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The free energy of a static quark-antiquark pair is obtained in an interacting dyon ensemble near the
deconfinement temperature. Comparing the results with the noninteracting case, we observe that the string
tension between the quark-antiquark pair increases for the interacting ensemble. As a result, the
confinement temperature decreases.
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I. INTRODUCTION

Calorons—as one of the candidates of QCD vacuum
structure—were first introduced in a set of papers by
Diakonov and Petrov [1–3] to describe quark confinement.
They studied the noninteracting ensemble of calorons to
calculate the Polyakov loop correlator and obtained the free
energy of static quark-antiquark pairs. They also found the
temperature of the confinement-deconfinement phase tran-
sition by considering the Polyakov loop as an order
parameter. However, since the interaction of calorons inside
the region of their cores are complex, the interacting
ensemble of calorons remained unstudied. This is basically
because the core structure of calorons are nonlinear and
they are neutral objects without any interactions outside the
core. On the other hand, Bruckmann et al. [4] showed that
the metric introduced by Diakonov and Petrov [1] for the
noninteracting calorons is only positive definite for dyons
of different charges or for dyons of the same charge at
separations larger than the 2

πT in the SU(2) gauge group.
They [5] used a numerical method called Ewald’s method
[6] to solve the problem. For interacting ensembles, they
suggested the particle mesh Ewald’s (PME) method which
is more efficient from the point of view of running time
cost. The main idea of Ewald’s method is to split the
interaction into a converging short-range term and a smooth
long-range term which is convergent in the Fourier space.
Applying this method, Bruckmann et al. [5] obtained the

free energy of static quark-antiquark pairs versus their
separations by calculating the Polyakov loop correlator of a
noninteracting dyon gas. They also showed that the finite-
size volume effects were under control in their calculations.
In Ref. [7], we applied the particle mesh Ewald’s method

to a noninteracting ensemble of dyons and showed that this
method also works very well for calculating the free energy
between a static quark-antiquark pair. We got a linear rising
potential with a well-behaved string tension that decreases
with increasing temperature.
In this paper we apply the PME method to an interacting

dyon ensemble and compare the results with the non-
interacting case. For a noninteracting dyon ensemble the
Polyakov loop correlator is calculated by the temporal

gauge field of each dyon, whereas the dyons themselves do
not interact with each other. For the interacting case, we
consider some Coulomb-like interaction between dyons.
Our results show that the free energy of the static quark-
antiquark pair is also linear for the interacting dyon
ensemble, as expected. Comparing the results obtained
from the noninteracting and interacting ensembles, we
show that by adding the dyonic interactions, the string
tension between the quark-antiquark pair increases and
therefore the confinement temperature decreases.
The paper is organized as follows. In Sec. II, some

features of dyons are introduced and the Polyakov loop
correlator and the action are derived. Ewald’s method and
the particle mesh Ewald’s method are described briefly in
Sec. III. The setup of our simulations and the numerical
results are presented in Sec. IV. The conclusion and
discussions are given in Sec. V.

II. INTERACTING DYON ENSEMBLE FOR SU(2)
YANG-MILLS THEORY

KvBLL calorons—found by Kraan and van Baal [8], as
well as Lee and Lu [9]—are the periodic solutions of the
finite-temperature Yang-Mills theory. These neutral objects
consist of N dyons in the SUðNÞ group and have non-
Abelian and nonlinear cores, which makes it difficult to
study their interactions. Dyons are basically non-Abelian
objects, but in the far-field limit they can be considered as
Uð1Þ objects with Coulombic electric and magnetic fields.
Using the Abelian temporal gauge field in the third
direction of color space in SUð2Þ,

A4 → 2πωTσ3; ð1Þ

�B ¼ E →
q
r2

σ3; ð2Þ

where T is the temperature, σ3 is the third Pauli matrix, and
ω is the holonomy which specifies the confinement and
deconfinement phases. The Polyakov loop,

PðrÞ ¼ 1

2
Tr

�
exp

�
i
Z

1=T

0

dx4A4ðx4; rÞ
��

; ð3Þ
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is related to the holonomy in the far-field limit,

PðrÞ → 1

2
Trðexp ð2πiωσ3ÞÞ ¼ cos ð2πωÞ: ð4Þ

The free energy versus Polyakov loop is defined as

FQ̄QðdÞ ¼ −T ln hPðrÞP†ðr0Þi; d≡ jr − r0j; ð5Þ

where d is the distance between a quark located in r and an
antiquark in r0. Hence, for maximally nontrivial holonomy,
where ω ¼ 1

