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We have systematically investigated the magnetic moments and magnetic form factors of the decuplet
baryons to the next-to-next-to-leading order in the framework of heavy baryon chiral perturbation theory.
Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in
the loops. We have also calculated the charge and magnetic dipole form factors of the decuplet baryons.
Our results may be useful for the chiral extrapolation of the lattice simulations of the decuplet

electromagnetic properties.
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I. INTRODUCTION

Chiral perturbation theory (ChPT) is a very useful
framework in hadron physics in the low-energy regime.
ChPT was first proposed to study the purely pseudoscalar
meson system with the consistent chiral power-counting
scheme [1], which enables us to calculate either a physical
process or hadron property order by order. For example, the
pion-pion scattering amplitude in the low-energy regime
can be expanded in terms of ’X—; and A%, where A, = 4zf,

and p is the three-momentum of the pion. In the chiral limit,
m, — 0. The above scattering amplitude converges quickly
with the soft pion momentum.

The extension of the ChPT to the matter field introduces
anew large energy scale, the mass of the matter field which
does not vanish in the chiral limit. Hence, this mass scale
M will spoil the convergence of the chiral expansion.
To overcome this obstacle, heavy baryon chiral perturba-
tion theory (HBChPT) was developed [2,3]. Within this
scheme, one also performs the heavy baryon expansion in
terms of 1/M together with the chiral expansion. With the
help of HBChPT, the octet baryon masses, Compton
scattering amplitudes, axial charge, various electromag-
netic form factors, and many other observables have been
investigated systematically [3—11].

However, because of the nonrelativistic treatment of the
baryon propagators, HBChPT also has its shortcomings.
To satisfy the analyticity constraints lost in the HBChPT,
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the covariant ChPT has been applied to the study of several
physical observables such as the pion scattering, baryon
magnetic moments, axial form factors, and baryon masses
[12-18]. In Ref. [12], Gegelia addressed the problem of
matching HBChPT to relativistic theory. A new renorm-
alization scheme leading to a simple and consistent power
counting in the single-nucleon sector of relativistic chiral
perturbation theory was discussed in Ref. [13]. The
electromagnetic form factors of the nucleon were calcu-
lated to order O(p*) in relativistic chiral perturbation
theory in Ref. [14]. In Ref. [15], the masses of the
ground-state baryon octet and the nucleon sigma terms
were discussed in the framework of manifestly Lorentz-
invariant baryon chiral perturbation theory. An analysis of
the baryon octet and decuplet masses using covariant
SU(3)-flavor chiral perturbation theory up to next-to-
leading order was presented in Ref. [16]. A novel analysis
of the 7N scattering amplitude in Lorentz covariant baryon
chiral perturbation theory renormalized in the extended-
on-mass-shell scheme has been presented in Ref. [17].
In Ref. [18], the octet-baryon axial-vector charges were
studied up to O(p?) using the covariant baryon chiral
perturbation theory with explicit decuplet contributions.
Covariant ChPT also has problems in the power counting
introduced by the baryon mass as a new large scale. To
combine the advantages of the relativistic and heavy-
baryon approaches, the infrared regularization was pro-
posed in Refs. [19,20]. Kubis employed the infrared
regularization scheme to analyze the electromagnetic form
factors of the nucleon to fourth order in relativistic baryon
chiral perturbation theory in Refs. [21,22]. In Ref. [23],
a systematic infrared regularization for chiral effective
field theories including spin-3/2 fields was discussed. In
Ref. [24], the authors extended the method of the infrared
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regularization to spin-1 fields. In Refs. [25,26], the authors
reformulated the infrared regularization of Becher and
Leutwyler [20] in a form analogous to their extended
on-mass-shell renormalization scheme and calculated the
electromagnetic form factors of the nucleon up to fourth
order. In Ref. [27], the authors analyzed the pion-nucleon
scattering using the manifestly relativistic covariant frame-
work of infrared regularization up to O(p?) in the chiral
expansion.

In the last two decades, there have been many inves-
tigations of the baryon properties in chiral perturbation
theory [28-37]. In Refs. [28,29], the octet and decuplet
baryon masses were calculated to next-to-next-to-leading
order in heavy baryon chiral perturbation theory and
partially quenched heavy baryon chiral perturbation theory.
The electromagnetic properties of the baryons were calcu-
lated in Refs. [30-34]. Since more and more charmed
and bottomed baryons were observed experimentally, there
has also been much work on the charmed or bottomed
baryons in the last decade [38—45]. We will mainly
investigate the electromagnetic properties of decuplet
baryons in this work.

Historically, the experimental observation of the anoma-
lous magnetic moment of the nucleon provides crucial
evidence that the nucleon is not a point particle. In fact, the
magnetic moment of the baryon is an equally important
observable as its mass, which encodes valuable information
of its inner structure. In the past several decades, the
magnetic moments of the octet baryons have been inves-
tigated extensively [46—48]. In fact, their values have been
measured quite precisely [49]. Within the ChPT frame-
work, the magnetic moments of the octet baryons have
been investigated by many groups [50-60].

The direct measurement of the magnetic moments of
the excited baryons is difficult because of their short life.
However, their magnetic moments and other electromag-
netic form factors of the short-lived states can be measured
from the polarization observables of the decay products
[61] or by using the phenomenon of spin rotation in crystals
[62]. The study of the magnetic moments of the nucleon
excited states have been planned at the Mainz Microtron
(MAMI) facility [63—65] and Jefferson Laboratory [66].
These groups have already realized the very first effort in
measuring the magnetic moments.

The decuplet baryons are the spin-flavor excitations
of the octet baryons. In strong contrast, the present knowl-
edge of the magnetic moments of the decuplet baryons
is rather poor. According to PDG [49], only the Q~
magnetic moment is measured precisely with ug- =
(=2.02+£0.05)uy. The other members of the decuplet
baryons are much more unstable, which renders the
experimental measurement of their magnetic moments
very challenging. After huge efforts, the A™" and A*
magnetic moments were extracted with sizable uncertainty,
par+ = (5.6 £ 1.9)uy and pp+ = (2.7 £ 3.5)uy.
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The electromagnetic properties of the decuplet baryons
have been studied in various approaches such as the
Skyrme model [67-69], the cloudy-bag model [70], quark
models [71,72], QCD sum rules [73-76], chiral perturba-
tion theory [77-83], lattice QCD [84-87], and so on
[88-90]. The magnetic dipole and electric quadrupole
moments of the decuplet baryons were computed to
next-to-leading order with chiral perturbation theory in
Ref. [77], where both the octet and decuplet baryons were
included in the chiral loops. In Ref. [78], the Roper
contribution to the A magnetic moments was discussed.
In Refs. [79,83], the electromagnetic properties of the
decuplet baryons were calculated to next-to-leading order
in quenched and partially quenched chiral perturbation
theory, respectively. In Ref. [80], the magnetic dipole
moment (MDM) of A(1232) was calculated in the frame-
work of manifestly Lorentz invariant baryon chiral pertur-
bation theory with the so-called extended on-mass-shell
renormalization scheme. In Refs. [81,82], the authors
studied the radiative pion photoproduction on the nucleon
(yN - zNy') in the A-resonance region, with the aim
of determining the MDM of the A*(1232). In Ref. [91],
the authors reviewed the recent progress in understanding
the nature of the A resonance and its electromagnetic
excitation.

