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We show that for values of masses of the gluino and stop favored by “naturalness,” the top quark
produced in the decay ~g → t~t1 can be polarized. This polarization depends only on the mixing in the stop

sector as opposed to that of the top quark produced in decays ~t → t~χ0i , ~b → t~χ−i . In both the cases the
polarization constructed through the distribution of top decay products in the laboratory frame, is different
from the top polarization predicted in the rest frame of the mother particle (gluino/stop), which depends on
the SUSY parameters as mentioned above. Here, we propose an estimator of lab frame top quark
polarization, starting from the rest frame polarization of the top. This estimator depends only on the
magnitude of velocity of the mother particle and assumes a narrow width for the mother particle. With a
Monte-Carlo simulation of the full production and decay chain we establish our estimator to be accurate
within 1% and the computation is a much simpler exercise compared to calculating from first principle. We
also study effects of finite width of the mother particle using a suitably modified estimator and find it most
useful for stop-quarks decays.
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I. INTRODUCTION

The top quark is the heaviest known fundamental particle
of the standard model (SM). The LHC produces top quarks
copiously, enabling a precision study of its properties [1–6].
The importance of the studies of the top quark’s properties
lies not only in the validation of the SM in the top sector but
also in probing effects of any possible new physics (NP).
Since the mass of the top quark is close to the EW
symmetry breaking scale, it is expected to play an impor-
tant role in the electroweak symmetry breaking [7,8]. One
of the important properties of the top quark is that it decays
before hadronization sets in. This property makes it
possible to obtain information on top spin through the
kinematic distributions of the decay products [9–11].
The polarization of the produced top quark is determined

by the production mechanism and hence varies from
process to process. For example, the polarization of the
top in the tt̄ production process is negligible due to the
parity conserving nature of the strong interaction—a purely
vector interaction. The top polarization in tt̄ production is
about 0.4% for 14 TeV LHC, at NLO in QCD with 1-loop
weak and QED corrections. This is the value in the so called
helicity basis where the spin quantization axis is along the
direction of motion of the top [12]. On the other hand, the

weak interaction mediated top production process, the
single top production, produces highly polarized top quarks
due to the V − A nature of the interaction. For example, in
the spectator basis, where the top spin quantization direc-
tion is taken along the direction of the light quark jet that
scatters away from the top quark, the single top production
process produces a top polarization of about −0.99 [13,14],
at leading order. In the helicity basis, in the center of mass
frame of the top quark and the spectator jet, the single top
polarization is about 0.99, at leading order [13,14].
Polarized top quarks can also be produced in processes
of various beyond the standard model (BSM) scenarios,
such as, minimal supersymmetric standard model (MSSM)
[15–19], R-parity violating MSSM [20,21], warped extra
dimensions [22,23], little Higgs [24] etc. Any new physics
affecting the top production and which is chiral in nature
can affect the polarization of the top. Hence, top polari-
zation can be used as a signature of new physics in the top
production [17,18,23–37].
After the LHC discovery of a light Higgs with SM-like

couplings and a mass about 125 GeV [38,39], questions on
the naturalness in the Higgs sector of the SM have become
urgent. Given the light Higgs mass of 125 GeV, models
within the framework of MSSM, typically require a large
stop mixing, stop mass eigenstates with masses ∼1 TeV,
and a heavy gluino [40–42]. However, Higgs sector can be
also natural and be consistent with the observation of a light
Higgs, in models where one of the two stop mass
eigenstates is light (0.5–1.0 TeV) and the other one is
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heavy (∼1.0 TeV) [43–45]. When one of the stop mass
eigenstates is light and when gluinos are not too heavy so
that their production cross section remains accessible at the
LHC, the corresponding model parameters can be probed at
the LHC through the polarization of top quarks produced in
their decays. The top quark produced in the decay of a
gluino or a stop is expected to be polarized because of the
chiral nature of its coupling with the gluino or the stop,
since the mass eigenstate ~t1 (say) is an arbitrary mixture of
~tL and ~tR and the neutralino ~χ01 is an arbitrary mixture of
Higgsino and gaugino.
In the decays of a gluino where a top is produced,

~g → ~t�1t and ~g → ~t�2t, the polarization of the top produced is
a direct measure of the stop mixing angles, as we shall show
in Sec. II. On the other hand, when the top is produced from
the decay of a stop, the top polarization in the stop rest
frame depends not only on the stop mixing angle but also
on gaugino and Higgsino content of the neutralino
[15,18,46,47]. Hence, it is interesting to calculate top
polarization in gluino decays though the cross sections
may be smaller as the limits on gluino masses have already
touched ∼TeV. The stop decays, on the other hand, can
have higher cross sections as the LHC data allows them to
be much lighter compared to a gluino, though the top
polarization now depends additionally on parameters such
as mixing in the neutralino sector. Hence, we consider in
this work both the decays and calculate in each case the top
polarization as a function of model parameters.
Just as in MSSM, in many of the BSM scenarios

mentioned above, the top quark can be produced through
the decays of some heavy particle postulated therein
[15,17–19]. In these cases as well, the top polarization is
determined in the rest frame of the mother particle by
dynamical parameters of the interactions that are respon-
sible for the decay of the mother particle and is given by a
simple analytical expression. However, in the frame where
the top polarization is measured, laboratory frame (say), the
decaying mother particle is not at rest, in general.1 Since the
top helicity states are not invariant under arbitrary Lorentz
transformations the top polarization measured in the
laboratory (lab) frame is not the same as the one given
in the rest frame of the mother particle. The two values are
related by a kinematical factor which, in general, would
depend on the direction and magnitude of the Lorentz boost
required to reach the lab frame (or any frame where the
mother particle is moving) from the rest frame of the
mother particle. In this work we determine the kinematic
factor and provide its explicit analytical expression,

assuming that the mother particle is unpolarized and has
a narrow width. In MSSM, examples of processes where
the top is produced through the decay of another particle
include: pp → ~g ~g → ~gt~t�1, and pp → ~t�1~t1 → ~t�1t~χ

0
1.

Although we have given examples from MSSM, our
technique can be applied to any process of the form:

pp → Aþ A → Aþ ðtþ BÞ ð1Þ

where A is the heavy particle which decays2 as A → tþ B.
For this class of processes, we provide an estimator of top
polarization Pestimator which can give an estimate of top
polarization without simulating the heavy particle decay
and using simply the kinematical distribution of the mother
particle A. This estimator can be written as a convolution of
the top polarization in the rest frame of the mother particle
which is determined by the kinematic and dynamical
factors mentioned above, and the velocity distribution of
the mother particle in that frame. Since the velocity
distribution of the mother particle is determined by the
(parton distribution function) PDF factors of the pp
collision, this estimate of the top polarization can be
understood as a weighted average of top polarization over
the entire sample of events.

