in Eq. (2.2) to obtain an asymptotic form for the integrand
(with s < 0),

F ∼ const 4zð−sÞ−z ð1þ zÞ1=2þz

ð−zÞ1þz ; ð3:9Þ

paying careful attention to the branch cuts, we can further
simplify this expression to obtain,

F ∼ const 4zð−sÞ−z ð−1þ iδ sign Im zÞzþ1=2ffiffiffiffiffiffi
−z

p ; ð3:10Þ

where δ is an infinitesimal positive number.

We can compute the phase of this expression via,

argðzÞ ¼ −i lnðz=jzjÞ; ð3:11Þ

to obtain,

argF ¼ π

2
−
1

2
argð−zÞ þ π Re z sign Im zþ Im z ln

�
−
4

s

�
ð3:12Þ

(implicitly taken mod 2π), which indeed is a linear equation
as z → ∞.

(a) (b)

FIG. 4. The real (red) and imaginary (dashed blue) parts of the integrand F1ðz; sÞ of Eq. (2.2) for s ¼ − 1
20

along (a) the quadratic
approximation zqðtÞ to the contour of stationary phase (b) the exact contour.

FIG. 5. The original linear (double-dot dashed brown), tangent
(dashed dark turquoise), and quadratic (dot-dashed dark gray)
contours for the integrand F1ðz; sÞ of Eq. (2.2) with s ¼ − 1

20
,

shown along with the exact contours of zero phase (dotted blue).
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Let us write the asymptotic form of the contour in the
following form,

z∞ðtÞ ¼
�
z∞ þ ireiθ∞t; t > 0;

z∞ þ ire−iθ∞ t; t < 0;
ð3:13Þ

where r is real. In this parametrization, θ∞ ∈ ½− π
2
; π
2
�, with

θ∞ ¼ 0 corresponding to a line parallel to the imaginary
axis. To fix the parameters z∞ and θ∞, substitute this form
into Eq. (3.12), and expand as t → ∞. Requiring the
coefficient of t to vanish yields an equation for θ∞,

θ∞ ¼ atan

�
1

π
lnð−4=sÞ

�
: ð3:14Þ

Taking the limit t → ∞ in argð−zÞ, but setting t ¼ 0
elsewhere then allows us to solve for z∞,

z∞ ¼ −
3

4
þ θ∞

2π
: ð3:15Þ

Of course, there are many contours of zero phase, as seen in
Fig. 2; all asymptotic lines will share the same θ∞, but each
will have a different z∞. The different z∞ values will be
separated by even integers; the one chosen here is the one
lying in the original interval of interest ð−1; 0Þ.
We will give a more general discussion of the asymptotic

forms in the next section, where we consider a more general
ratio of gamma functions, and additional factors of poly-
gamma functions. Such additional factors will not affect the
leading terms in the phase, and hence will leave the angle
θ∞ unchanged; they will however affect the position of the
intercept z∞.
To combine the quadratic contour with the asymptotic

contour, we can replace the quadratic form in Eq. (3.5) with
a Padé approximation. We need a sufficient number of
coefficients to fix two angles (the tangents at the stationary
point and at infinity), two intercepts (with corresponding
complex parts set to zero), and the quadratic behavior of the
curve (again with vanishing imaginary part). This corre-
sponds to eight real degrees of freedom. While a ½2=1� Padé
does allow for four complex or eight real coefficients, we
can remove one real parameter by rescaling the curve
parameter t, which leaves us with too few coefficients to fix
in order to match the behaviors at both small and large t.
Instead we use a [3=2] Padé approximation. For conven-
ience, we write it in the following form,

zpðtÞ ¼

8>>><
>>>:

zs þ itþ t2ða2 þ ib2a3tÞ
1þ ib1tþ b2t2

; t > 0;

zs þ itþ t2ða�2 þ ib�2a
�
3tÞ

1þ ib�1tþ b�2t
2
; t < 0;

ð3:16Þ

which ensures the correct symmetry under reflection
through the real axis. Matching coefficients as t → 0, we
find that

a2 ¼ c2: ð3:17Þ
Defining

τE ¼ 1−eiθ∞ρ;

dE ¼ τ2E þ c2ðzs−z∞Þ; ð3:18Þ
and also matching the leading coefficient as t → ∞, we
find that

a3 ¼ −τE: ð3:19Þ
The ρ parameter corresponds to the magnitude of the
coefficient in the leading t → ∞ coefficient; in general,
it does not appear possible to use it to improve the contour
for practical purposes beyond the constraints described
below, and so we simply set it to 1 here and in all following
equations for the parameters in Eq. (3.16). Matching the
next-to-leading coefficient as t → ∞, we obtain,

b1 ¼
c2 þ b2ðzs−z∞Þ

τE
; ð3:20Þ

where b2 will be given below. Matching only throughOðt2Þ
at small t would leave one complex parameter completely
unfixed. We can choose it so that the integrand is real
through Oðt5Þ. The quartic order gives a linear equation
which can be solved for the real part of b2 in terms of its
imaginary part,

Re b2 ¼
1

Re dE−2ðRe τEÞ2
× ½−c22 þ Im b2Re τEðRe dE þ 2ðIm τEÞ2Þ=Im τE�;

ð3:21Þ
while the quintic order then gives a quadratic equation for
the imaginary part,

q2ðIm b2Þ2 þ q1Im b2 þ q0 ¼ 0: ð3:22Þ
Define

cj ¼
Fðjþ1Þ
1 ðzsÞ

ðjþ 1Þ!F00
1ðzsÞ

;

fE ¼ ðRe dEÞ2 þ 4ðIm τERe τEÞ2; ð3:23Þ
the coefficients in Eq. (3.20) are then

q0¼c42ðImτEÞ2RedEð1−ReτEÞ
þc2ð3c32−4c2c3þc4ÞðImτEÞ2RedEðRedE−4ðReτEÞ2Þ
−4c2ðImτEReτEÞ2ðc32−2c32ReτE
−ð3c32−4c2c3þc4ÞðReτEÞ2Þ;

q1¼2c22ImτEfE½ðReτE−2ðReτEÞ2þRedE�;
q2¼−RedEfE½ðImτEÞ2−ðReτEÞ2þRedE�: ð3:24Þ
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A reasonable heuristic is to take the smaller of two positive
solutions; to take the positive solution if one is negative;
and to take the solution of smaller magnitude if both are

negative. (If the solutions are complex, take the common
real part.)
In the example at hand, this curve is

−0.825618þ itþ ð−1.65358−ð7.03903þ 6.94838isigntÞjtjÞt2
1þ ð4.25685−1.28081isigntÞjtj þ ð10.32798þ 3.24601isigntÞt2 : ð3:25Þ

This contour is shown in Fig. 6, along with the quadratic
and exact contours. The shape of the integrand along this
contour is again very similar to that shown in Fig. 4 for the

quadratic contour. The differences are noticeable only on a
logarithmic scale, shown side by side in Fig. 7. In Fig. 8,
we show for comparison the integrand along the exact
contour of stationary phase running through the stationary
point, as computed using the differential equation. The
difference in shape is due to the different parametrization
of the curve (for the exact contour, we take the imaginary
part to simply be t). The principal improvement along
the exact contour is the complete absence of the imagi-
nary part.
We can of course construct higher-order curves, to serve

as closer approximations to the true stationary-phase
contour in the small-t region, if desired. For example, a
quartic contour would be given by

z4ðtÞ ¼ zs þ itþ c2t2 þ g4t4; ð3:26Þ

where

g4 ¼ −
Fð5ÞðzsÞ
120F00ðzsÞ

þ Fð4ÞðzsÞFð3ÞðzsÞ
36ðF00ðzsÞÞ2

−
1

72

�
Fð3ÞðzsÞ
F00ðzsÞ

�
3

:

ð3:27Þ

The formula for g4 is obtained by requiring that the
imaginary part of FðzðtÞÞ vanish to Oðt5Þ; in the
Euclidean region, it will then automatically be real
to Oðt6Þ.

FIG. 6. The quadratic (dot-dashed dark gray) and [3=2] Padé
(solid red) contours for the integrand F1ðz; sÞ of Eq. (2.2) with
s ¼ − 1

20
, shown against the exact contours of zero phase

(dotted blue).