In Ref. [84], the electromagnetic properties of the SU(3)-
flavor decuplet baryons were examined within a quenched
lattice QCD simulation. The magnetic moments of the A
baryons were extracted from a lattice QCD simulation in
Ref. [85]. Techniques were developed to calculate the four
electromagnetic form factors of the A using lattice QCD
simulation in Refs. [86,87], with particular emphasis on the
subdominant electric quadrupole form factor that probes
the deformation of A. The electromagnetic form factors of
the Q™ baryon were studied in lattice QCD in [92].

Lattice QCD simulation can provide the electromagnetic
form factors from the first principle of QCD. But it usually
gives results at large pion masses. The extrapolated values
at the physical pion mass will be different with different
dependence on the pion mass [93]. With the extrapolating
expressions obtained from ChPT, the electromagnetic form
factors of octet baryons simulated on the lattice are
obviously improved [11,60,94]. Our work will also help
with the extrapolation of the electromagnetic form factors
of the decuplet baryons on the lattice in the future.

We investigate the magnetic moments of the decuplet
baryons to O(p?) within the framework of HBChPT at
the one-loop level. The O(p?) results would give some
corrections to the magnetic moments of decuplet baryons as
in the case of the masses and form factors of octet baryons
[53,95]. Moreover, one cannot judge whether the chiral
expansion up to O(p?) converges or not without the
numerical values of O(p?). We also discuss the charge
radii and magnetic radii of the decuplet baryons where the
short-distance low-energy constant (LEC) is estimated with
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the help of the vector meson dominance (VMD) model
and the long-range part is uniquely fixed by the loop
corrections.

We explicitly consider both the octet and decuplet
intermediate states in the loop calculation because the
mass splitting between the octet and decuplet baryons is
small. Moreover, the decuplet baryons generally strongly
couple to the octet baryons. For example, the A resonance
couples to the Nz channel very strongly. We use the
dimensional regularization and modified minimal subtrac-
tion scheme to deal with the divergences from the loop
corrections.

We will calculate the charge (EO), electro-quadrupole
(E2), magnetic dipole (M1), and magnetic octupole (M3)
form factors of the decuplet baryons in the framework of
HBChHPT. In the limit ¢g*> = 0, we extract the magnetic
moments of the decuplet baryons. Since the experimental
measurement of the electro-quadrupole and magnetic octu-
pole form factors of the decuplet baryons will be extremely
difficult in the future, we focus on the calculation of the
charge and magnetic form factors.

This paper is organized as follows. In Sec. II, we discuss
the electromagnetic form factors of the spin-3/2 particles.
We introduce the effective chiral Lagrangians of the
decuplet baryon in Sec. III. In Sec. IV, we calculate the
multipole form factors of the decuplet baryons order by
order. We estimate the low-energy constants in Sec. V. We
present our numerical results in Sec. VI and conclude in
Sec. VII. We collect some useful formulas and the
coefficients of the loop corrections in Appendix A and B.

II. ELECTROMAGNETIC FORM FACTORS
OF DECUPLET BARYONS
A. Multipole form factors

When the electromagnetic current is sandwiched between
two decuplet baryon states, one can write down the general
matrix elements which satisfy the gauge invariance, parity
conservation, and time-reversal invariance [96]:

(T(P )T (p)) = @ (p")Ous(p', p)u’(p), (1)
|
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where

A,
Of)ﬂﬂ(p/7 p) = g/)o’ (Alyy + 21V[TP”>

9,95 &)
AL (Cl“ oy Pﬂ)’ @)

where p and p’ are the momenta of decuplet baryons. In the
above equations, P = p’ + p, ¢ = p' — p, My is the dec-
uplet-baryon mass, and u,,(p) is the Rarita-Schwinger spinor
for an on-shell heavy baryons satisfying p”u,(p) = 0 and
y’u,(p) = 0. Note that A; , and C| , are real functions of ¢°.
In the literature, there exists another definition of the tensor

Opo(P' ) 197]:

0p;40'(p/7 p) = gpﬂ(alyu + aZPﬂ) + as (qu/m - gp/tqa)
+ qpqa(clyu + CZPy) + ic3y5€p;wiq/17 (3)

where a; and c; are real functions of g®. Here, €ppuos 18
the totally antisymmetric rank-4 tensor with €y03 = 1.
However, the expression in Eq. (3) contains two additional
terms (the b term and the d term) which are not linearly
independent of the other terms. For example, the tensor
structure (¢,9,, — 9,u4,) is not dependent if both the initial
and final decuplet baryons are on shell,

@ (P')(4p9us = Gpudo)u(P)
q2
— () {m(l - —)g y
am ) ot

1
- g/mPy + M_ QpQ(ryﬂ:| ua(p)‘ (4)
T

In the following, we use Eq. (2) to define the charge (EO),
electro-quadrupole (E2), magnetic-dipole (M1), and mag-
netic octupole (M3) multipole form factors of the decuplet
baryons,

Grol(g?) = (1+37) (A1 + (1 + Do) = §2(1 +9)[C; + (1 +7)Ca),
Gra(q®) = [Ar + (1 +9)45] =3 (14 7)[Cy + (1 + )G, (5)
Gui(q?) = (1 +37)A; —37(1 +7)C),

Gus(q*) = A —3(1+7)Cy,

h <
W ereT——(zT

) > . . .
With ¢g*> = 0, we obtain the charge, electro-quadrupole moment, magnetic moment, magnetic octupole moment, and

charge radii of the decuplet baryons, etc.,
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Gro(0) = Ay + A,

Gp(0) =A + A, - 1(C + Gy),

Gin(0) = Ay, (6)
GM3<0) =A _%Cl

<r2> -6 dGpy(4*)

qu q2:0 '

B. Form factors in the nonrelativistic limit

In the heavy baryon limit, the baryon field B can be
decomposed into the large component A/ and the small
component H,

B = e—iMB1;-x(N + H), (7)
. 1
N = eMors -t 2p
. 1 —»
H = eiMis—Zp, (8)
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where M is the octet-baryon mass and v, = (1, 0) is the
velocity of the baryon. For the decuplet baryon, the large
component is denoted as 7,. Now the decuplet matrix
elements of the electromagnetic current J, can be para-
metrized as

(T(PT (p)) = (P")Oue(p's P)u(p).  (9)

The tensor O,,, can be parametrized in terms of four

Lorentz invariant form factors,

Geo(a?) = (1+37) [Fy +2(Fy = F2)) = a1 + DIFs +5(Fy — ),

Gpa(q?) = [Fy +2(Fy = F5)] =3 (1 4 7)[F3 4 ©(F3 — F4)].

G (¢?) = (1 +4¢) Fa = 3(1 + D)F,

Gus(q*) = F» =3 (1 +7)Fy.