Pestimator ≡ 1

σAA

Z
dσAA
dβA

PðβAÞ: ð2Þ

Here, σAA is the cross section for the pair production of A in
the process: pp → AĀ and βA is the velocity of A in the
given frame. In the following discussions we choose this
frame to be either the lab frame or the parton center of mass
(PCM) frame. We find that PðβAÞ in any such chosen
boosted frame depends not on the direction of emission of
the unpolarized mother particle A in that frame but only the
magnitude of its velocity. We find that the estimator gives a
good approximation of the true value of top polarization
when the events are dominated by events where the mother
particle is on-shell. When the sample of events is domi-
nated by off-shell decays of the mother, a good estimation
of top polarization can be obtained, in the case of scalar
mother, by assuming that the mass of the mother is
distributed as Breit-Wigner distribution. We find that this
does not work very well for the case of spin-1=2 mother
particle and we explain the reason behind it.
This paper is organized as follows. Section II discusses

the evaluation of top polarization in the rest frames of a
gluino and a stop respectively. Section III describes the
formalism of our work and a derivation of our main result.
Section IV describes the procedure to obtain the top
polarization at the level of pp collisions. In Sec. V we

1Measurement of top polarization in the laboratory frame has
the advantage that it does not require the reconstruction of the rest
frame of the top quark. An estimation of top polarization that
would be observed in the laboratory frame is useful in the
construction of appropriate top spin observables. Our work
illustrates some of the important issues in the estimation of
lab frame top polarization.

2We mostly assume that the unstable particle A has a narrow
width i.e., ΓA=MA ≪ 1 and also that the masses of A, B, t are
widely separated, but later generalize to the case where the
narrow width approximation is lifted for the particle A.
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describe the numerical work with which we validate our
analytical result. We conclude in Sec. VI and present some
of the calculational details in the Appendix.

II. TOP POLARIZATION IN THE REST FRAME OF
THE DECAYING PARTICLE

A. Gluino decay

The gluino decay mode of interest are the ones involving
the top quark: ~g → t~t�1 and ~g → t~t�2. Here ~t1 and ~t2 are the
lighter and the heavier of stop mass eigenstates, respec-
tively. The interaction of a top, a gluino and a stop mass
eigenstate depends only on the stop mixing angle θ~t, when
mixing with first two generations is neglected. The stop
mixing angle relates the two mass eigenstates of the stop
(~t1, ~t2) to their interaction eigenstates ~tL and ~tR:

~t1 ¼ cos θ~t~tL þ sin θ~t~tR;

~t2 ¼ − sin θ~t~tL þ cos θ~t~tR: ð3Þ

The interaction of the stop with the gluino and the top is
given by the following Lagrangian, again in the approxi-
mation that there is no flavor-mixing between the first two
generations and the third generation:

L~t ~g t ¼ −
ffiffiffi
2

p
g3ft̄½W3iPR −W6iPL�Ta ~ga~tig þ H:c: ð4Þ

In the above expression, g3 denotes the strong coupling
constant, i ¼ 3, 6 the stop mass eigenstates ð~t1; ~t2Þ,
a ¼ 1;…8 the adjoint SUð3Þc indices and PL, PR the
chirality projecting operators. The color indices of the top
and the stop mass eigenstates have been suppressed. The
sfermion mixing matrix is denoted byW and its elements are

W33 ¼ W66 ¼ cos θ~t; W36 ¼ −W63 ¼ sin θ~t ð5Þ

where θ~t is the stop mixing angle. To derive the expression
for top polarization in the gluino rest frame, one begins by
writing down the amplitude for the process and evaluating
the partial width Γλ of the gluino decaying into a stop and a
top with a helicity λ. Then the top polarization in the gluino
rest frame is given by the formula:

P0 ¼
Γþ − Γ−

Γþ þ Γ− : ð6Þ

The amplitude for the gluino decay ~g → t~t�1 is as follows:

Mð~g → ~t1tÞ ¼ −
ffiffiffi
2

p
g3Ta

× ūðpt; λtÞðcos θ~tPR − sin θ~tPLÞuðp~g; λ~gÞ
ð7Þ

where λt and λ~g denote the helicities of the top, and the
gluino, respectively and ta is the color factor. Squaring the

amplitude and taking average over helicities and color
indices of initial state particles and summing over the color
indices of the top and the stop, we get

Γλ ∝
g23
6
½ðm2

~g −m2
~t þm2

t − 2m~gmt sin 2θ~tÞ
−2λ cos 2θ~tK1=2ðm2

~g; m
2
~t ; m

2
t Þ�: ð8Þ

In the above expression, Kðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy−
2yz − 2zx. Introducing the notation ξt ¼ m2

t =m2
~g and

ξ~t1 ¼ m2
~t1
=m2

~g, we get

P0 ¼
−K1=2ð1; ξt; ξ~t1Þ cos 2θ~t

1 − ξ~t1 þ ξt − 2
ffiffiffiffi
ξt

p
sin 2θ~t

: ð9Þ

This choice of using top helicity states for spin states
corresponds to the so-called helicity basis for the top
polarization. We use this basis throughout this work.

B. Stop decay

The stop can decay in a number of modes, e.g., ~t1 → ~χ0i t,
and ~t1 → ~χþi b etc. We consider the decays where a top
quark is produced: ~t1 → t~χ0i and ~t2 → t~χ0i (i ¼ 1;…; 4).
The vertex corresponding to the decay of a stop mass
eigenstate, ~t1;2 → t~χ01, is given by the following
Lagrangian,

L~t~χ0t ¼ ~χ01½GLPL þ GRPR�~t†1tþ H:c: ð10Þ

The GL and GR in the above equation are as follows:

GL ¼ −
g2ffiffiffi
2

p
�
N12 þ

1

3
tan θWN11

�
cos θ~t − YtN14 sin θ~t

GR ¼ −YtN�
14 cos θ~t þ g2

�
2
ffiffiffi
2

p

3
tan θWN11 sin θ~t

�
ð11Þ

where g2 and Yt are the SUð2ÞL and top Yukawa couplings,
respectively, and θW is the Weak mixing angle. Nij,
(i; j ¼ 1;…; 4) in the above equation are the elements of
the 4 × 4 neutralino mixing matrix. Note that the top quark
is in the final state. This means that GL and GR correspond
to the couplings of left and right chiral top quarks,
respectively. The neutralino mixing matrix is the diagonal-
izing matrix of the mass matrix of the neutral gauginos (the
bino, the wino) and the neutral Higgsinos.
The expression for polarization of top quark produced in

the process ~t1 → t~χ01, evaluated in the stop rest frame is
given in [15,18,19,46,47]. We sketch the derivation of
expression for top polarization in the stop rest frame for
sake of completeness. The amplitude for the stop decay
~t1 → t~χ01 is given by:
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Mð~t1 → t~χ01Þ ¼ ūðpt; λtÞ½GLPR þ GRPL�vðp~χ ; λ~χÞ: ð12Þ

Computing Γ�, the partial width of the stop decaying into a
neutralino and a top with a helicity λ ¼ � and using the
expression Eq. (6), we get the required expression for the
top polarization in stop rest frame as:

P0 ¼
ðjGRj2 − jGLj2ÞK1=2ð1; ηt; η~χÞ

ðjGRj2 þ jGLj2Þð1 − ηt − η~χÞ − 4
ffiffiffiffiffiffiffiffi
ηtη~χ

p ReðGLGR�Þ
ð13Þ

where ηt ¼ m2
t =m2

~t1
and η~χ ¼ m2

~χ0
1

=m2
~t1
.