(a) (b)

FIG. 7. The absolute values of the real (red) and imaginary (dashed blue) parts of the integrand F1ðz; sÞ of Eq. (2.2) for s ¼ − 1
20
on

(a) the quadratic contour of Eq. (3.7) (b) the Padé contour of Eq. (3.25).
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IV. MATCHING TO ASYMPTOTIC FORMS

We are interested in one-dimensional Mellin-Barnes
integrals that arise from Feynman integrals with massive
propagators. Labeling the integration variable of each
Mellin-Barnes integral by z, the integrands contain gamma
functions and their derivatives, with arguments of the form
n� z and n� 2z, where n is an integer (positive, negative,
or zero). In general, the integrand is a sum of terms, where
each term is a pure product of gamma functions, their
derivatives, and inverses of gamma functions. Let us focus
on each term separately, or equivalently restrict attention to
integrands of the form

ð−sÞ−z
Q

j∈numerΓðaj þ njzÞ
Q

j∈numerψ
ðdjÞðbj þmjzÞQ

j∈denomΓðaj þ njzÞ
:

ð4:1Þ
This makes it possible to write down general formulae for
the asymptotic behavior of the integrand, and the corre-
sponding parameters governing the contours of station-
ary phase.
The difference of numerator and denominator gamma

function arguments is independent of z,

d
dz

2
4X

numer
Γs

argument ðzÞ−
X
denom
Γs

argument ðzÞ
3
5 ¼ 0: ð4:2Þ

Denoting the coefficient of z in the argument to the jth
gamma function by nj, as in Eq. (4.1), we can rewrite this
identity as X

numer
Γs

nj−
X
denom
Γs

nj ¼ 0: ð4:3Þ

We can use this feature to derive a formula for the critical
parameter s0, as well as for the behavior of the integrand at

large z. Considering only the exponential factors in the
asymptotic form for the gamma function (3.8), we see that
the gamma function factors in the integrand (or a single
term if the integrand is a sum of terms) behave for large z
(away from the real axis) as

exp

�
−
� X

j∈numer
Γs

nj−
X
j∈denom

Γs

nj

�
z

�

× exp

�� X
j∈numer

Γs

nj−
X
j∈denom

Γs

nj

�
z ln z

�

× exp

�� X
j∈numer

Γs

nj ln jnjj−
X
j∈denom

Γs

nj ln jnjj
�
z

�

× exp

�� X
j∈numer

Γs

nj lnðsign nj−iδ sign Im zÞ

−
X
j∈denom

Γs

nj lnðsign nj−iδ sign Im zÞ
�
z

�
; ð4:4Þ

where we drop overall constants. Using the above identity
(4.3), this asymptotic form simplifies to

exp

�� X
j∈numer

Γs

nj ln jnjj−
X
j∈denom

Γs

nj ln jnjj
�
z

�

× exp

�� X
j∈numer

Γs jnj<0
jnjj−

X
j∈denom

Γs jnj<0
jnjj

�
iπzsign Im z

�
:

ð4:5Þ
The exponential part of the integrand’s behavior is not
modified by possible polygamma function factors, as these
have logarithmic or power-like asymptotic behavior. The
critical value of s, which determines in which direction
the contour must bend in order to ensure convergence as the
contour parameter t → �∞, is then given by

s0 ¼
Q

j∈numer
Γs
jnjjnjQ

j∈denom
Γs
jnjjnj

: ð4:6Þ

Assuming the argument s appears in the integrand as
ð−sÞ−z, for jsj < s0, the contour must bend left, towards
negative values of Re z, while for jsj > s0, it must bend
right, towards positive values of Re z. The integer offset in
the argument of the jth gamma function (that is, the integer
value obtained by setting z ¼ 0) in Eq. (4.1) is denoted by
aj. It will be convenient to define

N− ≡ X
j∈numer

Γs jnj<0
jnjj−

X
j∈denom

Γs jnj<0
jnjj; ð4:7Þ

Sþ ≡ X
j∈numer

Γs jnj>0
1−

X
j∈denom

Γs jnj>0
1; ð4:8Þ

FIG. 8. The absolute values of the real (red) and imaginary
(dashed blue) parts of the integrand F1ðz; sÞ of Eq. (2.2) for s ¼
− 1

20
on the exact contour of stationary phase.
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S− ≡ X
j∈numer

Γs jnj<0
1−

X
j∈denom

Γs jnj<0
1; ð4:9Þ

Aþ ≡ X
j∈numer

Γs jnj>0
aj−

X
j∈denom

Γs jnj>0
aj; ð4:10Þ

and

A− ≡ X
j∈numer

Γs jnj<0
aj−

X
j∈denom

Γs jnj<0
aj: ð4:11Þ

[We do not need Nþ, corresponding to nj > 0, thanks to
Eq. (4.3).] Denoting the number of derivatives of the jth
polygamma function ψ ðdÞðzÞ (always in the numerator) by

dj, with mj the coefficient of z in the argument let us also
define

DðψÞ
þ ≡ X

j∈ψsjmj>0

dj;

DðψÞ
− ≡ X

j∈ψsjmj<0

dj;

SðψÞ ≡ X
j∈ψs

1; ð4:12Þ

where the sums are not taken over the basic polygamma
function ψðzÞ but only over its derivatives ψ ðdÞðzÞ.
Using them, we can express the remaining square-root

factors in Eq. (3.8) in a compact form, so that the
asymptotic behavior of the integrand as a whole is

F ∼ const

�
s0
−s

�
z
eiπzN−sign Im zð−1ÞDðψÞ

þ þDðψÞ
− þSðψÞz−Sþ=2þAþ−D

ðψÞ
þ ð−zÞ−S−=2þA−−D

ðψÞ
−

¼ const

�
s0
−s

�
z
eiπzN−sign Im zð−1þ iδ sign Im zÞ−Sþ=2þAþþDðψÞ

− þSðψÞ ð−zÞ−Sþ=2−S−=2þAþþA−−D
ðψÞ
þ −DðψÞ

− ; ð4:13Þ

where we have rewritten za ¼ ½ð−1þ iδ sign Im zÞð−zÞ�a, and used the fact that DðψÞ
� and SðψÞ are integers, along with

ð−1Þn ¼ ð−1þ iδ sign Im zÞn for integer n.
The phase of this expression is

argF ¼
�
Im z ln

�
s0
−s

�
þ π Re zN−sign Im z−

π

2
ððSþ−2Aþ−2DðψÞ

− −2SðψÞÞ mod 4Þsign Im z

þ ð−Sþ=2−S−=2þ Aþ þ A−−D
ðψÞ
þ −DðψÞ

− Þ argð−zÞ
�
mod 2π; ð4:14Þ

generalizing Eq. (3.12). (Here, n mod m is understood to mean ðsignnÞðjnj mod mÞ, and the mod 2π is understood to
reduce the variable to the range ð−π; π�.)
Substituting the form in Eq. (3.13), expanding in t, and setting the coefficient of the OðtÞ term to zero, and that of the

Oðt0Þ term to ϕs allows us to obtain general formulae for θ∞ and z∞,

θ∞ ¼ atan

�
1

πN−
ln

�
s0
−s

��
; N− ≠ 0;

θ∞ ¼ sign ln

�
s0
−s

�
π

2
; N− ¼ 0;

z∞ ¼ ϕssign Im zs
πN−

þ ðSþ−2Aþ−2D
ðψÞ
− −2SðψÞÞ mod 4

2N−

−
1

N−π

�
ðAþ þ A−−Sþ=2−S−=2−D

ðψÞ
þ −DðψÞ

− Þ
�
θ∞−

π

2

�
mod 2π

�
; N− ≠ 0;

zðþ∞Þ
0 ¼ i

���� ϕs

lnðs0=ð−sÞÞ
þ π

2

ðSþ−2Aþ−2DðψÞ
− −2SðψÞÞ mod 4

lnðs0=ð−sÞÞ

−
1

lnðs0=ð−sÞÞ
�
ðAþ þ A−−Sþ=2−S−=2−D

ðψÞ
þ −DðψÞ

− Þ
�
θ∞−

π

2

�
mod 2π

�����; N− ¼ 0; ð4:15Þ

valid in the Euclidean region (for s ≠ −s0). Factors of the polygamma ψðzÞ (with no derivatives) will correct the large-t
behavior by terms of Oð1= ln tÞ, which are noticeable visually on contour plots, but have no practical importance in
computing the integral. In the generic case, ϕs ¼ 0 or π, but the formulas are valid more generally; we take sign Im 0 to be 1.
(We have implicitly assumed that θ∞ ∈ ½− π

2
; π
2
� in deriving these results.)