Accordingly, the multipole form factors at g> = 0 lead to the
charge (Q), the magnetic dipole moment (u), the electric
quadrupole moment (Q), and the magnetic octupole mo-

ment (O):

0= GEO(O) =Fy,

Q ZML;GEz(O) :MLZT(FI —-1F3),
O =515 Gu3(0) = 557 (F> —3F4)

2 dGpy(q*)
re) =6 .
< E> dq? =0

III. CHIRAL LAGRANGIANS

A. Strong interaction chiral Lagrangians

The pseudoscalar meson fields are introduced as follows,

]Z'O—'—%}’] \/§ﬂ+ \/EK‘F

p=| V2= ="+ sm V2K° | (13)
— 0 2
V2K V2K — AN

[Su:Sal
O/)/,m(p/v p) = Ypo |:’1}”F1 (qZ) +”M—q FZ(qz)
T
9 oy, 1SSl 2
F ————q°F .
+(2MT)2 [71;4 3(q7) + M, q“F4(q”)
(10)
The multipole form factors are
(11)

In the framework of ChPT, the chiral connection and axial
vector field are defined as [4,98]

1

r, zi[uT(aﬂ —ir,)u+u(d, —il,)u'], (14)

u, =

iu' (9, —ir,)u—u(d, —il,)u’],  (15)

N =

where

u> = U = exp(id/ fo)- (16)

Here, f( is the decay constant of the pseudoscalar meson
in the chiral limit. The experimental value of the pion
decay constant f, =~ 92.4 MeV, while fx =113 MeV,
fn~ 116 MeV.

The lowest order [O(p?)] pure meson Lagrangian is
e _f5
Lix = ZOTr[V”U(V”U)W, (17)

where

V,U=98,U —ir,U+iUl, (18)
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For the electromagnetic interaction,

2 1 1

The spin-1/2 octet field reads

I, = —eQA,,

1 0 1 +
7Bt EA x p
- 1 50 1
=— =0 _ 2
= = —\/gA

For the spin-3/2 decuplet field, we adopt the Rarita-
Schwinger field 7# = T+ ¢ [99]:

1

THI = AT, T2 _ %A*, T122 _ 7§A0,
T222 — A~ T3 — %Z*+’ 7123 _ %2*0’
T223 _ \%Z*‘, T133 — 1 =

T3 = \%E*‘, 3 =Q (21)

The leading-order pseudoscalar meson and baryon inter-
action Lagrangians read [50,99]

A

L = Tr[B(iD — My)B] + TrT*[~g,, (iD — M7)

(yuDy + 7L/ ) }/ﬂ(lD + MT)YU] Ty’ (22)

LY = C[Tr(T#u,B) + Tr(Bu, T")] + HTr(T#g,,uysT"),
(23)

where Mp is the octet-baryon mass, My is the decuplet-
baryon mass, and

D,B=9,B+[T,, B,
DD(T )abc - ay( )abc + (FD)Z(T;t)dbc
+ (Fy)b(Tﬂ)adc + (Fy)g(Tﬂ)abd‘

We also need the second-order pseudoscalar meson and
decuplet baryon interaction Lagrangian,

(24)

PO _
nt 4MB

= Te(gp T [y 1,0 ), (25)

where the superscript denotes the chiral order and g, is the
coupling constant.

In the framework of HBChPT, the baryon field B is
decomposed into the large component A/ and the small
component H. We denote the large component of the
decuplet baryon as 7 ,. The leading-order nonrelativistic
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pseudoscalar meson and baryon Lagrangians read [50]

£y = Te[N(iv-D = )N] - iT#(v-D)T,, (26)
) = c(Tru N + Nu, T#) + 2HT#S*u,T,, (27)
where E(()l and Lmt are the free and interaction parts,

respectively. S, is the covariant spin operator, and 6 =
Mpg — M7y is the octet and decuplet baryon mass splitting.
In the isospin symmetry limit, 6 = —0.2937 GeV. We
do not consider the mass difference among different
decuplet baryons. The ¢N7T coupling C = —-1.2+0.1
while the ¢77 coupling H = —2.2 + 0.6 [100]. For the
pseudoscalar meson masses, we use m, = 0.140 GeV,
mg = 0.494 GeV, and m, = 0.550 GeV. We use the
averaged masses for the octet and decuplet baryons, and
Mp = 1.158 GeV, M = 1.452 GeV.

The second-order nonrelativistic pseudoscalar meson
and baryon Lagrangian reads,

r® _ 92
nt 2MB

Tr(g,o 77 (8", 8, w,)T7),  (28)

where g, is the ¢¢7T 7T coupling constant to be determined.
In fact, there exist several ¢p¢p7 7 interaction terms with
other Lorentz structures. However, these additional terms
do not contribute to the present investigations of the
electromagnetic form factors of the decuplet baryons. So
we omit them and keep the g, term only.

B. Electromagnetic chiral Lagrangians at O(p?)

The lowest order O(p?) Lagrangian contributes to the
magnetic moments and magnetic dipole form factors of the
decuplet baryons at tree level [50],

2
L) =

I bpO)F}, T, (29)

2Mp
where the coefficients b and b, are new LECs which
contribute to the magnetic moments and magnetic radii of
the decuplet baryons at tree level, respectively. The chirally
covariant QED field strength tensor F,,i,, is defined as

Fr = u'FRu+ uFhu',

FR, =08,r,—0,r, —i[r,,1,],

(30)

(31)

where r, = [, = —eQA,. The operator F,ﬁ transforms as
the adjoint representation. Recall that the direct product
I0QI10=16¢8 27 @ 64 contains only one adjoint
representation. Therefore, there is only one independent
interaction term in the O(p?) Lagrangians for the magnetic
moments of the decuplet baryons.

Fﬁy = 0,1, = 0,1, —i[l,.1,).
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The lowest order Lagrangians which contribute to the
magnetic moments of the octet baryons at tree level are [53]

@ _, —lor y
[’ﬂ/ = bmerN[Sﬂ,S ][F;D,M

—i
4Mp

+bp——TIN[S*, S'{F; N} (32)

The lowest order Lagrangians which contribute to the
decuplet-octet transition magnetic moments at tree level are

2 —i »
ELT%\‘, = bzmTrTﬂF}TpS N

+by=——TeT*FL,D'N + He.,  (33)
2M,

where b, is estimated with the help of the quark model. The
b5 term does not contribute to the magnetic moments of the
decuplet baryons.

C. Higher order electromagnetic chiral Lagrangians

We also need the O(p?) Lagrangian which contributes to
the short-distance part of the charge radii,

£ = ﬁTriﬂTﬂvﬂavF;. (34)
T

The O(p?) Lagrangian which contributes to the electro-
quadrupole moments and its radii at tree level [77,79] reads

£ = Q@ e plerol g i
Q 4M%~ PrH

(35)

where TV T = TrT° + T°T? L #°T*T .
To calculate the magnetic moments to O(p*), we also

need the O(p*) electromagnetic chiral Lagrangians at tree
level. Recall that

10R10=1d8®27 @ 64, (36)

SR8=108 ®8 100 10d27. (37)

Both Fffl, and y* transform as the adjoint representation.
When the product Fﬁ)ﬁ belongs to the 1,8, 8,, and 27
flavor representations, we can write down the chirally
invariant O(p*) electromagnetic Lagrangians. Therefore, it
seems there should be four independent interaction terms
in the O(p*) chiral Lagrangians. However, it only contains
three independent terms after considering C parity,

PHYSICAL REVIEW D 95, 076001 (2017)

T THTY)Te( F)

LV =d
" 1 M,

_ ; , ,
+d, MTr(Tgk(F;;aﬁk)Twﬂ )

—i _ X X
+dy sy TG (FLIT ), (38)

where ¥t = diag(0, 0, 1) at leading order and the factor m;
has been absorbed in the LECs d ;3.

