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Nonperturbative methods have been well developed for QED with the so-called t-electric potential steps.
In this case a calculation technique is based on the existence of specific exact solutions (in and out
solutions) of the Dirac equation. However, there are only few cases when such solutions are known. Here,
we demonstrate that for t-electric potential steps slowly varying with time there exist physically reasonable
approximations that maintain the nonperturbative character of QED calculations even in the absence of the
exact solutions. Defining the slowly varying regime in general terms, we can observe a universal character
of vacuum effects caused by a strong electric field. In the present article, we find universal approximate
representations for the total density of created pairs and vacuum mean values of the current density and
energy-momentum tensor that hold true for arbitrary t-electric potential steps slowly varying with time.
These representations do not require knowledge of the corresponding solutions of the Dirac equation; they
have a form of simple functionals of a given slowly varying electric field. We establish relations of these
representations with leading terms of the derivative expansion approximation. These results allow one to
formulate some semiclassical approximations that are not restricted by the smallness of differential mean
numbers of created pairs.
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I. INTRODUCTION

It is well known that in QED with strong electriclike
external fields there exists so-called vacuum instability
due to real particle creation caused by the external field.
A number of publications, reviews, and books have been
devoted to the effect of particle creation itself and to
developing different nonperturbative calculation methods
in theories with unstable vacuum, both analytical (semi-
classical and based on exact solutions) and numerical; see
Refs. [1–3] for a review. Most semiclassical and numerical
methods are applied to Schwinger’s effective action and
related formulas [4] (see Ref. [5] for a review), to calculate
the probability for a vacuum to remain a vacuum. They are
well grounded for not very strong electric fields, when the
probability for pair creation is exponentially small. There
exists the derivative expansion approximation method
which, being applied to Schwinger’s effective action,
allows one to treat effectively slowly varying strong fields

]6,7 ]. However, it should be noted that the probability for a
vacuum to remain a vacuum contains only a little infor-
mation about the time evolution of vacuum effects caused
by a strong electric field. It can be seen that in some
situations in astrophysics and condensed matter the time

evolution of vacuum effects caused by strong electric fields
is of significant interest; e.g., see Refs. [2,8–11]. In the case
of strong external fields, nonperturbative methods have
been well developed for QED with two specific configu-
rations of external backgrounds, namely, for the so-called
t-electric potential steps [3,12,13] and x-electric potential
steps [14]. In both cases the calculation technique is based
on the existence of specific exact solutions (in and out
solutions) of the Dirac equation. Under this condition, all
the probability amplitudes and mean values in the back-
grounds under consideration have some nonperturbative
integral representations via these in and out solutions. At
present, only a few types of t- and x-electric potential
steps are known when such solutions are known; we call
these cases exactly solvable cases. In QED with t-electric
potential steps, exactly solvable cases that have real
physical importance are the Sauter-like electric field; the
so-called T-constant electric field (a uniform electric field
which acts during a finite time interval T, including the
constant electric field when T → ∞); and exponentially
growing and decaying electric fields. Using the correspond-
ing exact solutions, different characteristics of quantum
processes related to the particle creation were calculated in
detail; see [6,8,15–22], respectively. And here we come to
the question of whether there exist physically reasonable
approximations in QED with the above described strong
backgrounds that maintain nonperturbative calculations
and allow one to go beyond dealing with the existence
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of the exact solutions. In this article, we demonstrate
that such a possibility exists in the case of QED with
the t-electric potential steps slowly varying with time, and a
similar possibility in the case of QED with x-electric
potential steps will be presented in our next publication.
In Sec. II, we give a definition of slowly varying

t-electric potential steps and revised vacuum instability
due to such backgrounds for the existing exactly solvable
cases. In Sec. III, we stress universal features of the vacuum
instability in these examples. We derive universal approxi-
mate representations for the total density of created pairs
and vacuum mean values of current density and energy-
momentum tensor (EMT) components that hold true for
arbitrary t-electric potential steps slowly varying with time.
These representations do not require knowledge of the
corresponding solutions of the Dirac equation; they have a
form of simple functionals of a given slowly varying
electric field. We establish relations of these representa-
tions with leading terms of derivative expansion approxi-
mation. These results allow one to formulate some
semiclassical approximations that are not restricted by
the smallness of differential mean numbers of created
pairs. In the Appendix, we briefly describe a nonpertur-
bative formulation of QED with t-electric potential steps.

II. SLOWLY VARYING t-ELECTRIC POTENTIAL
STEPS, EXACTLY SOLVABLE CASES

We call EðtÞ a slowly varying electric field on a time
interval Δt if the following condition holds true:

����
_EðtÞΔt
EðtÞ

���� ≪ 1; Δt=Δtmst ≫ 1; ð2:1Þ

where EðtÞ and _EðtÞ are mean values of EðtÞ and _EðtÞ on
the time interval Δt, respectively, and Δt is significantly
larger than the time scale Δtmst , which is

Δtmst ¼ Δtst max f1; m2=eEðtÞg; Δtst ¼ ½eEðtÞ�−1=2:
ð2:2Þ

Note that the time scale Δtmst appears in Eq. (2.1) as the
time scale when the perturbation theory with respect to the
electric field breaks down and the Schwinger (nonpertur-
bative) mechanism is primarily responsible for the pair
creation. In what follows, we show that this condition is
sufficient. We are primarily interested in strong electric
fields, m2=eEðtÞ ≲ 1. In this case, the second inequality in
Eq. (2.1) is simplified to the form Δt=Δtst ≫ 1, in which
the mass m is absent. In such cases, the potential of the
corresponding electric steps hardly differs from the poten-
tial of a constant electric field,

UðtÞ ¼ −eAxðtÞ ≈ UcðtÞ ¼ eEðtÞtþ U0; ð2:3Þ

on the time interval Δt, where U0 is a given constant. This
behavior is inherent for the fields of known exact solvable
cases with appropriate parameters, namely, the peak
field, the T-constant electric field, and the Sauter-like
electric field.
The complete sets of solutions of the Dirac equation,

given by Eq. (A4), are determined by the functions ζφn
ðtÞ

and ζφnðtÞ, which play the role of in and out solutions of
positive (ζ ¼ þ) and negative (ζ ¼ þ) energy as t → �∞,
respectively (cf. the Appendix). We assume that the electric
field is directed along the axis x. We choose that before
time tin and after time tout these solutions are states with a
definite momentum p ¼ ðpx;p⊥Þ (where the index ⊥
stands for components that are perpendicular to the electric
field) and spin polarization σ. Then the complete set of
quantum numbers is n ¼ ðp; σÞ. The functions ζφn

ðtÞ and
ζφnðtÞ are known explicitly for the following electric fields.

(i) The Sauter-like (or adiabatic or pulse) electric field
and its vector potential have the form

EðtÞ ¼ E0cosh−2ðt=TSÞ;
AxðtÞ ¼ −TSE0 tanh ðt=TSÞ; ð2:4Þ

where the parameter TS > 0 sets the time scale.
The functions ζφn

ðtÞ and ζφnðtÞ and the number of
created pairsNcr

n are given, for example, in Ref. [16].
We have the case of a slowly varying field if

ffiffiffiffiffiffiffiffi
eE0

p
TS ≫ max ð1; m=

ffiffiffiffiffiffiffiffi
eE0

p
Þ: ð2:5Þ

In this case, the leading contribution to the total
number of pairs created from vacuum is formed in
the range of jpxj<eE0TS and small π⊥ ≪ eE0TS. In
this range the differential mean numbers of created
pairs have approximately the following form,

Ncr
n ≈ Nas

n

¼ expf−πTS½p0ðþ∞Þ þ p0ð−∞Þ − 2eE0TS�g;
ð2:6Þ

where p0ð�∞Þ are the energies given by Eq. (A3) in
the Appendix. This distribution has a maximum at
px ¼ 0. This maximum coincides with the differ-
ential number of created pairs in a constant electric
field [1,17],

Ncr
n ≈ N0

n ¼ e−πλ0 ; λ0 ¼
π2⊥
eE0

; π⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

q
:

ð2:7Þ
(ii) The so-called T-constant electric field does not

change within the time interval T and is zero outside
of it,
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EðtÞ ¼
8<
:

0; t∈ I

E0; t∈ II

0; t∈ III

⇒ AxðtÞ ¼
8<
:
−E0tin; t∈ I

−E0t; t∈ II

−E0tout; t∈ III

;

ð2:8Þ

where I denotes the in region t ∈ ð−∞; tin�; II is
the intermediate region where the electric field
is nonzero t ∈ ðtin; toutÞ; III is the out region
t ∈ ½tout;þ∞Þ; and tout, tin are constants, tout −
tin ¼ T. We choose tout ¼ −tin ¼ T=2. The func-
tions −φnðtÞ and þφnðtÞ and the distribution Ncr

n are
found in Ref. [16]. The T-constant field can be
considered as slowly varying if

ffiffiffiffiffiffiffiffi
eE0

p
T ≫ max ð1; m2=eE0Þ: ð2:9Þ

In this case, the leading contribution to the total
number of pairs created is formed in the range of

jpxj < eE0T=2 and small π⊥ ≪ eE0T=2 and has a
form (2.7).