4
, the system is in the confinement phase and

PðrÞ → 0. For trivial holonomy, the system is in the
deconfinement phase and PðrÞ → �1.
To find the Polyakov loop of Eq. (3), A4 of the dyon

ensemble has to be found. The long-range gauge fields of a
dyon are Coulombic and Abelian in the third direction of
color space,

a4ðr; qÞ ¼
q
r
; a1ðr; qÞ ¼ −

qy
rðr − zÞ ;

a2ðr; qÞ ¼ þ qx
rðr − zÞ ; a3ðr;qÞ ¼ 0: ð6Þ

There are two self-dual dyons in SUð2Þ, with electric and
magnetic charges equal to ðþ1;þ1Þ and ð−1;−1Þ corre-
sponding to the plus sign in Eq. (2), and two anti-self-dual
dyonswith charges ðþ1;−1Þ and ð−1;þ1Þ corresponding to
the minus sign in Eq. (2). Sincewe study self-dual dyons and
their electric andmagnetic charges are equal, these dyons can
be considered as objects with one charge, q ¼ �1.
Using a4 of Eq. (6), the Polyakov loop of the dyon

ensemble in the confinement phase is obtained from
Eq. (3),

PðrÞ ¼ cos

�
2πωþ 1

2T
ΦðrÞ

�
;

PðrÞjω¼1=4 ¼ − sin

�
1

2T
ΦðrÞ

�
; ð7Þ

ΦðrÞ≡X2K
i¼1

qi
jr − rij

: ð8Þ

Keeping in mind that the original system we study is the
ensemble of K calorons, we consider the neutral system of
2K dyons: K dyons with charge q ¼ þ1 and K dyons with
charge q ¼ −1.
To obtain the free energy of Eq. (5), the Polyakov loop

correlator should be computed. The expectation value of an
observable O is

hOi ¼ 1

Z

Z �YnD
k¼1

d3rk

�
OðfrkgÞ exp ½SðfrkgÞ�; ð9Þ

where Z is the partition function, nD is the number of dyons
in the system,

Z ¼
Z �YnD

k¼1

d3rk

�
exp ½SðfrkgÞ�; ð10Þ

and S is the effective action of the ensemble. For a
noninteracting dyon gas the effective action is constant
for all simulations. For the interacting ensemble, the
integration measure should be rewritten as

�YnD
k¼1

d3rk

�
detðGÞ; ð11Þ

where G is the moduli space metric. This metric is exactly
known for two dyons with different charges or a caloron
[8], but for two dyons with the same charge the metric is
approximate [1]. Thus, the moduli-space metric for the
two-body interaction is

Gði;jÞ ¼
 
2π − 2qiqj

Tjri−rjj
2qiqj

Tjri−rjj
2qiqj

Tjri−rjj 2π − 2qiqj
Tjri−rjj

!
; ð12Þ

with the eigenvalues

λ1 ¼ 2π; λ2 ¼ 2π −
4qiqj

Tjri − rjj
: ð13Þ

To have a positive-definite metric, the distance between

dyons of the same charge should not be less than 2qiqj
πT .

The determinant of the moduli-space metric is

Y
ði;jÞ

detðGði;jÞÞ ¼
Y
ði;jÞ

4π2
�
1 −

2qiqj
πTjri − rjj

�

¼ ð4π2Þn2D exp
�X
ði;jÞ

ln

�
1 −

2qiqj
πTjri − rjj

��
:

ð14Þ

Now one can rewrite the expectation value (9) and the
partition function (10),

hOi ¼ 1

Z

Z �YnD
k¼1

d3rk

�
OðfrkgÞ exp ½SeffðfrkgÞ�; ð15Þ

Z ¼
Z �YnD

k¼1

d3rk

�
exp ½SeffðfrkgÞ�; ð16Þ

where the effective action is
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SeffðfrkgÞ ¼
1