There is one more term which contributes to the decuplet
magnetic moments,

oW =y 2;;3 Te(THF;,T)Tr(r).  (39)

However, its contribution can be absorbed through the
renormalization of the LEC b, i.e.,

b—b+Tr(yH)b. (40)

The O(p*) Lagrangian which contributes to the mag-
netic octupole moments and its radii at tree level is
constructed as

—d -
[,g) = SV?TI‘T{PTAGI’”(?D&”F;;, (41)
T

IV. FORMALISM UP TO ONE-LOOP LEVEL

We apply the standard power-counting scheme of
HBChPT. The chiral order D, of a given diagram is given
by [101]

D, =4N, =2l —Ig+ > nN,, (42)

where N; is the number of loops, I, is the number of
internal pion lines, I is the number of internal octet or
decuplet nucleon lines, and N, is the vertices from the
nth order Lagrangians. As an example, we consider the
one-loop diagram a(7) in Fig. 2. First of all, the number of
independent loops N; = 1, the number of internal pion
lines /); = 1, and the number of internal octet or decuplet
nucleon lines Iz =2. For Ny =2 and N, =1, we
obtain D, =4-2-2+2+2=4.

We use Eq. (42) to count the chiral order D,, of the matrix
element of the current, eO,,,,. We count the unit charge e as
O(p"). The chiral orders of F,, F,, F3, and F, are
(D, -1), (D, -2), (D, —3), and (D, — 4), respectively,
since

€0, ~ ep’Fy + ep'Fy + ep?F3 + epF,.  (43)

076001-6



MAGNETIC MOMENTS AND ELECTROMAGNETIC FORM .

FIG. 1. The O(p?) and O(p*) tree-level diagram. The left dot
and the right black square represent second- and fourth-order
couplings, respectively.

The chiral order of magnetic dipole moments 4 is (D, — 1)
based on Eq. (12).

A. Magnetic moments

Throughout this work, we assume the exact isospin
symmetry with m, = m,. The tree-level Lagrangians in
Eqgs. (29) and (38) contribute to the decuplet magnetic
moments at O(p') and O(p?) as shown in Fig. 1. The
Clebsch-Gordan coefficients for the various decuplet states
are collected in Table I. All decuplet magnetic moments are
given in terms of the LECs b, dy, d,, and d5. There exist
several interesting relations,

tree tree tree

255t = pys +opy,

U35 = piys + uge,

tree __ ,,tree tree
2uy™ = pz= + pp=,

S = S 4 S (44)

There are twelve Feynman diagrams at one-loop level
as shown in Fig. 2, and we divide them into six types
(a—f) according to the structure. All the vertices in these
diagrams come from Eqgs. (17) and (26)—(33). In diagram a,
the meson vertex is from the strong interaction terms in
Eq. (27), while the photon vertex is from the O(p?) tree-
level magnetic moment interaction in Egs. (29), (32), and
(33). In diagram b, the photon-meson-baryon vertex is also

PHYSICAL REVIEW D 95, 076001 (2017)

from the O(p?) tree level magnetic moment interaction in
Eq. (29). In diagram c, the two vertices are from the strong
interaction and seagull terms, respectively. In diagram d,
the meson vertex is from the strong interaction terms, while
the photon vertex is from the meson-photon interaction
term in Eq. (17). In diagram e, the meson-baryon vertex is
from the second-order pseudoscalar meson and baryon
Lagrangian in Eq. (28), while the photon vertex is also from
the meson-photon interaction term. In diagram f, the meson
vertex is from the strong interaction terms, while the photon
vertex is from the O(p?) tree-level magnetic moment
interaction.

Diagrams a, b, e, and f contribute to the tensor eO,,,, at
O(p*), while diagram d contributes at O(p?). Diagram c
vanishes in the heavy baryon mass limit. If the intermediate
baryon is a decuplet (or octet) state, the amplitude of
diagram c is denoted as J.(7) (or J (). We have

Sy o [yt S _iPlp
N X
7 Q) P —m}+ie f

v-l+ie”
xS-v=0, (45)
7 / a’l i grls i
8
V) Q2n)! P —mj +ie fo v l—w+ie
X Gyp Vs (46)

where P%Z is the nonrelativistic spin-3/2 projector. Note

that J.(7) vanishes, and J .y also vanishes since v,u” = 0.
In other words, this diagram does not contribute to the
magnetic moments of the decuplet baryons in the leading
order of the heavy baryon expansion.

For diagram c, there are two adjoint graphs in which the
photon moves from the left vertex to the right one. There
are also two adjoint graphs for diagram f. We include the
contributions from the adjoint graphs in our results. We use

TABLE I. The magnetic moments of the decuplet baryons to the next-to-next-to-leading order (in unit of uy).

Baryons  O(p')tree  O(p?) loop O(p?) tree O(p?) loop Total
ATF %b -3.54 —%dl 0.49 — 0.50b — 0.02b, — 0.07bf — 0.36¢, 4.97(89)
AT %b -1.91 —%dl 0.22 -0.21» - 0.01bp — 0.04br — 0.27¢, 2.60(50)
A° 0 -0.29 —%dl —0.27 4- 0.06b + 0.00156 — 0.001bf — 0.18¢, 0.02(12)
A~ —%b 1.34 —%dl —0.32 4+ 0.20b 4 0.01bp + 0.02b — 0.14g, —2.48(32)
ZF %b —1.63 —%dl - %dz + %d3 0.17 = 0.50b — 0.0015p — 0.04bf — 0.33¢g, 1.76(38)
>0 0 0 —§d1 - %dz + $d3 —0.02 - 0.001bp — 0.249, —0.02(3)
P -3b 1.63 —3d; —5d, —5d; ~0.27 + 0506 — 0.001bp, +0.04bp - 0.15g,  —1.85(38)
=0 0 0.29 —%dl - gdz + %d3 —0.21 = 0.06b 4 0.01bp + 0.0016f — 0.30¢, —0.42(13)
B —%b 1.91 —%dl —gdz —%d3 —0.22 4+ 0.60b — 0.001bp 4 0.04b; — 0.21¢, —1.90(47)
Q- —%b 2.20 —§d1 - %dz - %d3 0.17 4 0.65b + 0.01bp + 0.02b — 0.27¢, -2.02(5)
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FIG. 2. The one-loop diagrams where the decuplet (octet) baryon is denoted by the double (single) solid line. The dashed and wiggly
lines represent the pseudoscalar meson and photon, respectively. For the wave function renormalization in diagram f, only representative
graphs are shown. We do not list the adjoint graphs for diagram c either.

diagram f to indicate the corrections from the renormaliza-
tion of the external leg where the Lehmann-Symanzik-
Zimmermann reduction formula is used.

The leading-order loop contributions to the multipole
form factors are

2 pP
21 Hpr |1
F% oop) _ 2: { T {_ qz(ZnEg +2nil{})0)

¢p=nK f%ﬁ 4
5 mo 1[4 g 110
+ 8 I’l13¢ + 3 2—% n1¢
Chiy 7
b (]} o

1,100 H2ﬂ¢ MT qz
rr = 52 R ()

¢=nK
T ()]
N T q i
502 ami) |
F(O,loop) _ Hzﬂ?_l AM2 (2710 4 2,10
T AMpnig] + e WM (20, + 20)
¢

+4Myny] } . (49)

F‘(‘—l.loop) =0, (50)

LN S V1 AN 11 LSRN SN | SN -
where 1y, ny,, Ny, N3, are ny, ny, ny, ny;, respectively,

defined in Appendix A with m = my, and @ = 6. When

_ o 1o 1o . IIo -
@ = 0, they become N ps Nags Mgy > 13- The coefficients

ﬂ? and ﬁj/(/ arise from the decuplet and octet intermediate
states, respectively. We use the number n within the
parentheses in the superscript of X() to indicate the
chiral order of X.