(iii) A peak electric field EðtÞ is composed of two parts.
One of them is increasing exponentially on the time
interval I ¼ ð−∞; 0� and reaches its maximal magni-
tudeE0 > 0 at the endof the interval t ¼ 0.Thesecond
part decreases exponentially on the time interval
II ¼ ð0;þ∞Þ, having at t ¼ 0 the same magnitude
E0. The vector potential AxðtÞ and the field ExðtÞ are

EðtÞ ¼ E0

�
ek1t; t ∈ I

e−k2t; t ∈ II
;

AxðtÞ ¼ E0

�
k−11 ð−ek1t þ 1Þ; t ∈ I

k−12 ðe−k2t − 1Þ; t ∈ II
; ð2:10Þ

where k1 and k2 are positive constants. The functions

ζφn
ðtÞ and ζφnðtÞ and the distributionNcr

n are found in
Ref. [22]. In particular, in the intervals I and II we have
the following behavior,

þφnðtÞ ¼ þN exp ðiπν1=2Þy12ðη1Þ; −φnðtÞ ¼ −N exp ð−iπν1=2Þy11ðη1Þ; t ∈ I;
þφnðtÞ ¼ þN exp ð−iπν2=2Þy21ðη2Þ; −φnðtÞ ¼ −N exp ðiπν2=2Þy22ðη2Þ; t ∈ II:

yj1ðηjÞ ¼ e−ηj=2η
νj
j Φðaj; cj; ηjÞ; yj2ðηjÞ ¼ eηj=2η

−νj
j Φð1 − aj; 2 − cj;−ηjÞ; ð2:11Þ

where Φða; c; ηÞ is a confluent hypergeometric function [23] and

η1 ¼ ih1ek1t; η2 ¼ ih2e−k2t; hj ¼ 2eE0k−2j ; j ¼ 1; 2;

cj ¼ 1þ 2νj; aj ¼
1

2
ð1þ χÞ þ ð−1Þj iπj

kj
þ νj;

νj ¼
iωj

kj
; ωj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2j þ π2⊥

q
; πj ¼ px − ð−1Þj eE0

kj
:

The slowly varying peak field corresponds to small
values of k1 and k2 and is characterized by the
following criterion,

min ðh1; h2Þ ≫ max ð1; m2=eE0Þ: ð2:12Þ

In this case, the main contributions to Ncr
n are formed

in the ranges π⊥ < π1 ≤ eE0=k1 and −eE0=k2 <
π2 < −π⊥, where they have the following forms:

Ncr
n ≈ exp

�
−
2π

k1
ðω1 − π1Þ

�
; π⊥ < π1 ≤ eE0=k1;

Ncr
n ≈ exp

�
−
2π

k2
ðω2þ π2Þ

�
; −eE0=k2 < π2 <−π⊥:

ð2:13Þ

In the examples under discussion, the switch-on and
switch-off regimes are described by nearly the same func-
tional form; that is, increasing and decreasing components of
the fields are almost symmetric. We have an essentially
asymmetric configuration in the case of the peak field, when
the field switches abruptly on at t ¼ 0; that is, k1 is
sufficiently large,

eE0k−21 ≪ 1; ω1=k1 ≪ 1; ð2:14Þ

while the parameter k2 > 0 is arbitrary and includes the case
of a smooth switching off. We refer to this configuration as
the exponentially decaying electric field; see Ref. [22] for
details. The case of a slowly varying field we have when

h2 ≫ max ð1; m2=eE0Þ:
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In this case, the leading contribution to the total number
of pairs created from vacuum is formed in the range
−eE0=k2< π2<−π⊥. In this range, Ncr

n coincides with the
formgivenby thesecond line inEq. (2.13).Note thatdue to the
invariance of the mean numbers Ncr

n under the simultaneous
change k1 ⇆ k2 and π1 ⇆ −π2, one can easily transform this
situation to the case with a large k2 and arbitrary k1 > 0.
As it follows from calculations in the exactly solvable

cases, for slowly varying electric fields differential mean
numbers of electron-positron pairs created from the vacuum
Ncr

n are quasiconstant over the wide range of the longi-
tudinal momentum px for any given transversal momenta,
although these distributions Ncr

n are different for different
field configurations. Furthermore, in all these cases, there
exist wide subranges, in which these distributions Ncr

n

coincide with the corresponding distributions N0
n in a

constant electric field, given by Eq. (2.7). We call this
phenomenon a stabilization of the particle creation effect.
In these subranges the mean numbers Ncr

n hardly depend of
the details of switching on and off of electric field.
The total number of pairs created from a vacuum by a

uniform electric field is proportional to the space volume
Vðd−1Þ as Ncr ¼ Vðd−1Þncr, where d labels the space-time
dimensions, and the correspondingdensitiesncr have the form

ncr ¼ JðdÞ
ð2πÞd−1

Z
dpNcr

n : ð2:15Þ

In deriving Eq. (2.15) a sum over all momenta p was
transformed into an integral and summation over spin
projections was fulfilled, JðdÞ ¼ 2½d=2�−1. In slowly varying
fields, the total increment of the longitudinal kinetic momen-
tum,which isΔU ¼ ejAxðþ∞Þ − Axð−∞Þj, is large and can
beusedasa largeparameter.Then the integral in the right-hand
side of Eq. (2.15) can be approximated by an integral over a
subrangeΩ that gives the dominant contribution with respect
to the total increment to themean number of created particles,

Ω∶ ncr ≈ ~ncr ¼ JðdÞ
ð2πÞd−1

Z
p∈Ω

dpNcr
n : ð2:16Þ

Thedominant contributions ~ncr areproportional to increments
of the longitudinal kinetic momentum, which, in general,
differ for different fields and, for example, have the following
forms in the exactly solvable cases (i), (ii), and (iii):

ðiÞΔUS ¼ 2eE0TS for Sauter − like field;

ðiiÞΔUT ¼ eE0T for T − const field;

ðiiiÞΔUp ¼ eE0ðk−11 þ k−12 Þ for a peak field: ð2:17Þ

We note that ΔUp in Eq. (2.17) corresponds to the case of an
exponentially decaying field at k−11 → 0.
In terms of the introduced quantities (2.17), the

densities ~ncr in the exactly solvable cases under

consideration have the following forms1 [16,22] (see
[24] for more details):

ðiÞ ~ncr ¼ rcr
ΔUS

2eE0

δ;

ðiiÞ ~ncr ¼ rcr
ΔUT

eE0

;

ðiiiÞ ~ncr ¼ rcr
ΔUp

eE0

G

�
d
2
; π

m2

eE0

�
; ð2:18Þ

where

rcr ¼ JðdÞðeE0Þd=2
ð2πÞd−1 exp

�
−π

m2

eE0

	
;

Gðα; xÞ ¼
Z

∞

1

ds
sαþ1

e−xðs−1Þ ¼ exxαΓð−α; xÞ;

δ ¼
Z

∞

0

dtt−1=2ðtþ 1Þ−ðdþ1Þ=2 exp
�
−tπ

m2

eE0

�

¼ ffiffiffi
π

p
Ψ
�
1

2
;
2 − d
2

; π
m2

eE0

�
: ð2:19Þ

Here Γð−α; xÞ is the incomplete gamma function and
Ψða; b; xÞ is the confluent hypergeometric function [23].
Equating the densities ncr for Sauter-like field (i) and for the
peak field (iii) to the density ncr for the T-constant field (ii),
we find an effective time Teff of the field duration in both
cases,

ðiÞTeff ¼ TSδ;

ðiiiÞTeff ¼ ðk−11 þ k−12 ÞG
�
d
2
; π

m2

eE0

�
: ð2:20Þ

Note that the effective time Teff for an exponentially
decaying field is given by the second line in Eq. (2.20)
as k−11 → 0. By the definition Teff ¼ T for the T-constant
field. One can say that the Sauter-like field, the peak electric
field, and the exponentially decaying field with the same Teff
are equivalent to the T-constant field with respect to the pair
production. Note that the factors G and δ in Eq. (2.19) for a
weak electric field (m2=eE0 ≫ 1) and for a strong enough
electric field (m2=eE0 ≪ 1) can be approximated as

G

�
d
2
; π

m2

eE0

�
≈
eE0

πm2
; δ ≈

ffiffiffiffiffiffiffiffi
eE0

p
m

;
m2

eE0

≫ 1;

G

�
d
2
; π

m2

eE0

�
≈
2

d
; δ ≈

ffiffiffi
π

p
Γðd=2Þ

Γðd=2þ 1=2Þ ; m2=eE0 ≪ 1:

ð2:21Þ

1Note that the derivation of total quantities for the Sauter-like
case in Refs. [16] is given for λ0 > 1. However, the final form of
δ ¼ ffiffiffi

π
p

Ψð1
2
; 2−d

2
; π m2

eE0
Þ is given correctly for arbitrary m2=eE0.
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Additionally, we note that one can compare the time
scales for the cases (i), (ii), and (iii), given by Eqs. (2.5),
(2.9), and (2.12), for the same E0 and kinetic momentum
increments, ΔUS ¼ ΔUT ¼ ΔUp (in this case 2TS ¼ T ¼
k−11 þ k−12 ). One can see that the condition (2.9) is stronger
than that given by Eqs. (2.5) and (2.12) if fields are weak,
whereas they are equivalent if fields are strong. For this
reason, defining the scale Δtmst in general terms, we choose
the form (2.2).
Let us turn to the vacuum-to-vacuum transition proba-

bility Pv defined by Eq. (A16) in the Appendix. It is given
by similar forms for the Sauter-like field (i), the T-constant
field (ii), and the peak field (iii), respectively, with the
corresponding Ncr [16,22]:

Pv ¼ exp ð−μNcrÞ; μ ¼
X∞
l¼0

ϵlþ1

ðlþ 1Þd=2 exp
�
−lπ

m2

eE0

�
;

ðiÞ ϵl ¼ ϵSl ¼ δ−1
ffiffiffi
π

p
Ψ
�
1

2
;
2− d
2

; lπ
m2

eE0

�
;

ðiiÞ ϵl ¼ ϵTl ¼ 1;

ðiiiÞ ϵl ¼ G

�
d
2
; lπ

m2

eE0

��
G

�
d
2
;π

m2

eE0

��−1
: ð2:22Þ

In the case of a weak field (m2=eE0 > 1), ϵSl ≈ l−1=2 for
the Sauter-like field, ϵl ≈ l−1 for the peak field, and
exp ð−πm2=eE0Þ ≪ 1. Then μ ≈ 1 for all the cases in
Eq. (2.22) and we have a universal relation Ncr ≈ lnP−1

v . In
the case of a strong field (m2=eE0 ≪ 1), all the terms with
different ϵSl and ϵl contribute significantly to the sum in
Eq. (2.22) if lπm2=eE0 ≲ 1, and the quantities μ for the
Sauter-like and peak fields differ essentially from the case of a
T-constant field. Consequently, in this situation, one cannot
derive a universal relation betweenNcr andPv fromparticular
cases given by Eq. (2.22). In addition, it should be noted that
in the case of a strong field, when known semiclassical
approaches are not applicable, the probability Pv (unlike the
total number Ncr) no longer has a direct relation to vacuum
mean values of the physical quantities discussed above.
Therefore, to study a universal behavior of the vacuum
instability in slowly varying strong electric fields one should
derive first a universal form for the total density ~ncr.