2

XnD
i¼1

XnD
j¼1;j≠i

ln

�
1 −

2qiqj
πTjri − rjj

�
: ð17Þ

To include the contribution of anti-self-dual dyons, one
should modify the metric of Eq. (12) to a ð4 × 4Þmatrix [1].
The diagonal ð2 × 2Þ blocks of the new metric describe the
same-duality dyons, while the off-diagonal ð2 × 2Þ blocks
represent the interactions of different-duality dyons. Thus,
we should calculate the determinant of this metric with the
nonzero off-diagonal elements. All terms in the modified
metric are Coulombic and we should apply all steps of
Ewald’s method to the anti-self-dual dyons as well. This
modification makes the calculations very difficult and
cumbersome. However, in Ref. [1] Diakonov showed that
adding anti-self-dual dyons only changes the string tension
to

ffiffiffi
2

p
of its value when we do not use them, and the physics

of the quark-antiquark potential does not change.
Therefore, we trust Diakonov’s calculations and study
the ensemble of K calorons as he did. Our main goal—
which is to study the linearity of the free energy and to
observe the increasing of the string tension due to the
dyonic interactions—will not be affected.
In the next section we calculate the Polyakov correlator

with Ewald’s method using the partition function and the
action we obtained in this section.

III. EWALD’S METHOD

The first step in applying Ewald’s method is to mimic the
space with a basic cell called a super cell, and copy it in all
three directions and put the particles in the super cell. The
copies contain the copies of the particles. This is how the
periodic boundary condition is applied. Therefore, we put
nD dyons randomly in the super cell. The second and main
step is to split the long-range term 1

r into an exponentially
short-range part and a smooth long-range part,

ΦðrÞ ¼ ΦshortðrÞ þΦlongðrÞ; ð18Þ

ΦSðrÞ≡ X
n∈Z3

XnD
j¼1

�
1 − erf

�jr − rj − nLjffiffiffi
2

p
λ

��

×
qj

jr − rj − nLj ; ð19Þ

ΦLðrÞ≡ X
n∈Z3

XnD
j¼1

erf
�jr − rj − nLjffiffiffi

2
p

λ

�
qj

jr − rj − nLj ;

ð20Þ

where λ is an arbitrary parameter and erf is the error
function. The vector n specifies the copies of the super cell
and L3 is the spatial volume of the super cell. ΦS is
convergent for a finite cutoff, but ΦL is a divergent smooth
function. Thus, its Fourier transformation is convergent for
a finite cutoff,

ΦLðrÞ ¼ 4π

L3

X
n∈Z3n~0

e−λ
2kðnÞ2=2

kðnÞ2

× Re

�XnD
j¼1

qjeþikðnÞre−ikðnÞrj
�
;

kðnÞ≡ 2π

L
n; ð21Þ

where

SðkÞ ¼
XnD
j¼1

qje−ikðnÞrj ð22Þ

is called the structure factor. To reduce the operating costs,
one needs ΦSðrÞ to be convergent in the original super cell.
However, the arbitrary parameter λ should be chosen such
that ΦSðrÞ converges in a sphere with a maximum radius
rmax < L=2 within an appropriate error [10]. The center of
the sphere is located at position r. Consider JðrÞ which
indicates all dyons and copies of them in this sphere,

ΦSðrÞ≡ X
j∈JðrÞ

erfc
�jr − rjjffiffiffi

2
p

λ

�
qj

jr − rjj
; ð23Þ

where erfcðxÞ ¼ 1 − erfðxÞ. As mentioned before, the
long-range part ΦLðrÞ converges in Fourier space. Hence,
one can consider a sphere with radius nmax, in which ΦLðrÞ
has to converge [10].
For large dyon separations rij, the action in Eq. (17) can

be expanded in powers of 1
r,

SN ¼ 1

2

X
i≠j

�
−
2qiqj
πTrij

−
2ðqiqjÞ2
ðπTrijÞ2

−
8ðqiqjÞ3
3ðπTrijÞ3

þO

�
1

r4ij

��
;

ð24Þ
where rij ¼ jri − rjj and the superscript N denotes the
nonperiodic summation of the action. The action of
Eq. (24) has the 1

rp, p ∈ R terms, so to apply Ewald’s
method to calculate these terms we should generalize the
above procedure to the 1

rp terms. With the definition of the
Euler gamma function and the Fourier integral expansion of
the three-dimensional Gaussian distribution, one can obtain
the 1

rp term,

1

rp
¼ π3=2

ð ffiffiffi
2

p
λÞp−3

Z
d3ufpð

ffiffiffi
2

p
λπjujÞ exp ð−2iπu:rÞ

þ gpðr=
ffiffiffi
2

p
λÞ

rp
; ð25Þ

where

gpðxÞ ¼
2

Γðp=2Þ
Z

∞

x
sp−1 expð−s2Þds; ð26Þ
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fpðxÞ ¼
2xp−3