The tensor e¢O,,, at O(p?) should contribute to F,
at O(p~'). However, such a contribution is 0 from
Eq. (50). Moreover, the loop diagrams in Fig. 2 do not
contribute to F4 up to O(p°). Therefore, in our case

Fy = F""™) ~ dyQ. If one tries to obtain the next-to-
leading-order correction of Fy, ¢Q,,, at O(p’) must be
systematically considered.

Summing all the contributions in Fig. 2, the
leading and next-to-leading-order loop corrections
to the decuplet magnetic moments can be expressed
as

.
Iz

1 (A
/1(7% Joop) _ _2_ [— ~H*Mrdy br_1 C*Mr

— dy
2 9’
2MT¢:”‘K 3 f¢ 2

(51)
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2 2 2
(3.loop) m¢ 2 5hH s C P b,CH &
! =% A — -
Jom 2MT { ; )+ sz 1 ¢;(,1<3f§> 3 Ve T 16/ anyon 37 ATNY 7 N
5H2 s <1> 4
+ ( = TyfT 2C aNtry |- (52)
Py 12 f 4f

where 4 =1 GeV is the renormalization scale. Note that 7’(57’ ny, VZ)TN’ yf, yf, y;’fT, and y;fN arise from the

corresponding diagrams in Fig. 2. We collect their explicit expressions in Tables V-VII in Appendix B.

| <10g ) 2,/6% —mj (arccosh( ¢) - iﬂ') p=n

T3 (54)

dy = 5
167 5(0 —1) + 2, /mj — 6 arccos (—m%) ¢ =K.n,

m2
| (mj —26%) log <T¢> +46,/6° —mj (arccosh <;—Z) - iﬂ') +28° p=n
- l6r 2 m [ 2 _ 2 5 2
( -26 )10g(—§’> — 46, /my — 5% arccos (—@>+25 ¢ =K,n,

| m
arN =1 [(663 — 9my6) log<ﬂ > +2(3zmy, + 6m36 — 553)}

|| (8 =m3)? (arccosh (;l—i) - in) p=nx

- 2
127 (mj, — %)%/ arccos (— i) ¢ =K,n.

m b

With the low-energy counterterms and loop contributions next-to-next-to-leading order, respectively. Here, Fg()) _
1 2 in th i
(51) and (52), we obtain the magnetic moments, ZMT/l(Tl)/e, Fg ZMT( (3.tree) +,u<73‘l°°p>)/e, and

2100 3ree 3100
pr = (P} + {(uF ) + {uf Y. (58)

c?
olreciloop) _ 7’ <H ﬁT 2110 _ ﬁ/\/ ol ) (60)

2 - ¢ 2 Mg
where ,u(Tl) and ,u(; ) are the tree-level magnetic 4MT¢ =\ 315 214

moments as shown in Table I.
The other multipole form factors are

B. Electromagnetic form factors and radii 1
From the tensor O, up to O(p*), the magnetic dipole Gro(q®) = {0} + {erqz + ngyloop) _nggO'loop) }v (61)
form factor with the corrections at next-to-next-to-leading
order is Gr(q?) = {Qc@ Oloop) } (62)
G (%) = {Fg0>} i {Fgl,loop) _ Férec,loop)} ~
+{Qbpq? + FS) 4 Fyeeo®)y, (59) Gu3(¢*) = Qdo, (63)

where the terms in the first, second, and third sets of ~ Where b 2, €y, Cg, and dO are the linear combinations of

curly braces are G at the leading, next-to-leading, and LECs b, qu, ¢, Cg, and dp. We can estimate the LECs qu
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and ¢, with the SU(3) VMD model as shown in Sec. VA.

However, the LECs ¢q and dp are still unknown for the
electro-quadrupole and magnetic octupole form factors.
Hence, we do not list the loop corrections to these multipole
form factors at higher order.

The charge and magnetic radii of the decuplet baryons
can be expressed as

dGo(q®)
dq2 7=0
— <r%>tree + <r%>loop

—dF(IZ,loop) 1 (0,loop)
— + 5 F3 0)],
L dq q2:0 12MT

(rg) =6

= [60¢,] + 6

_ 6 dGy(q*)
Gwi(0)  dg®
— <r%/l>tree+<r%/l>loop
6
Gin (0)

(i)

6 dFél Jloop)

GMI (0) dq2 q2:()'

Qb + (65)

For the neutral decuplet baryons, we normalize the
magnetic radii as

_ 6dGM1(612).

) =6 (66)

V. ESTIMATION OF THE LOW-ENERGY
CONSTANTS

A. Vector meson dominance model and
estimation of some LECs

To calculate the tree-level charge radii and magnetic
radii, we can use the VMD model to estimate the short-
distance contribution.

It is well known that the charge radii of the proton and
pion are dominated by the short-distance contribution,
which can be estimated very well by the VMD model.
In this work, we use this model to estimate the LECs ¢, and

b > which are related to the charge and magnetic radii of the
decuplet baryons, respectively. Within this framework, the
virtual photon transforms into a virtual vector meson which
couples to the decuplet baryons as shown in Fig. 3.

It is convenient to adopt the antisymmetric Lorentz
tensor field formulation for the vector meson [102,103],
which has 6 degrees of freedom. But we can dispose of
three of them in a systematic way. For details see
Ref. [102]. The kinetic and mass term of the effective
Lagrangian for the vector meson has the form [102,103]

PHYSICAL REVIEW D 95, 076001 (2017)

s

FIG. 3. The contribution to tree-level charge radii from the
vector meson dominance model. The double-solid, double-
dashed, and wiggly lines represent the decuplet baryons, the
vector meson, and the photon, respectively.

1 1
Low = =5 Te(@ W, 0,W) + ; Te(MyW,, W), (67)

where

2~ o + ot
stsoom K
W, = p- — % + % K0 . (68)
K+ I_(*O ¢

nv

The QED gauge-invariant interaction between the photon
and vector meson can be written as

£ %Tr(W"”F;}). (69)

The vector meson and decuplet baryon interaction
Lagrangian reads

/1
LY = gyrTe|Te(— VW, — oW, | T,|. (70)
M, 2

Under the SU(3) symmetry, the charge form factor and
charge radii of the decuplet baryons are

GYMP(g2) = 0 gvrfv 7 (71)
£ \/ZMV _q2+M%/’

<r%>tree ~ <,%>VMD
Gy (q%)

dq2 =0
gvrfv 1

V2 M

=6

=60 (72)

The magnetic-dipole form factor and magnetic radii of the
decuplet baryons are
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My
2 +M2 ’
(73)

GAV/[I\{ID q2> Q gVTfV C]

\/_M q+M2 \/_Kngva

(B (7
6 dGy°(q)
" Gn(0)  dg?
_ 60 {gvav
Gy (0) [v2Ms3,

Now the LECs ¢, and I;qz read

7*=0
Gy (0)
M50

] . (74)

~ gvrfv

Cp = )
V2M3,

2:gvav Gﬁ{jf'(O).
ToVaMy M0

In the numerical analysis, we use M, = 770.0 £ 0.3 MeV,
fp=fy=1525+16.5MeV, gyr ~ g,n = 4.0 £ 0.4 [21],

where we have considered the quark model error of around
10% in Sec. V B.