EFFICIENT EVALUATION OF MASSIVE MELLIN-BARNES … PHYSICAL REVIEW D 95, 076016 (2017)

076016-9



In these formulas, ϕs ¼ 0 if FðzsÞ ≥ 0, while ϕs ¼ π if
FðzsÞ < 0. For N− ≠ 0, the value for z∞ may be shifted
by an integer multiple of 2=N−. (A good heuristic is
to choose z∞ in the original interval of interest.) For
N− ¼ 0, the asymptotes are parallel to the real axis, and
so we cannot take z∞ to be real; we must replace z∞ by

zðþ∞Þ
0 ΘðtÞ−zðþ∞Þ

0 Θð−tÞ in Eq. (3.18), where ΘðtÞ is the
usual Heaviside step function. For this value of N−, we can

shift zðþ∞Þ
0 by a multiple of 2πi= lnðs0=ð−sÞÞ. [In some

cases, it may be appropriate to shift by half this amount. A

good heuristic here is to choose zðþ∞Þ
0 to lie in the interval

i½1=c2−π= lnðs0=ð−sÞÞ; 1=c2 þ π= lnðs0=ð−sÞÞ�, where c2
is the quadratic coefficient given in Eq. (3.6).]
These expressions for θ∞ and zðþ∞Þ

0 , along with that for
c2 given in Eq. (3.6), allow us to compute the coefficients of
the Padé approximation (3.16) in the Euclidean region via
Eqs. (3.17)–(3.24), (4.7)–(4.12), and (4.15) for a generic
one-dimensional Mellin-Barnes integrand arising from
Feynman diagrams.

V. OTHER INTEGRANDS

The integrands in which we are interested have poles at
most integer values; may have zeros or poles at half-integer
values, and may have additional zeros along the real axis.
The integrand considered in the previous section is generic,
but its properties are not universal: it has poles at every
integer value, and zeros at every positive half-integer value.
At the ends of each integer interval ðn; nþ 1Þwith n < 0, it
blows up with the same sign, so that each integer interval
contains an extremum. This is shown in Fig. 9, with the aid
of a function designed to compress the vertical scale,

sln
m
x≡ sign x lnð1þ jxjemÞ: ð5:1Þ

For purposes of drawing contours of stationary phase and
approximations thereto, it is not essential that the extremum

be a minimum, of course; if it is a local maximum, one can
convert it to a minimum by considering the negative of the
integrand.
What other classes of integrands should we consider? In

this section, we discuss a few less-generic but possible
forms of integrands, and discuss how the contours in the
previous section are modified.

A. Intervals without extrema

Not all integrands that arise in calculations of interest
share the nice feature of the one in Eq. (2.2), namely that
the integrand blows up with the same sign at both ends of
for integer (or half-integer) intervals of interest. For
example, consider the integrand obtained by multiplying
that of Eq. (2.2) by a polygamma function,

F2ðz; sÞ ¼ ð−sÞ−z Γ
3ð−zÞΓð1þ zÞψð−2zÞ

Γð−2zÞ : ð5:2Þ

If we are interested in deforming the contour passing
through Re z ¼ − 1

2
slightly to obtain a contour of stationary

phase, we see from Fig. 10 that this is not possible because
the integrand has no extremum in the interval ð−1; 0Þ.
Indeed, the lone stationary point on the real axis is replaced
by a complex-conjugate pair of stationary points. In
addition, the function necessarily has at least one zero in
the interval. These features require a substantial modifica-
tion of the contours discussed in the previous section, a
point to which we shall return in Sec. VII.
In the case of F2, however, we can simply shift the

contour to the interval ð−2;−1Þ. We pick up an additional
contribution from the residue at −1, so that

I2ðsÞ ¼
1

2πi

Z
c0þi∞

c0−i∞
dzF2ðz; sÞ

¼ ð−1þ γEÞ þ s
1

2πi

Z
c1þi∞

c1−i∞
dzF2ðz; sÞ; ð5:3Þ

FIG. 9. The behavior of the integrand F1ðz; sÞ in Eq. (2.2),
along the real axis. The plot displays sln20ðintegrandÞ, with
s ¼ − 1

20
.

FIG. 10. The behavior of the integrand F2ðz; sÞ of Eq. (5.2),
along the real axis. The plot displays sln20ðintegrandÞ, with
s ¼ − 1

20
.
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where c1 ¼ −3=2. We can apply the approach of the
previous section to the second integral, as its integrand
does have a stationary point on the real axis in the new
interval.
It can happen that there is no interval which has a local

extremum. As mentioned above, we will return to a
consideration of such integrands in Sec. VII.

B. Wrong-direction quadratic contour

As discussed in the previous section, we can use the
asymptotic expansion for the gamma function in order to
study the large-z behavior of the integrand. For the
integrand F1ðz; sÞ in Eq. (2.2), we found (3.10) that it
behaves like

const 4zð−sÞ−z ð−1þ iδ sign Im zÞzþ1=2ffiffiffiffiffiffi
−z

p : ð5:4Þ

The factor ð−1þ iδ sign Im zÞz is convergent as z → ∞
both above and below the real axis, independently of the
sign of the real part of z. The first two factors do however
care which direction the contour goes. For −4 < s < 0,
they require us to close the contour to the left; otherwise
these factors will blow up when Re z → −∞. Similarly, for
s < −4, they require us to close the contour to the right.
The quadratic contour (3.7), for s ¼ − 1

20
, has the desired

form, veering away from the imaginary axis to the left. This
is also true by construction, of course, for the ½3=2� Padé
contour (3.25). However, the plain quadratic contour does
not always have this property. Consider the following
integrand:

F3ðz; sÞ ¼ ð−sÞ−z Γ
3ð−zÞΓð1þ zÞψð−zÞ

Γð−2zÞ : ð5:5Þ

The various quadratic approximations along with the exact
contours of zero phase are shown in Fig. 11 for s ¼ −20. In
this case, the pure quadratic contour veers to the left,
whereas convergence requires the contour to veer to
the right.
In contrast, the form of the ½3=2� Padé contour (3.16)

requires no modification; it heads off in the correct
direction, thereby solving the problem with the simple
quadratic contour. This is one of the reasons the use of the
asymptotic contour is helpful, even though the contribu-
tions to the integral from the asymptotic region are
exponentially small. In this particular case, the quartic
contour of Eq. (3.26) would also head off towards the
correct side of the complex plane; but one can always find
examples where a given fixed-order contour heads off in the
wrong direction. All three contours are shown in Fig. 11.
(The Padé contour shown has its z∞ intercept shifted to the
interval ð−2;−1Þ, but this does not affect the overall
qualitative features compared to having it in the inter-
val ð−1; 0Þ.)

C. Vanishing curvature

The formula (3.6) for the coefficient of the quadratic
term in the contour assumes that the second derivative at the
local extremum does not vanish. While this is typically true,
one encounters examples where it is false. Such an example
is given by the following integrand:

F4ðz; sÞ ¼ ð−sÞ−z Γ
3ð−zÞΓð1þ zÞψ4ð1−zÞ

Γð−2zÞ : ð5:6Þ

In general, if the integrand blows up with the same sign at
both ends of a pole-free interval (ensuring that there is an
absolute extremum on the interval), and the second
derivative vanishes at a given local extremum, there are
two possibilities: either the third derivative also vanishes, or
it is nonvanishing. In the latter case, there is then another,
lower minimum (higher maximum), which is what we
should pick as the base point for the contour. If the third
derivative also vanishes, we must modify our approach. In
the above example, the integrand vanishes at the extremum
in the interval ð−1; 0Þ, which is in fact the likeliest way for
a single-term Mellin-Barnes integrand of the type we are
considering to have a vanishing second derivative. We
could again handle it by shifting to a different interval along
the negative real axis, where the extremum will be
quadratic. Evaluating it with a contour in the interval
ð−1; 0Þ is also possible, but requires the use of techniques
of the same sort considered in Sec. VII for integrands
without extrema on the real axis.

FIG. 11. The quadratic (dot-dashed dark gray), [3=2] Padé
(solid red), and quartic (dot double-dashed dark red) contours for
the integrand F3ðz; sÞ of Eq. (5.5) with s ¼ −20, shown against
the exact contours of zero phase (dotted blue).
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D. Flat asymptotes

In the examples considered above, N− ≠ 0. In contrast,

F5ðz; sÞ ¼ ð−sÞ−z Γ3ð−zÞΓð1þ zÞ
Γð−2zÞΓð1−zÞΓð2þ zÞ ð5:7Þ

has N− ¼ 0. As a result, the asymptotes of stationary-phase
contours will be parallel to the real axis. The formulas
derived in previous sections hold for this case, but one must
use the special forms for N− ¼ 0 in Eq. (4.15). The

quadratic and ½3=2� Padé contours for s ¼ − 1
20

are shown
in Fig. 12; and the behavior of the integrand along the
Padé contour is shown in Fig. 13(a). It has generic
behavior, in spite of the special case needed for the contour.
In Fig. 13(b), we show the behavior along the exact contour
of stationary phase, computed using the differential-
equation approach discussed in Sec. II; in the latter, the
imaginary part of the contour is again chosen to be t. The
absence of oscillations in the real part along the Padé
contour, together with the imaginary part being essentially
zero in both parts of the figure attest to the good quality of
approximation it furnishes.