Γðp=2Þ
Z

∞

x
s2−p expð−s2Þds: ð27Þ

The first and the second terms of Eq. (25) express the long-
range part and the short-range part, respectively. This is
because limx→∞ gpðxÞ ¼ 0 while limx→∞ fpðxÞ ≠ 0. Using
Eq. (25) for each term of Eq. (24) and using periodic
boundary conditions, one can split the terms of the action
into the short-range term, long-range term, and self-energy
term,

SPp ¼
Xp
l¼1

ðSSðlÞ þ SLðlÞ − SselfðlÞ Þ; ð28Þ

where the superscript P denotes the periodic summation of
the action that consists of the copies of dyons in copies of
the super cell. We should modify the formula in Ref. [10]
since the charges of the dyons in that reference are �1, and
therefore the multiplication of charges in the numerators of
equations like (24) is equal to 1 for the even power of the
charges. As a result, the only odd power of the charges is 1.
While in our case, we are dealing with the interpolated
charges with different values which depend on the positions
of the randomly located dyons for each configuration. The
interpolated charges are introduced in the next section. We
should also add the self-energy part to the action. This is
because the self-energy is a function of the power of the
charges [Eq. (32)]. These terms have different and impor-
tant values for our dyons, while for dyons with �1 charges
the self-energy terms are constant for the simulations with a
fixed number of dyons and thus they do not affect the
correlation function of Eq. (9):

SSðlÞ ¼ cðlÞ 1
2

X
n∈Z3

X
i≠j

qliq
l
j

jri − rj − nLjl gl
�jri − rj − nLjffiffiffi

2
p

λ

�
;

ð29Þ

and cðlÞ is the coefficient of the lth term in Eq. (24),

SLðlÞ ¼ cðlÞ π3=2

2Vð ffiffiffi
2

p
λÞl−3

X
ksym

fl

�
λkffiffiffi
2

p
�
ð2jSðk; lÞj2Þ: ð30Þ

Sðk; lÞ ¼PnD
i¼1 q

l
ie

−ik:ri and k is symmetric with respect to
k ¼ 0, and the summation on n is done by the term
exp ð−2iπu:nLÞ of Eq. (25),

X
n

expð−2πiunLÞ ¼ 1

V

X∞
m

δ

�
u −

m
L

�
;

since u is the reciprocal vector, and the integral on u in
Eq. (25) changes all u to m

L, where k ¼ 2π m
L . The self-

energy part of the short-range term can be canceled by
omitting the i ¼ j term, but the self-energy part of the

long-range term should be separated. This term is the long-
range part of the energy when rj − ri → 0. In general, this
term can be obtained by subtracting the short-range part
in Eq. (26) from the total term 1

rp,

lim
r→0

�
1

rp
−
gpðr=

ffiffiffi
2

p
λÞ

rp

�
¼ 2ð ffiffiffi

2
p

λÞp
pΓðp=2Þ ; ð31Þ

which gives

SselfðlÞ ¼ 2ð1= ffiffiffi
2

p
λÞp

pΓðp=2Þ cðlÞ
XnD
i¼1

qli: ð32Þ

Now, for l ¼ 1, 2, 3,

SSð1Þ ¼ −
1

π

XnD
i¼1

X
j∈JðriÞ

qiqj
Trij

erfc
�

rijffiffiffi
2

p
λ

�
; ð33Þ

SSð2Þ ¼ −
1

π2
XnD
i¼1

X
j∈JðriÞ

q2i q
2
j

T2r2ij
exp

�
−

r2ij
2λ2

�
; ð34Þ

SSð3Þ ¼ −
4

3π3
XnD
i¼1

X
j∈JðriÞ

q3i q
3
j

×

�erfcð rijffiffi
2

p
λ
Þ

T3r3ij
þ

ffiffiffi
2

π

r
expð− r2ij

2λ2
Þ

T3λr2ij

�
; ð35Þ

SLð1Þ ¼ −
8

TV

X
ksym

jSðk; 1Þj2 exp ð−
λ2k2

2
Þ

k2
; ð36Þ

SLð2Þ ¼ −
4

T2V

X
ksym

jSðk; 2Þj2
erfcð λkffiffi

2
p Þ

k
; ð37Þ

SLð3Þ ¼ −
16

3π2T3V

X
ksym

jSðk; 3Þj2
�
−Ei

�
−
k2λ2

2

��
; ð38Þ

where Ei is the exponential integral EiðxÞ ¼ −
R∞
−x

e−t
t dt,

and

Sselfð1Þ ¼ −2ffiffiffi
2

p
λπ3=2

XnD
i¼1

q2i ; ð39Þ

Sselfð2Þ ¼ −1
2λ2π2

XnD
i¼1

q4i ; ð40Þ

Sselfð3Þ ¼ −8
9
ffiffiffi
2

p
λ3π7=2

XnD
i¼1

q6i : ð41Þ

As mentioned before, the expansion in Eq. (24) is only
appropriate for large dyon separations, and thus for small
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dyon separations a correction term should be added to the
periodic action in Eq. (28),