III. UNIVERSAL BEHAVIOR OF THE VACUUM
INSTABILITY IN SLOWLY VARYING STRONG

ELECTRIC FIELDS

A. Total density of created pairs

If the electric field is not very strong, mean numbers Ncr
n

of created pairs (or distributions) at the final time instant are
exponentially small, Ncr

n ≪ 1. In this case the probability of
the vacuum to remain a vacuum and probabilities of particle
scattering and pair creation have simple representations in
terms of these numbers,

jwnðþ − j0Þj2 ≈ Ncr
n ; jwnð−j−Þj2 ≈ ð1þ Ncr

n Þ;
Pv ≈ 1 −

X
n

Ncr
n : ð3:1Þ

The latter relations are often used in semiclassical calcu-
lations to find Ncr

n and the total number of created pairs
Ncr ¼ P

nN
cr
n from the representation of Pv given by

Schwinger’s effective action.
However, when the electric field cannot be considered

as a weak one (e.g., in some situations in astrophysics
and condensed matter), the mean numbers Ncr

n can
achieve their limited values Ncr

n → 1 already at finite
time instants t and the sum Ncr cannot be considered as a
small quantity. Moreover, for slowly varying strong
electric fields this sum is proportional to the large
parameter Teff=Δtst. In such a case relations (3.1) are
not correct anymore. However, as shown next, for an
arbitrarily slowly varying strong electric field one can
derive in the leading-term approximation a universal form
for the total density of created pairs.
Let us define the range DðtÞ as follows:

DðtÞ∶ hPxðtÞi < 0; jhPxðtÞij ≫ π⊥: ð3:2Þ

In this range the longitudinal kinetic momentum hPxðtÞi ¼
px −UðtÞ is negative and big enough. If px components of
the particle momentum belong to the range DðtÞ, then the
particle energy is primarily determined by an increment
of the longitudinal kinetic momentum, UðtÞ −UðtinÞ,
during the time interval t − tin and hPxðtÞi ¼ hPxðtinÞi−
½UðtÞ −UðtinÞ�. Note that DðtÞ ⊂ Dðt0Þ if t < t0. The
leading term of the total number density of created pairs,
~ncr, is formed over the range DðtoutÞ; that is, the range
DðtoutÞ is chosen as a realization of the subrange Ω
in Eq. (2.16).
In the case when the electric field does not switch

abruptly on and off, that is, the field slowly weakens at
t → �∞ and one of the time instants tin and tout or both are
infinite, tin → −∞ and tout → ∞, one can ignore exponen-
tially small contributions to ~ncr from the time intervals
ðtin; teffin � and ðteffout; toutÞ, where electric fields are much less
than the maximum field E0, Eðteffin Þ; EðteffoutÞ ≪ E0. Thus, in
the general case it is enough to consider a finite interval
ðteffin ; t

eff
out�. Denoting t1 ¼ teffin and tMþ1 ¼ teffout, we divide this

interval into M intervals Δti ¼ tiþ1 − ti > 0, i ¼ 1;…;M,P
M
i¼1Δti ¼ teffout − teffin . We suppose that Eqs. (2.1) and (2.2)

hold true for all the intervals, respectively. That allows us to
treat the electric field as approximately constant within
each interval, EðtÞ ≈ ĒðtiÞ, for t ∈ ðti; tiþ1�. Note that
inside of each interval Δti abrupt changes of the electric
field EðtÞ, whose duration is much less than Δti, cannot
change significantly the total value of ~ncr, since Ncr

n ≤ 1 for
fermions. Using Eqs. (2.17) and (2.18) for the case of a
T-constant field, we can represent ~ncr as the following sum,
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~ncr ¼
XM
i¼1

Δ ~ncri ;

Δ ~ncri ≈
JðdÞ

ð2πÞd−1
Z

eĒðtiÞðtiþΔtiÞ

eĒðtiÞ
dpx

Z
ffiffiffi
λi

p
<K⊥

dp⊥N
ðiÞ
n ;

NðiÞ
n ¼ e−πλi ; λi ¼

π2⊥
eĒðtiÞ

; ð3:3Þ

where K⊥ is any given number satisfying the conditionffiffiffiffiffiffiffiffiffiffiffiffiffi
eĒðtiÞ

p
Δti ≫ K2⊥ ≫ max f1; m2=eĒðtiÞg. Taking into

account Eq. (3.2), we represent the variable px as follows:

px ¼ UðtÞ; UðtÞ ¼
Z

t

tin

dt0eEðt0Þ þ UðtinÞ: ð3:4Þ

Then neglecting small contributions to the integral (3.3),
we find the following universal form for the total density of
created pairs in the leading-term approximation for a slowly
varying, but otherwise arbitrary strong electric field:

~ncr ≈
JðdÞ

ð2πÞd−1
Z

tout

tin

dteEðtÞ
Z

dp⊥Nuni
n ;

Nuni
n ¼ exp

�
−π

π2⊥
eEðtÞ

�
: ð3:5Þ

Note that Nuni
n is written in a universal form which can be

used to calculate any total characteristics of the pair
creation effect. After the integration over p⊥, we finally
obtain

~ncr ¼ JðdÞ
ð2πÞd−1

Z
tout

tin

dt½eEðtÞ�d=2 exp
�
−π

m2

eEðtÞ
	
: ð3:6Þ

These universal forms can be derived for bosons as well,
if we are restricting them to forms of external electric fields,
namely, fields that have no abrupt variations of EðtÞ that
can produce significant growth of Ncr

n on a finite time
interval. In fact, in this case we have to include in the range
DðtÞ the only subranges where Ncr

n ≤ 1. In this case the
universal forms for bosons are the same (3.5) and (3.6),
assuming that JðdÞ is the number of the boson spin degrees
of freedom, in particular, JðdÞ ¼ 1 for scalar particles and
Jð4Þ ¼ 3 for vector particles.
Using the identity − ln ð1 − Nuni

n Þ ¼ Nuni
n þ ðNuni

n Þ2…, in
the same manner one can derive a universal form of the
vacuum-to-vacuum transition probability Pv defined for
fermions by Eq. (A16) in the Appendix. First, we write

Pv ≈ exp

�
−
Vðd−1ÞJðdÞ
ð2πÞd−1

X∞
l¼1

Z
tout

tin

dteEðtÞ
Z

dp⊥ðNuni
n Þl

�
:

ð3:7Þ

Then, performing the integration over p⊥, we obtain that
for fermions this universal form reads

Pv ≈ exp

�
−
Vðd−1ÞJðdÞ
ð2πÞd−1

×
X∞
l¼1

Z
tout

tin

dt
½eEðtÞ�d=2

ld=2
exp

�
−π

lm2

eEðtÞ
�	

: ð3:8Þ

Taking into account that universal forms of ~ncr for
bosons are given by formulas similar to Eqs. (3.5) and
(3.6) and using the definition of the vacuum-to-vacuum

transition probability PðbosonÞ
v for bosons obtained in

Refs. [3,13],

PðbosonÞ
v ¼ exp

�
−
X
n

ln ð1þ Ncr
n Þ
�
; ð3:9Þ

we finally get in the Bose case the following universal
form,

PðbosonÞ
v ≈ exp

�
−
Vðd−1ÞJðdÞ
ð2πÞd−1

X∞
l¼1

Z
tout

tin

dtð−1Þl−1

×
½eEðtÞ�d=2

ld=2
exp

�
−π

lm2

eEðtÞ
�	

; ð3:10Þ

where JðdÞ is the number of boson spin degrees of freedom.
Using Eqs. (3.6) and (3.8), one obtains precisely

expressions (2.18) and (2.22) that are found for the total
densities and the vacuum-to-vacuum transition probabil-
ities when directly adopting the slowly varying field
approximation to the exactly solvable cases. Comparing
Eqs. (3.6) and (3.10) with the exact results obtained for
bosons [16,22], one finds precise agreement too. Thus, we
have an independent confirmation of the universal forms
obtained above.
One can see that the obtained universal forms have

specially simple forms in two limited cases, for a weak
electric field (m2=eE0 ≫ 1), when the term ½eEðtÞ�d=2 can
be approximated by its maximal value ½eE0�d=2, and for a
strong enough electric field (m2=eE0 ≪ 1), when there
exist time intervals where m2=eEðtÞ ≪ 1 and approxima-
tions of the type

exp

�
−
πlm2

eEðtÞ
�
¼ 1 −

πlm2

eEðtÞ þ � � � ð3:11Þ

are available. Consider, for example, the case of a strong
Gauss pulse,

EðtÞ ¼ E0 exp ½−ðt=TGÞ2�; ð3:12Þ

with a large parameter TG → ∞. In this case we do not
have an exact solution of the Dirac equation and known
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semiclassical approximations are not applicable. However,
using approximation (3.11), we find from Eqs. (3.6) and
(3.8) the leading terms as

~ncr ≈
JðdÞðeE0Þd=2TG

dð2πÞd−2 ; Pv ≈ exp

�
−Vðd−1Þ ~ncr

X∞
l¼1

l−d=2
�
:

ð3:13Þ

The representations (3.8) and (3.10) coincide with the
leading term approximation of derivative expansion results
from field-theoretic calculations obtained in Refs. [6,7] for
d ¼ 3 and d ¼ 4. In this approximation the probability
Pv was derived from a formal expansion in increasing
numbers of derivatives of the background field strength for
Schwinger’s effective action:

S ¼ Sð0Þ½Fμν� þ Sð2Þ½Fμν; ∂μFνρ� þ � � � ð3:14Þ

where Sð0Þ involves no derivatives of the background
field strength Fμν [that is, Sð0Þ is a locally constant field
approximation for S], while the first correction Sð2Þ
involves two derivatives of the field strength, and so on;
see Ref. [5] for a review. In fact, it is the possibility to
adopt a locally constant field approximation which makes
the effect universal.
It was found that

Pv ¼ exp ð−2ImSð0ÞÞ: ð3:15Þ

In the derivative expansion the fields are assumed to
vary very slowly and satisfy the condition (2.1). A very
convenient formalism for doing such an expansion is the
worldline formalism (see [25] for the review), in which the
effective action is written as a quantum-mechanical path
integral.
However, for a general background field, it is extremely

difficult to estimate and compare the magnitude of various
terms in the derivative expansion. Only under the assumption
m2=eE0 > 1 can one demonstrate that the derivative expan-
sion is completely consistent with the semiclassical WKB
analysis of the imaginary part of the effective action [26]. It
is shown only for a constant electric field that Eq. (3.15) is
given exactly by the semiclassical WKB limit when the
leading order of fluctuations is taken into account [27].
It should be stressed that unlike to the authors of

Refs. [6,7], we derive Eqs. (3.8) and (3.10) in the
framework of the general exact formulation of strong-field
QED [3,13], where Pv are defined by Eqs. (A16) and (3.9),
respectively. Therefore we obtain Eqs. (3.8) and (3.10)
independently from the derivative expansion approach and
the obtained result holds true for any strong field under
consideration. Thus, it is proven that Eq. (3.15) is given
exactly by the semiclassical WKB limit for an arbitrary
slowly varying electric field.