C. Polarization and mixing angles

Discussions of using polarization of the top quark
produced in stop/sbottom decays ~t1 → t~χ01 and ~bi → t~χ−j
(i, j ¼ 1, 2) to probe the mixing angle in the stop/
sbottom sector exist in literature (see, for example,
Refs. [15,17,48,49]). But, as one can easily see from
Eq. (9), top polarization in the gluino decays can probe
the mixing angle in the stop sector irrespective of the
mixing in the neutralino sector, given a value of
Δm~g ¼ m~g −m~t1 . This is possible only when there is a
large mass difference between ~t1 and ~t2. This can be seen as
follows. Equation (9) gives the expression for the top
polarization that is produced along with ~t1 in the gluino
decay. The corresponding expression for top polarization in
the case of ~g → ~t2t can be obtained by the following
interchange: sinθ~t → cosθ~t, cosθ~t→−sinθ~t and m~t1→m~t2 .
This means that cos2θ~t→−cos2θ~t and sin 2θ~t → − sin 2θ~t
which changes the sign of the top polarization. If we count
the tops from both ~g → ~t1t and ~g → ~t2t and if both stops are
degenerate we get unpolarized tops. But, if there is a large
mass difference between the two stops the net top polari-
zation can be nonzero. When models in MSSM with a
natural Higgs sector are realized in Nature, we expect a
large mass difference between the two stop mass eigen-
states, as mentioned before. If we assume that the heavy
stop ~t2 is heavier than the gluino the tops can be polarized
and this is the scenario which we focus on in this paper. In
the case of stop decay, we consider decays of only light stop
mass eigenstate ~t1 since it can be accessible at colliders and
partly because we focus on scenarios where the Higgs
sector is natural. Hence, we study polarization of the top
produced in the decay of a gluino into a top and ~t1, for a few
benchmark points. We also assume that the neutralino
produced in the stop decay is the lightest of the four
neutralino states. The benchmark points used for numerical
simulations are listed in Table I and corresponding top
polarizations are listed in Tables II and III for reference.
Here we have listed the rest frame polarization P0 along
with the lab frame value PMC obtained using full Monte-
Carlo simulations. The lab frame values are usually reduced

in magnitude due to change of quantization basis, as will be
discussed in the next section. The proposed polarization
estimators with narrow-width-approximation (PNW) and
with Breit-Wigner folding (PBW), which can be directly
compared to PMC, are also listed in Tables II and III for
comparisons and will be discussed in latter sections.

III. GENERAL FORMALISM

The cross section for the process in Eq. (1) can be
written as

σ ¼
X
q1;q2

Z
dx1dx2fq1=pðx1Þfq2=pðx2Þ

× σ̂ðq1q2 → AA → Aþ tþ BÞ ð14Þ

TABLE I. The benchmark points used in this work. Masses and
widths of the particles are given in GeV.

Parameter BP1 BP2 BP3

m~g 2290 2291 608
m~χ0

1
248 248 97

m~t1 498 493 400
Γ~g 235 203 5.5
Γ~t1 2.4 6.0 2.0
sin θ~t 0.0644 0.9979 0.8327
cos θ~t 0.9979 0.0642 0.5536
N11 0.0953 −0.0988 0.9863
N12 −0.0637 0.0619 −0.0531
N14 −0.6939 0.6937 −0.0531
yt 0.8507 0.8508 0.8928

TABLE II. List of top polarization in gluino decay at
ffiffiffi
s

p ¼
13 TeV LHC calculated for three benchmark in gluino rest frame
P0, in the lab frame PMC and using estimators PNW and PBW (see
Secs. VI and V). The benchmark points BP1, BP2, and BP3 are
given in Table I.

Benchmark → BP1 BP2 BP3

P0 −1.00 þ1.00 þ0.98
PMC −0.99 þ0.99 þ0.51
PNW −1.00 þ1.00 þ0.50
PBW −0.98 þ0.98 þ0.51

TABLE III. List of top polarization in stop decay at
ffiffiffi
s

p ¼
13 TeV LHC. Rest of the details are same as in Table II.

Benchmark → BP1 BP2 BP3

P0 þ0.92 −0.93 þ0.97
PMC þ0.61 −0.60 þ0.65
PNW þ0.61 −0.60 þ0.65
PBW þ0.61 −0.60 þ0.65
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where the sum extends over all the parton flavors, q1
and q2.
Since the top quark also decays, we can access its

polarization through angular distribution of its decay prod-
ucts in the rest frame of the top quark. In the semileptonic
decay of the top quark, the direction ofmotion of the charged
lepton is 100%correlatedwith the toppolarization, at leading
order. In the top rest frame, we have:

1

Γ
dΓ

d cos θl
¼ 1

2
ð1þ P0αl cos θlÞ: ð15Þ

The coefficient α in the above equation is called the spin
analyzing power and it is maximal for the charged lepton
(αl ¼ 1 at theLOof the SM). Thevalue ofP0 depends on the
choice of quantization axis of the top quark.
When the top spin quantization axis taken as its direction

of motion in the rest frame of the gluino or the stop, the
value of P0 is given by Eqs. (9) and (13) respectively.
The full amplitude of the process under consideration is

given by the following expression:

M ∼M0ðp1p2 → AAÞα
�

pA þmA

ðp2
A −m2

AÞ þ imAΓA

�
α0α

×M0ðA → tBÞβα0
�

pt þmt

ðp2
t −m2

t Þ þ imtΓt

�
β0β

×M0ðt → bl̄νÞβ0 ð16Þ

where the prime indicates that the amplitudes do not have
their external fermion wave functions which are part of the
propagators, the Greek indices denote the components of
Dirac matrices and repeated indices are summed over.
Squaring the amplitude and summing/averaging over the
spins and color indices of the external states (which are
suppressed in these expressions) gives the propagator
factors of the form

1

ðp2
A −m2

AÞ2 þm2
AΓ2

A
: ð17Þ

When the width of a particle is much smaller than its mass,
the narrow width approximation (NWA) can be used which
consists of the following replacement for the propagators:

1

ðp2 −m2
AÞ2 þ Γ2

Am
2
A
→

π

mAΓa
δðp2 −m2

AÞθðp0Þ: ð18Þ

Similar replacements can be made for all the other
intermediate particles, including the top quark. Under this
approximation, the production of a particle and its decay
are separated as factors with spin-correlations. This is made
possible, in the narrow width approximation, because of the
following relation for the numerator of a propagator (for a
spin-1=2 particle)

pþm ¼
X
λ

uðp; λÞūðp; λÞ ð19Þ

where λ denotes the helicity state of the particle, defined
with respect to the momentum p (its spin quantization
axis). Using this relation in the numerator of Eq. (16),
we get,

Mnum ∼
X
λA;λt

ūðpA; λAÞM0numðp1p2 → AAÞ

× ūðpt; λtÞM0numðA → tBÞuðpA; λAÞ
×M0numðt → bl̄νÞuðpt; λtÞ ð20Þ

¼
X
λA;λt

Mnumðp1p2 → AAÞλAMnumðA → tBÞλA;λt

×Mnumðt → bl̄νÞλt : ð21Þ

Squaring the amplitude M and performing the replace-
ments of Eq. (18), in the case of gluino (A ¼ ~g), we get

σ̂ðŝÞ ¼
Z

dΩ
X
fλg

�
dσ̂ ~g ~g

dΩ

�
λ~gλ~g

0

�
dΓ~g

Γ~g

�
λ~gλ~g

0

λtλ
0
t

�
dΓt

Γt

�
λtλ

0
t

ð22Þ

at the parton level. Similar parton level calculations in the
case of stop yields a simpler expression, given as:

σ̂ðŝÞ ¼
Z

dΩ
X
fλg

dσ̂~t ~t
dΩ

�
dΓ~t

Γ~t

�
λtλ

0
t

�
dΓt

Γt

�
λtλ

0
t

: ð23Þ

In these expressions, the parton level differential cross-
section (density matrix) for the pair production of gluinos is
denoted by ðdσ̂ ~g ~g=dΩÞλ~gλ~g 0. The spin indices (helicities, in

our case) of all other intermediate particles are summed
over.
When the gluino is unpolarized, as it would be in the case

of QCD production, the production cross-section (density
matrix) for gluino pairs [see Eq. (22)] can be written as
ðdσ̂ ~g ~g=dΩÞλ~g;λ0~g ¼ ðdσ̂ ~g ~g=dΩÞðδλ~gλ

0
~g=2Þ where λ~g, λ0~g are the

helicity states of the intermediate gluino. On summing over
gluino helicities, the differential cross-section of gluino pair
production becomes a multiplicative factor in just the same
way as dσ̂~t ~t=dΩ does in the case of stop decay [Eq. (23)].
We emphasize here that the helicities are defined in the
frame in which the top polarization needs to be defined. We
first take the frame in which Eq. (22) and Eq. (23) are
defined to be the corresponding parton center of mass
(PCM) frame3 This frame can be reached from the top rest
frame in two ways: (i) a direct Lorentz boost along the

3However, our method can be applied to any frame which is
obtained by applying a single boost on the rest frame of the
mother particle.
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direction of top in the PCM frame, (ii) a Lorentz boost to
the rest frame of the mother particle along the direction of
top momentum in that frame followed by a Lorentz
transformation to the PCM frame which is, in general,
not in the direction of top momentum. As a result, the
helicity states of the top in the two cases are not identical.
This affects the value of top polarization measured in the
PCM frame. It turns out that the helicity states of the top in
the latter case can be written as a rotation of the helicity
states defined in the PCM frame. Note that this procedure is
also applicable to the calculation of top polarization in the
lab frame. However, the top polarization in lab frame can be
obtained without going through the parton center of mass
frame, as will be discussed in Sec. IV.

A. Helicity and Lorentz boosts

As mentioned before, the helicity of a particle is not
invariant under Lorentz boosts in general. The helicity state
jp; λi transforms under a Lorentz boost as

jp; λi ¼ Rλλ0 jp0; λ0i ð24Þ
where jp0; λ0i is the helicity state of the particle after the
Lorentz boost has been applied [50]. The helicity states jp; λi
are constructed from the eigenstates of spin in the rest
frame of the particle by a series of transformations:
jp; λi ¼ RzðϕÞRyðθÞΛzðβÞjm; sz ¼ λi, where θ, ϕ and β
are the angles and the velocity of the particle. With this
convention for helicity states, the coefficientsRλ;λ0 in Eq. (24)
can be given in the following form of a rotation matrix

R ¼ Rzð−χÞRyð−ωÞ ð25Þ
where χ andω are some angleswhichdependon the direction
and magnitude of the Lorentz boost applied on jp; λi.
Expressions for χ and ω are given in the Appendix.

B. Gluino decay

In the rest frame of the gluino4 which decays into a top, the
differential decaywidthwhich appears in Eq. (22) is given by

Z �
dΓ~g

Γ~g

�
λλ0

¼ mg

64π2Γ~g

4παS
9

Z
d cos θ ~gtdϕ

~g
t

×

�
δλλ0

�
1

2
ð1 − ξ~t þ ξtÞ −

ffiffiffiffi
ξt

p
sin 2θ~t

�

− cos 2θ~t
ffiffiffiffi
ξt

p
βγσ3λλ0

�
: ð26Þ

ξt, ξ~t1 have been defined in Sec. II. The velocity of the top in
the above equation is givenbyβ¼K1=2ð1;ξt;ξ~t1Þ=ð1−ξ~t1þξtÞ
and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
. The helicity states of the top quark λ, λ0

in the above equation are defined with respect to the top
momentum in the gluino rest frame. For top decaying in the
semileptonic channel t → bl̄ν (with narrow width approxi-
mation for the top as well as the W boson) the differential
decay width is given by

Z
dΓt

Γt
¼
Z

dxldΩl
G2

Fm
5
t xlð1 − xlÞ

64π3Γ̄WrtΓt
ðδλλ0 þ p̂l · ~σλλ0 Þ

ð27Þ

where rt ¼ m2
t =m2

W , Γ̄W ¼ ΓW=mW , xl ¼ 2El=mt with
1=rt ≤ xl ≤ 1. Thedirectionof themomentumof the charged
lepton fromdecayof the top, in the top rest frame, is denoted in
the above equation as p̂l. Hence,

dΓ~g

Γ~g

PCM
¼ R

�
dΓ~g

Γ~g

�
R†; ð28Þ

and

dΓt

Γt

PCM ¼ dΓt

Γt
: ð29Þ

The rotation matrix R in Eq. (28) is given in Eq. (25).
Substituting the expressions for the differential decay widths
for ~g → t~t�1 and t → bl̄ν from Eqs. (26), (27), we get

dσ̂
dxld cos θtldϕtl

∝
Z

dσ̂ ~g ~g

dΩ~g
½1þ P0 cosω cos θtl

− P0 sinω sin θtl cosðϕtl þ χÞ�
× xlð1 − xlÞdΩgdΩ

~g
t : ð30Þ

where σ̂ is the cross section for the full parton level process
q1q2 → ~g ~g → ~g~t�1bl̄ν, P0 is the value of top polarization in
the rest frame of the gluino.
Let Iðβ̄ðŝÞÞ ¼ 1

2

R
cosωd cos θ ~gt . Integrating Eq. (30) over

all variables except θtl, we get

dσ̂
d cos θtl

¼ σ̂ ~g ~gðŝÞBð~g → t~t�1ÞBðt → bl̄νÞ

×
1

2
ð1þ P0Iðβ̄Þ cos θtlÞ ð31Þ

where σ̂ ~g ~gðŝÞ denotes the parton level cross-section for pair
production of gluinos. Note that the angle χ drops out of
Eq. (31). The coefficient of cos θtl can be interpreted as the
polarization of the top as given by the lepton angular
distribution in the top rest frame.
The helicity rotation angle ω is independent of the

direction of motion of the gluino in the parton center of

4We have taken z-axis of the lab frame coordinate system
along one of the beam directions and the x-axis in a plane
containing the top momentum and the beam axis and the y- axis
along the normal to this plane. The azimuthal angle of the top, in
the parton center of mass frame and in the lab frame ϕ ¼ 0, due to
this choice of the coordinate system. All the angles that have been
mentioned so far correspond to this coordinate system.
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mass frame (see Appendix), so is the polarization of the top.
The expressions for Iðβ̄Þ are as follows:

Iðβ̄Þ¼ 1

2β2β̄

�
2β̄− ð1−β2Þ log

�
1þ β̄

1− β̄

��
ðβ> β̄Þ

¼ 1

2β2β̄

�
2β− ð1−β2Þ log

�
1þβ

1−β

��
ðβ< β̄Þ ð32Þ

Substituting the value of top velocity β in the gluino rest
frame, we get the following expression which is valid for
both cases, viz., β > β̄ and β < β̄:

Pðβ̄Þ ¼ Iðβ̄ÞP0

¼ P0

2β̄K
× ½ð1 − ξ~t1 þ ξtÞððK1=2 þ β̄ð1 − ξ~t1 þ ξtÞÞ

− jK1=2 − β̄ð1 − ξ~t1 þ ξtÞjÞ

− 4ξt log

�
Δ1 þ K1=2 þ β̄ð1 − ξ~t1 þ ξtÞ
Δ2 þ jK1=2 − β̄ð1 − ξ~t1 þ ξtÞj

��
ð33Þ

where, K≡Kð1;ξ~t1 ;ξtÞ and Δ1;2¼ð1−ξ~t1þξtÞð1�ββ̄Þ¼
ð1−ξ~t1þξtÞ�β̄K1=2ð1;ξ~t1 ;ξtÞ. This expression can also be
written as

Pðβ̄Þ ¼ P0

2β̄K

2
64ð1 − ξ~t1 þ ξtÞ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4ð1 − β̄2Þξt
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2 − 4ð1 − β̄2Þξt
q �

− 4ξt log

0
B@Δ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4ð1 − β̄2Þξt
q

Δ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2 − 4ð1 − β̄2Þξt
q

1
CA
3
75: ð34Þ

C. Stop decay

Analogous to Eq. (34), the expression for polarization of
the top, in the PCM frame where the mother stop is moving
with a velocity β̄ is the following:

Pðβ̄Þ ¼ P0

2β̄K

�
ð1þ ηt − η~χÞ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4ð1 − β̄2Þηt
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2 − 4ð1 − β̄2Þηt
q �

− 4ηt log

 
Δ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4ð1 − β̄2Þηt
q

Δ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2 − 4ð1 − β̄2Þηt
q

!�
ð35Þ

where Δ1;2 ¼ 1þ ηt − η~χ � β̄K1=2ð1; ηt; η~χÞ. Equations (9)
and (13) show that P0 is a function of Δm~g=~t1 and the

mixing angle θ~t. Thus, P depends not only on β̄ but also on
the mass difference and the mixing angle. Figures 1 and 2
show P as a function of Δm~g=~t for different choices of θ~t
and β̄. In the stop case, the neutralino is assumed to be
binolike with N11 ≈ 1, N12, N14 ≈ 0.
The function Iðβ̄Þ for small values ofΔm~g=~t, i.e. for small

values of β (velocity of the top in the rest frame of the
mother particle) varies as β=β̄ according to Eq. (32). For
large values of Δm~g=~t such that β > β̄, Iðβ̄Þ goes as 1=β2
which remains close to unity. Hence, Iðβ̄Þ in these cases
changes rapidly as a function of Δm~g=~t and approaches its
limiting value asymptotically as Δm~g=~t increases further
toward large values. This explains the rapid rise of the
magnitude of top polarization with increasing Δm for
θ~t ¼ π=2 and θ~t ¼ 0, in the case of gluino decay. The
case of stop decay is also qualitatively similar, as seen
from Fig. 2.
Figure 3 (Fig. 4) shows the top polarization as a function of

the velocity of the gluino (stop) β̄ for different choices of θ~t
andΔm~g ¼ m~g −m~t1 (Δm~t ¼ m~t1 −m~χ1). FromEq. (32)we

FIG. 1. The top polarization as a function of Δm~g ¼ m~g −m~t1 ,
for two different values of the velocity of gluino: β̄ ¼ 0.0 (top)
and β̄ ¼ 0.95 (bottom).
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can see that the function Iðβ̄Þ remains independent of β̄ for
small values of β̄ (Iðβ̄Þ ∝ 1=β2½1 − ð1 − β2Þð1þOðβ̄2ÞÞ�)
and falls as 1=β̄ for large values of β̄ (> β). This can be seen
clearly from Fig. 3 and Fig. 4. These figures also show that
the value of Δm~g=~t determines the value of β̄ at which the
function Iðβ̄Þ and hence the top polarization Pðβ̄Þ starts to
fall as 1=β̄.
Some of the previous works [17–19] have pointed out the

need to consider the effects of kinematics on the top
polarization when it is measured in the lab frame, in cases
where the top is produced in the decays of heavy SUSY
particles. But our work is new in the sense that we have
given explicit expressions for the top polarization in the
case of gluino decay which has not been considered in the
literature so far. Although Ref. [19] has outlined the method
of obtaining the top polarization when the top is produced
in the decays of other particles, we feel that a detailed
derivation of the expression for top polarization would
serve to clarify the issues such as the absence of

dependence of top polarization on the direction of motion
of the decaying particle.

IV. TOP POLARIZATION IN pp COLLISIONS

Note that Eqs. (34) and (35) are at parton level. The
polarization of the top at the level of pp collisions can be
obtained by convoluting Eq. (34) and Eq. (35) with the
parton distribution functions of the proton. In the case of
gluino decay, this gives the top polarization PNW in the pp
collision as a weighted average over the parton center of
mass frame velocities of the gluino (similar expressions
hold for the case of stop decay):

PNW ¼ 1

σ ~g ~g

X
q1;q2

Z
dx1dx2fq1=pðx1Þfq2=pðx2Þσ̂ ~g ~gðŝÞPðβ̄Þ

ð36Þ

where σ ~g ~g is the cross-section for the production of a gluino
pair. The total cross-section of the full process pp →
~g~t�1bl̄ν is given by

FIG. 3. The top polarization as a function of velocity β̄ of the
gluino, for two different values of Δm~g ¼ m~g −m~t1 : Δm~g ¼
300 GeV (top) and Δm~g ¼ 1000 GeV (bottom).

FIG. 2. Top polarization as a function of Δm~t ¼ m~t1 −m~χ0
1
for

different values of the velocity of the stop (β̄): β̄ ¼ 0.0 (top) and
β̄ ¼ 0.95 (bottom). The neutralino are binolike. N11 ≈ 1, N12,
N14 ≈ 0, where Nij (i, j ¼ 1;…; 4) denote the neutralino mixing
matrix elements.
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σðpp → ~g~t�1bl̄νÞ ¼
X
q1;q2

Z
dx1dx2fq1=pðx1Þfq2=pðx2Þ

× σ̂ ~g ~gBð~g → t~t�1ÞBðt → bl̄νÞ
¼ σ ~g ~gBð~g → t~t�1ÞBðt → bl̄νÞ: ð37Þ

Equation (36) can also be written in a different form:

PNW ¼ 1

σ ~g ~g

Z
dσ

dβ̄
Pðβ̄Þ: ð38Þ

The top polarization in the PCM and in the lab frame follow
the same formula. The top polarization in lab frame can be
derived without referring to the PCM frame by considering
the transformation mentioned in Sec. III (see also
Appendix) [19]. The rotation matrix R of Eq. (28) simply
becomes, R ¼ Ryð−ωÞ. The expression for ω is of the same
form as the one the corresponding to Eq. (34) except that β̄

is replaced by the velocity of the gluino in the lab frame
βlab~g . Equation (30) becomes, in this case,

dσ̂
dxld cos θtl

∝
Z

σ̂ ~g ~gð1þ P cosω cos θtlÞxlð1 − xlÞdΩ~g
t :