S ¼ SPp − SCorrp : ð42Þ

To have a continuous action on the boundary of small and
large dyon separations, rCorr, we should subtract the
expansion of the action in Eq. (24) from the periodic result
in Eq. (28) and add S from Eq. (17),

SCorrp ¼
XnD
j¼1

X
i∈IðrjÞ

�Xp
l¼1

SNðlÞðqiqj; rijÞ −
1

2
ln
�
1 −

2qiqj
πTrij

��
;

ð43Þ

because for small rij, SP and SN are approximately equal
and for large rij, SN and the action in Eq. (17) are equal
[10]. Here, IðrjÞ is the set of dyons and their copies and
their separations from the ith dyon are less than rCorr, and
SNðlÞ stands for the lth-order term of SN in Eq. (24). By

expanding Eq. (43), SCorrp for different values of p is found,

Scorr1 ¼ 1

2

XnD
j¼1

X
i∈IðrjÞ

�
−
2qðriÞqðrjÞ

πTrij

−
�
−
2qðriÞqðrjÞ

πTrij
−
2q2ðriÞq2ðrjÞ

π2T2r2ij
þO

�
1

r3ij

���

¼ 1

2

XnD
j¼1

X
i∈IðrjÞ

2q2ðriÞq2ðrjÞ
π2T2r2ij

þO

�
1

r3ij

�
: ð44Þ

Performing the same procedure,

Scorr2 ¼ 1

2

XnD
j¼1

X
i∈IðrjÞ

8q3ðriÞq3ðrjÞ
3π3T3r3ij

þO

�
1

r4ij

�
; ð45Þ

Scorr3 ¼ 1

2

XnD
j¼1

X
i∈IðrjÞ

4q4ðriÞq4ðrjÞ
π4T4r4ij

þO

�
1

r5ij

�
: ð46Þ

Since we approximate the action terms of Eq. (24) up to
order Oðr3Þ, the correction terms up to Oðr4Þ are good
enough.
To summarize this section, we have obtained the

following action for an interacting dyonic system:

S ¼
Xp
l¼1

ðSSðlÞ þ SLðlÞ − SselfðlÞ Þ − SCorrp ; ð47Þ

where SSðlÞ, S
L
ðlÞ, and S

self
ðlÞ were introduced in Eqs. (33)–(41),

respectively. SCorrp in Eq. (46) is added to the action
which represents a correction term corresponding to the
small dyon separations. We calculated the action for

p ¼ 3 in Eq. (47) and we have discussed that it is a good
approximation.

A. Particle mesh Ewald’s method

The main idea of the particle mesh Ewald’s method [11]
is to grid the super cell in reciprocal space and interpolate
the charge of each particle to the nearest neighboring mesh
points. This method was first introduced by Hockney and
Eastwood [12] within a computer simulation and is more
efficient for an interacting dyon gas.
Consider nD dyons distributed randomly in a super cell

at positions r1; r2;…; rnD . Each dyon at position ri in real
space has fractional coordinates sαi ¼ a�α:ri in reciprocal
space. Then, we grid the super cell by the pointsKi for each
direction. The new scaled fractional coordinates u1, u2, u3
are defined as uα ¼ Kαa�α:r, α ¼ 1, 2, 3, and 0 ≤ uα < Kα

due to the periodic boundary condition. Then, the terms
of the structure factor of Eq. (22) can be rewritten
with these new coordinates. m is the reciprocal vector,
m ¼ m1a�1 þm2a�2 þm3a�3,

expð−im:rÞ ¼ exp

�
−i

m1u1
K1

�
: exp

�
−i

m2u2
K2

�

: exp

�
−i

m3u3
K3

�
: ð48Þ

In Ref. [11] both piecewise Lagrangian and cardinal
B-Spline interpolations were introduced, but the latter
was applied to calculate the energy of the molecular
system. This is because the coefficients of this interpolation
are n − 2 times continuously differentiable. n is the number
of neighbor mesh points used for interpolation, and the
authors needed differentiability to calculate the forces
between molecules, while the coefficients of piecewise
Lagrangian interpolation are only piecewise differentiable.
Since we do not need to calculate the force and therefore
differentiability, we apply piecewise Lagrangian interpola-
tion. By this interpolation, these exponentials can be
approximated for p > 1,

exp

�
−i

mα

Kα
uα

�
≈
X∞
k¼−∞

W2pðuα − kÞ: exp
�
−i

mα

Kα
k

�
;