E. Closed contours

The exact contour of stationary phase passing through a
given saddle point on the real axis may be closed: it may
end at a zero, or at another saddle point. (Lines of steepest
ascent can also run into poles.) The following integrand
provides an example:

F6ðz; sÞ ¼ ð−sÞ−z Γ4ð−zÞΓð1þ 2zÞ
Γ2ð−2zÞΓ2ð1þ zÞ : ð5:8Þ

For s ¼ − 1
8
, the integrand has a saddle point at

zs ¼ −0.408258: ð5:9Þ
For this integrand, saddle points come in pairs in each half-
interval ð−n−1=2;−nÞ, n ∈ Zþ, leading to a sequence of
closed contours for small z, as shown in Fig. 14(a).
Contours end on the rightmost of each pair, and begin at
the leftmost. As n grows, the elements of the pairs approach
each other, and eventually move off the real axis. At that
point, we do get a single stationary-phase contour enclosing
all remaining poles. This is illustrated for F6ðz;− 1

8
Þ in

Fig. 14(b) (for s ¼ − 1
20
, this only occurs for z ≫ 1012).

However, from a practical point of view, using the exact

FIG. 12. The quadratic (dot-dashed dark gray) and [3=2] Padé
(solid red) contours for the integrand F5ðz; sÞ of Eq. (5.7), with
s ¼ − 1

20
, shown along with the exact contours of stationary phase

(dotted blue).

(a) (b)

FIG. 13. The real (red) and imaginary (dashed blue) parts of the integrand F5ðz; sÞ of Eq. (5.7) for s ¼ − 1
20
along (a) the [3=2] Padé

contour (b) the exact contour.
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contour (or ensemble of contours) is pointless, as it would
amount to summing over residues for the bulk of the
contribution. One might as well compute the residues
analytically and sum over them directly. In contrast, the
approximate ½3=2� Padé contour interpolates between
the stationary-phase contour at the beginning, and the

asymptotic contour (which in this case is parallel to the
real axis). The Padé contour obtained using the forms
described in Secs. III and IV is shown in Fig. 15, and the
value of the integrand along this contour is shown in
Fig. 16. It necessarily has oscillations, but the overall fall-
off, and hence the expected convergence of integration,
is rapid.

VI. MINKOWSKI INTEGRALS

A. Below threshold

We now turn our attention to the evaluation of integrals
in the Minkowski region. In this region, the naive textbook
and MB contours yield integrals which are often only

(a) (b)

FIG. 14. Exact contours (dotted blue) of stationary phase for the integrand F6ðz; sÞ of Eq. (5.8), with s ¼ − 1
8
(a) at small jzj (b) at

larger jzj. The saddle point in the interval ð− 1
2
; 0Þ is also shown (orange dot).

FIG. 15. The [3=2] Padé (solid red) contour for the integrand
F6ðz; sÞ of Eq. (5.8) with s ¼ − 1

8
for s ¼ − 1

20
, shown against the

exact contours of zero phase for the integrand (dotted blue).

FIG. 16. The real (red) and imaginary (dashed blue) parts of the
integrand F6ðz; sÞ of Eq. (5.8) for s ¼ − 1

8
along the [3=2] Padé

approximation to the contour of zero phase.
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conditionally (but not absolutely) convergent, and hence do
not readily converge numerically. In some cases, special
numerical techniques can be brought to bear, but for most,
we need to find a different contour.
We start with the example of Eq. (2.1), but now for s > 0.

The integrand now has an imaginary part even for real z,
and correspondingly, the integral may also have an imagi-
nary part. The oscillations along the naive contour Re z ¼
− 1

2
are only slowly damped, as shown in Fig. 17 for s ¼

1þ iδ (with δ ¼ 10−10). This value is below the threshold
at s ¼ 4, but straightforward numerical integration already
fails to converge.
To find a better contour, we again seek a contour of

stationary phase. Unlike the Euclidean case, however, this
phase will not be zero; nor will the corresponding saddle
point sit on the real axis. We seek contours which pass from
infinity (with large negative imaginary part of z) through
the saddle point and back to infinity (with large positive
imaginary part of z). Even below threshold, we must add an
infinitesimal imaginary part to the parameter s in order to
specify a contour; we will take it to be positive. The
integrand of Eq. (2.2) has another feature which is generic,
but complicates the analysis: it vanishes for positive half-
integer values of z. Zeros of the integrand complicate the
analysis because lines of stationary phase (and hence
contours) can (and typically do) end on them; this would
force us to look for half-contours, combining them with
discontinuous derivatives at the zero to obtain full contours.
We will treat that case in Sec. VII.
Our first task is to find the saddle points, that is the points

where the derivative of the integrand vanishes. When using
MATHEMATICA to do this, it is best to seek minima of the
absolute value of the derivative, rather than roots of the
equations, as this approach is more stable. It is in any case
helpful to bound the search to a strip consisting of the
imaginary extension of the original integer interval contain-
ing the naive contour.

For Re z < 0, we find a single series of solutions,

z¼−0.78932−0.174532i; −1.78841−0.212806i;…

ð6:1Þ
For Re z > 0, we find two series of solutions, one above

the real axis, the other below:

z ¼ 0.313742−0.476771i; 0.482908þ 0.17074i;

1.25952−0.452846i; 1.47558þ 0.171388i;…

ð6:2Þ

(a) (b)

FIG. 17. The real (red) and imaginary (dashed blue) parts of the integrand F1ðz; sÞ of Eq. (2.2), for s ¼ 1þ iδ, along the MB contour
Re z ¼ − 1

2
. The parts are shown on a linear scale in (a), and their absolute values on a log scale in (b). The dotted (dark turquoise) curve

in (b) is a curve decreasing as t−1=2.

FIG. 18. The saddle points (large orange dots), poles (small red
dots), and zeros (blue circles) of the integrand of Eq. (2.2)
for s ¼ 1þ iδ.
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These solutions, along with the poles and zeros of the
integrand, are shown in Fig. 18. The doubling of solutions
for positive Re z is directly related to the presence of nearby
real zeros at positive half-integer values. These are sta-
tionary points which would require patching together two
contours of stationary phase which would meet at the
associated zero. The solutions for Re z < 0, in contrast,
are associated with a single contour running from infinity
in to the stationary point, and then back out to infinity.
Let us, therefore, set aside the solutions for Re z > 0, and
base a contour on the first solution in the first set,
zs ¼ −0.78932−0.174532i. The phase at this point is
eiϕs , with ϕs ¼ −2.29000.
Let us again begin by finding a linear approximation to

the contour of stationary phase, given by the tangent to the
contour at the saddle point. Writing

zðtÞ ¼ zs þ eiθsðxðtÞ þ iyðtÞÞ; ð6:3Þ
where xð0Þ ¼ yð0Þ ¼ 0, without loss of generality we can
again take x0ð0Þ ¼ 0 and y0ð0Þ ¼ 1. Because zs is a saddle
point, the expansion of the integrand F around t ¼ 0 has no
linear term,

F ¼ FðzsÞ−
1

2
F00ðzsÞe2iθs t2: ð6:4Þ

We require the integrand to be of stationary phase along this
contour,

−
1

2
Im

�
F00ðzsÞe2iθs

FðzsÞ
�
¼ 0: ð6:5Þ

We can solve for θs,

θs ¼ −
1

2
arg

�
F00ðzsÞ
FðzsÞ

�
: ð6:6Þ

Equation (6.5) also allows for solutions shifted by πn=2.
Shifting by π is harmless; it just amounts to exchanging
t ↔ −t in Eq. (6.3). To fix an orientation, we can adopt the
convention that θs should lie in the interval ½− π

2
; π
2
�. In order

to select between θs and θs þ π=2, we should pick the
direction in which the absolute value of the function
decreases in magnitude. (This is equivalent to requiring
that Re½e2iθsF00ðzsÞ=FðzsÞ� be negative.)
In the example at hand, this linear contour has the form

ztðtÞ ¼ −0.78932−0.174532i

þ ð0.504583þ 0.863363iÞt: ð6:7Þ
It is shown in Fig. 19. The real and imaginary parts of the
integrand along this contour, with the phase eiϕs at the saddle
point divided out, are shown in Fig. 20; although they still
oscillate, the oscillations are damped, and the integral can be
computed numerically. This contour is an example of the
kind of contour proposed by Freitas and Huang [46], though

their approach does not use the criterion used here to
determine θs. (In any case, the solution given here for the
tangent contour does not give a numerically stable integral
for all values of s or all integrands.)
As in the Euclidean case, we can improve the contour

further. It will be convenient to define an abbreviation,

Dn ≡ einθs
FðnÞðzsÞ
FðzsÞ

: ð6:8Þ

Let us examine the stationary-phase equation resulting
from expanding the integrand to one higher order,

FIG. 19. Contours of constant phase eiϕs (dotted blue) for the
integrand F1ðz; sÞ of Eq. (2.2) with s ¼ 1þ iδ. The saddle point
is denoted by the large orange dot. The linear (tangent) approxi-
mation to the contour of stationary phase is the dashed
(dark turquoise) line.