ð39Þ

Following the same steps given in Sec. III B we get Eq. (38)
with β̄ → βlab~g .
We now present the numerical validation of our method

which is summarized by Eq. (38). We use MadGraph [51] to
generate events for the processes pp → ~g ~g → t~t�1 ~g and
pp → ~t1~t�1 → t~χ01, followed by the decay of the top through
t → bl̄ν, for the three SUSY benchmark points listed in
Table I. In these simulations, we artificially vary the
parameters like width, mass etc. but keep the mixing of
stop, and neutralino as constants.
We evaluate the top polarization using different methods

for comparisons. First, the top polarization is directly
obtained from the MC simulation of the entire decay chain
and then using the formula [52]:

PMC ¼ 2
Nðpl · st < 0Þ − Nðpl · st > 0Þ
Nðpl · st < 0Þ þ Nðpl · st > 0Þ ð40Þ

where pl is the momentum of the charged lepton from the
top decay and st is the longitudinal spin vector satisfying
pt · st ¼ 0 and st · st ¼ −1. The top spin vector is defined
in the frame in which the polarization of the top is defined
i.e., the frame of the chosen spin quantization axis of
the top.
Second, we use the convolution of Eq. (34) or Eq. (35)

with the distribution of β̄ obtained from the same MC
simulation to obtain PNW, Eq. (38). Note that the analytical
expressions Eq. (34) and (35) assume the validity of NWA
and hence use on-shell mass of the other particle. This
estimator gives an average of top polarization, weighted by
the cross section, over the events of a simulation.
We first set the width of the decaying gluino/stop to

Γ ¼ 5 GeV, justifying NWA. We expect that the result of
PMC and PNW should agree with each other. This is indeed
shown by the top and bottom panels of Fig. 5 which
compare these two methods in the gluino and the stop
cases, respectively, as a function of Δm~g or Δm~t. These
figures correspond to a pp center of mass energy

ffiffiffi
s

p ¼
13 TeV and the benchmark point BP3. The value of rest
frame top polarization P0 is also shown as a function of
Δm~g orΔm~t for comparison. We can see thatPMC andPNW

converge to P0 at large values of Δm~g=~t1 . This is expected,
since the top is highly boosted in the rest frame of the
gluino/stop when Δm is large, i.e. β ≈ 1. Any boost of this
frame β̄ which is less than β does not affect the value of top
polarization, since Iðβ̄Þ ≈ 1 with β̄ ≪ β, Eq. (32). This can
be understood physically in the following way: in this limit,

FIG. 4. Top polarization as a function of the boost β̄ of the stop,
for two different values of the mass difference between the stop
and the neutralino (Δm~t ¼ m~t1 −m~χ0

1
): Δm~t ¼ 300 GeV (top)

and Δm~t ¼ 800 GeV (bottom). The rest of the parameters are the
same as those in Fig. 2.
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due to its large mass, gluino is produced with a small
velocity β̄ ≈ 0. Hence, we expect that the top polarization
has to agree with its value in the gluino rest frame. We do
not show the corresponding figures for the other two
benchmark points as they do show the same good agree-
ment between PMC and PNW and convergence to P0 at
large values of Δm~g or Δm~t.
As an illustration of the case where the decaying

gluino/stop has a finite width, we show in Fig. 6
(Fig. 7) the comparison of values of top polarization
obtained through PMC and PNW for the case where the
gluino (stop) has a width Γ ¼ 200 GeV. In each figure,
we present results for two pp center of mass energiesffiffiffi
s

p ¼ 7 TeV and
ffiffiffi
s

p ¼ 13 TeV and for a benchmark
point BP1. For the range of gluino/stop masses which are
considered here, the mother particle (gluino/stop) is
mostly off-shell when

ffiffiffi
s

p ¼ 7 TeV and mostly on-shell
for

ffiffiffi
s

p ¼ 13 TeV. Hence, we expect that the results of
PNW may show deviation with those of PMC for the caseffiffiffi
s

p ¼ 7 TeV, and expect better agreement between the
two methods for

ffiffiffi
s

p ¼ 13 TeV. The figures Fig. 6 and
Fig. 7 show that this is indeed the case. We emphasize
here that our method PNW is only an approximation
which should work when the NWA for the mother particle
is applicable. However, we can modify PNW to include,
at least partly, the effects which arise from finite width
of the mother particle through a procedure which is
explained in the following section.

FIG. 5. Comparison of P0, PMC and PNW as a function of Δm~g

(top panel) and Δm~t1 (bottom panel) for
ffiffiffi
s

p ¼ 13 TeV LHC, and
for the benchmark point BP3. The width of the gluino (stop) is
taken to be Γ ¼ 5 GeV.

FIG. 6. Comparison of top polarization, in the case of gluino
decay,evaluatedinthethreemethods:PMC,PNW andPBW,for

ffiffiffi
s

p ¼
7 TeV(top) and

ffiffiffi
s

p ¼ 13 TeV(bottom), as a function of Δm~g. The
widthofthegluinoistakentobeΓ ¼ 200 GeV.Theparametersother
than m~g, Γ~g correspond to the benchmark point BP1.

FIG. 7. Comparison of top polarization, in the case of stop
decay, evaluated in the three methods: PMC, PNW and PBW, forffiffiffi
s

p ¼ 7 TeV(top) and
ffiffiffi
s

p ¼ 13 TeV(bottom), as a function of
Δm~t1 . The width of the stop and the other parameters are the same
as those of Fig. 6.
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V. INCLUSION OF FINITE WIDTH EFFECTS

The validity of narrow-width-approximation, with refer-
ence to BSM physics, has been a subject of careful
investigation [53–55]. We, on the other hand, take a simple
minded approach to address the presence of large widths for
the mother particles and test the validity of our modified
estimator, PBW.
This estimator is obtained when the mass of the mother

particle is taken to beM2
~g ¼ p2

~gðM2
~t1
¼ p2

~t1
Þ, where p~g (p~t1)

is the momentum of the mother, in place of its on-shell
mass m~gðm~t1Þ. In addition to this, the invariant mass is
assumed to be distributed as a Breit-Wigner-like distribu-
tion. In other words, the top polarization is obtained by
introducing an additional convolution over the mass of the
decaying heavy particle:

PBW ¼ 1

σXX

Z
M2

max

M2
min

dM2ΔBWðM;mÞ

×
Z

fq1=pðx1Þfq2=pðx2Þσ̂XX;MðŝÞPðβ̄MÞ ð41Þ

where σ̂XX;M (XX ¼ ~g ~g or ~t1~t1) and β̄M are evaluated for a

gluino or a stop mass of M: β̄M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=ŝ

p
.