ð49Þ

where W2pðu0Þ ¼ 0 for ju0j > p and for −p ≤ u0 ≤ p the
coefficient W2pðu0Þ is

W2pðu0Þ ¼
Qp−1

j¼−p;j≠k0 ðu0 þ j − k0ÞQp−1
j¼−p;j≠k0 ðj − k0Þ ; k0 ≤ u0 ≤ k0 þ 1;

k0 ¼ −p;−pþ 1;…; p − 1:

ð50Þ
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The subscript 2p is the order of interpolation and specifies
the number of mesh points used to interpolate the
expð−imu=KÞ in each direction. These points are
½u� − pþ 1, ½u� − pþ 2;…, ½u� þ p, which are the 2p
nearest neighbor mesh points to the point u. Using Eq. (49),
one can approximate the structure factor in Eq. (22),

SðmÞ ≈ ~SðmÞ ¼
XnD
i¼1

qi
X∞

k1¼−∞

X∞
k2¼−∞

X∞
k3¼−∞

W2pðu1i − k1Þ

×W2pðu2i − k2Þ

:W2pðu3i − k3Þ exp
�
−i

m1

K1

k1

�

× exp

�
−i

m2

K2

k2

�
exp

�
−i

m3

K3

k3

�
: ð51Þ

Comparing the new structure factor of Eq. (51) with the
structure factor of Eq. (22), the new charges assigned to the
mesh points are

Qðk1; k2; k3Þ ¼
XnD
i¼1

X
n1;n2n3

qiW2pðu1i − k1 − n1K1Þ

×W2pðu2i − k2 − n2K2Þ
:W2pðu3i − k3 − n3K3Þ: ð52Þ

The new structure factor is

SðmÞ ≈
XK1−1

k1¼0

XK2−1

k2¼0

XK3−1

k3¼0

Qðk1; k2; k3Þ

× exp

�
−i
�
m1k1
K1

þm2k2
K2

þm3k3
K3

��
: ð53Þ

The structure factor of Eq. (53) describes the new system
with new K1K2K3 charges Qðk1; k2; k3Þ introduced in
Eq. (52) which are located on mesh points ðk1; k2; k3Þ
on a three-dimensional (3D) lattice. We use this system
instead of the system with nD dyons located randomly on
ri. Now, we apply the simple Ewald’s method to this new
system. The advantage of this new system is the constant
number of charges, K1K2K3, which are the same in all
simulations, in contrast to the number of dyons nD of
the original system which are different for each individual
simulation.

IV. SIMULATION RESULTS

As mentioned in the Introduction, studying quark con-
finement with dyons as the constituents of the QCD
vacuum is the main purpose of this article. Using the
Polyakov loop correlator of Sec. II, the free energy of a
static quark-antiquark pair is calculated for both noninter-
acting and interacting dyon ensembles. Ewald’s method
(introduced in Sec. III) is applied to the system of the
charges obtained by with the PME method in Sec. III A, for

dyons located randomly on a 3D lattice. Before applying
the mesh Ewald’s method, we need to put some dyons
randomly in a super cell on the lattice. To make sure
that dyons are sitting randomly in the super cell, we also
use a Metropolis algorithm to make sure the system is
in a stable energy. We do this procedure for each configu-
ration before applying Ewald’s method and the dyonic
interaction.
nD dyons are assumed to be located randomly in a super

cell in the following procedure:
(1) Fill the super cell with N dyons with random 3D

coordinates.
(2) Displace one dyon slightly.
(3) Compute the change of the action due to this

displacement, ΔS.
(4) If ΔS < 0, accept the new configuration.
(5) If ΔS > 0, accept the new configuration with

the conditional probability: pick a random number
0<x<1; if expð−ΔSÞ > x, accept the new configu-
ration; if expð−ΔSÞ<x, reject the new configuration.