(75)

S

(76)

B. Quark model and estimation of some couplings

Comparing the matrix elements at both the hadron and
quark level, one can express the couplings in terms of the
constituent quark masses and/or other known hadron
couplings. To estimate g¢y7, we first consider the
A*TA*PY and ppp° vertices at the hadron level,

gvT

£A+A+po = \/EMV A+a}/”6”plw (77)
% ,
L0 = \/fMV prro ph,p. (78)

At the quark level, the quark vector meson interaction reads

‘qupo = gqqula}/ﬂal/p/%Qa- (79)
With the help of the flavor wave functions of the static A™*
and p states, we obtain the matrix elements at the hadron
level,

(AF[iLarpep0|AT ;p0) = (80)

2m ,
\/’MV AT q/’ 10

<p|l‘cppp”|p P > (81)

2m,q,€,,
\/’MV pCI/ 410

and at the quark level,

PHYSICAL REVIEW D 95, 076001 (2017)
<A+|i£qqpn|A+;pO> = quqp(zmu + md)Q%eﬂm (82)

<p|i£qq/)o|p;po> = 2gqqp(2mu + md)‘]%(':uO' (83)
Comparing the hadron and quark-level matrix element and
neglecting the mass difference between p and A™, we
finally obtain

WT = Gow- (84)

In the same way, one can estimate the LEC b, by
comparing the £ — A + y matrix element at both the
hadron and quark levels with the Lagrangians

(2) _ 2 v
[’Z*O—>A+y - _4MBZ 0”7/ ySAFﬂD (85)
and
e 2 1 - 1
Lim =—— i ———do"d - sots | F,,.
fm 4(3mu BT PR P s) w
(86)

We obtain

3 1 1
by, =AM \ﬁ + > =3.45+0.35, (87
2 B 2(3\/6mu 6v/6my, (87)

with m, = my; = 336 + 34 MeV [104], where we have
considered the quark model error around 10%.

VI. NUMERICAL RESULTS AND DISCUSSIONS

We collect our numerical results of the magnetic
moments of the decuplet baryons to the next-to-next-to-
leading order in Table I. We also compare the numerical
results of the magnetic moments when the chiral expansion
is truncated at orders O(p'), O(p?), and O(p?), respec-
tively, in Table II.

At the leading order O(p'), there is only one unknown
low-energy constant b. We use the precise experimental
measurement of the Q™ magnetic moment - = (—2.02 £
0.05)uy as input to extract b = 3.03 £ 0.08. The magnetic
moments of the other decuplet baryons are given in the
second column in Table II. Notice that the O(p') tree-level
magnetic moments of the neutral baryons A, £*°, and =*°
vanish. In the limit of the exact SU(3) flavor symmetry,
there exists only one independent term for the magnetic
interaction in the O(p?) Lagrangian of the decuplet
baryons due to the constraint of the decuplet flavor
structure. Therefore, the leading-order O(p') magnetic
moments of the decuplet baryons are proportional to their

076001-11



LL LIU, CHEN, DENG, and ZHU

TABLE II. The magnetic moments of the decuplet baryons
when the chiral expansion is truncated at O(p'), O(p?), and
O(p?), respectively (in unit of py).

Baryons — O(p') o(p?) o(p*) PDG
A 404(10)  4.90(84)  49789) 56+ 19
A* 202(5)  23147)  2.60(50)  27+35
A 0 -0.29(11)  0.02(12)
A- —202(5) —2.88(27) —2.48(32)
Tt 202(5)  2.5937)  1.76(38)
0 0 0 -0.02(3)
¥ —202(5) -2.59(37) —1.85(38)
210 0 0.29(11)  —0.42(13)
5 —2.02(5) —231(47) —1.90(47)
Q" —202(5)  —2.02(5)  —2.02(5) —2.020.05

charge, which is in strong contrast to the case of the octet
baryons. The magnetic moments of the neutral octet
baryons do not vanish at leading order because there exist
two independent magnetic interaction terms as illustrated in
Refs. [50,53].

Up to O(p?), we need to include both the leading tree-
level magnetic moments and the O(p?) loop corrections. At
this order, all the coupling constants are well known. There
exist no new LECs. Again, we use the experimental value
of the Q™ magnetic moment pgo- = (—2.02 + 0.05)uy as
input to extract the LEC b =63 +0.1. We list the
numerical results in the third column in Table II, where
the errors in the brackets are dominated by the errors of the
coupling constants C, H in Eq. (27).

It is interesting to notice that the magnetic moment of *¢
still vanishes even at O(p?). The reason for this is as
follows. Throughout our calculations, we neglect the mass
difference among different decuplet baryons in the loop and
—iP}?
v-g+ie
baryons. In the case of the 2** magnetic moment, the loop
contributions from different intermediate states cancel each
other. In other words, the pion loop contributions with the
intermediate baryons £** and *~, £* and X~ cancel each
other due to the exact SU(2) flavor symmetry. The kaon
loop contributions with the intermediate baryons A" and
Z*~, p and E™ cancel each other due to the SU(3) flavor
symmetry. Hence, the magnetic moment of 0 is zero to
O(p?) in Table II.

Up to O(p?), there are seven unknown LECs: bpr, b,
92, din3. The first two LECs were extracted in the
calculation of the magnetic moments of the octet baryons
in Ref. [53]: bp = 3.9, b = 3.0. We use the experimental
value of the Q™ magnetic moment, the magnetic moments
of the A baryons in Ref. [85] (up++ = 4.99 £+ 0.56, pup+ =
2494+ 0.27, ppo =0.06 £0.00, pp- =-2.45+£0.27),
and pso =0 to extract the remaining five LECs:

have used the same propagator

for all the decuplet

PHYSICAL REVIEW D 95, 076001 (2017)
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FIG. 4. The variation of the normalized electric charge form
factor Ggo(—g*) with §*> = —¢* > 0.

b=68£04, gop=-137+£0.1, dy =35£0.1, d, =
—1.54+0.1, d3 = 4.3 £0.1. We list the numerical results
up to O(p?) in the fourth column in Table II after taking
the uncertainties of these inputs into consideration. In the
error analysis, we use the least e fitting tool of the TMinuit
software package to get the errors of fitting. To get the total
errors of the O(p?) magnetic moments, we have considered
the errors of the coupling constants C, H, the error of the
coupling constant b,, and the errors of fitting.

In order to study the convergence of the chiral expansion,
we show the numerical results at each order for the decuplet
magnetic moment:

Gmi [—712]

e
_
— o
-
‘1““1““1““1““t_]Z[GeVZJ
0.05 0.10 0.15 0.20 0.25
Tati G (=4%) < ~2
FIG. 5. The variations of “2#-— with g-.
GMI(O)
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F;oop[f;f]
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FIG. 6. The variations of —5—— with g~.

