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We revisit the proof of the perturbative QCD factorization for the exclusive processes ργ⋆ → πðρÞ at the
two-parton twist-3 level. It is pointed out that the residual collinear divergences observed in the literature,
which break the factorization of the above processes at the considered accuracy, are attributed to the
improper insertion of the Fierz identity for factorizing the fermion flow. We show that the factorization
theorem indeed holds at the two-parton twist-3 level after the mishandling is corrected.
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I. INTRODUCTION

The factorization theorem is the foundation of the
perturbative QCD formalism [1–6], which states that non-
perturbative dynamics in a hard QCD process can be
factorized into universal nonlocal hadronic matrix elements
defined in an infinite momentum frame. Recently, some of
us have attempted to extend the proof of the collinear
factorization for exclusive processes involving only pseu-
doscalar mesons at the subleading-power (twist) accuracy
[7,8] to those involving also vector mesons: it was examined
whether the collinear divergences in the light-to-light
scattering ργ⋆ → πðρÞ are factorized into the two-parton
twist-3 ρ meson light-cone distribution amplitudes [9,10].
Their next-to-leading-order (NLO) analysis indicated that
the triple-gluonvertex gives residual collinear contributions,
which cannot be absorbed into the meson distribution
amplitudes. Namely, the universality of the meson distri-
bution amplitudes, and thus the collinear factorization for
ργ⋆ → πðρÞ, was violated at the twist-3 level.
In this paper we revisit the factorization theorem for the

above processes, pointing out that the residual collinear
divergences at the two-parton twist-3 level observed in
[9,10] are attributed to the improper insertion of the Fierz
identity: the twist-3 spin projectors were inserted into the
scattering amplitudes first to factorize the fermion flow
between the hadronic matrix elements and the hard kernels;
radiative gluons were added to the hard kernels and the
resultant infrared divergences were investigated sub-
sequently. A hard kernel is not a physical quantity, based
on which the matching between the full QCD and the
effective theory for infrared physics cannot be performed
correctly. For instance, missing the power-law behavior of

hadronic matrix elements would lead to wrong power
counting for scattering amplitudes. This is the reason
why some collinear divergences survive the matching,
and break the factorization theorem. We claim that the
appropriate procedure to examine the factorization theorem
at a subleading level follows the one proposed in [8], which
starts with an analysis of infrared divergences in quark-
level scattering amplitudes. The Fierz identity is inserted to
factorize the fermion flow between the hadronic matrix
elements and the hard kernels, after the collinear diver-
gences have been absorbed into the former.
We first derive the power counting for the products of

various gamma matrices with a valence quark spinor by
means of the equation of motion without the three-parton
terms. It is then demonstrated that the residual collinear
divergences in radiative corrections to the ργ⋆ → πðρÞ
scattering amplitudes are actually power suppressed and
negligible up to twist 3. As a result, the soft divergences
cancel, and the collinear divergences can be absorbed
completely into the hadronic matrix elements. The twist-3
spin projectors are inserted into the scattering amplitudes at
this stage to factorize the fermion flow between the hadronic
matrix elements and the hard kernels [7,8], with the former
defining the two-parton twist-3 meson distribution ampli-
tudes. After proving the collinear factorization, we allow
valence quarks to be off their mass shell by including quark
transverse momenta kT . The collinear divergences, regular-
ized into ln kT in this formalism, can be collected into the
transverse-momentum-dependent (TMD) two-parton twist-3
meson wave functions in a similar way. It is concluded,
contrary to the observation in [9,10], that the factorization
theorem indeed holds for the processes ργ⋆ → πðρÞ up to the
two-parton twist-3 level.
The plan of this paper is as follows. In Sec. II we explain

the source of the factorization violation in [9,10], taking the
process ργ⋆ → π as an example. The correct collinear
factorization is presented in Sec. III with the help of the
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equation of motion for a valence quark. The above
approach applies to another considered process ργ⋆ → ρ
apparently, and can be extended to the more complicated kT
factorization. Section IV contains the conclusion.