B. Time evolution of vacuum instability

In this section details of the time evolution of vacuum
instability effects are of interest. In particular, the study of
the time evolution of the mean electric current, energy, and
momentum provides us with new characteristics of the
effect, related, in particular, with the backreaction. Due to
the translational invariance of the spatially uniform external
field, all the corresponding mean values are proportional to
the space volume. Therefore, it is enough to calculate the
vacuum mean values of the current density vector hjμðtÞi
and of the energy-momentum tensor (EMT) hTμνðtÞi,
defined by Eq. (A17); see the Appendix. Note that these
densities depend on the initial vacuum, on the evolution of
the electric field from the initial time instant up to the
current time instant t, but they do not depend on the further
history of the system and definition of particle-antiparticle
at the time t.
Let us consider the time dependence of the current

density vector hjμðtÞi and of the EMT hTμνðtÞi, given by
Eqs. (A23). Due to the uniform character of the distribu-
tions Ncr

n , only the diagonal matrix elements of EMT differ
from zero; in particular, for d ≠ 3 only the longitudinal
current components are not zero. In d ¼ 3 dimensions,
there are two nonequivalent representations for γ-matrices,
γ0 ¼ σ3, γ1 ¼ iσ2, γ2 ¼ −ið�1Þσ1, where σi are Pauli
matrices, and representations with the sign þ or − in the
round brackets correspond to different fermion species,
the so-called þ and − fermions, respectively. Due to this
fact, a nonzero current component hj2ðtÞi can exist. This
fact is related to the so-called Chern-Simons term in the
effective action [28,29]; see details in Ref. [8]. However,
if there are both fermion species in a model, as it takes
place, for example, in the Dirac model of the graphene,
then hj2ðtÞi ¼ 0.
It follows from Eqs. (A22) and (A23) that the nonzero

terms RehjμðtÞip and RehTμνðtÞip appear due to the
vacuum instability. These terms are growing with time
due to an increase of the number of states that are occupied
by created pairs. In any system of Fermi particles the mean
value hj2ðtÞi is finite.
As a consequence of Eq. (3.2), we have

i∂t
�φnðtÞ ≈�jhPxðtÞij�φnðtÞ; ð3:16Þ

which means that at the time t we deal with an ultra-
relativistic particle and its kinetic momentum hPxðtÞi can
be considered as a large parameter. Considering the time
dependence of means Rehj1ðtÞip and RehTμμðtÞip, we
suppose that the time difference t − tin is big enough to
satisfy Eq. (3.16). Using the exact relation Eq. (A10) to
express solutions �ψn via �ψn, and neglecting strongly
oscillating terms, we find that the leading contribution to
the function Spðx; x0Þ [defined by Eq. (A22)] at t ∼ t0 can be
represented by the following expression:
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Spðx; x0Þ ≈ −i
X
n

Ncr
n ½þψnðxÞþψ̄nðx0Þ − −ψnðxÞ−ψ̄nðx0Þ�:

ð3:17Þ

It is clear that for any large enough difference t − tin the
sum over momentum p in the right-hand side of
Eq. (3.17) can be approximated by a sum over the range
DðtoutÞ that gives the dominant contribution to the mean
number of created particles with respect to the total
increment of the longitudinal kinetic momentum.
Moreover, taking into account Eqs. (3.2) and (3.4), we
see that DðtÞ ⊂ Dðt0Þ ⊂ DðtoutÞ if t < t0 < tout and for a
given difference t − tin the dominant contribution to the

right-hand side of Eq. (3.17) is from a subrange
DðtÞ ⊂ DðtoutÞ.
We recall that, according to Eq. (A4), one can choose the

corresponding in and out Dirac solutions either with χ ¼
þ1 or with χ ¼ −1. Using this possibility, we choose χ ¼
þ1 for þψnðxÞ and χ ¼ −1 for −ψnðxÞ. With such a choice,
taking into account that p ∈ DðtÞ, we simplify essentially
the matrix structure of the representation (3.17). Thus, after
a summation over spin polarizations σ, we obtain the
following result:

Spðx; x0Þ ≈ ðγPþmÞΔpðx; x0Þ; ð3:18Þ
where the function Δpðx; x0Þ reads

Δpðx; x0Þ ¼ −i
X

p∈DðtÞ
Ncr

n jhPxðtÞij exp ½ipðr − r0Þ�

× fð1þ γ0γ1Þ½þφnðtÞþφ�
nðt0Þ�jχ¼þ1 þ ð1 − γ0γ1Þ½−φnðtÞ−φ�

nðt0Þ�jχ¼−1g:

Using Eq. (3.18) in Eq. (A23) and transforming the sum over all momenta p into an integral, we find the following
representations for the vacuum means of current density and EMT components:

hj1ðtÞip ≈ 2e
Vðd−1ÞJðdÞ
ð2πÞd−1

Z
p∈DðtÞ

dpNcr
n ρðtÞjhPxðtÞij;

hT00ðtÞip ≈ hT11ðtÞip ≈
Vðd−1ÞJðdÞ
ð2πÞd−1

Z
p∈DðtÞ

dpNcr
n ρðtÞhPxðtÞi2;

hTllðtÞip ≈
Vðd−1ÞJðdÞ
ð2πÞd−1

Z
p∈DðtÞ

dpNcr
n ρðtÞp2

l ; l ¼ 2;…; D;

ρðtÞ ¼ 2jhPxðtÞijfjþφnðtÞj2jχ¼þ1 þ j−φnðtÞj2jχ¼−1g; ð3:19Þ

where D ¼ d − 1.
One can verify, taking into account Eq. (3.16), that the

functions ζφnðtÞ can be approximated by their asymptotics
(A6) in the range DðtÞ if the instant value of the longi-
tudinal kinetic momentum differs slightly at the time instant
t from its final value, such that

jhPxðtoutÞi − hPxðtÞij ≪ jhPxðtÞij: ð3:20Þ

In a sense this means that the time instant t is close enough
to the final time instant, t → tout. We find that

ρðtÞjt→tout ¼ ½Vðd−1ÞjhPxðtoutÞij�−1: ð3:21Þ

Then taking into account Eq. (2.16), we obtain from
Eq. (3.19) that

hj1ðtÞipjt→tout ≈ 2e ~ncr; ð3:22Þ

where ~ncr is given by Eqs. (3.5) and (3.6). It means that
dominant contributions to the mean numbers Ncr

n of created
particles are formed before the time instant t that satisfies
Eq. (3.20). For t > tout, the pair production stops, vacuum
polarization effects disappear, and quantities (3.19) for
t > tout maintain their values at t ¼ tout. Using Eq. (3.21),
we obtain that

hj1ðtÞijt>tout ≈ hj1ðtÞipjt→tout ≈ 2e ~ncr;

hT00ðtÞijt>tout ≈ hT11ðtÞijt>tout ≈ hT11ðtÞipjt→tout ≈
JðdÞ

ð2πÞd−1
Z
p∈DðtÞ

dpNcr
n jhPxðtoutÞij;

hTllðtÞijt>tout ≈ hTllðtÞipjt→tout ≈
JðdÞ

ð2πÞd−1
Z
p∈DðtÞ

dpNcr
n jhPxðtoutÞij−1p2

l ; l ¼ 2;…; D: ð3:23Þ
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Using the universal form of the differential number of created pairs, Ncr
n ≈ Nuni

n , given by Eq. (3.5), making variable
change (3.4), and performing the integration over p⊥, we finally obtain from Eq. (3.23) the new result. At the final time
instant, EMT components have the following universal behavior:

hT00ðtÞijt>tout ≈ hT11ðtÞijt>tout ≈ hT11ðtÞipjt→tout

≈
JðdÞ

ð2πÞd−1
Z

tout

tin

dt½UðtoutÞ −UðtÞ�½eEðtÞ�d=2 exp
�
−π

m2

eEðtÞ
�
;

hTllðtÞijt>tout ≈ hTllðtÞipjt→tout ≈
JðdÞ
ð2πÞd

Z
tout

tin

dt½eEðtÞ�d=2þ1

½UðtoutÞ − UðtÞ� exp
�
−π

m2

eEðtÞ
�
: ð3:24Þ

The quantity hT00ðtÞijt>tout is the mean energy density of pairs created at any time instant t with zero longitudinal kinetic
momentum and then accelerated to final longitudinal kinetic momenta from zero to its maximum ΔU. The quantity
hT11ðtÞijt>tout=2~ncr is the mean kinetic momentum per particle at the time instant tout. The energy density hT00ðtÞijt>tout is
equal to the pressure hT11ðtÞijt>tout along the direction of the electric field at the time instant tout. This equality is a natural
equation of state for noninteracting particles accelerated by an electric field to relativistic velocities.
In particular, for fields admitting exactly solvable cases [these fields are given by Eqs. (2.4), (2.8), and (2.10)], we find

from Eq. (3.24) [also recall the various definitions in Eq. (2.19)] the following.
(i) For a Sauter-like field:

hT00ðtÞipjt→tout ≈ hT11ðtÞipjt→tout ≈ eE0rcrT2
S

�
δ −G

�
d
2
;
πm2

eE0

��
;

hTllðtÞipjt→tout ≈
rcr

2π

� ffiffiffi
π

p
Ψ
�
1

2
; 2 −

d
2
;
πm2

eE0

�
þG

�
d
2
− 1;

πm2

eE0

��
; ð3:25Þ

(ii) For a T-constant field:

hT00ðtÞipjt→tout ≈ hT11ðtÞipjt→tout ≈ eE0rcrðtout − tinÞ2;
hTllðtÞipjt→tout ≈ π−1rcr ln ½

ffiffiffiffiffiffiffiffi
eE0

p
ðtout − tinÞ�; ð3:26Þ

(iii) For the peak field:

hT00ðtÞipjt→tout ≈ hT11ðtÞipjt→tout ≈ eE0rcr½k−12 þ k−11 �

×

�
½k−12 − k−11 �G

�
d
2
þ 1;

πm2

eE0

�
þ k−11 G

�
d
2
;
πm2

eE0

�	
;

hTllðtÞipjt→tout ≈
rcr

2π

�
G

�
d
2
− 1;

πm2

eE0

�
þ k2
k1

G

�
d
2
;
πm2

eE0

��
; ð3:27Þ

where l ¼ 2;…; D. Densities (3.27) correspond to
the case of an exponentially decaying field as
k−11 → 0.