FgO.luop) 0)

pare =9.0(1—0.39 — 0.06) = 4.97,

par =4.5(1 =043 +0.01) = 2.60,

ppo = —0.29(0 + 1 — 1.06) = 0.02,

pa- = —4.5(1-0.30 — 0.15) = —2.48,

pse = 4.5(1 — 036 —0.25) = 1.76,

pso =0+ 0 — 0.02,

ps- = —4.5(1 —0.36 — 0.23) = —1.85,

pizo = 0.29(0 + 1 —2.44) = —0.42,

psz- = —4.5(1 =043 = 0.15) = —1.90,

po- = —45(1-049—0.06) = —2.02.  (88)

For the neutral decuplet baryons, their magnetic moments
vanish at O(p'). Their total magnetic moments arise from
the loop contributions at O(p*?) and the tree-level LECs

PHYSICAL REVIEW D 95, 076001 (2017)

d, »3 at O(p*) which are related to the strange quark mass
correction. For the charged baryons, one observes rather
good convergence of the chiral expansion, and the leading-
order term dominates in these channels.

In order to illustrate the variation of the multipole
form factors with the photon momentum ¢, we show the
G*> = —q* dependence of the electric charge and magnetic
dipole form factors to O(p?) in Figs. 4 and 5, where we
have used the SU(3) VMD model to estimate the LECs b 2
and ¢, as shown in Egs. (29) and (34).

In Fig. 4 or 5, we notice that there is not much difference
between the slopes of the curves. They should be exactly
the same for different decuplet baryons if only the tree-level
contributions are considered. The difference arises from the
loop correction.

The electric quadrupole form factors Gy,(g?) contain
interesting information on the deformation of decuplet
baryons. Note that ¢g cannot be determined because of
the lack of experimental data. But the cq term does not
change with ¢>. We list the normalized F go'l(’(’p)(—c}z) in
Fig. 6 to indicate the variation of Gg,(g?).

In Table III we show numerical results for the charge
radii and magnetic radii of the decuplet baryons. One can
check that the charge radii estimated from the VMD model
are proportional to the charge Q of the decuplet baryons,
while the magnetic radii estimated from the VMD model
are the same for different baryons. In the error analysis, the
errors of VMD radii are dominated by the input parameters
M,, fv,gyr and their propagation. The chiral correction
radii are dominated by the errors of the coupling constants
C, 'H in Eq. (27).

VII. CONCLUSIONS

In short summary, we have systematically studied the
magnetic moments of the decuplet baryons up to next-to-
next-to-leading order in the framework of heavy baryon
chiral perturbation theory. With both the octet and decuplet
baryon intermediate states in the chiral loops, we have

TABLE III.  Charge radii and magnetic radii (in fm?).

(r 125>/ fm? VMD Chiral correction Total value <r§4> /fm? VMD Chiral correction Total value
ATT 0.44(20) 0.16(6) 0.60(21) AT 0.46(11) 0.15(10) 0.61(15)
At 0.22(10) 0.07(3) 0.29(10) At 0.46(11) 0.18(8) 0.64(14)
A° 0 —-0.02(1) —-0.02(1) A0 0 0.07(12) 0.07(12)
A~ —0.22(10) —0.11(5) —0.33(11) A~ 0.46(11) 0.09(15) 0.55(19)
=+t 0.22(10) 0.09(4) 0.31(11) ot 0.46(11) 0.13(12) 0.59(16)
>0 0 0 0 >0 0 0 0
Dl —-0.22(10) —0.09(4) —0.31(11) > 0.46(11) 0.13(12) 0.59(16)
=0 0 0.02(1) 0.02(1) =0 0 —-0.07(12) —-0.07(12)
S —0.22(10) —0.07(3) —0.29(10) S 0.46(11) 0.18(8) 0.64(14)
Q- —-0.22(10) —0.05(2) —-0.27(10) Q- 0.46(11) 0.24(4) 0.70(12)
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TABLE IV. Comparison of the magnetic moments of the decuplet baryons in the literature including lattice QCD (LQCD) [84], the
chiral quark model (ChQM) [105], the nonrelativistic quark model (NQM) [106], QCD sum rules (QCD-SR) [74], large N, [107],
covariant ChPT [83], next-to-leading-order HBChPT [77], and PDG [49] (in units of uy).

Baryons ATH AT A° A- p >0 Do =0 i Q-
LQCD [84] 6.09 3.05 0 -3.05 3.16 0.329 -2.50 0.58 -2.08 -1.73
ChQM [105] 6.93 3.47 0 —-3.47 4.12 0.53 -3.06 1.10 -2.61 -2.13
NQM [106] 5.56 2.73 —0.09 -2.92 3.09 0.27 -2.56 0.63 2.2 —-1.84
QCD-SR [74] 4.1 2.07 0 -2.07 2.13 -0.32 —1.66 —-0.69 —1.51 —1.49
Large N, [107] 5.9 2.9 . -29 3.3 0.3 -2.8 0.65 -2.30 —-1.94
Covariant ChPT [83] 6.04 2.84 —0.36 —3.56 3.07 0 -3.07 0.36 -2.56 -2.02
HBChHPT [77] 4.0 2.1 -0.17 -2.25 2.0 -0.07 2.2 0.10 -2.0 -1.94
PDG [49] 56£19 27435 —2.02 £0.05
This work 4.97(89) 2.60(50) 0.02(12) —2.48(32) 1.76(38) —0.02(3) —1.85(38) —0.42(13) —1.90(47) —2.02(5)

systematically calculated the chiral corrections to the
magnetic moments of the decuplet baryons order by order.
The chiral expansion converges rather well for the charged
channels. In Table IV, we compare our results obtained in
HBChPT with those from other model calculations such as
lattice QCD [84], the chiral quark model [105], the non-
relativistic quark model [106], QCD sum rules [74], large
N. [107], covariant ChPT [83], and next-to-leading-order
HBChHPT [77]. We also list the experimental values in the
PDG [49]. One may observe the qualitatively similar
features for the magnetic moments of the decuplet baryons.

Because of the SU(3) flavor symmetry, there is one
independent low-energy constant at leading order. Hence,
the magnetic moments of the decuplet baryons are propor-
tional to their charge. Therefore, the magnetic moments of
the neutral decuplet baryons vanish at O(p'), which differs
from the case of the neutral octet baryons. There exist two
independent magnetic interaction terms for the octet
baryons, which ensures a large magnetic moment for the
neutron at leading order.

For the magnetic moment of the X*°, the pion loop
contributions with the £** and X*~, X' and X~ inter-
mediate states cancel each other exactly in the SU(2)
symmetry limit. The kaon loop contributions with the
A" and E*7, p and Z~ intermediate states cancel each
other exactly in the SU(3) symmetry limit. The magnetic
moment of X0 vanishes even at O(p?) with SU(3)
symmetry. The nonvanishing SU(3) breaking corrections
first appear at O(p?). In other words, the SU(3) flavor
symmetry demands that the magnetic moment of £*° be
significantly smaller than those of the charged decuplet
baryons.

We hope that the magnetic moments of the decuplet
baryons will be measured experimentally in future experi-
ments. Moreover, the analytical expressions derived in this
work may be useful to the possible chiral extrapolation of
the lattice simulations of the decuplet electromagnetic
properties in the future.
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APPENDIX A: INTEGRALS AND
LOOP FUNCTIONS
We collect some common integrals and loop functions in

this appendix.