II. FACTORIZATION VIOLATION AT TWIST 3?

We choose the kinematic variables for the process
ργ⋆ → π in the light-cone coordinates,

p1 ¼
Qffiffiffi
2

p ð1; 0; 0Þ; p2 ¼
Qffiffiffi
2

p ð0; 1; 0Þ;

k1 ¼ x1p1; k2 ¼ x2p2; ð1Þ
where p1 (p2) is the 4-momentum of the ρ meson (pion),
and k1 (k2) is the parton momentum carried by the
antiquark in the ρ meson (pion), x1 and x2 being the
momentum fractions. We consider the region with a large
momentum transfer squared Q2 ¼ −ðp1 − p2Þ2, where
perturbative QCD is applicable. To define the direction
of the gauge links for the ρ meson light-cone distribution
amplitudes, we introduce the dimensionless vector
v ¼ ð0; 1; 0Þ.
The LO, namely, OðαsÞ diagrams for the process

ργ⋆ → π are displayed in Fig. 1. For the purpose of
explaining the factorization violation found in [9,10], it
is enough to focus on radiative corrections to Fig. 1(a).
Figure 1(a) yields the partial ρ → π scattering amplitude

Gð0Þðx1; x2Þ ¼ ieug2sCFNCTr

×

�
γνdðk2Þūðk̄2Þγμðp1 − k2Þγνuðk̄1Þd̄ðk1Þ

ðp1 − k2Þ2ðk1 − k2Þ2
�
;

ð2Þ
with the electric charge eu of the u quark, the strong
coupling gs, the color factor CF, the number of colors NC,
the quark spinors u and d, the momenta k̄1 ¼ p1 − k1 and
k̄2 ¼ p2 − k2, and the gamma matrix γμ from the virtual

photon vertex. We factorize the fermion flow by inserting
the Fierz identity

IijIlk ¼
1

4
IikIlj þ

1

4
ðγ5Þikðγ5Þlj þ

1

4
ðγαÞikðγαÞlj

þ 1

4
ðγ5γαÞikðγαγ5Þlj þ

1

8
ðσαβÞikðσαβÞlj ð3Þ

into Eq. (2), where σαβ ¼ i½γα; γβ�=2, and different terms on
the right-hand side lead to contributions characterized by
different powers in 1=Q. The color flow is factorized by
inserting the identity

IijIlk ¼
1

NC
IikIlj þ 2

X
c

Tc
ikT

c
lj; ð4Þ

with Tc being a color matrix. The first term on the right-
hand side is associated with a two-parton (quark-antiquark)
Fock state, which we concentrate on, and the second term is
associated with a three-parton (quark-antiquark-gluon)
Fock state.
We then arrive at the LO factorization formula in terms

of the convolution in the parton momentum fraction ξ1;2,

Gð0Þðx1; x2Þ ¼
Z

dξ1dξ2
X
i¼1;2

Φπð0Þðx2; ξ2ÞHð0Þ
i

× ðξ1; ξ2ÞΦρð0Þ
i ðx1; ξ1Þ; ð5Þ

between the LO meson distribution amplitudesΦð0Þ and the
LO hard kernels Hð0Þ,

Φρð0Þ
1;2 ðx1; ξ1Þ ¼

1

4
d̄ðk1Þðγ⊥; γ5γ⊥Þuðk̄1Þδðξ1 − x1Þ; ð6Þ

Φπð0Þðx2; ξ2Þ ¼
1

4
ūðk̄2Þγ−γ5dðk2Þδðξ2 − x2Þ; ð7Þ

Hð0Þ
1;2ðξ1; ξ2Þ ¼ ieug2sCFTr

×

�
γ5γ

þγμðp1 − ξ2p2Þγνðγ⊥; γ⊥γ5Þγν
ðp1 − ξ2p2Þ2ðξ1p1 − ξ2p2Þ2

�
: ð8Þ

The spin projectors γ⊥, γ⊥γ5, and γ5γ
þ, which give the

nonvanishing hard kernels Hð0Þ
1;2ðξ1; ξ2Þ, come from Eq. (3).