We should mention that in this procedure we calculate only
the part of the action related to the dyon which is displaced.
For each configuration, we perform steps 2 to 5 for all
N dyons.
We interpolate the charges of these dyons to the 3D

lattice with Ki ¼ 16 as described in Sec. III A. This
interpolation leads the system to a new setup with charges
located on the mesh points according to Eq. (52). Since the
structure factors of these old and new systems are approx-
imately equal, the two systems are equivalent and we use
the new system of interpolated charges instead of the
original old system of dyons. We apply Ewald’s method
to this new system to calculate both the short-range and
long-range parts of the Polyakov loop and also the action
introduced in Sec. II, while in Ref. [11] the PME method
was only applied to calculate the long-range part of the
action. Using this method, we do not have to increase the
number of mesh points even for a large number of dyons,
since for any number of dyons we can interpolate them to a
constant number of mesh points. This saves on operating
costs, in contrast to the case where one puts dyons directly
on a lattice and increases the lattice points as the number of
dyons increases [5]. We fix the dyon density ρ and
temperature T to ρ=T3 ¼ 1 which scales the separations
by ρ1=3 or T, as done in Ref. [5]. Various lattice sizes, the

TABLE I. Number of dyon configurations, number of dyons
nD, and LT for each simulation. L3 indicates the spatial volume
of the super cell and T is the temperature.

nD LT Configurations

1000 10 1600
8000 20 800
27000 30 120
125000 50 60
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number of configurations, the number of dyons, and other
parameters of our simulations are listed in Table I.
For both noninteracting and interacting ensembles, the

simulations are done for maximally nontrivial holonomy
corresponding to the confinement phase, as described in
Sec. II. Therefore, we expect that the potential grows linearly
by increasing the quark-antiquark separation.As an example,
Fig. 1 illustrates this linear dependence for LT ¼ 20 and 30
for noninteracting and interacting simulations.
To be able to compare the results of different simulations,

we scale the data by the ansatz

σ

T2
¼ σðT ¼ 0Þ

T2
c

�
Tc

T

�
2

A
�
1 −

T
Tc

�
0.63

×

�
1þ B

�
1 −

T
Tc

�
1=2
�
; ð54Þ

where B ¼ 1 − 1=A, A ¼ 1.39 [5], and σðT ¼ 0Þ ¼
ð440 MeVÞ2, corresponding to Tc ¼ 312 MeV. Here, σ
indicates the string tension between the static quark and
antiquark, and Tc is the critical temperature. σ

T2 (obtained

from the plots like Fig. 1) is inserted into Eq. (54) and the
corresponding temperature is obtained. Then, using the
information in Table I, the lattice spacings are found for
each simulation. As represented in Table II, the temper-
atures of our simulations are very close to the deconfine-
ment temperature, T ¼ 312 MeV, for both noninteracting
and interacting simulations. The spatial lattice spacings and
string tensions for each simulation are listed in Table II.
Since we use the interpolated original charges on the

lattice, we should show that this approximation and the
space discretization do not affect our results. In fact, we
should show that the string tensions obtained from the
lattices with different lattice spacings are equal at the same
temperature. For both interacting and noninteracting
ensembles, one can learn from Table II that the string
tensions of the lattices with the same temperature agree
very well within the errors. For example, for a noninter-
acting ensemble, for LT ¼ 20 and 30 for which the
temperatures are almost equal, the string tensions agree
within the errors. Thus, our lattice spacings are small
enough to not encounter discretization error.

(a) LT = 20 (b) LT = 30

FIG. 1. The linear dependence of the free energy on the quark-antiquark separation for noninteracting and interacting dyon ensembles
for LT ¼ 20 and 30. ρ=T3 is fixed to one. The free energy grows linearly as the quark-antiquark separation increases. We are very close
to the deconfinement temperature, T ¼ 312 MeV.

TABLE II. The numerical results of the simulations for different LT for interacting and noninteracting ensembles. The string tension
between the quark-antiquark pair increases when the dyons interact with each other.