FIG. 20. The real (red) and imaginary (dashed blue) parts of the
integrand F1ðz; sÞ of Eq. (2.2) with s ¼ 1þ iδ, divided by the
phase at the saddle point, along the linear contour of Eq. (6.7).
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−
1

2
t2Im½D2�−

1

6
t3Re½D3�

þ 1

2
t3Re½D2�x00ð0Þ−

1

2
t3Im½D2�y00ð0Þ ¼ 0: ð6:9Þ

Using the solution to the lower-order equation (6.6), which
forcesD2 to be real, we can simplify this equation to obtain

x00ð0Þ ¼ 1

3
Re½D3�=D2: ð6:10Þ

so that

zqðtÞ ¼ zs þ eiθsðitþ c2t2Þ; ð6:11Þ
with c2 set to z2 ≡ x00ð0Þ=2. This generalizes Eq. (3.6) to
the Minkowski region. In the example at hand, this would
lead to the quadratic contour,

zqðtÞ ¼ ð−0.78932−0.174532iÞ
þ ð0.863363−0.504583iÞðit−1.09478t2Þ:

ð6:12Þ
Unlike the Euclidean case, this quadratic contour does not
automatically make the phase stationary through Oðt4Þ;
setting the imaginary part of that order to zero, we find

y00ð0Þ ¼ Im½D4�
4Re½D3�

−
Im½D3�
2D2

ð6:13Þ

and set c2 ¼ x00ð0Þ=2þ iy00ð0Þ=2. In the example at hand,
this leads to the quadratic contour,

zqðtÞ ¼ ð−0.78932−0.174532iÞ
þ ð0.863363−0.504583iÞ
× ðit−ð1.09478−0.026705iÞt2Þ; ð6:14Þ

which is very similar to the one given in Eq. (6.12). The
solution for y00ð0Þ depends on truncating the contour at
the quadratic order; otherwise, xð3Þð0Þ would also appear in
the equation.
For small t, both of these contours provide an excellent

approximation to the true contour of steepest descent, and
essentially eliminate oscillations in the integrand. They
suffer from a problem, however, illustrated in Fig. 21:
because the first is symmetric around a line inclined to the
real axis, and the second nearly so, at large negative t they
will cross the real axis, thus failing to include the
contributions of the remaining series of poles at larger
negative z. The numerical contributions of the correspond-
ing residues are small, but this truncation is uncontrolled:
no matter how many points we throw at the integration, we
can never obtain the correct answer.
In order to solve this problem, we need to modify

the behavior of the contour at larger t. One way of doing
this is to match to the asymptotic form contour for large z. In

this case, the two asymptotic regions, t → þ∞ and t → −∞
are no longer complex conjugates, and so we will have
two different angles, which we denote θþ∞ and θ−∞,
respectively.
To find these angles, we generalize the discussion of the

asymptotic form of the integrand in Sec. IV. The only
difference is in the ð−sÞ−z factor; the phase now comes
from the real part of z as well as the imaginary part. We find
an additional contribution to argF beyond that given in
Eq. (4.14), so that

argF ¼ Im z ln

���� s0−s
����þ π Re zðN−sign Im zþ sign Im sÞ

−
π

2
ððSþ−2AþÞ mod 4Þsign Im z

þ ½ð−Sþ=2−S−=2þ Aþ þ A−Þ argð−zÞ� mod 2π:

ð6:15Þ

Writing the large-z forms for the stationary-phase con-
tour as follows,

z et→þ∞z∞ þ ieiθþ∞ t; t > 0;

z et→−∞ z∞ þ ie−iθ−∞t; t < 0; ð6:16Þ

substituting into the asymptotic form for argF and requir-
ing the coefficient of t in the large-t expansion to vanish,
leads to the following formulas for θ�∞:

FIG. 21. The quadratic approximation (6.14) to the stationary-
phase contour (solid red) for the integrand of Eq. (2.1) with
s ¼ 1þ iδ. The exact contours of constant phase eiϕs are also
shown (dotted blue). The saddle point is indicated by a large
orange dot.
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θþ∞ ¼ atan

�
1

πðN−þ signImsÞ ln
��� s0
−s

����; N− ≠ −signIms;

θþ∞ ¼ sign ln
��� s0
−s

���π
2
; N− ¼−signIms;

θ−∞ ¼ atan

�
1

πðN−−signImsÞ ln
��� s0
−s

����; N− ≠ signIms;

θ−∞ ¼ sign ln
��� s0
−s

���π
2
; N− ¼ signIms:

ð6:17Þ

These expressions reduce to the Euclidean results
(4.15) so long as we take sign Im s to be 0 in the
latter region. To find z∞, we must again require that
the t0 term in the large-t expansion be equal to the
phase at the stationary point, ϕs ¼ argFðz0Þ. In the
generic case, when N− ≠ 0, we can do this simulta-
neously for the t → �∞ limits, thereby obtaining a
pair of equations and solving for the real and
imaginary parts independently,

Re z∞ ¼ þ 1

2N−
ðSþ−2Aþ−2D

ðψÞ
− −2SðψÞÞ mod 4

−
1

2πN−
½ðAþ þ A−−Sþ=2−S−=2−D

ðψÞ
þ −DðψÞ

− Þðθþ∞ þ θ−∞−πÞ mod 2π�;

Im z∞ ¼ ϕs

ln js0=sj
−

π sign Im s
2N− ln js0=sj

ðSþ−2Aþ−2D
ðψÞ
− −2SðψÞÞ mod 4

þ 1

2 ln js0=sj
½ðAþ þ A−−Sþ=2−S−=2−D

ðψÞ
þ −DðψÞ

− Þðθ−∞−θþ∞Þ mod 2π�

þ sign Im s
2N− ln js0=sj

½ðAþ þ A−−Sþ=2−S−=2−D
ðψÞ
þ −DðψÞ

− Þðθþ∞ þ θ−∞−πÞ mod 2π�: ð6:18Þ

In deriving these formulas, we have again implicitly used
the condition that θ�∞ ∈ ½− π

2
; π
2
�. As in the Euclidean case,

these values may be shifted in order to match the appro-
priate asymptote,

δz∞ ¼ n1−n2
N−

þ i
πðn1 þ n2Þ
ln js0=sj

þ i
πðn2−n1Þsign Im s

N− ln js0=sj
;

ð6:19Þ

where n1;2 are integers.
We postpone a discussion of the N− ¼ 0 case to

Sec. VI C.
The differing asymptotic forms require us to generalize

the [3=2] Padé form (3.16) to

zpðtÞ ¼ zs þ ieiθs tþ eiθs t2ðâ2 þ ib̂2â3tÞ
1þ ib̂1tþ b̂2t2

: ð6:20Þ

Matching to a quadratic contour at small t requires three
coefficients, and to a linear asymptotic contour at large t an
additional two coefficients (more precisely, one complex
coefficient and one phase). A [2=1] Padé approximation
does not have enough free coefficients to match both limits,
so a [3=2] Padé approximation is the simplest possible one.
(A similar result is true in the Euclidean region, though the
argument is more subtle.) However, a [3=2] Padé form has
one additional parameter, that we can use to fix the cubic
terms in the contour as well, so as to make theOðt5Þ (and in
principle theOðt6Þ) terms in the expansion of the integrand

have the phase of the stationary point as well. As we are not
truncating the contour at cubic order, however, the equation
for y00ð0Þ also involves xð3Þð0Þ, and additional equations also
involve higher derivatives. In order to simplify the structure
of the equations, it is convenient to perform a nonlinear
transformation to a new set of parameters fαi; βig via

as ¼ α3e−iθs−1;

dM ¼ α2ðzs−β1Þ þ eiθsa2s ;