Note that using the differential mean numbers of created
pairs given by Eqs. (2.6), (2.7), and (2.13) for the exactly
solvable cases, we obtain from Eq. (3.23) literally expres-
sions (3.26) (earlier obtained in Refs. [8,20]), (3.25), and
(3.27). It is an independent confirmation of universal form
(3.24). We stress that Eqs. (3.25) and (3.27) are first
obtained in this article.
It should be noted that the densities hj1ðtÞipjt→tout andhTμμðtÞipjt→tout

are formed over the entire time interval
tout − tin of the field duration. All these densities are

growing functions of the increment of the longitudinal
kinetic momentum. However, they differ, in particular,
because switching on and off conditions of the correspond-
ing electric fields are different.
In what follows we show that some universal behavior of

the densities hj1ðtÞip and hTμμðtÞip can be derived from
general forms (3.19) for any large difference t − tin, even
if t − tin ≪ tout − tin. We begin the demonstration of this
fact with the case of a finite interval of time when the
electric field potential can be approximated by a potential
of a constant electric field (2.3). At the same time, we
assume that hPxðtÞi satisfies condition (3.2) at the time t. It
is convenient to compare the cases of T-constant and
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exponentially decaying fields, which both are abruptly
switching on but their ways of switching off may be
different.
In the case of an exponentially decaying field, the

functions �φnðtÞ in Eq. (3.19) are given by the second
line in Eq. (2.11) and approximation (2.3) holds if
k2t ≪ 1. Then jhPxðtÞij ≪ jπ2j. To obtain functions
�φnðtÞ in such an approximation we use first the
asymptotic representation for the confluent hypergeomet-
ric function Φða; c; ηÞ via the Weber parabolic cylinder
functions (WPCFs) for large η and c with fixed a and
τ ¼ η=c ∼ 1, given by Eq. (13.8.4) in [30]. Assuming
then jτ − 1j ∼ 1 and using asymptotic expansions of
WPCFs one finds Φða; c; ηÞ ≈ ð1 − τÞ−a for 1 − τ > 0.
Thus, we obtain

ρðtÞ ¼ ½Vðd−1ÞjhPxðtÞij�−1: ð3:28Þ

In the range DðtÞ, the distribution Ncr
n is approximately

given by Eq. (2.7). Finally we obtain

hj1ðtÞip ≈ 2ercrΔt;

hT00ðtÞip ≈ hT11ðtÞipj ≈ eE0rcrΔt2;

hTllðtÞip ≈ π−1rcr ln ð
ffiffiffiffiffiffiffiffi
eE0

p
ΔtÞ if l ¼ 2;…; D; ð3:29Þ

where Δt ¼ t − tin is the duration time of a constant field.
In this case tin ¼ 0.
The field potential of the T-constant field (2.8) has the

form (2.3) in the intermediate region II. For sufficiently
large times t < tout, when the longitudinal kinetic momen-
tum belongs to the range DðtÞ, the distribution Ncr

n is
approximately given by Eq. (2.7). In this case, exact
expressions for the functions þφnðtÞ [see Eq. (26) in
Ref. [16]] and similar expressions for the functions
−φnðtÞ can be approximated as the following WPCFs:

þφnðtÞ ≈ V−1=2
ðd−1ÞCD−1−ρ½ð1þ iÞξ�; −φnðtÞ ≈ V−1=2

ðd−1ÞCDρ½ð1 − iÞξ�;
ξ ¼ ðeE0t − pxÞðeE0Þ−1=2; C ¼ ð2eE0Þ−1=2 exp ð−πλ0=8Þ: ð3:30Þ

Then we find from Eq. (3.19) that the densities hj1ðtÞip and
hTμμðtÞip have the same form (3.29) with tin ¼ −T=2.
Note that the above results are obtained by using

functions �φnðtÞ, which have in and out asymptotics at
tout. Nevertheless, these results show also that densities
(3.29) are not affected by evolution of the functions �φnðtÞ
from t to tout in the range p ∈ DðtÞ, assuming that the
corresponding electric field exists during a macroscopically
large time period Δt, satisfying Eq. (2.1). This fact is
closely related with a characteristic property of the kernel
of integrals (3.19), which will be derived from a universal
form of the total density of created pairs given by Eq. (3.5).
Let t0out < tout be another possible final time instant. Then

~ncrðt0outÞ ≈
JðdÞ

ð2πÞd−1
Z

t0out

tin

dt½eEðtÞ�d=2 exp
�
−π

m2

eEðtÞ
	
:

ð3:31Þ

Equation (3.31) corresponds to the assumption that in the
range p ∈ Dðt0outÞ ⊂ DðtoutÞ, the electric field is switched
on at tin and switched off at t0out. Then instead of
functions ζψnðxÞ satisfying the eigenvalue problem
(A3), we have to use solutions of the following eigen-
value problem:

HðtÞζψ ðt0outÞ
n ðxÞ ¼ ζεn

ζψ
ðt0outÞ
n ðxÞ; t ∈ ½t0out;þ∞Þ;

ζεn ¼ ζp0ðt0outÞ:

Using the representation

ζψ
ðt0outÞ
n ðxÞ ¼ ½i∂t þHðtÞ�γ0 exp ðiprÞζφðt0outÞ

n ðtÞvχ;σ

we obtain

ζφ
ðt0outÞ
n ðtÞ ¼ ζNðt0outÞ exp ½−iζp0ðt0outÞðt − t0outÞ�; t ∈ ½t0out;þ∞Þ;
ζNðt0outÞ ¼ ð2p0ðt0outÞfp0ðt0outÞ − χζ½px −Uðt0outÞ�gVðd−1ÞÞ−1=2: ð3:32Þ

Thus, the leading contribution to the function Spðx; x0Þ [defined by Eq. (A22)] at t0 ∼ t < t0out can be expressed via ζψ
ðt0outÞ
n ðxÞ

as follows:

Spðx; x0Þ ≈ −i
X

σ;p∈DðtÞ
Ncr

n ½þψ ðt0outÞ
n ðxÞþψ̄ ðt0outÞ

n ðx0Þ − −ψ ðt0outÞ
n ðxÞ−ψ̄ ðt0outÞ

n ðx0Þ�: ð3:33Þ

Then ρðtÞ in Eq. (3.19) can be represented as
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ρðtÞ ¼ 2jhPxðtÞijfjþφðt0outÞ
n ðtÞj2jχ¼þ1 þ j−φðt0outÞ

n ðtÞj2jχ¼−1g:

Taking into account Eq. (3.32), we can see that Eq. (3.28) holds for any large time difference t − tin. Using the universal
form of the differential numbers of created pairs, Ncr

n ≈ Nuni
n , given by Eq. (3.5), changing the variable according to

Eq. (3.4), and performing the integration over p⊥, we find from Eq. (3.19) that the vacuum mean values of current and EMT
components have the following universal behavior for any large difference t − tin:

hj1ðtÞip ≈ 2e ~ncrðtÞ;

hT00ðtÞip ≈ hT11ðtÞip ≈
JðdÞ

ð2πÞd−1
Z

t

tin

dt0½UðtÞ −Uðt0Þ�½eEðt0Þ�d=2 exp
�
−

πm2

eEðt0Þ
�
;

hTllðtÞip ≈
JðdÞ
ð2πÞd

Z
t

tin

dt0½eEðt0Þ�d=2þ1

½UðtÞ − Uðt0Þ� exp
�
−

πm2

eEðt0Þ
�
; l ¼ 2;…; D: ð3:34Þ

Here ~ncrðtÞ is given by Eq. (3.31). In particular, when t ¼
tout one obtains Eq. (3.22) and (3.24).
The obtained results show that the scale Δtmst plays

the role of the stabilization time for the densities
hj1ðtÞip and hTμμðtÞip. The characteristic parameter
m2=eE0 can be represented as the ratio of two characteristic
lengths: c3m2=ℏeE0 ¼ ðcΔtst=ΛCÞ2, where ΛC ¼ ℏ=mc is
the Compton wavelength. In strong electric fields,
ðcΔtst=ΛCÞ2 ≲ 1, inequality (2.2) is simplified to the form
Δt=Δtst ≫ 1, in which the Compton wavelength is absent.
We see that the scale Δtst plays the role of the stabilization
time for a strong electric field. This means that Δtst is a
characteristic time scale which allows us to distinguish
fields that have microscopic or macroscopic time change.
It plays a role similar to that of the Compton wavelength
in the case of a weak field. Therefore, calculations in a
T-constant field are quite representative for a large class of
slowly varying electric fields.
In what follows we use the example of the T-constant

field to consider the contributions RehjμðtÞic and
RehTμνðtÞic to the mean values of the current density
hjμðtÞi and the EMT hTμνðtÞi, given by Eqs. (A23).
Note that the mean current density hjμðtÞi and the
physical part of the mean value hTμνðtÞi are zero for
any t < tin. For t > tin, we are interested in these mean
values only for large time periods Δt ¼ t − tin satisfying
Eq. (2.1). In this case, the longitudinal kinetic momen-
tum belongs to the range (3.2) and distributions Ncr

n are
approximated by Eq. (2.7). Using approximation (3.30),
the functions −φnðtÞ, given by Eq. (25) in Ref. [16], and

similar functions þφnðtÞ, can be taken in the following
form:

−φnðtÞ ¼ V−1=2
ðd−1ÞCD−1−ρ½−ð1þ iÞξ�;

þφnðtÞ ¼ V−1=2
ðd−1ÞCDρ½−ð1 − iÞξ�: ð3:35Þ

In the same approximation, the causal propagator Scðx; x0Þ
(A21) can be calculated using solutions �ψnðxÞ and

�ψnðxÞ with scalar functions given by Eqs. (3.30) and
(3.35) in the range (3.2). It can be shown that the main
contributions to RehjμðtÞic, hj2ðtÞi and RehTμμðtÞic are
formed in the range (3.2) for a large time period Δt. It is
important that these contributions are independent of the
interval Δt; that is, the densities RehjμðtÞic, hj2ðtÞi, and
RehTμμðtÞic are local quantities describing only vacuum
polarization effects. Then we integrate in Eq. (A21) over
all the momenta. Thus, we see that in the case under con-
sideration, the propagator Scðx; x0Þ can be approximated
by the propagator in a constant uniform electric field.
The propagator Scðx; x0Þ in a constant uniform electric

field can be represented as the Fock-Schwinger proper-time
integral:

Scðx; x0Þ ¼ ðγPþmÞΔcðx; x0Þ;

Δcðx; x0Þ ¼
Z

∞

0

fðx; x0; sÞds; ð3:36Þ

(see [17] and [31]), where the Fock-Schwinger kernel
fðx; x0; sÞ reads

fðx; x0; sÞ ¼ exp
�
i
e
2
σμνFμνs

�
fð0Þðx; x0; sÞ; fð0Þðx; x0; sÞ ¼ −

eE0s−d=2þ1

ð4πiÞd=2 sinhðeE0sÞ

× exp

�
−iðeΛþm2sÞ þ 1

4i
ðx − x0ÞeF cothðeFsÞðx − x0Þ

�
:

Here cothðeFsÞ is the matrix with the components ½cothðeFsÞ�μν, Fμν ¼ E0ðδ0μδ1ν − δ1μδ
0
νÞ, and Λ ¼ ðtþ t0Þðx1 − x01ÞE0=2;

see [4,32].
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It is easy to see that hj1ðtÞic ¼ 0, as should be expected
due to the translational symmetry. If d ¼ 3 there is a
transverse vacuum-polarization current,

hj2ðtÞi ¼ � e2

4π3=2
γ

�
1

2
;
πm2

eE0

�
E0; ð3:37Þ

for each � fermion [8] (see, as well, Ref. [33]), where
γð1=2; xÞ is the incomplete gamma function. Note that the
transverse current of created particles is absent, hj2ðtÞi ¼ 0
if t > tout. The factor in the front of E0 in Eq. (3.37) can be
considered as a nonequilibrium Hall conductivity for a
large duration of the electric field. In the presence of both�
fermions in a model, hj2ðtÞi ¼ 0 for any t.
Using Eq. (3.36), we obtain components of the EMT for

the T-constant field in the following form,

RehT00ðtÞic ¼ −RehT11ðtÞic ¼ E0

∂ReL½E0�
∂E0

− ReL½E0�;

RehTllðtÞic ¼ ReL½E0�; l ¼ 2;…; D; ð3:38Þ

where

L½E0� ¼
1

2

Z
∞

0

ds
s
trfðx; x; sÞ;

trfðx; x; sÞ ¼ 2½d=2� coshðeE0sÞfð0Þðx; x; sÞ: ð3:39Þ

The quantity L½E0� can be identified with a nonrenor-
malized one-loop effective Euler-Heisenberg Lagrangian of
the Dirac field in a uniform constant electric field E0. Note
that components RehTμνðtÞic do not depend on the time
durationΔt of the T-constant field ifΔt is sufficiently large.
This result can be generalized to the case of an

arbitrarily slowly varying electric field. To this end we
divide as before the finite interval ðteffin ; t

eff
out� intoM intervals

Δti ¼ tiþ1 − ti > 0, such that Eq. (2.1) holds true for each
of them. That allows us to treat the electric field as
approximately constant within each interval, ¯EðtÞ ≈ ĒðtiÞ
for t ∈ ðti; tiþ1�. In each such interval, we obtain expres-
sions similar to the ones (3.38) and (3.39), where the
electric field E0 has to be substituted by ĒðtiÞ. Then
components of the EMT for an arbitrarily slowly varying
strong electric field EðtÞ in the leading-term approximation
can be represented as

RehT00ðtÞic ¼ −RehT11ðtÞic

¼ EðtÞ ∂ReL½EðtÞ�∂EðtÞ − ReL½EðtÞ�;

RehTllðtÞic ¼ ReL½EðtÞ�; l ¼ 2;…; D; ð3:40Þ

where

L½EðtÞ� ¼ 1

2

Z
∞

0

ds
s
tr ~fðx; x; sÞ;

tr ~fðx; x; sÞ ¼ 2½d=2� cosh ½eEðtÞs� ~fð0Þðx; x; sÞ;
~fð0Þðx; x; sÞ ¼ −

eEðtÞs−d=2þ1 exp ð−im2sÞ
ð4πiÞd=2 sinh ½eEðtÞs� : ð3:41Þ

Note that L½EðtÞ� evolves in time due to the time depend-
ence of the field EðtÞ.
The quantity L½EðtÞ� describes the vacuum polarization.

The quantities (3.40) are divergent due to the real part of the
effective Lagrangian (3.41), which is ill defined. This real
part must be regularized and renormalized. In low dimen-
sions, d ≤ 4, ReL½EðtÞ� can be regularized in the proper-
time representation and renormalized by the Schwinger
renormalizations of the charge and the electromagnetic
field [4]. In particular, for d ¼ 4, the renormalized effective
Lagrangian Lren½EðtÞ� is

Lren½EðtÞ� ¼
Z

∞

0

ds exp ð−im2sÞ
8π2s

×

�
eEðtÞ coth ½eEðtÞs�

s
−

1

s2
−
½eEðtÞs�2

3

	
:

ð3:42Þ
In higher dimensions, d > 4, a different approach is
required. One can give a precise meaning and calculate
the one-loop effective action using zeta-function regulari-
zation; see details in Ref. [8]. If we are interested in the case
of a very strong field, m2=eEðtÞ ≪ 1, then

ReLren½EðtÞ�∼
� ½eEðtÞ�d=2; d≠ 4k

½eEðtÞ�d=2 ln ½eEðtÞ=M2�; d¼ 4k; k∈N
;

ð3:43Þ

where the quantity M is a renormalization scale. In the
framework of the on-shell renormalization of a massive
theory, we have to set M ¼ m. Making the same renorm-
alization for hTμμðtÞic, we can see that for the renormalized
EMT the following relations hold true:

RehT00ðtÞicren ¼ −RehT11ðtÞicren
¼ EðtÞ ∂ReLren½EðtÞ�

∂EðtÞ − ReLren½EðtÞ�;

RehTllðtÞicren ¼ ReLren½EðtÞ�; l ¼ 2; 3;…; D: ð3:44Þ
In the strong-field case, the leading contributions to the
renormalized EMT are

RehTμμðtÞicren ∼
� ½eEðtÞ�d=2; d ≠ 4k

½eEðtÞ�d=2 ln ½eEðtÞ=M2�; d ¼ 4k
:

ð3:45Þ
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The final form of the vacuum mean components of the
EMT are

hTμμðtÞiren ¼ RehTμμðtÞicren þ RehTμμðtÞip; ð3:46Þ

where the components RehTμμðtÞicren and RehTμμðtÞip
are given by Eqs. (3.44) and (3.34), respectively. For
t < tin and t > tout the electric field is absent such that
RehTμμðtÞicren ¼ 0.
On the right-hand side of Eq. (3.46), the term

RehTμμðtÞip represents contributions due to the vacuum
instability, whereas the term RehTμμðtÞicren represents
vacuum polarization effects. For weak electric fields,
m2=eE0 ≫ 1, contributions due to the vacuum instability
are exponentially small, so that the vacuum polarization
effects play the principal role. For strong electric fields,
m2=eE0 ≪ 1, the energy density of the vacuum polariza-
tion RehT00ðtÞicren is negligible compared to the energy
density due to the vacuum instability hT00ðtÞip,

hTμμðtÞiren ≈ RehTμμðtÞip: ð3:47Þ

The latter density is formed on the whole time interval
t − tin; however, dominant contributions are due to time
intervals Δti with m2=eĒðtiÞ < 1 and the large dimension-
less parameters

ffiffiffiffiffiffiffiffiffiffiffiffiffi
eĒðtiÞ

p
Δti.

We note that the effective Lagrangian (3.41) and its
renormalized form Lren½EðtÞ� coincide with the leading
term approximation of derivative expansion results from
field-theoretic calculations obtained in Refs. [6,7] for d ¼ 3

and d ¼ 4. In this approximation, the Sð0Þ term of the
Schwinger’s effective action, given by the expansion
(3.14), has the form

Sð0Þ½Fμν� ¼
Z

dxLren½EðtÞ�: ð3:48Þ

It should be stressed that unlike the authors of
Refs. [6,7], we derive Eq. (3.41) and its renormalized
form in the framework of the general exact formulation of
strong-field QED [3,13], using the QED definition of the
mean value of the EMT, given by Eq. (A23). Therefore we
obtain Lren½EðtÞ� independently from the derivative expan-
sion approach and the obtained result holds true for any
strong field under consideration. Moreover, it is proven that
in this case not only the imaginary part of Sð0Þ but also its
real part are given exactly by the semiclassical WKB limit.
It is clearly demonstrated that the imaginary part of the
effective action, ImSð0Þ, is related to the vacuum-to-vacuum
transition probability Pv and can be represented as an
integral of Lren½EðtÞ� over the total field history, whereas
the kernel of the real part of this effective action,
ReLren½EðtÞ�, is related to the local EMT which defines
the vacuum polarization. Obtained results justify the
derivative expansion as an asymptotic expansion that can

be useful to find the corrections for mean values of the
EMT components. We also note that some authors have
argued that the locally constant field approximation, which
amounts to limiting oneself to the leading contribution of
the derivative expansion of the effective action, allows for
reliable results for electromagnetic fields of arbitrary
strength; cf., e.g., [34,35].
Exemplarily focusing on the T-constant field, in the

following we demonstrate that under natural assumptions,
the parameter eE0Δt2 is limited. For d > 4 an exact
meaning of finite terms of the effective Lagrangian
(3.39) can be understood only from the corresponding
fundamental theory. Considering problems of high-energy
physics in d ¼ 4, it is usually assumed that just from the
beginning there exists a uniform classical electric field with
a given energy density. The system of particles interacting
with this field is closed; that is, the total energy of the
system is conserved. Under such an assumption, the pair
creation is a transient process and the applicability of the
constant field approximation is limited by the smallness of
the backreaction, which implies the following restriction
from above:

ðΔt=ΔtstÞ2 ≪
π2

Jα
exp

�
π
c3m2

ℏeE0

�
; ð3:49Þ

on time Δt for a given electric field strength. Here α is the
fine structure constant and J is the number of the spin
degrees of freedom; see [19]. Thus, there is a range of the
parameters E0 and Δt where the approximation of the
constant external field is consistent. For QCD with a
constant SUð3Þ chromoelectric field Ea

0 (a ¼ 1;…; 8)
(during the period when the produced partons can be
treated as weakly coupled due to the property of asymptotic
freedom in QCD), and at low temperatures θ ≪ q

ffiffiffiffiffiffi
C1

p
Δt,

the consistency restriction for the dimensionless parameter
q

ffiffiffiffiffiffi
C1

p
Δt2 has the form 1 ≪ q

ffiffiffiffiffiffi
C1

p
Δt2 ≪ π2=3q2, where q

is the coupling constant and C1 ¼ Ea
0E

a
0 is a Casimir

invariant for SUð3Þ.
The case of d ¼ 3 attracts attention in recent years. It is

well known that at certain conditions (the so-called charge
neutrality point) electronic excitations in the graphene
monolayer behave as relativistic Dirac massless fermions
in 2þ 1 dimensions, with the Fermi velocity vF ≃ 106 m=s
playing the role of the speed of light; see details in recent
reviews [36,37]. Then in the range of the applicability of
the Dirac model to the graphene physics, any electric field
is strong. There appears a time scale specific to graphene
(and to similar nanostructures with the Dirac fermions),
Δtgst ¼ ðeE0vF=ℏÞ−1=2, which plays the role of the stabi-
lization time in the case under consideration. The gener-
ation of a mass gap in the graphene band structure is an
important fundamental and practical problem under current
research. In the presence of the mass gap Δε ¼ mv2F, the
stabilization condition has a general form:
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Δt=Δtgmst ≫ 1; Δtgmst ¼ Δtgst max f1; ðΔεÞ2=ℏvFeE0g:
ð3:50Þ