LT σ=T2 T (MeV) σðfm−2Þ Lattice spacing (fm) σðTÞ=σðT ¼ 0Þ T=Tc

Noninteracting 10 0.46(1) 295.31 1.01(1) 0.44 0.20 0.946
20 0.321(3) 302.02 0.76(1) 0.81 0.15 0.968
30 0.304(7) 302.80 0.72(1) 1.21 0.14 0.970
50 0.28(1) 303.89 0.62(1) 2.02 0.124 0.974

Interacting 10 0.633(4) 285.95 1.333(6) 0.43 0.27 0.92
20 0.384(5) 298.9 0.885(7) 0.824 0.18 0.958
30 0.423(8) 297.024 0.96(1) 1.24 0.19 0.952
50 0.34(1) 301.08 0.79(2) 2.045 0.16 0.965
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Figures 2 and 3 illustrate the results of noninteracting
and interacting simulations for different LT, after scaling.
In general, as the temperature increases the string tension
decreases, as one expects from the ansatz (54). To get the
interacting results, we add dyonic interactions to the lattice
of the noninteracting ensemble for the same LT. Therefore,
we can compare the noninteracting and interacting results
for each LT. As indicated in Table II, by adding the
Coulombic interaction to the dyon ensemble the confine-
ment temperature decreases slightly. The string tension of
the quark-antiquark pair increases for the interacting
ensemble. This is a nice result. The interpretation is as
follows: the interaction between dyons increases the free
energy between the quark-antiquark pair, as the plots show.

This means that the quark-antiquark pair system is more
stable now and is further from the deconfinement phase
compared with the noninteracting dyonic ensemble. In
other words, it seems that the interaction between dyons
increases the gluonic field strength compared with the
noninteracting dyons. This explains the decrease in temper-
ature for the same lattice when we just add the dyonic
interaction to the noninteracting ensembles. Figure 4 shows
the results of interacting and noninteracting ensembles in
one plot. Since the free energy is scaled, the slopes of the
same “LT” simulations which show the string tensions
between the static quark and antiquark can be compared
easily between the interacting and noninteracting dyonic
ensembles. A quantitative comparison is shown in Table II.
Our simulation results are fitted to the plot of Eq. (54)
in Fig. 5.
For all noninteracting diagrams the order of interpolation

2p [in Eq. (49) of Sec. III A] is equal to 4. This means that
the charge of each dyon is interpolated to the four nearest
neighbor points of the dyon location. But it seems that the
2p ¼ 4 is not enough for interacting simulations because
of correlations between the dyon charges. Hence, we use
2p ¼ 8 for interacting dyons. We tried 2p ¼ 6 and 2p ¼ 8
for the noninteracting case and 2p ¼ 6 for the interacting
case, and the results did not change.
To show how good our choice Ki ¼ 16 is, we tried

Ki ¼ 8 and Ki ¼ 10 for LT ¼ 30 for the noninteracting
dyonic system. The errors on σ=T2 are 21% and 8% for
Ki ¼ 8 and Ki ¼ 10, respectively. Therefore, it seems that
Ki ¼ 16 is a good choice. Increasing the parameter K to
higher values does not give us a better estimation of the
string tension, but the operating time increases drastically.

FIG. 2. The scaled results of a noninteracting dyonic ensemble
for different volumes.

FIG. 3. The same as Fig. 2 but for the interacting dyonic
ensemble.

FIG. 4. The scaled results of noninteracting and interacting
simulations for different volumes. Comparison between the same
values of LT shows that when using interacting dyons, the string
tension of the quark-antiquark pair increases.
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By increasing the number of dyons, the effective charge
becomes more efficient and a better result is expected.
However, since we fix the parameter ρ=T3 ¼ 1 in our
simulations, the volume of the lattice would be increasing
without increasing the number of lattice points, and there-
fore we get larger lattice spacings and larger errors.
Therefore, there is a compromise between increasing the
number of dyons and not getting a larger lattice spacing
error. Table II shows that we are on the safe side.

As mentioned in Sec. II, adding antidyons changes the
string tensions by a constant factor from physical results,
σ →

ffiffiffi
2

p
σ [1]. This affects the value of the temperature,

although the system remains close to the deconfinement
phase. However, our main results—the linearity of the free
energy and the increase of the string tension due to the
interaction—do not change.

V. CONCLUSION

We have computed the free energy of a static quark-
antiquark pair as a function of their separation by studying
the Polyakov loop correlator for noninteracting and
interacting dyon ensembles. We first applied the PME
method to the dyons located randomly in different
volumes to interpolate their charges on a 3D lattice with
fixed dimensions, and then applied Ewald’s method to this
new system. As one expects, the free energy grows
linearly as the separation increases. However, the string
tension between the static quark-antiquark pair increases
for the interacting dyonic ensemble. It seems that the
dyonic interaction increases the gluonic strength, as
expected.
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