â2 ¼ α2;

â3 ¼ as;

b̂1 ¼ id−1
M ðβ2ðzs−β1Þ þ iα2eiθsasÞ;

b̂2 ¼ −d−1
M eiθsðα22 þ iβ2asÞ; ð6:21Þ

In these equations, θs is given by Eq. (6.6); matching the
asymptotic behavior and taking θ�∞ fromEq. (6.17), we can
fix α3 up to an overall magnitude,

α3 ¼ ρ3ðeiθþ∞ΘðtÞ þ eiθ−∞Θð−tÞÞ; ð6:22Þ
as well as β1,

β1 ¼ z∞: ð6:23Þ
The improvements from adjusting ρ3 are marginal, and
trying to solve for it requires solving much higher-order
polynomial equations, so we again simply fix it to 1.
Requiring the integrand to be of stationary phase through
cubic order fixes the real part of α2,
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Re α2 ¼
ReD3

6D2

¼ Re c2: ð6:24Þ

(Recall that D2 is real by construction.) Requiring the
integrand to be of stationary phase through quartic order
fixes the imaginary part of α2 in terms of derivatives of the
integrand along with β2,

Im α2 ¼
ImD4

8ReD3

−
ImD3

4D2

þ 3D2

ReD3

Re β2: ð6:25Þ

Requiring stationarity through Oðt6Þ would give an addi-
tional pair of equations for the real and imaginary parts
of β2. However, these equations are of rather high order, and
do not always admit solutions. Furthermore, the solutions to
these equations may yield contours with loops. The best
approach to fixing β2 appears to be minimizing a weighted
sum of the square of the following deviation from statio-
narity at quintic order,

−
3D2

2

2ReD3

ðReβ2Þ2þ
�
D2ImD4

4ReD3

−
1

2
ImD3

�
Reβ2

−
1

3
ReD3Imβ2−

ImD3ImD4

32D2

þ 5ðImD4Þ2
384ReD3

þðImD3Þ2ReD3

96D2
2

þðReD3Þ3
72D2

2

−
ReD3ReD4

36D2

þ 1

120
ReD5

þD2Re

�
α32þ 2iα2β2asþ β22e

−iθsðzs−z∞Þ
a2s þα2e−iθsðzs−z∞Þ

�
; ð6:26Þ

the square of the relative phases of the denominator terms,

argð−ib̂2=b̂1Þ; ð6:27Þ
and the square of the relative phases of the numerator terms,

argð−iâ2=ðb̂2â3ÞÞ: ð6:28Þ
The minimization is over the real and imaginary parts of β2,
after substituting in Eqs. (6.22), (6.24), and (6.25). A good
heuristic weights the quintic significantly more than the
denominator’s relative phase, which in turn is weighted
more than the numerator’s relative phase. Because α3, which
depends on the sign of t, appears implicitly on the right-hand
side of Eq. (6.26) as well explicitly in the relative phases, all
parameters will likewise acquire a dependence on that sign.
The resulting [3=2] Padé contour for s ¼ 1þ iδ is shown

in Fig. 22. For negative imaginary parts of zðtÞ, the contour

FIG. 22. The [3=2] Padé approximation to the contour of
stationary phase eiϕs (solid red) for the integrand F1ðz; sÞ of
Eq. (2.2) with s ¼ 1þ iδ. The exact contours of this phase are
also shown (dotted blue). The saddle point is indicated by a large
orange dot.

(a) (b)

FIG. 23. The real (red) and imaginary (dashed blue) parts of the integrand F1ðz; sÞ of Eq. (2.2) for s ¼ 1þ iδ, after dividing out the
phase at the saddle point, along (a) the [3=2] Padé approximation to the contour of stationary phase passing through the saddle point
(b) the exact contour of stationary phase.
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is asymptotically parallel to the real axis. Accordingly, it
properly includes contributions from all poles, and repairs
the defect in the quadratic contour. On a linear scale, the
values of the real and imaginary parts of the integrand along
the Padé contour are quite similar to those along the
quadratic contour, because the values are very small in
regions where the contours differ. In Fig. 23(a), we show the
real and imaginary parts of the integrand along the Padé
contour, after dividing out by the phase eiϕs at the saddle
point. Figure 23(b) shows the same parts along the exact
contour of stationary phase; the parametrization of the exact

contour is different (for t > 0, the imaginary part of the
contour is chosen to be t, while for t < 0, the real part is
chosen to be t), leading to a somewhat different shape, but
the absence of oscillations in the real part, and the small
value of the imaginary part in both parts of the figure show
that the Padé contour is a very good approximation to the
exact one.

B. Above threshold

The approach described in the previous subsection also
works above threshold. The integral has a branch cut
starting at threshold, so here we need to give an infinitesi-
mal imaginary part to the parameter s in order to obtain the
integral’s value as well as for finding contours. We will
again take this imaginary part to be positive; taking it
negative would complex-conjugate the result and all the
contours we find as well. The Padé approximation contour
for s ¼ 5þ iδ is shown in Fig. 24, and the integrand along
it (with the phase at the saddle point divided out) is shown
in Fig. 25(a). As we can see, although the contour deviates
noticeably from the exact contour in between small and
very large negative values of t, the integrand does not
oscillate significantly, and hence this deviation will have
little effect on the convergence of the integration. We show
the integrand along the exact contour in Fig. 25(b), with the
imaginary part of the contour again taken to be t.

C. Parallel asymptotes

As we saw in Sec. V D, the case N− ¼ 0 requires special
treatment, because the asymptotes are parallel, and so one
must require the intercept for the asymptotic form to have an
imaginary part. Otherwise, the Padé contours are unexcep-
tional in the Euclidean region: they properly enclose all the
poles enclosed by the “textbook” contour selected by MB.
The behavior of the integrand along these contours is
likewise unexceptional. In the Minkowski region, the sit-
uation is different. As we can see from Eqs. (6.16) and

FIG. 24. The [3=2] Padé approximation to the contour of
stationary phase eiϕs (solid red) for the integrand F1ðz; sÞ of
Eq. (2.2) with s ¼ 5þ iδ. The exact contours of this phase are
also shown (dotted blue). The saddle point is indicated by a large
orange dot.

(a) (b)

FIG. 25. The real (red) and imaginary (dashed blue) parts of the integrand F1ðz; sÞ of Eq. (2.2) for s ¼ 5þ iδ, with the phase at the
saddle point divided out, along (a) the Padé approximation to the contour of stationary phase passing through the saddle point (b) the
exact contour of stationary phase.
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(6.17), the asymptotes for t → �∞ are parallel to each other,
but not to the real axis. This means that a single contour
cannot enclose all poles (in general, each contour will
enclose only a single pole). An example, the integrand of
Eq. (5.7) with s ¼ 1þ iδ, is shown in Fig. 26.
As in the case of closed contours considered in Sec. V E,

from a practical point of view it doesn’t make sense to use
the ensemble of exact contours. (One would again be better
off computing the residues analytically and summing over
them.) The approximate Padé contour can instead be chosen
to have one of the asymptotes parallel to the real axis,
thereby enclosing all poles, at the price of small oscillations
in the tail of the integrand along the contour. This can be
done by choosing θ−∞ to be π=2 (for sign Im s > 0), and
then using a modified expression for z∞,

Re z∞ ¼ ϕs

π
−
ln js0=sjIm z∞

π

þ 1

2
ðSþ−2Aþ−2DðψÞ

− −2SðψÞÞ mod 4

−
1

2π
½ðAþ þ A−−Sþ=2−S−=2−D

ðψÞ
þ −DðψÞ

− Þ
× ð2θþ∞−πÞ mod 2π�; ð6:29Þ

where Im z∞ can be chosen with some freedom; a good
heuristic is again to take it to be of order 1=Re c2.