1. Integrals with one or two meson propagators

dipE-d Lom
A—i [EET L () +—— ™),
l/(Zn’)d E_m m( ()+327z2“z2>

(A1)

L(2)

24T
T 1672 [d —4

—%(ln47r+ 1+ F’(l))]. (A2)
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[ die 1
Iy(q*) = l/ :

(Zﬂ)d (12 —m?* +ie)((I + q)* — m* + ie)

(l—ln——rln =)+ 2L(4) (¢*> <0)
=0 —q=(1- —2rarctani) +2L(2) (0 < ¢* < 4m?) (A3)
— oz (1= —rin |3 |+ inr) +2L(2) (¢ > 4m?),

where r = /|1 —4m?/q?|.

2. Integrals with one baryon propagator and one meson propagator

. ddl/14_d [17 la’ lalﬂ]
l/ @) (F—ne i) o Tsie @) vali(@) gypha@) + vavpls(@)], o =v-r+5, (A4)
% (1—In ’jf—zz) + "fﬂ (arccosh® —iz) +4wL(d) (@ > m)
Jo(@) = { 22 (1 — In%) + Y5 arceos =2 + 4w (1) (0? < m?) (AS)
s (1= ln'/'f—;) -V 422 -arccosh =2 + 4wL(4) (0w < —m),
1
Do) = 1 [ = 0P g (@) + A, (A7)
J3(@) = —aJ,(0) = Jr(0). (A8)

3. Integrals with two baryon propagators and one meson propagator

[ did (1. Lgn Ll B
/ ) B-mltie)v-Itie)@to-Itie) [Co(@), 0,1 (@), gopTa (@) + 04051 3(w)] @ #0,  (A9)
o) = 11:0) = Ji(@)] (A10)
d714—d
./d(zli)d — Jr[llel)(aijf]v e %JO(G)), va%h(w),gaﬂ%.lz(a)) n vavﬂ%h(cg) . (Al

4. Integrals with one baryon propagator and two meson propagators

djy4—d
i/d(Zlfr)d (P —m?+ le)((l[:-lcc]l)zla—lﬂnfzylj-lﬁl]e)(w +v- 1+ ie) = (@) Lar Lap: Lyl a0
o \/aT;I(arccosh— —in) (w>m)
Lo(w) = 8/‘[2 \/#arccosﬁ (@* <m?)  (A12)
#\/ml—arccosh = (w < —m),
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I
ns67

|
189,10

I
112,13

I
Ny

_ 0 I
L, =niq, +nyv,,

Laﬂ = nlllgaﬂ + nIZIqaCI/i + nglva”ﬂ + n?”a‘]ﬁ + "?%”m

Lyos = n"q,9,q5 + n3'q,q,05 + n¥'q,q50, + n'q.q5v, + ni'q,9,5

+ 18" GpGua + 17 GoGup + 18" G005 + 18 G0, V5 + PGV, V.

11 I I il
+ nllgvﬁva + ”129m”/3 + nlBQaﬂvu + n14vvvavﬁ-

5. Explicit expressions of the scalar functions

Ly
=2,
=1y = Low,
_ —Alyw —2Jy + gLy — 4Lym* + 4Ly’
N 8 —d4d :
2(d=3)Jg + (d = 1)¢*Lo — 4(Iow + Lom® — Lyw?)
- 4(d - 2)q2 ,
_ —4(dlyw — dLgw? — Iyw + Lym® + Lor*) — 2Jo + ¢*Lo
- Xd—2) ,
1
1
T TRd=2)F [6(d —3)Jy + (d+ 1)g*Ly — 12(Iyw + Lym® — Lya?)),
1

4= [@*q*(Ig = Low) = 2(d* — 4d + 3)wJ

4(d-2)(d-1)g?
—2d(A + Iy(g* = 20°) + Low(=2m?* + 20° — ¢?))
—+ 4A —+ 4[0m2 - 410602 - quow — 4L0m2(l] + 4L0(l]3],

= ﬁ [4lyw — 2]y + q* Ly — 4Lym? + 4Lyw?],
= ﬁ [—4dlyw + 4dLyw?* + 4lyw — 20 + q* Lo — 4Lgm? — 4Lyw?],
- m [4dA + To(4((d - 3)m? — (d — 1)) - (d — 2)g?)
=2(d = 1)wJy + dg*Low — 4dLom*w + 4dLyw* — 8A — ¢*Low + 4Lym*w — 4Lyw?),
= W [215(2(d* = Dw? + (d = 2)g*> + 2(7 = 2d)m?) — 4d*Ly?
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APPENDIX B: COEFFICIENTS OF THE LOOP CORRECTIONS

In this appendix, we collect the explicit formulas for the chiral expansion of the decuplet baryon magnetic moments at
O(p?) in Table V and O(p?) in Tables VI and VII, respectively.

TABLE V. The coefficients of the loop corrections to the magnetic moments of the decuplet baryons from Fig. 2(d). The subscripts
“T” and “N” denote the decuplet and octet baryons within the loop, while the superscripts denote the pseudoscalar meson.

Baryons s pE pr pr B By
A+t 2 2 0 2 2 0
2 4 2 4
a* 5 5 0 3 3 0
0 2 2 2 2
A -3 5 0 -3 3 0
A~ —§ 0 0 -2 0 0
= 5 5 0 3 3 0
0 0 0 0 0 0 0
I -5 -3 0 -3 -3 0
=] 2 2 2 2
= 9 ~9 0 3 I 0
= 2 4 2 4
= =5 -5 0 -3 -3 0
Q- 0 —% 0 0 -2 0
TABLE VI. The coefficients of the loop corrections to the magnetic moments of the decuplet baryons from Fig. 2(a).
Baryons rir rs Yir Yan vy % Yarn Yarn Yarn
AT % % % %(bD+3bF) %(bD+3bF) 0 —%‘ —% 0
A* ik 2 1 by 2(bp + by) 0 4 = 0
A0 z - 0 3 (bp — br) 2(bp — bp) 0 4 -3 0
A~ -1 -2 -1 2bp %(bp —3by) 0 3 0 0
et 4 u 0 L(=bp +3by) 3 (bp — 3by) L(bp + 3by) 0 -4 0
=0 0 0 0 —3bp —-%bp 1bp % -2 0
- _% _TM 0 _?l(bD + 3bF) _TZ(bD +3bF) %(bD _3bF) % 3 0
=0 =2 2 =2 2 =2 2 4 2
= 9 9 0 3 br 3br 3 bp 9 3 3
i _% _TM _Tl %(_bo —br) _szF %(bD —3br) % % 0
Q- 0 2 —‘3—‘ 0 ‘74(bD+3bF) 0 0 —g 0

TABLE VII. The coefficients of the loop corrections to the magnetic moments of the decuplet baryons from Figs. 2(b), 2(e), and 2(f).

K

> X

Baryons 7 rh i ve vh vt vir vir YiT Vin 7y Vi
ATF —b —b 0 29, 20 0 3 2 ! 2 2 0
AT —1b -2p 0 29, 20 0 3 z ! 2 2 0
A? oo = 0 2 3 0 3 2 ! 2 2 0
A- b b 0 3¢, 0 0 3 2 ! 2 2 0
zrt ~2b ~1b 0 g, 29, 0 8 1o 0 5 4 1
>0 0 0 0 %5’2 %92 0 % % 0 % % 1
Z* 5b 3b 0 30 i 0 5 3 0 3 3 1
=0 -1b ib 0 20, 2g, 0 ! 2 ! 1 2 1
B+ 1b 2p 0 29, 20 0 ! 2 ! 1 2 1
Q- 0 b 0 0 29, 0 0 4 4 0 4 0
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