In this case, the strong-field condition reads ðΔεÞ2=
vFℏeE0 ≪ 1. It has been shown [9] that the time scale
Δtgst appears for the tight-binding model as the time scale
when the perturbation theory with respect to the electric
field breaks down, and the dc response changes from the
linear-in-E0 duration-independent regime to a nonlinear-in-
E0 and duration-dependent regime. In the experimental
situation described in Ref. [10], a constant voltage between
two electrodes connected to the graphene was applied,
V ¼ E0Lx, and current-voltage characteristics (I–V) are
measured within ∼1 s, which is a very large time scale
compared with the ballistic flight time Tbal ¼ Lx=vF for a
finite flake length Lx. In typical experiments, Lx ∼ 1 μm,
so that Tbal ∼ 10−12 s. To match our results with these
conditions, our time Δt should be replaced by some typical
time scale that we call the effective time duration Δteff . In
the absence of the dissipation, the transport is ballistic; in
this case, considering a strip with a lateral infinite width, we
assume the ballistic flight time Tbal to be the effective time
duration, Δteff ¼ Tbal. In a realistic sample, placed on a
substrate, the effective time duration Δteff can be many
times smaller than Tbal, because of charged impurities or
the structural disorder of the substrate. However, such an
effective time Δteff remains macroscopically large, so that
Eq. (3.50) still holds. The external constant electric field
can be considered as a good approximation of the effective
mean field as long as the field produced by the induced
current of created particles is negligible compared to the
applied field. Then hj1ðtÞip in Eq. (3.29) describes a regime
where the current behaves as j ∼ V3=2. An experimental
observation of this I–V was recently reported for low-
mobility samples (the case Δteff ≪ Tbal) [10]. This implies
the consistency restriction Δt ≪ Δtbr ¼ Δtgst=4α [8]. Thus,
there is a window in the parameter range of E0 and Δt
where the model with constant external field is consistent.
For example, let us assume that Δt ∼ Tbal. It implies that
7 × 10−4V ≪ V ≪ 8 V. These voltages are in the range
typically used in experiments with the graphene.

IV. CONCLUDING REMARKS

In the present article, we have revised vacuum instability
effects in three exactly solvable cases in QED with
t-electric potential steps that have real physical importance.
These are the Sauter-like electric field, the so-called
T-constant electric field, and exponentially growing and
decaying strong electric fields in a slowly varying regime.
Defining the slowly varying regime in general terms, we
can observe the existence of universal forms for the time
evolution of vacuum effects caused by a strong electric
field. Such universality appears when the duration of the
external field is sufficiently large in comparison to the scale

Δtst ¼ ½eEðtÞ�−1=2. In this case the scale of the time varying
for an external field and leading contributions to vacuum
mean values are macroscopic. Here, we find universal
approximate representations for the total density of created
pairs and vacuum means of current density and EMT
components that hold true for an arbitrary t-electric
potential step slowly varying with time. These representa-
tions do not require knowledge of corresponding solutions
of the Dirac equation; they have a form of simple func-
tionals of a given slowly varying electric field. We establish
relations of these representations with leading term approx-
imations of derivative expansion results. In fact, it is the
possibility to adopt a locally constant field approximation
which makes an effect universal. These results allow one to
formulate some semiclassical approximations that are not
restricted by smallness of differential mean numbers of
created pairs. We have tested the obtained representations
in the cases of exactly solvable t-electric potential steps.
For time instants t close enough to the final time tout,
t → tout, the leading vacuum characteristics are formed due
to real pair production. One can say that we have isolated
global contributions that depend on the total history of an
electric field. Current density and EMT components of
created pairs for a T-constant electric field can be easily
extracted from the above-mentioned representations. In
such a way components of a Sauter-like field and expo-
nentially growing and decaying fields for t → tout are
obtained for the first time. All these densities are growing
functions of the increment of the longitudinal kinetic
momentum. However, their explicit forms differ, in par-
ticular, since switching on and off conditions of electric
fields are different. It should also be noted that a universal
behavior of the vacuum mean current and EMT compo-
nents was discovered for time intervals, inside of which the
electric field potential can be approximated by a potential
of a constant electric field. We see that for such time
intervals components of vacuum means of current density
and EMT can be divided into global and local contribu-
tions. Note that the global contributions depend on the
effective time duration of the electric field, Δt, and do not
depend on switching-off manner while the local contribu-
tions do not depend on the interval Δt and are functions of
slowly varying electric field, EðtÞ. The global contributions
define equations of state for the matter field, which is a
plasma of some kind of electron-positron excitations
created from vacuum. We show that local components of
vacuum mean EMT can be expressed via the one-loop
effective Euler-Heisenberg Lagrangian of the Dirac field
and satisfy an equation of state for electromagnetic field.
The reason for the universal behavior in the case under

consideration is the following: for total physical quantities
as current density and EMT of created pairs, a large
effective time of the field duration corresponds to a large
density of states that are occupied by created pairs if an
electric field is strong enough. One can guess that the
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universality under the question is associated with the big
state density that is a large parameter in the slowly varying
regime. Technically, we take into account only leading
terms with respect to these large parameter terms, whereas
oscillation terms are disregarded. In fact, using the approxi-
mation in question, we explicitly show that the pair creation
can be treated as a phase transition from the initial vacuum
to a plasma of electron-positron pairs.

ACKNOWLEDGMENTS

The work of S. P. G. and D.M. G. is supported by Tomsk
State University Competitiveness Improvement Program.
The reported study of S. P. G. and D.M. G. was partially
supported by Russian Foundation for Basic Research
(RFBR), research project no. 15-02-00293a. D.M. G. is also
supported by Grant No. 2016/03319-6, São Paulo Research
Foundation (Fundação de Amparo à Pesquisa do Estado de
São Paulo), and permanently by Conselho Nacional de
Desenvolvimento Cientíco e Tecnológico (CNPq).

APPENDIX: VACUUM INSTABILITY IN QED
WITH t-ELECTRIC POTENTIAL STEPS

The nonperturbative approach to the d ¼ Dþ 1-
dimensional model of Dirac fields interacting with strong
t-electric potential steps is based on the complete sets of
exact solutions of the Dirac equation. Potentials AμðxÞ,
x ¼ ðxμÞ ¼ ðx0 ¼ t; rÞ, r ¼ ðxiÞ of external electromag-
netic fields2 corresponding to t-electric potential steps are
defined as

A0 ¼ 0; AðtÞ ¼ ðA1 ¼ AxðtÞ; Al ¼ 0; l ¼ 2;…; DÞ;
AxðtÞ→t→�∞

Axð�∞Þ; ðA1Þ

where Axð�∞Þ are some constant quantities, and the time
derivative of the potential AxðtÞ does not change its
sign for any t ∈ R. For definiteness, it is supposed that
_AxðtÞ ≤ 0 ⇒ Axð−∞Þ > Axðþ∞Þ. We stress that homo-
geneous electric fields under consideration EðtÞ ¼
ðExðtÞ; 0;…; 0Þ are switched off as jtj → ∞, ExðtÞ ¼
− _AxðtÞ ¼ EðtÞ ≥ 0,EðtÞ→jtj→∞

0.
The Dirac equation reads

i∂tψðxÞ ¼ HðtÞψðxÞ; HðtÞ ¼ γ0ðγPþmÞ;
Px ¼ −i∂x − UðtÞ; P⊥ ¼ −i∇⊥; UðtÞ ¼ qAxðtÞ;

ðA2Þ

whereHðtÞ is the one-particle Dirac Hamiltonian, ψðxÞ is a
2½d=2�-component spinor, ½d=2� stands for the integer part of

d=2, m ≠ 0 is the electron mass, and the index ⊥ stands
for components of the momentum operator that are
perpendicular to the electric field. Here, γμ are the γ-
matrices in d dimensions [38]. The number of spin degrees
of freedom is JðdÞ ¼ 2½d=2�−1. We choose the electron as the
main particle with the charge q ¼ −e, where e > 0 is the
absolute value of the electron charge.
The quantization of the Dirac field in the background

under consideration is based on the existence of solutions
to the Dirac equation with special asymptotics as
t → �∞. For instance, we let the electric field be switched
on at tin and switched off at tout, so that the interaction
between the Dirac field and the electric field vanishes at
all time instants outside the interval t ∈ ðtin; toutÞ. We
choose that before time tin and after time tout the spinors
ψnðxÞ, n ¼ ðp; σÞ, are states with a definite momentum
p ¼ ðpx;p⊥Þ and spin polarization σ ¼ ðσ1; σ2;…;
σ½d=2�−1Þ, σs ¼ �1, and that they satisfy the following
eigenvalue problems:

HðtÞζψn
ðxÞ ¼ ζεnζψn

ðxÞ; t ∈ ð−∞; tin�; ζεn ¼ ζp0ðtinÞ;
HðtÞζψnðxÞ ¼ ζεn

ζψnðxÞ; t ∈ ½tout;þ∞Þ; ζεn ¼ ζp0ðtoutÞ;
p0ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½px −UðtÞ�2 þ π2⊥

q
; π⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

q
;

ðA3Þ
where the additional quantum number ζ ¼ � labels states,
respectively. In these asymptotic states, ζ ¼ þ corre-
sponds to free electrons and ζ ¼ − corresponds to free
positrons.
In what follows, we consider two complete sets ζψn

ðxÞ
and ζψnðxÞ of solutions of Dirac equation (A2) (in and out
solutions, respectively),

ζψn
ðxÞ ¼ ½i∂t þHðtÞ�γ0 exp ðiprÞζφn

ðtÞvχ;σ;
ζψnðxÞ ¼ ½i∂t þHðtÞ�γ0 exp ðiprÞζφnðtÞvχ;σ: ðA4Þ

Here vχ;σ is a set of constant orthonormalized spinors,
γ0γ1vχ;σ ¼ χvχ;σ , χ ¼ �1, v†χ;σvχ0;σ0 ¼ δχ;χ0δσ;σ0 . In dimen-
sions d > 3, one can subject the spinors vχ to some
supplementary conditions determining spin polarization
σs (in the dimensions d ¼ 2, 3 there are no spin degrees
of freedom that are described by the quantum numbers σ),
and, together with the additional index χ, provide a
convenient parametrization of the solutions. The scalar
functions ζφn

ðtÞ and ζφnðtÞ obey the second-order differ-
ential equation

�
d2

dt2
þ ½px −UðtÞ�2 þ π2⊥ − iχ _UðtÞ

	�
ζφn

ðtÞ
ζφnðtÞ

�
¼ 0:

ðA5Þ
In the asymptotic regions

2The greek indices span the Minkowski space-time,
μ ¼ 0; 1;…; D, and the latin indices span the Euclidean space,
l ¼ 1;…; D. We use the system of units where ℏ ¼ c ¼ 1.
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ζφn
ðtÞ ¼ ζN exp ½−iζεnðt − tinÞ�; t ∈ ð−∞; tin�;