VII. INTEGRANDS WITHOUT EXTREMA

As mentioned in Sec. V, an integrand may have no real
interval inwhich the integrand has an extremum. In this case,
however, there is always a zero of the integrand in any given
interval between poles. Let us consider the simplest (and
most generic) case of this type, where the integrand has a
simple zero independent of the value of the parameter s. An
example of such an integral is

I7ðsÞ ¼
1

2πi

Z
c0þi∞

c0−i∞
dzF7ðz; sÞ; ð7:1Þ

where

F7ðz; sÞ ¼ ð−sÞ−z Γ
3ð−zÞΓð3þ zÞψ ð2ÞðzÞ

Γð−2zÞ ; ð7:2Þ

which is just F1ðz; sÞ of Eq. (2.2), multiplied by additional
polygamma and polynomial factors.
Consider first the Euclidean region; the integrand is real

for real z, but has no finite extrema as displayed in Fig. 27.
Instead, the integrand has complex stationary points; they
come in complex-conjugate pairs. Moreover, while there
are still contours of stationary phase, the integrand is no
longer necessarily real on them. The integral is nonethe-
less real.
How is this possible? In the generic case discussed in

previous sections, a contour of stationary phase comes in
from infinity, passing through a stationary point, and heads
back out to infinity. When the function has a zero, however,
contours of stationary phase can end there. In the case at
hand, the full contour of integration will actually consist of
two separate contours of integration, complex conjugates
joined at the zero of the integrand. The phase is stationary
on each separate contour, but different; indeed, the phase of
the integrand on the contour in the lower-half plane is the

FIG. 26. The [3=2] Padé approximation to the contour of
stationary phase eiϕs (solid red) for the integrand F5ðz; sÞ of
Eq. (5.7) with s ¼ 1þ iδ. The exact contours of this phase are
also shown (dotted blue). The saddle point is indicated by a large
orange dot.

FIG. 27. The behavior of the integrand F7ðz; sÞ of Eq. (7.2),
along the real axis. The plot displays sln20ðintegrandÞ, with
s ¼ − 1

20
.

GLUZA, JELIŃSKI, and KOSOWER PHYSICAL REVIEW D 95, 076016 (2017)

076016-20



complex conjugate of the phase on the contour in the upper-
half plane.
One could choose to deform the textbook contour to one

passing through the two stationary points using a quadratic
approximation, without worrying where exactly it crosses
the real axis. However, this will still leave substantial
oscillations in the integrand near the real axis. To do better,
we seek a contour that passes through the stationary points
and also through the zero of the integrand on the real axis.
We join two half-contours in each half-plane, taking the
half-contour in the lower half-plane to be the complex
conjugate of that in the upper half-plane. Each half-contour
will end at the zero. To best approximate the (half-)contour
of stationary phase, we match the tangent at the stationary
point, and also the initial direction at the integrand’s zero.
This requires six real parameters: the real and imaginary
parts of the zero location and the stationary point, and the
two angles giving the directions at those points. This is
exactly the number of parameters available in a quadratic
curve,

zhðtÞ ¼ z0 þ eiθ0ðia1tþ a2t2Þ; ð7:3Þ
where a1 is real but a2 is complex. In this case, we do not
have enough parameters to match the curvature at the
stationary point, unlike contours considered in previous
sections. We give below the formulas for a half-contour in
the upper half-plane; a similar set with appropriate replace-
ments (θþ∞ → θ−∞, etc.) gives the half-contour in the
lower half-plane.
To derive formulas for the parameters in Eq. (7.3),

expand the imaginary part of the integrand after dividing
out the phase at the stationary point, obtaining

a1Im

�ðiF0ðz0ÞÞ
FðzsÞ

eiθ0
�
tþOðt2Þ: ð7:4Þ

Let us restrict attention here to integrands with simple zeros,
so thatF0ðz0Þ does not vanish. (The generalization to higher-
order zeros is reasonably straightforward.) Requiring the
coefficient of t to vanish determines the initial direction θ0
along the half-contour,

θ0 ¼ argð−iFðzsÞ=F0ðz0ÞÞ: ð7:5Þ
The tangent angle θs at the stationary point is given by
Eq. (6.6) (up to a possible rotation by π=2); we can solve for
a1 and a2 in terms of the two angles and the locations of the
zero and the stationary point,

a1 ¼
2Re½e−iθsðzs−z0Þ�

sinðθs−θ0Þ
;

a2 ¼ e−iθ0ðzs−z0Þ−ia1: ð7:6Þ
To match the asymptotic behavior as well, and thereby

make the contour more robust, we again turn to a [3=2]

Padé approximation, which it is here convenient to write in
the form

zhðtÞ ¼ z0 þ ðzs−z0Þtþ tðt−1Þ

×
°a2 þ °b2 °a3ðt−1Þ

1þ °b1ðt−1Þ þ °b2tðt−1Þ
: ð7:7Þ

In this form, the parameter t has been rescaled to put the
saddle point at t ¼ 1. As in Sec. VI, it is convenient to make
a nonlinear transformation to a new set of (real) parameters
fρ2;3;bg,

°a2 ¼ iρ2eiθs−ðzs−z0Þ;
°a3 ¼ iρ3eiθþ∞−ðzs−z0Þ;
dZ ¼ °a23−ðiρ3eiθþ∞ þ °z∞−zsÞðiρbeiθ0−ðzs−z0ÞÞ;
°b1 ¼ 1−d−1

Z ð °a23 þ ð °z∞−z0Þ°a2Þ;
°b2 ¼ d−1

Z ðiρ3eiθþ∞ð °a2 þ iρbeiθ0−ðzs−z0ÞÞ
þ ðzs−z0Þ2 þ ρ2ρbeiðθsþθ0ÞÞ: ð7:8Þ

In these equations, θs is given by Eq. (6.6); θ0 by Eq. (7.5);
θþ∞ by Eq. (6.17); and z∞ by

z∞ ¼ ϕs signImzs
πN−

þðSþ−2Aþ−2D
ðψÞ
− −2SðψÞÞmod 4

2ðN−þ signImsÞ

−
1

ðN−þ signImsÞπ
�
ðAþ þA−−Sþ=2−S−=2−D

ðψÞ
þ

−DðψÞ
− Þ

�
θ∞−

π

2

�
mod 2π

�
; N− ≠ −signIms:

ð7:9Þ

As in the generic situation, this value may be shifted in
order to match onto the desired asymptotic contour, by
multiples of 2=ðN− þ sign Im sÞ. (In the case when
N− ¼ −sign Im s, z∞ must be chosen imaginary, and we
can use the last equation in Eq. (4.15), along with possible
shifts given in the text below that equation.) The forms in
Eq. (7.8) then give a contour that automatically satisfies the
correct asymptotic form; that has the correct initial direc-
tion at z0; and that has the correct tangent at zs.
As in the generic case, we fix ρ3 to 1. We can fix ρ2 and

ρb by minimizing the square of the following deviation
from stationarity of the cubic term in the expansion of the
integrand around the stationary point,

þ Re

�ðρ2eiθs−ρ3eiθþ∞Þ2
iρ3eiθþ∞ þ °z∞−zs

�
þ Re

�
d−1
Z

ð°a23 þ °a2ð °z∞−z0ÞÞ2
iρ3eiθþ∞ þ °z∞−zs

�

−
ReD3

6D2

; ð7:10Þ
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along with the square of the relative phases of the
denominator terms,

argð °b2= °b1Þ; ð7:11Þ

and the square of the relative phases of the numerator terms,

argð°a2=ð °b2 °a3ÞÞ: ð7:12Þ

The minimization is after substituting the expressions in
Eq. (7.8). For certain integrands or values of the parameter
s, this approach appears to avoid looping contours that
would otherwise arise. A good heuristic weights the cubic
(7.10) significantly more than the denominator’s relative
phase, which in turn is weighted more than the numerator’s
relative phase. As with the reparametrizations and the
fixing of θs, the minimization should be carried out
independently for the upper- and lower-half planes.
The joined quadratic and joined [3=2] Padé contours for

F7ðz; s ¼ − 1
20
Þ are shown in Fig. 28, while the integrand

along the joint Padé contour is shown in Fig. 29, and
contrasted with the behavior along the “textbook” MB

contour Re z ¼ − 1
2
. The phase at the upper saddle point

is divided out for t > 0, and that at the lower saddle point
for t < 0.
The exact contours are shown in Fig. 30. The contours

passing through the saddle points at −0.623407�
0.109501i illustrate another potential complication with
exact contours: in addition to ending at zeros on the real
axis, they can end at zeros off in the complex plane
without ever making it out to infinity. Their use would
then necessitate finding the zeros and gluing on addi-
tional contours starting there. In contrast, the Padé
contour smoothly interpolates to a curve reaching infinity,
at the price of very small oscillations in the tail of the
integrand. These oscillations do not disturb our ability to
use the contour to calculate the integral precisely and
efficiently.
The same approach works in the Minkowski region as

well; here of course, the two half-contours will no longer be
complex conjugates. The [3=2] Padé contours for s ¼
1þ iδ and s ¼ 5þ iδ are shown in Fig. 31, while the
behavior of the integrands along these contours are shown
in Fig. 32. They are contrasted with the behavior along the
“textbook” MB contour Re z ¼ − 1

2
. The integrand along the

FIG. 28. The joined quadratic (dot-dashed dark gray) and
joined [3=2] Padé approximations (solid red) to the contour of
stationary phase for the integrand F7ðz; sÞ of Eq. (7.2) with
s ¼ − 1

20
. The exact contours of constant phase are also shown

(dotted blue). The saddle points are indicated by large
orange dots.