Since only a transversely polarized ρmeson can transit into
a pseudoscalar pion, the spin projectors involving γ⊥ are
relevant. Both Φρ

1 and Φρ
2, defined by γ⊥ and γ5γ⊥,

respectively, represent the two-parton twist- 3ρ meson
distribution amplitudes. The pion distribution amplitude
Φπ defined by γ−γ5 is of twist 2. Without collinear gluon
exchanges at LO, the modified momentum fractions are
equal to the initial fractions in the external mesons, as
indicated by the delta functions δðξ − xÞ in Eqs. (6) and (7).
A crucial step to prove the factorization theorem is to

explore infrared divergences in radiative corrections, and to
examine whether soft divergences cancel and collinear
divergences are absorbed completely into hadronic matrix

(a) (b)

(d)(c)

FIG. 1. Leading-order (LO) diagrams for the scattering
ργ⋆ → πðρÞ. The symbol • represents the virtual photon vertex.
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elements. The former are generated when the momentum of
a radiative gluon, exchanged between two on-shell par-
ticles, vanishes like l ∼ ðΛ;Λ;ΛÞ, with Λ denoting a small
scale. The latter appear when a radiative gluon is collimated
to on-shell massless particles. As a gluon is aligned
with the initial ρ meson, its momentum scales like
l ∼ ðQ;Λ2=Q;ΛÞ. The factorization of collinear divergen-
ces is first verified at NLO, and then generalized to all
orders by the induction [7,8]. As stated in the introduction,
the NLO analysis of the infrared divergences in the
scattering ργ⋆ → π was performed by adding radiative
gluons to the hard kernels in Eq. (8) [9,10], instead of
to the scattering amplitude in Eq. (2). Since a hard kernel is
not a physical quantity, the matching between the full QCD
and the effective theory for infrared physics may not be
implemented correctly due to wrong power counting for
collinear divergences.
The NLO corrections to Fig. 1(a) with the additional

gluon radiated from the initial ρ meson are displayed in
Fig. 2. Take Fig. 2(d) with a triple-gluon vertex, sand-
wiched by γ⊥ or γ⊥γ5 from the ρmeson side and γ5γþ from
the pion side, as an example. It contains the Feynman rule

Fαβγ ¼ gαβð2k2 − 2k1 þ lÞγ þ gγαðk1 − k2 þ lÞβ
þ gβγðk1 − k2 − 2lÞα; ð9Þ

where the indices α, β and γ are labeled in the diagram. In
the collinear region with the loop momentum l being
almost parallel to p1, the leading contribution arises from
the gamma matrix γγ ¼ γþ, because the adjacent quark
propagator is proportional to p1 − k1 þ l ∝ γ−. The first
term in Eq. (9) yields the expected factorization of a

collinear gluon: the metric tensor gαβ is identified as the
one in the LO hard kernel; the term 2k2γ ¼ 2k−2 , picked up
by the vertex γγ ¼ γþ, facilitates the splitting of the two
gluon propagators,

2k2γ
ðk1 − k2 − lÞ2ðk1 − k2Þ2

≈
�

1

ðk1 − k2Þ2
−

1

ðk1 − k2 − lÞ2
�

vγ
v · l

: ð10Þ

The first (second) term in the above square brackets
corresponds to the LO hard kernel without (with) the loop
momentum flowing through it. The eikonal vertex vγ and
the eikonal propagator 1=v · l are the Feynman rules
associated with the gauge links along the direction v,
which are necessary for defining gauge-invariant nonlocal
hadronic matrix elements. Hence, the collinear divergence
from the first term in Eq. (9) contributes to the NLO two-

parton twist-3 ρ meson distribution amplitudes Φρð1Þ
1;2 .

Nevertheless, the second term inEq. (9) also gives rise to a
collinear divergence as l is parallel to p1, which does not
respect the factorization. The gamma matrix γα can be set to
γ− owing to the spin projectors γ⊥ or γ⊥γ5 from the ρmeson
side, and γ5γþ from the pion side. Then γα ¼ γ− and γγ ¼ γþ
for the collinear gluon contract to the tensor gγα. The gamma
matrix γβ is chosen as γþ, also because of the adjacent quark
propagator proportional to p1 − k1 þ l ∝ γ−, which picks
up the nonvanishing component −k2β ¼ −k−2 . The above
configuration produces the residual collinear divergence,

which cannot be absorbed intoΦρð1Þ
1;2 having been defined by

(a) (b) (c)

(f)(e)

(i) (j) (k)

(g)

(h)

(d)