σXX ¼
Z

M2
max

M2
min

dM2ΔBWðM;mÞ

×
Z

fq1=pðx1Þfq2=pðx2Þσ̂XX;MðŝÞ: ð42Þ

The Breit-Wigner factor ΔBWðM;mÞ is given by

ΔBWðM;mÞ ¼ 1

ðM2 −m2Þ2 þM2Γ2
: ð43Þ

The limits of the integration viz., Mmin and Mmax can be
thought of as the minimum and the maximum mass of the
off-shell gluino and are specified usually in the form of an
integer (n) that represents the “distances” of Mmax;min from
the on-shell mass in units of thewidth:Mmin;max ¼m~g�nΓ~g.
The equation given above, Eq. (41), can also be written as

PBW ¼ 1

σXX

Z
M2

max

M2
min

dM2ΔBWðM;mÞ

×
Z

dσXX
dβM

PðβMÞdβM: ð44Þ

We note that this procedure is, at best, only an approximate
one. In the case of gluino, there are additional spin
correlation between the production and decay of a gluino
pair, when the gluino is off-shell [56–58]. Equation (19),
based on which the expressions Eq. (34) and Eq. (35) have
been derived, should be modified to include the off-shell
effects:

X
λ

uðpÞūðpÞ ¼ pþmþ l
2p · l

ðm2 − p2Þ; ð45Þ

where l is a lightlike four-vector and m is the physical on-
shell mass [58]. In the case of stop decay, we naively expect
that the inclusion of Breit-Wigner distribution for the mass
of the stop as given in Eq. (44) should be sufficient, as the
stop is a scalar. However, as we discuss below, even in the
case of stop decay, the top polarization calculated using
Eq. (44) can deviate from the actual value, at large values of
Δm~t. In the previous section, we have described the
polarization PMC and PNW, as given in Fig. 6 and 7, which
correspond to cases where the mother particle has a finite
width. These figures also show the polarization PBW,
Eq. (44). In the top panels of Fig. 6 and 7 which correspond
to the case

ffiffiffi
s

p ¼ 7 TeV, one can clearly see the improve-
ment one obtains in PBW over the that of PNW. Although
PBW differs from PMC particularly for large values of Δm~g

(or Δm~t) the difference is much smaller compared to the
difference between PMC and PNW. When the pp center of
mass energy

ffiffiffi
s

p
is increased to 13 TeV, as shown on the

bottom panels of Figs. 6 and 7, the three methods agree with
each other within a few percent. Asmentioned before, this is
due to the increase in the relative contribution of on-shell
gluino/stop at

ffiffiffi
s

p ¼ 13 TeV. The deviations between the
PBW and PMC also depend upon the benchmark point

FIG. 8. Comparison of top polarization evaluated in the three
methods: PMC, PNW and PBW, as a function of Δm~g, for two pp
center of mass energies

ffiffiffi
s

p ¼7 TeV(top),
ffiffiffi
s

p ¼13 TeV(bottom),
in the case of gluino decay. The width of the gluino is taken to be
Γ ¼ 100 GeV. The parameters other than m~g, Γ~g correspond to
the benchmark point BP3.
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chosen. In Fig. 8 and Fig. 9 we have shown the comparisons
of the three methods for the benchmark point BP3. In this
case, the inclusion of an additional convolution over a
Breit-Wigner distribution ofmother particlemass, as inPBW

does not improve the results of PNW, for
ffiffiffi
s

p ¼ 7 TeV. In
fact, the difference between PBW and PMC is greater than
that between PNW and PMC. On the other hand, forffiffiffi
s

p ¼ 13 TeV, all the three method agree, as they do in
the previous cases. Hence, we see that an inclusion of a
convolution of Breit-Wigner distribution for the mother
particle mass alone does not always lead to the actual value
of top polarization. We believe that the neglect of additional
spin-correlations in the case of gluino, as mentioned before,
could be a source of this discrepancy. This could also be the
possible reason for the discrepancy between PBW and PMC
being particularly large for the case of gluino decay
compared to the case of stop decay. In view of the fact that
for

ffiffiffi
s

p ¼ 13 TeV, all the three results agree, we propose that
we can stick to PNW rather than use PBW. In any case, our
methodPNW is valid only when the contribution of on-shell
gluino/stop pairs to the cross-section dominates over the
corresponding contribution from the off-shell pairs. In these
cases, we have already established that PNW gives a
reasonable approximation to the actual Monte Carlo value
of top polarization. The advantage of PNW, though only an
approximation, is that it allows for a fast estimation of the top
polarization, in any frame, when the velocity distribution of

the produced mother particle alone is available. Detailed
simulation of the decay of the mother particle is then not
necessary.

VI. SUMMARY

In this work, we propose a simple estimator to measure
the polarization of the top produced in the decays of heavy
particles, in any frame, given its value in the rest frame of
the decaying particle. We quantify the kinematical factors
that relate the top polarization in the two frames. We find
that the top polarization in the lab frame depends only on the
magnitude of the velocity and not on the angles of emission
of the mother particle in the lab frame. The polarization
estimators PNW and PBW, in the lab frame, are obtained by
convoluting the expression for top polarization with the
velocity distribution of the mother particle in the lab frame.
The estimator PNW assumes mother particle to be on-

shell and yields values very close to the true one, PMC,
when the mother particle has narrow width. For a wider
mother particle, we use PBW which includes the finite-
width effects by a convolution with Breit-Wigner distribu-
tion of the mass of the mother particle. PBW works better
than PNW for stop with large width. For a wide gluino also
PBW works better than PNW when majority of the events
corresponds to the on-shell gluino. In the case of a heavy
and wide gluino, which is predominantly produced off-
shell, both PNW and PBW can deviate from PMC by an
amount as large as 0.05 for specific mixing angles.
However, when the mother particle is dominantly pro-

duced on-shell, as in the case of high pp center of mass
energy, these estimators can be used to obtain a fast and
accurate estimation of the top polarization in the lab frame.
In the case of gluino decay, we point out that the
polarization of the produced top can be used as a direct
probe of mixing angle in the stop sector, in the scenario of a
“natural supersymmetry.”
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APPENDIX: ROTATION OF HELICITY STATES
UNDER LORENTZ BOOSTS

In this appendix, we derive the expressions for the
helicity rotation angles ω, χ that are mentioned in the text.
We denote the operators corresponding to rotations and
Lorentz transformations by R and L. The same symbols

FIG. 9. Comparison of top polarization evaluated in the three
methods: PMC, PNW and PBW, as a function of Δm~t, for two pp
center of mass energies

ffiffiffi
s

p ¼ 7 TeV (top),
ffiffiffi
s

p ¼ 13 TeV(bot-
tom), in the case of stop decay. The width of the stop and the other
parameters are the same as those in Fig. 8.

ARUNPRASATH, GODBOLE, and SINGH PHYSICAL REVIEW D 95, 076012 (2017)

076012-12



denote the corresponding operations themselves. We
denote the helicity states by jp; λi. Under a Lorentz
transformation L, the helicity states transform as jp; λi →
Ljp; λi ¼ jp0; i, with p0 ¼ Lp. The state jp0; i is a state
with definite momentum in the Lorentz transformed
frame. It does not have a definite helicity in this frame.
The reason is that the helicity is not conserved
under a general Lorentz transformation. However, it is
conserved as long as the Lorentz transformation is along
the direction of motion of the particle. It is also invariant
under rotations. With this information, we try to obtain an
expression for jp0; i in terms of the helicity states jp0; λ0i of
the new frame. We focus only on the case of a massive
particle.
Consider a helicity state jp; λi of a particle with

momentum p¼ðp0; j~pjsinθcosϕ; j~pjsinθ sinϕ; j~pjcosθÞ
and helicity λ, in a given frame. The following sequence
of transformation map the helicity state into a state
jm; sz ¼ λi in the rest frame of the particle:

L−1
z ðβ ¼ j~pj=p0ÞR−1

y ðθÞR−1
z ðϕÞjp; λi ¼ jm; sz ¼ λi ðA1Þ

where sz denotes the eigenvalue of the z-component of spin

operator ~S. The sequence of two rotations R−1
y ðθÞR−1

z ðϕÞ
bring the direction of momentum of the particle to the z-
axis and the Lorentz transformation L−1

z takes the resulting
state jj~pjẑ; λi to a state in the rest frame of the particle
which we take as the eigenstate of Sz operator. We can also
invert this equation and write helicity state of the particle in
terms of jm; sz ¼ λi:

jp; λiRzðϕÞRyðθÞLzðβ ¼ j~pj=p0Þjm; sz ¼ λi: ðA2Þ
We regard this expression as the definition of the helicity
state of the particle. For convenience we define the
sequence of operations on the right-hand side of the above
expression as an operation hðpÞ:

hðpÞ≡ RzðϕÞRyðθÞLzðβ ¼ j~pj=p0Þ: ðA3Þ

We now turn to the case of the top quark produced in the
decay of a gluino. The parton center of mass (PCM) frame,
as mentioned before, can be reached from the top rest frame
(t rest) with the following transformations:

t-rest⟶
hðpPCM

t Þ
PCM ðA4Þ

where pPCM
t denotes the momentum of the top in the PCM

frame. This transformation maps the states jm; sz ¼ λi in
the top rest frame to the top helicity states in the PCM
frame. There is no change in the helicity of the top quark, in
this transformation.

jpPCM
t ; λi ¼ hðpPCM

t Þjm; sz ¼ λi: ðA5Þ

Now the same PCM frame can also be reached from
the top rest frame through the following sequence of
transformations:

t-rest⟶
hðp~g

t Þ
~g-rest⟶

hðpPCM
~g Þ

PCM; ðA6Þ

where p~g
t and pPCM

~g denote the momenta of the top in the
gluino rest frame and the momentum of the gluino in the
PCM frame respectively. We denote the velocity and
the angles of the gluino in the PCM frame by β̄, θ~g and
ϕ~g as in the main text. The above expression means that we
first go to the gluino rest frame through the helicity
preserving transformation hðp~g

t Þ and reach the PCM frame
by hðpPCM

~g Þ≡ Rzðϕ~gÞRyðθ ~gÞLzðβ̄Þ. Note that in the trans-
formation from the gluino rest frame to the PCM frame, the
Lorentz transformation Lzðβ̄Þ acts along the z-direction
while the top with p~g

t is moving at an angle θ to the z-axis.
This Lorentz transformation does not preserve the helicity
of the top. The following transformations are just rotations
which do not further affect the helicity state of the top. As a
result, the helicity state of the top obtained through the
transformations of Eq. (A5) and those obtained through
Eq. (A6) are different. Now,

hðpPCM
~g Þhðp~g

t Þjm; sz ¼ λi ¼ jpPCM
t ; i ðA7Þ

as in Eq. (A1). Inserting hðpPCM
t Þh−1ðpPCM

t Þ ¼ 1 in
Eq. (A7), we get,

hðpPCM
t Þ½h−1ðpPCM

t ÞhðpPCM
~g Þhðp~g

t Þ�jm; sz ¼ λi ¼ jpPCM
t ; i:
ðA8Þ

Now, we can easily see that the terms in ½� � �� correspond to
a rotation (R) in the rest frame of the top quark, since these

set of transformations map pt
t ¼ ðm; ~0Þ to itself: hðp~g

t Þpt
t ¼

p~g
t , hðpPCM

~g Þp~g
t ¼pPCM

t and h−1ðpPCM
t ÞpPCM

t ¼pt
t¼ðm;~0Þ.

Since,

Rjm; sz ¼ λi ¼ Rλ;λ0 jm; sz ¼ λ0i ðA9Þ

with Rλ;λ0 being the elements of this rotation matrix, we get,
from Eq. (A8),

jpPCM
t ; i ¼ hðpPCM

t ÞRλ;λ0 jm; sz ¼ λ0i ¼ jpPCM
t ; λ0i: ðA10Þ

Hence, the effect of the sequence of transformations
hðpPCM

~g Þ on the helicity states of top jp~g
t ; λi is equivalent

to a rotation in the helicity states of the top in the
transformed frame. The rotation R is given by the following
expression:
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R ¼ h−1ðpPCM
t ÞhðpPCM

~g Þhðp~g
t Þ ðA11Þ

This expression is difficult to evaluate. We can break down
this rotation into a product of two rotations by inserting
hðp0

tÞh−1ðp0
tÞ ¼ 1 where p0

t is momentum of the top in an
intermediate step in the transformation from gluino rest
frame to the PCM frame: p0

t ¼ Lzðβ̄Þp~g
t . Note that pPCM

t ¼
hðpPCM

~g Þp~g
t ¼ Rzðϕ~gÞRyðθ~gÞLzðβ̄Þp~g

t ¼ Rzðϕ~gÞRyðθ ~gÞp0
t.

With this, the expression for R becomes,

R ¼ ½h−1ðpPCM
t Þhðp0

tÞ�½h−1ðp0
tÞhðpPCM

~g Þhðp~g
t Þ�: ðA12Þ

By a direct computation, we can establish that the two
terms correspond to rotations about the z-axis and y-axis in
the top rest frame, respectively, through angles χ and
ω:R ¼ RzðχÞRyðωÞ. The expressions for χ and ω are given

below. In these expressions, Eq. (A13) and Eq. (A14), p~g
t is

given in terms of its velocity β, and the angles θ and ϕ in the
gluino rest frame (the subscripts and the superscripts have
been dropped) and the angles of pPCM

t by θ00 and ϕ00. The
gluino momentum pPCM

~g is given in terms of its velocity β̄

and the angles θ̄ and ϕ̄ in the PCM frame (the subscript and
the superscript have been dropped).

cosω ¼ ðβ þ β̄ cos θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ β̄2 − β2β̄2 sin2 θ þ 2ββ̄ cos θ

p ;

sinω ¼ β̄ sin θ

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ β̄2 − β2β̄2 sin2 θ þ 2ββ̄ cos θ

p ; ðA13Þ

and

cos χ ¼ cosϕ cosΔϕ − sinΔϕ cos θ̄ sinϕ;

sin χ ¼ −
sinΔϕ sin θ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄2 þ β2 − β̄2β2 sin2 θ þ 2β̄β cos θ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2

p
β sin θ

;

ðA14Þ

where Δϕ ¼ ϕ̄ − ϕ00.
The lab frame can be reached from the top rest frame by

following two transformations:

t-rest⟶
hðp~g

t Þ
~g -rest⟶

hðpl
~gÞ≡Rzðϕl

~gÞRyðθl~gÞLzðβl~gÞ
lab ðA15Þ

and the helicity preserving one,

t-rest⟶
hðpl

tÞ≡Rzðϕl
tÞRyðθltÞLzðβltÞ

lab: ðA16Þ

In these expressions, the quantities which are defined in the
lab frame are denoted by a superscript l. The helicity states
of the top obtained from jm; sz ¼ λi in the rest frame of the
top through the transformation of Eq. (A15) are different
from those obtained through the transformation of
Eq. (A16). Using h−1ðpl

tÞhðpl
tÞ ¼ 1 and following the

same steps as in the previous case, we obtain

hðpl
~gÞhðp~g

t Þjm; sz ¼ λi ¼ jpl
t; i ¼ Rλ;λ0 jpl

t; λ0i ðA17Þ

with R ¼ h−1ðpl
tÞhðpl

~gÞhðp~g
t Þ. This is of the same form as

Ry ¼ h−1ðp0
tÞhðpPCM

~g Þhðp~g
t Þ of Eq. (A12). Hence, the

expressions for the rotation angle ω, in this case, can be
obtained from Eq. (A13) through the replacement: β̄ → β̄l.
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