(a) (b)

FIG. 29. The real (red) and imaginary (dashed blue) parts of the integrand F7ðz; sÞ of Eq. (7.2) for s ¼ − 1
20

(a) along the simple
contour Re z ¼ − 1

2
(b) along the joined Padé approximations, to the contour of stationary phase, with the phases at the saddle points

divided out.
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latter contour is again not absolutely convergent, and hence
not numerically stable. A different contour is again required
for a convergent numerical integration, and the Padé
contour provides an efficient one. (Note that I7 has an
imaginary part already starting at s ¼ 0, and not just
at s ¼ 4.)

VIII. EVALUATING INTEGRALS

In the previous sections, we have described simple
approximations to the exact contours of stationary phase
in both the Euclidean and Minkowski regions. We turn now
to a brief discussion of how to evaluate the integrals along
these contours, postponing a more complete investigation
to future work.
The simplest approach to evaluating the integral

using any of the contours is with an adaptive numerical
routine, such as gsl_integration_qagiu and gsl_
integration_qagil from the GNU Scientific Library
(GSL) [51].
Another approach to evaluating the integral along the

[3=2] Padé contour takes advantage of the exponential
decay in the integrand from the saddle point out to
t → �∞, and uses Gaussian quadrature with a finite
number of evaluation points based on orthogonal poly-
nomials for an appropriate weight function. At small t, the
integrand behaves like e−ct

2

, while at large t, it behaves like
e−c

0t, so the classical weight functions are not optimal for
us. Instead, motivated by the observation that

Γð−zÞΓð1þ zÞ ¼ −
π

sin πz
; ð8:1Þ

so that

Γ
�
1

2
−iy

�
Γ
�
1

2
þ iy

�
¼ π sech πy; ð8:2Þ

we take sechu as our weight function. It has the required
behavior at small and large u.

FIG. 30. Exact contours (solid blue) of stationary phase for the
integrand F7ðz; sÞ of Eq. (7.2) with s ¼ − 1

20
. The saddle points

are indicated by large orange dots.

(a) (b)

FIG. 31. The joined [3=2] Padé approximations (solid red) to the contour of stationary phase for the integrand F7ðz; sÞ of Eq. (7.2)
with (a) s ¼ 1þ iδ (b) s ¼ 5þ iδ. The exact contours of constant phase are also shown (dotted blue). The saddle points are indicated by
large orange dots.
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Because the coefficients c and c0 governing small-t
and large-t behavior are not the same, in principle
we ought to interpolate between different linear argu-
ments for small and large t. We could do this, for
example, via

fiðtÞ ¼ f∞tþ
	 ffiffiffiffiffiffiffi

2f2
p

−f∞

 t
1þ b3t

; ð8:3Þ

where f∞ and f2 will be extracted from our integrand
below, and b3 is an additional parameter. (There is no

TABLE I. Number of evaluations required to obtain a relative error of 10−8 for a variety of integrals, using several integration methods.
A missing entry indicates that the integral is not convergent numerically using the given method.

Integration contour and method

MB Tangent Padé Padé

Integral Value GSL GSL GSL Gauss-Legendre

I1ð− 1
20
Þ 0.04958745585 195 195 75 16

I1ð−20Þ 5.639661654 135 135 105 19
I1ð1þ iδÞ −1.2091995762 — 930 1080 80
I1ð5þ iδÞ 4.30408941−14.04962946i — — 660 160
I7ð− 1

20
Þ −1.954168464 225 165 195 26

I7ð−20Þ −35.72650854 135 165 165 19
I7ð1þ iδÞ 2.831441537þ 17.99925456i — 1140 780 159
I7ð5þ iδÞ −27.40504335þ 37.26381174i — — 720 200

(a) (b)

(c) (d)

FIG. 32. The absolute values of the real (red) and imaginary (dashed blue) parts of the integrand of Eq. (7.2), shown on a log scale, for
(a) s ¼ 1þ iδ along the simple contour Re z ¼ − 1

2
(b) s ¼ 1þ iδ along the joined Padé approximations to the contour of stationary

phase (c) s ¼ 5þ iδ along the simple contour Re z ¼ − 1
2
(d) s ¼ 5þ iδ along the joined Padé approximations to the contour of

stationary phase. The phases at the saddle points are divided out before taking real and imaginary parts. In (a) and (c), the dotted (dark
turquoise) curve shows a curve decreasing as t−1=2.

GLUZA, JELIŃSKI, and KOSOWER PHYSICAL REVIEW D 95, 076016 (2017)

076016-24



need to have an analytic form for the inverse function,
so other forms could be used.)
The required coefficients f∞ and f2 describe the large-

and small-t behavior of the integrand FðzðtÞÞ, respectively,

f2 ¼ −
F00ðzsÞ
2FðzsÞ

;

f∞ ¼
���� ln��� s0−s

��� sin θ∞ þ ðN− þ sign Im sÞπ cos θ∞
����: ð8:4Þ

(Recall that with our conventions, zð0Þ is the saddle point
zs.) However, it turns out (surprisingly) that the integration
is ultimately much more efficient if we do not interpolate,
but rather take

sechf∞t=4; ð8:5Þ
as our weight function.
We can next perform two changes of variables: first, the

change of variables u ¼ atanhv takes us from integrating
over ½0;∞Þ to integrating over the interval [0, 1]. The new
weight function (including the Jacobian) is ð1−v2Þ−1=2,
which would suggest the use of Gauss-Chebyshev quad-
rature, were it not for the region of integration failing to
match the required ½−1; 1�. Instead, we can make another
change of variables, v ¼ cosω, to arrive at the integral,

In ¼
4

f∞

Z
π=2

0

dωFðð4atanh cosωÞ=f∞Þ

× z0pð4ðatanh cosωÞ=f∞Þ; ð8:6Þ
in the upper half-plane (and a similar integral with cosω
replaced by − cosω for the lower half-plane) for the
original Mellin-Barnes integrand FðzÞ. The integral In
can be computed efficiently via Gauss-Legendre quadra-
ture, with an n-point evaluation at the roots of the nth
Legendre polynomial PnðxÞ, and the weight for the jth root
[52] given by

2

ð1−x2jÞ½P0
nðxjÞ�2

: ð8:7Þ

Other techniques, such as recursive subdivision, may also
be appropriate, but we have not explored them.
Table I gives examples of evaluating the Mellin-Barnes

integrals I1 (2.1) and I7 (7.1) using both the contour chosen
by MB, as well as the tangent and Padé contours, all using
the GSL routines mentioned earlier, as well as an evaluation
using the Padé contour and the Gauss-Legendre approach.
In the Euclidean region, the Padé contour provides a more

efficient evaluation, especially within the Gauss-Legendre
approach. In the Minkowski region, it is again more
efficient where other contours can be used, and provides
a reliable means of evaluating the integrals even when
linear contours fail to provide a numerically convergent
result.

IX. CONCLUSIONS

In this paper, we have reexamined the numerical evalu-
ation of Mellin-Barnes integrals. Contours chosen by the
MB or MBresolve packages are not always suitable for
numerical evaluation. Using contours of stationary phase,
or approximations thereto, resolves problems that arise in
numerical evaluation. We discussed the computation of
exact contours of stationary descent for one-dimensional
integrals, as well as several approximations which are
likely of greater practical importance. The [3=2] Padé
approximations (3.16), (6.20), and (7.7) to contours of
stationary phase are likely to be the most robust and widely
useful of these approximations. A remapping and Gauss-
Legendre quadrature appears to be an efficient means of
evaluating integrals using the Padé contour.
We hope to extend these ideas to the more practically

important multidimensional case in future work. Beyond
one complex dimension, the contours of steepest descent
are replaced by ‘surfaces of steepest descent’. The statio-
narity of phase itself is not sufficient to fix these surfaces,
which will require generalizing the derivations in this
paper. Furthermore, the integrands of interest are in general
not separable into functions of the different complex
variables, and so will have singularities away from the
real axes. The Padé approximations can be generalized, but
they may not automatically avoid these new singularities,
and must be constrained to do so. The extent to which one
can or must match to asymptotic forms also remains to be
determined. We believe that these issues can be addressed,
but further development beyond that outlined in this paper
is required.
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