ζφnðtÞ ¼ ζN exp ½−iζεnðt − toutÞ�; t ∈ ½tout;þ∞Þ;
ðA6Þ

where ζN ; ζN are normalization constants, and there exists
an energy gap between the electron and positron states. Since
χ is not a physical quantum number [the spin operator γ0γ1

does not commute with the Dirac Hamiltonian (A2) in the
case m ≠ 0], we select the same χ for each ζψn

ðxÞ and
ζψnðxÞ. Solutions (A4) are subject to the orthonormality
conditions [the standard volume regularization with a large
spatial box of volume Vðd−1Þ is used]. Then

ðζψn
; ζ0ψ

0
n0
Þ ¼ δn;n0δζ;ζ0 ; ðζψn; ζ

0
ψ 0
n0 Þ ¼ δn;n0δζ;ζ0 ;

ζN ¼ ½2p0ðtinÞqζinVðd−1Þ�−1=2;
ζN ¼ ½2p0ðtoutÞqζoutVðd−1Þ�−1=2 ðA7Þ

where qζin=out ¼ p0ðtin=outÞ − χζ½px −Uðtin=outÞ�. The inner

products ðζ0ψn0
; ζψnÞ are diagonal in quantum numbers n

and n0,

ðζ0ψn0
; ζψnÞ ¼ δn0;ngðζ0 jζÞ; gðζ0 jζÞ ¼ gðζ0 jζÞ�: ðA8Þ

The corresponding diagonal matrix elements g obey the
unitarity relations

X
ϰ

gðζjϰÞgðϰjζ0 Þ ¼
X
ϰ

gðζjϰÞgðϰjζ0 Þ ¼ δζ;ζ0 ðA9Þ

and relate in and out solutions fζψn
ðxÞg and fζψnðxÞg for

each n,

ζψnðxÞ ¼ gðþjζÞþψnðxÞ þ gð−jζÞ−ψnðxÞ;
ζψn

ðxÞ ¼ gðþjζÞþψnðxÞ þ gð−jζÞ−ψnðxÞ: ðA10Þ

Decomposing the Dirac operator Ψ̂ðxÞ in the complete
sets of in and out solutions [3,13],

Ψ̂ðxÞ ¼
X
n

½anðinÞþψnðxÞ þ b†nðinÞ−ψnðxÞ�

¼
X
n

½anðoutÞþψnðxÞ þ b†nðoutÞ−ψnðxÞ�; ðA11Þ

we introduce in and out creation and annihilation Fermi
operators. Their nonzero anticommutation relations are

½anðinÞ; a†mðinÞ�þ ¼ ½anðoutÞ; a†mðoutÞ�þ ¼ ½bnðinÞ; b†mðinÞ�þ
¼ ½bnðoutÞ; b†mðoutÞ�þ ¼ δnm: ðA12Þ

In these terms, the Heisenberg Hamiltonian is diagonalized
at t ≤ tin and t ≥ tout,

ĤðtÞ ¼
X
n

fþεnaþn ðinÞanðinÞ þ j−εnjbþn ðinÞbnðinÞg; t ≤ tin;

ĤðtÞ ¼
X
n

fþεnaþn ðoutÞanðoutÞ þ j−εnjbþn ðoutÞbnðoutÞg; t ≥ tout; ðA13Þ

where the diverging c-number parts have been omitted, as usual. The initial j0; ini and final j0; outi vacuum vectors, as well
as many-particle in and out states, are defined by

anðinÞj0; ini ¼ bnðinÞj0; ini ¼ 0; anðoutÞj0; outi ¼ bnðoutÞj0; outi ¼ 0;

jini ¼ bþn ðinÞ…aþn ðinÞ…j0; ini; jouti ¼ bþn ðoutÞ…aþn ðoutÞ…j0; outi: ðA14Þ
Using the charge operator one can see that a†n, an are the creation and annihilation operators of electrons, whereas b

†
n, bn are

the creation and annihilation operators of positrons.
Transition amplitudes in the Heisenberg representation have the form Min→out ¼ houtjini. In particular, the vacuum-to-

vacuum transition amplitude reads cv ¼ h0; outj0; ini. Relative probability amplitudes of particle scattering, pair creation,
and annihilation are

wðþjþÞn0n ¼ c−1v h0; outjan0 ðoutÞa†nðinÞj0; ini ¼ δn;n0wnðþjþÞ;
wð−j−Þn0n ¼ c−1v h0; outjbn0 ðoutÞb†nðinÞj0; ini ¼ δn;n0wnð−j−Þ;

wðþ − j0Þn0n ¼ c−1v h0; outjan0 ðoutÞbnðoutÞj0; ini ¼ δn;n0wnðþ − j0Þ;
wð0j −þÞnn0 ¼ c−1v h0; outjb†nðinÞa†n0 ðinÞj0; ini ¼ δn;n0wnð0j −þÞ: ðA15Þ
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The in and out operators are related by linear canonical transformations,

anðoutÞ ¼ gðþjþÞanðinÞ þ gðþj−Þb†nðinÞ; b†nðoutÞ ¼ gð−jþÞanðinÞ þ gð−j−Þb†nðinÞ:

These relations allow one to calculate the differential mean numbers of electrons Na
nðoutÞ and positrons Nb

nðoutÞ created
from the vacuum state as

Na
nðoutÞ ¼ h0; inja†nðoutÞanðoutÞj0; ini ¼ jgð−jþÞj2;

Nb
nðoutÞ ¼ h0; injb†nðoutÞbnðoutÞj0; ini ¼ jgðþj−Þj2; Ncr

n ¼ Nb
nðoutÞ ¼ Na

nðoutÞ:

By Ncr
n we denote the differential numbers of created pairs. Relative probabilities (A15), the vacuum-to-vacuum transition

amplitude cv, the probability for a vacuum to remain a vacuum Pv, and the total numberN of pairs created from vacuum can
be expressed via the distribution Ncr

n ,

jwnðþ − j0Þj2 ¼ Ncr
n ð1 − Ncr

n Þ−1; jwnð−j−Þj2 ¼ ð1 − Ncr
n Þ−1;

Pv ¼ jcvj2 ¼
Y
n

ð1 − Ncr
n Þ; Ncr ¼

X
n

Ncr
n ¼

X
n

jgð−jþÞj2: ðA16Þ

The vacuum mean electric current, energy, and momen-
tum are defined as integrals over the spatial volume. Due to
the translational invariance in the uniform external field, all
these mean values are proportional to the space volume.
Therefore, it is enough to calculate the vacuummean values
of the current density vector hjμðtÞi and of the energy-
momentum tensor (EMT) hTμνðtÞi, defined as

hjμðtÞi ¼ h0; injjμj0; ini; hTμνðtÞi ¼ h0; injTμνj0; ini:
ðA17Þ

Here we stress the time dependence of mean values (A17),
which does exist due to a time dependence of the external
field. We recall for further convenience the form of the
operators of the current density and the EMT of the
quantum Dirac field,

jμ ¼ q
2
½ ¯̂ΨðxÞ; γμΨ̂ðxÞ�; Tμν ¼

1

2
ðTcan

μν þ Tcan
νμ Þ;

Tcan
μν ¼ 1

4
f½ ¯̂ΨðxÞ; γμPνΨ̂ðxÞ� þ ½P�

ν
¯̂ΨðxÞ; γμΨ̂ðxÞ�g;

Pμ ¼ i∂μ − qAμðxÞ; ¯̂ΨðxÞ ¼ Ψ̂†ðxÞγ0: ðA18Þ

Note that the mean values (A17) depend on the definition
of the initial vacuum, j0; ini and on the evolution of the
electric field from the time tin of switching it on up to the
current time instant t, but they do not depend on the further
history of the system. The renormalized vacuum mean
values hjμðtÞi and hTμνðtÞi, tin < t < tout, are sources in
equations of motion for mean electromagnetic and metric
fields, respectively. In particular, complete description of
the backreaction is related to the calculation of these mean
values for any t.

Mean values and probability amplitudes are calculated
with the help of different kinds of propagators. The
probability amplitudes are calculated using Feynman dia-
grams with the causal (Feynman) propagator

Scðx; x0Þ ¼ ih0; outjT̂ Ψ̂ðxÞΨ̂†ðx0Þγ0j0; inic−1v ; ðA19Þ

where T̂ denotes the chronological ordering operation. A
perturbation theory (with respect to radiative processes)
uses the so-called in-in propagator Scinðx; x0Þ and the
Spðx; x0Þ propagator,

Scinðx; x0Þ ¼ ih0; injT̂ Ψ̂ðxÞΨ̂†ðx0Þγ0j0; ini;
Spðx; x0Þ ¼ Scinðx; x0Þ − Scðx; x0Þ: ðA20Þ

All of the above propagators can be expressed via the in
and out solution as follows:

Scðx; x0Þ ¼ i

8<
:

P
n

þψnðxÞωnðþjþÞþψ̄nðx0Þ; t > t0

−
P
n

−ψnðxÞωnð−j−Þ−ψ̄nðx0Þ; t < t0
;

ðA21Þ

Scinðx; x0Þ ¼ i

8<
:

P
n

þψnðxÞþψ̄nðx0Þ; t > t0

−
P
n

−ψnðxÞ−ψ̄nðx0Þ; t < t0
;

Spðx; x0Þ ¼ −i
X
n

−ψnðxÞwnð0j −þÞþψ̄nðx0Þ: ðA22Þ

The mean values of the operator (A18) are expressed via
the latter propagators as
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hjμðtÞi ¼ RehjμðtÞic þ RehjμðtÞip; hjμðtÞic;p ¼ iqtr½γμSc;pðx; x0Þ�jx¼x0 ;

hTμνðtÞi ¼ RehTμνðtÞic þ RehTμνðtÞip; hTμνðtÞic;p ¼ itr½AμνSc;pðx; x0Þ�jx¼x0 ;

Aμν ¼ 1=4½γμðPν þ P0�
ν Þ þ γνðPμ þ P0�

μ Þ�: ðA23Þ

Here tr stands for the trace in the γ-matrices indices and the limit x → x0 is understood as follows:

tr½Rðx; x0Þ�x¼x0 ¼
1

2
½limt→t0−0tr½Rðx; x0Þ� þ limt→t0þ0tr½Rðx; x0Þ��x¼x0 ;

where Rðx; x0Þ is any two-point matrix function.
The function Spðx; yÞ vanishes in the case of a stable vacuum. In this case and only in this case

hjμðtÞi ¼ RehjμðtÞic; hTμνðtÞi ¼ RehTμνðtÞic.
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