FIG. 2. NLO corrections to Fig. 1(a) with the gluon radiated from the initial ρ meson.
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the contribution from the first term in Eq. (9). The third term
in Eq. (9) does not produce a collinear divergence, since
γγ ¼ γþ requires γβ ¼ γ− through gβγ , which then sup-
presses the adjacent quark propagator proportional to
p1 − k1 þ l ∝ γ−. As elaborated comprehensively in
Ref. [10], the other triple-gluon diagrams, sandwiched by
the various twist-3 spin projectors, generate the similar
residual collinear divergences. Note that this source of
factorization violation does not exist, as the NLO diagrams
are sandwiched only by the twist-2 spin projectors: the twist-
2 spin projector γ− from the initial ρmeson would suppress
the violation source from γα ¼ γ−.

III. PROOF OF THE COLLINEAR
FACTORIZATION

As postulated in the introduction, the correct procedure
to examine the factorization starts with analyzing infrared
structures of higher-order scattering amplitudes, for which
the equations of motion obeyed by valence quarks can be
applied [7,8]. In this section we demonstrate, with the help
of the equations of motion, the factorization of the collinear
divergences in the scattering ργ⋆ → π at NLO, focusing on
those associated with the initial ρ meson. The approach in
[9,10] does not cause a problem at the leading-twist
accuracy, because the effect of the twist-2 spin projectors,
as mentioned at the end of the previous section, is
equivalent to the equations of motion for valence quarks.
An energetic valence quark of momentum k ¼

ðkþ; k−;kTÞ, as an on-shell parton with k− ¼ k2T=ð2kþÞ,
satisfies the equation of motion

kuðkÞ ¼ ðkþγ− þ k−γþ − kT · γ⊥ÞuðkÞ ¼ 0; ð11Þ

when the three-parton terms are neglected. The above
decomposition leads to the power counting

γ−uðkÞ ∼O
�
Λ
Q

�
γ⊥uðkÞ; ð12Þ

for kþ ∼OðQÞ and kT ∼OðΛÞ. That is, the product γ−uðkÞ
is suppressed by a power of 1=Q relative to γ⊥uðkÞ.
For the first term in Eq. (9), γα can be set to γ⊥ (γβ also

takes γ⊥ due to the tensor gαβ). As explained in the previous
section, the source of the factorization violations comes
from γα ¼ γ−. By considering the infrared structure of the
scattering amplitude, instead of the hard kernels, the above
γ⊥ and γ− attach to the spinor of the valence antiquark. The
power counting in Eq. (12) then implies that the contribu-
tion from the latter is down by a power of 1=Q compared to
the contribution from the former, which respects the
factorization at twist 3. Therefore, the violation source
should be dropped at the twist-3 accuracy, and the proof of
the factorization theorem at twist 3 based on the equations
of motion in [7,8] is verified. After absorbing the collinear

divergences into the two-parton twist-3 ρ meson distribu-
tion amplitudes, we insert the Fierz identity to factorize the
fermion flow between the NLO distribution amplitudes and
the remaining LO hard kernels. The NLO factorization of
the collinear gluons emitted by the outgoing valence quark
and antiquark of the pion at the twist-2 level is the same as
in [7], so we do not touch it here.
As to the soft divergences, it is straightforward to show

that they cancel each other among the reducible diagrams
Figs. 2(a)–2(c), between the irreducible diagrams Figs. 2(f)
and 2(g), as well as between Figs. 2(j) and 2(k) [7,8]. This
soft cancellation can be understood via the color-trans-
parency argument for an energetic ρmeson. In other words,
a soft gluon extends over a huge space-time, so it cannot
resolve the color structure of the ρ meson. Figures 2(d),
2(e), 2(h), and 2(i) do not contain soft divergences, since
the radiative gluons attach to the LO hard particles.
The proof of the collinear factorization to all orders in the

strong coupling follows the induction method based on the
Ward identity [7,8]: the eikonal approximation holds for
every internal particle line which a collinear gluon attaches
to (in the absence of the Glauber divergences); the
summation over all possible attachments of a collinear
gluon to internal lines leads to its factorization in color
space; at last, the induction extends the factorization from
the assumed order to the next higher order. The above steps
complete the all-order proof of the collinear factorization
for ργ⋆ → π up to the two-parton twist-3 accuracy, and we
arrive at the definition of the two-parton twist-3 ρ meson
distribution amplitudes

Φρ
1;2ðξ1; x1Þ ¼

Z
dy−

2π
eiξ1p

þ
1
y−h0jd̄ðy−Þðγ⊥; γ5γ⊥ÞWv

× ðy−Þuð0Þjuðk̄1Þd̄ðk1Þi; ð13Þ
where Wv is a path-ordered exponential function

Wvðy−Þ ¼ PExp
�
−igs

Z
y−

0

dzv · AðzvÞ
�
: ð14Þ

It is easy to see that the above gauge links produce the
Feynman rules described by the eikonal vertex and propa-
gator in Eq. (10). The discussion of the scattering ργ⋆ → ρ,
i.e., the ρ meson electromagnetic form factor, is basically
the same as of ργ⋆ → π before inserting the appropriate
spin projectors associated with the final-state meson, so we
do not repeat it in this work. To derive the physical two-
parton twist-3 ρ meson distribution amplitudes Φρ

1;2ðξ1Þ,
we simply replace the Fock state juðk̄1Þd̄ðk1Þi in Eq. (13)
by the ρ meson state jρðp1; ϵ1Þi, with ϵ1 being the
polarization vector.
The kT factorization is more apposite to QCD processes

dominated by contributions from small parton momenta.
For its proof as an extension of the collinear factorization,
we retain the dependence of parton transverse momenta kT
in hard kernels. The factorization of collinear divergences
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in radiative corrections, which are then regularized by the
small parton off-shellness into ln k2T , gives TMD hadron
wave functions. A TMD wave function, collecting the
collinear logarithm ln k2T to all orders, describes parton
distributions in both longitudinal and transverse momenta
inside a hadron. Note that the kT terms appearing in
numerators of internal particle propagators are still dropped
[11], whose contribution is supposed to be combined with
that from the three-parton Fock state [12] to form a gauge-
invariant three-parton wave function. Moreover, neglecting
kT in numerators allows the eikonal approximation to
hold for collinear gluons, so that the gauge links, which
guarantee the gauge invariance of a TMD wave function,
can be constructed. Following the similar procedure in [11],
the kT factorization for a high-energy QCD process can be
proved, despite the above distinct features, to the two-
parton twist-3 accuracy.
It should be stressed that we can no longer drop the

product γ−uðkÞ, i.e., the residual collinear divergences at
the twist-4 accuracy. Hence, we speculate that the factori-
zation of the ργ⋆ → π scattering amplitude into a con-
volution involving the twist-2 and twist-4 meson
distribution amplitudes for the initial and final states
separately may break down. We do not pursue either the
factorization for the cases with both the initial and final
states taking the twist-3 meson distribution amplitudes,
which exhibit a power-law behavior the same as in the
combination of the twist-2 and twist-4 meson distribution
amplitudes.

IV. CONCLUSION

In this paper we have elaborated how the residual
collinear divergences, which violate the factorization
of the exclusive processes ργ⋆ → πðρÞ at the two-parton

twist-3 level, appear in the proof of [9,10]. They are
attributed to the improper factorization of the fermion flow
in the scattering amplitudes before absorbing the collinear
divergences into the hadronic matrix elements. Namely, the
NLO analysis of the infrared divergences was performed by
adding radiative gluons to the unphysical hard kernels,
instead of to the scattering amplitudes. This is the reason
why the residual collinear divergences survive under the
wrong power counting, and break the factorization theo-
rem. We have proposed to study the infrared structure of
the higher-order scattering amplitudes first, such that the
equations of motion for valence quarks can be applied.
With the correct power counting based on the equations of
motion, it has been shown that the residual collinear
divergences are in fact power suppressed, and negligible
at the twist-3 accuracy. The Fierz identity is inserted into
the scattering amplitudes to factorize the fermion flow, after
the collinear divergence has been absorbed into the meson
distribution amplitudes completely. The rest of the proof
follows the steps outlined in [7,8], which is then extended
to all orders by the induction. The above procedure works
for the more complicated kT factorization, and for the
factorization of other high-energy exclusive processes,
including B meson transition form factors.
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